Integral Geometry and Real Zeros of Thue-Morse Polynomials

Christophe Doche and Michel Mendès France

Dedicated to the memory of Gian-Carlo Rota

CONTENTS

1. Finite curves
2. Breadth of a Bounded Set
3. Extension to Finite Doodles
4. Dimension
5. Real Zeros of Real Polynomials
6. Deterministic Results
7. Elementary Properties
8. Thue-Morse Polynomials of Odd Degree
9. Thue-Morse Polynomials of Even Degree
10. Proof of the Theorems

Acknowledgements
Addendum
References

We study the average number of intersecting points of a given curve with random hyperplanes in an n-dimensional Euclidean space. As noticed by A. Edelman and E. Kostlan, this problem is closely linked to finding the average number of real zeros of random polynomials. They showed that a real polynomial of degree n has on average $\frac{2}{\pi} \log n+O(1)$ real zeros (M. Kac's theorem).

This result leads us to the following problem: given a real sequence $\left(\alpha_{k}\right)_{k \in \mathbb{N}}$, study the average

$$
\frac{1}{N} \sum_{n=0}^{N-1} \rho\left(f_{n}\right),
$$

where $\rho\left(\mathrm{f}_{\mathrm{n}}\right)$ is the number of real zeros of $\mathrm{f}_{\mathrm{n}}(\mathrm{X})=\alpha_{0}+\alpha_{1} \mathrm{X}+\cdots+$ $\alpha_{\mathrm{n}} \mathrm{X}^{\mathrm{n}}$. We give theoretical results for the Thue-Morse polynomials and numerical evidence for other polynomials.

1. FINITE CURVES

Let \mathcal{E}_{n} be real n-dimensional Euclidean affine space with a given orthonormal base. We identify points $x \in \mathcal{E}_{n}$ with the column vector ${ }^{t}\left(x_{1}, \ldots, x_{n}\right)$ whose entries are the coordinates of x.

A hyperplane $h \subset \mathcal{E}_{n}$ which does not contain the origin is represented by its Cartesian equation

$$
\sum_{i=1}^{n} h_{i} x_{i}=1,
$$

or $h x=1$ for short, where $h=\left(h_{1}, h_{2}, \ldots, h_{n}\right)$ is an element of the dual space \mathcal{E}_{n}^{*}. Both \mathcal{E}_{n} and \mathcal{E}_{n}^{*} are endowed with the Euclidean norm.

A change of orthonormal base in \mathcal{E}_{n} induces a change of coordinates from the initial base to the new one:

$$
x \mapsto x^{\prime}=A x+x^{0}
$$

where A is an $n \times n$ orthogonal matrix. The hyperplane h then becomes $h^{\prime}=h A^{-1} /\left(1+h A^{-1} x^{0}\right)$ and it is easy to see that

$$
\left\|h^{\prime}\right\|^{-n-1} \prod_{i=1}^{n} d h_{i}^{\prime}=\|h\|^{-n-1} \prod_{i=1}^{n} d h_{i}
$$

so that

$$
d h=\|h\|^{-n-1} \prod_{i=1}^{n} d h_{i}
$$

is the natural invariant measure on the space \mathcal{E}_{n}^{*}. Perhaps the most elementary way to see this classical result is to notice that any change of orthogonal base is a product of a rotation around the origin followed by n translations parallel to a coordinate axis. For each of these component base changes, the above invariance holds.
Let $\gamma \subset \mathcal{E}_{n}$ be a finite rectifiable curve, that is, a rectifiable curve of finite length $|\gamma|$. Let $\Omega(\gamma)$ be the family of hyperplanes h that intersect γ, and let $|\gamma \cap h|$ be the number of intersection points of h and γ. Santaló [1976, p. 245] establishes that

$$
\begin{equation*}
\int|\gamma \cap h| d h=\frac{\pi^{(n-1) / 2}}{\Gamma\left(\frac{n+1}{2}\right)}|\gamma| \tag{1-1}
\end{equation*}
$$

where Γ is the usual Euler gamma function. See also [Klain and Rota 1997].

2. BREADTH OF A BOUNDED SET

Let K be a bounded convex set in ε_{n}. For $x \in \mathcal{E}_{n}$ call K_{x} the length of the orthogonal projection of K on the axis $O x$, where O is the origin. Lengths are positive. The mean breadth of K is

$$
\int_{\mathbb{S}_{n}} K_{x} d x / \int_{\mathbb{S}_{n}} d x
$$

where \mathbb{S}_{n} is the unit sphere $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$.
If L is any bounded set in ε_{n}, we define the mean breadth $B(L)$ as the mean breadth of the convex hull of L; in particular, the mean breadth of γ is well defined. Using Santaló's result again, we easily find that the h-measure of those hyperplanes h that intersect γ is

$$
\begin{equation*}
\int_{h \cap \gamma \neq \varnothing} d h=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}\right)} B(\gamma) . \tag{2-1}
\end{equation*}
$$

The quotient of equalities ($1-1$) and ($2-1$) thus gives us the average number $N(\gamma)$ of intersecting points
of γ with a random hyperplane given that these hyperplanes meet γ :

$$
\begin{equation*}
N(\gamma)=\frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)} \frac{|\gamma|}{B(\gamma)} . \tag{2-2}
\end{equation*}
$$

Let δ be the diameter of the set γ. Then clearly $B(\gamma) \leqslant \delta$. On the other hand the convex hull of γ contains a segment σ of length δ. Since

$$
B(\gamma) \geqslant B(\sigma)=\frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)} \delta,
$$

where the equality is easily verified, we conclude that

$$
\begin{equation*}
\frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)} \frac{|\gamma|}{\delta} \leqslant N(\gamma) \leqslant \frac{|\gamma|}{\delta} . \tag{2-3}
\end{equation*}
$$

3. EXTENSION TO FINITE DOODLES

Formulas (2-2) and (2-3) can be extended to generalized curves called "doodles". A doodle γ is a connected set which is a finite union of rectifiable curves $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}$. The length of γ is naturally defined as

$$
|\gamma|=\sum_{i=1}^{k}\left|\gamma_{i}\right| .
$$

To any doodle γ we can associate a closed curve $\tilde{\gamma}$ that goes over γ twice. According to formula (2-2),

$$
N(\tilde{\gamma})=\frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)} \frac{2|\gamma|}{B(\gamma)},
$$

since $|\tilde{\gamma}|=2|\gamma|$ and $B(\tilde{\gamma})=B(\gamma)$. But $N(\tilde{\gamma})=$ $2 N(\gamma)$ since each intersection point of a hyperplane h with $\tilde{\gamma}$ counts twice. Dividing by 2 leads to formula (2-2) for doodles.

This result should be compared to those of Favard [1932], Sulanke [1966] and Laurent-Gengoux (private communication).

4. DIMENSION

Several earlier articles have discussed the dimension of curves in the plane [Mendès France and Tenenbaum 1981; Dekking and Mendès France 1981; Mendès France 1991]. The extension to curves in \mathcal{E}_{n} is straightforward.

Indeed, let γ be an unbounded, locally rectifiable curve in \mathcal{E}_{n} such that bounded subsets of \mathcal{E}_{n} contain only finite portions of γ. So for example in \mathcal{E}_{2} curves
like the one given in polar coordinates by $\theta=\sin 1 / \rho$ are excluded: the unit ball centered at the origin contains infinitely many branches of the curve.

With no real loss of generality we assume that γ has an endpoint (or rather a starting point!). Let γ_{s} denote the beginning portion of γ of length s. Let $\varepsilon>0$ be given. Consider the so-called Minkowski ε-sausage

$$
\gamma(s, \varepsilon)=\left\{x \in \mathcal{E}_{n} \mid \operatorname{dist}\left(x, \gamma_{s}\right) \leqslant \varepsilon\right\}
$$

Let $|\gamma(s, \varepsilon)|$ be its volume. If $\delta(s)$ is the diameter of γ_{s}, define the dimension $d=\operatorname{dim}(\gamma)$ by the formula

$$
\begin{equation*}
\operatorname{dim}(\gamma)=\liminf _{s \rightarrow \infty} \frac{\log |\gamma(s, \varepsilon)|}{\log \delta(s)} \tag{4-1}
\end{equation*}
$$

Despite appearances, $\operatorname{dim}(\gamma)$ does not depend on ε : this is easily seen [Mendès France 1991, page 329]. Clearly $1 \leqslant d \leqslant n$, and it can be shown that for all $\alpha \in[1, n]$ there exists a curve γ for which $\operatorname{dim}(\gamma)=$ α.

The volume of $\gamma(s, \varepsilon)$ is at most

$$
|\gamma(s, \varepsilon)| \leqslant \frac{\pi^{(n-1) / 2}}{\Gamma\left(\frac{n+1}{2}\right)} \varepsilon^{n-1} s+O\left(\varepsilon^{n}\right),
$$

so that

$$
\begin{equation*}
\operatorname{dim}(\gamma) \leqslant \liminf _{s \rightarrow \infty} \frac{\log s}{\log \delta(s)} \tag{4-2}
\end{equation*}
$$

Under certain circumstances equality holds: for example, when there exists a real number $A>0$ such that unit balls contain portions of γ of total length less than A.

Let $\varepsilon>0$ be given. Formula (4-2) shows that there exists a value $s(\varepsilon)$ such that

$$
\frac{\log \delta(s)}{\log s} \leqslant \frac{1}{d}+\frac{\varepsilon}{2}
$$

for all $s>s(\varepsilon)$, so that

$$
\delta(s) \leqslant s^{1 / d+\varepsilon / 2}
$$

Inequality (2-3) therefore implies a lower bound for $N\left(\gamma_{s}\right)=: N(s):$

$$
\begin{equation*}
N(s) \geqslant \frac{1}{\sqrt{\pi}} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n+1}{2}\right)} s^{1-1 / d-\varepsilon / 2} \geqslant s^{1-1 / d-\varepsilon} . \tag{4-3}
\end{equation*}
$$

On the other hand, if γ is a curve for which formula ($4-2$) is an equality, then

$$
\begin{equation*}
N(s) \leqslant s^{1-1 / d+\varepsilon} \tag{4-4}
\end{equation*}
$$

for infinitely many large s.

Inequality (4-3) implies that if $d>1$ the average number of intersections of γ_{s} with a random hyperplane tends to infinity as s grows. In particular, if γ is an unbounded algebraic curve then $N(s)$ is less than the degree of γ : this forces $d=1$. Unbounded algebraic curves are one-dimensional.

5. REAL ZEROS OF REAL POLYNOMIALS

Let γ be an unbounded curve in ε_{n} as before. Let

$$
x_{1}=\varphi_{1}(s), \quad x_{2}=\varphi_{2}(s), \quad \ldots, \quad x_{n}=\varphi_{n}(s)
$$

be its parametrical representation: the φ_{i} 's are real functions of bounded variation on every finite interval and s denotes the length coordinate. The previous results show that the average number of real zeros of the equation

$$
\sum_{i=1}^{n} h_{i} \varphi_{i}(t)-1=0, \quad \text { for } 0 \leqslant t \leqslant s
$$

is

$$
N(s) \geqslant s^{1-1 / d-\varepsilon}
$$

for all large s.
The most interesting case is when $\varphi_{i}(t)=t^{i}$, with $|t| \leqslant T \sim s^{1 / n}$, for $i=1,2, \ldots, n$. Then $N(s)$ would be the average number of real zeros in $[-T,+T]$ of the polynomial

$$
P(t) \equiv h_{n} t^{n}+h_{n-1} t^{n-1}+\cdots+h_{1} t-1 .
$$

Unfortunately, as noticed in Section 4, the dimension is 1 so all we get is the trivial result $N(s)>0$.

Edelman and Kostlan [1995], reflecting on a result of M. Kac [1943; 1949; 1959], realized that it is possible - and even easy - to obtain the average number of real zeros of the polynomial

$$
h_{0}+h_{1} t+\cdots+h_{n} t^{n}
$$

using results from integral geometry. Indeed, consider the curve

$$
\left(x_{0}, \ldots, x_{n}\right)=\left(1, t, t^{2}, \ldots, t^{n}\right), \quad \text { for } t \in \mathbb{R},
$$

or rather the curve γ obtained by projecting it centrally onto the unit sphere $x_{0}^{2}+\cdots+x_{n}^{2}=1$. Intersecting γ by a random hyperplane h

$$
h_{0} x_{0}+h_{1} x_{1}+\cdots+h_{n} x_{n}=0,
$$

where $h=\left(h_{0}, h_{1}, \ldots, h_{n}\right)$ is uniformly distributed on the surface of the unit sphere $h_{0}^{2}+\cdots+h_{n}^{2}=$ 1 , shows that the average number of intersecting
points - that is, zeros of the polynomial $h_{0}+h_{1} t+$ $\cdots+h_{n} t^{n}$ —is equal to $|\gamma| / \pi$. The length $|\gamma|$ is easily computed:

$$
\frac{1}{\pi}|\gamma|=\frac{1}{\pi} \int_{-\infty}^{+\infty} \sqrt{\frac{1}{\left(t^{2}-1\right)^{2}}-\frac{(n+1)^{2} t^{2 n}}{\left(t^{2 n+2}-1\right)^{2}}} d t
$$

This is Kac's formula, obtained by Edelman and Kostlan's analysis. Kac obtained an equivalence when n increases to infinity and the second authors were able to give a much more precise result which finally shows that the average number of real zeros of the polynomial is

$$
\frac{2}{\pi} \log n+0.625 \ldots+\frac{2}{\pi n}+O\left(\frac{1}{n^{2}}\right)
$$

The main difference between their approach and ours holds in projecting curves on the surface of the unit n-sphere so that curves of infinite length in \mathcal{E}_{n+1} may well have a finite length on \mathbb{S}_{n}. Their normalizing factor $1 / \pi$ is a measure of the set of hyperplanes $h \in \mathcal{E}^{n+1}$ which pass through the origin. Some of the hyperplanes do not intersect γ.

Erdős and Offord [1956] discussed a similar problem, namely to compute the average number of real zeros of a n degree random polynomial with coefficients ± 1. They find that the average is again $\frac{2}{\pi} \log n$. The method is very different and it would be desirable to be able to find a geometrical approach to their analysis.

6. DETERMINISTIC RESULTS

The deterministic counterpart of the Kac-ErdősOfford theorems could be as follows. Given an infinite sequence $\alpha=\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ of ± 1, say the ErdősOfford case, we form the polynomials

$$
f_{n}(X)=\alpha_{0}+\alpha_{1} X+\cdots+\alpha_{n} X^{n}
$$

Writing $\rho\left(f_{n}\right)$ for the number of real zeros of f_{n} counted with multiplicity, we want to study the average

$$
\frac{1}{N} \sum_{n=0}^{N-1} \rho\left(f_{n}\right)
$$

and to compare it with $\frac{2}{\pi} \log N$ as N goes to infinity. If the two quantities are equivalent we can consider the sequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ to be "random" in some sense. We conjecture that almost all sequences
$\alpha \in\{-1,1\}^{\mathbb{N}}$ behave like that. We studied two deterministic $(+,-)$ sequences. The first is the ThueMorse sequence, which is the only nontrivial example for which we can give a precise result. It is also a special case of more interesting sequences (see addendum at the end of this paper for details). Even though the Thue-Morse sequence is far from mimicking randomness, it still retains some features associated with randomness: namely, the spectral measure is continuous (yet not absolutely continuous as would be the case for a random sequence). Theorems 6.1 and 6.2 below show that the ThueMorse sequence is actually far from random.

Before stating them, we consider another $(+,-)$ sequence which appears to behave à la Kac-ErdősOfford. Put $\beta_{0}=\beta_{1}=1$ and $\beta_{n} \equiv p_{n} \bmod 4$ for $n \geqslant 2$, where p_{n} is the n-th prime number. To this day it seems completely out of reach to prove any relevant theorem concerning the zeros of the related polynomials. So we leave it as a conjecture to establish that the average is equivalent to $\frac{2}{\pi} \log N$. See our numerical evidence obtained with the help of the command polsturm of PARI-GP up to $N=600$. Figure 1 shows

$$
\frac{\pi}{2 N \log N} \sum_{n=0}^{N-1} \rho\left(f_{n}\right)
$$

as a function of N when the coefficients of f_{n} follow a random sequence and the β sequence mentioned above.

In the remainder of the paper, $\left(\varepsilon_{i}\right)_{i \in \mathbb{N}}$ will represent the Thue-Morse sequence defined by $\varepsilon_{i}=$ $(-1)^{\nu(i)}$ where $\nu(i)$ is the sum of the binary digits of i. Then $f_{n}(X)$ will be the Thue-Morse polynomial of degree n, that is, $f_{n}(X)=\varepsilon_{0}+\varepsilon_{1} X+\cdots+\varepsilon_{n} X^{n}$. For this very special sequence we are able to prove that

$$
\lim _{N \rightarrow \infty} \frac{1}{N \log N} \sum_{n=0}^{N-1} \rho\left(f_{n}\right)=0
$$

In fact, we shall show:
Theorem 6.1. If $n \in \mathbb{N}$ is even, f_{n} has at most two real roots. More precisely:

1. If $n \equiv 0 \bmod 4$ and $\varepsilon_{n}=1$ then f_{n} has no real root.
2. If $n \equiv 2 \bmod 4$ and $\varepsilon_{n}=1$ then f_{n} has two negative roots.

FIGURE 1. Plot of $\pi /(2 N \log N) \sum_{n=0}^{N-1} \rho\left(f_{n}\right)$ as a function of N, for a random sequence (left) and the β sequence of the text (right).
3. If $\varepsilon_{n}=-1$ then f_{n} has two real roots, one positive and the other negative.
4. If $n \in \mathbb{N}$ is odd, let k be the 2 -adic valuation of $n+1$. Then if $\varepsilon_{n}=(-1)^{k}, f_{n}$ has $2 k-1$ real roots and if $\varepsilon_{n}=(-1)^{k+1}$, f_{n} has $2 k+1$ real roots.

Theorem 6.2. The mean

$$
\frac{1}{N} \sum_{n=0}^{N-1} \rho\left(f_{n}\right)
$$

tends to $\frac{11}{4}$ as N tends to infinity.
We start with elementary results.

7. ELEMENTARY PROPERTIES

First we remark that $\varepsilon_{2 i}=\varepsilon_{i}$ and $\varepsilon_{2 i+1}=-\varepsilon_{2 i}$ and that the generating series of $\left(\varepsilon_{i}\right)_{i \in \mathbb{N}}$ is

$$
\begin{equation*}
\sum_{i=0}^{\infty} \varepsilon_{i} X^{i}=\prod_{l=0}^{\infty}\left(1-X^{2^{l}}\right) \tag{7-1}
\end{equation*}
$$

Now we define the Thue-Morse word \mathcal{E} on the alphabet $\{+,-\}$ by iterating the morphism φ defined by $\varphi(+)=+-$ and $\varphi(-)=-+$ so that

$$
\mathcal{E}=\lim _{n \rightarrow \infty} \varphi^{n}(+) .
$$

The link between the Thue-Morse word and the Thue-Morse sequence is well known. The letter of order i of \mathcal{E} is + or - depending on whether $\varepsilon_{i}=1$ or $\varepsilon_{i}=-1$. We introduce another useful morphism, namely ψ satisfying $\psi(+)=+--+$ and $\psi(-)=-++-$. Since $\psi=\varphi^{2}$, we have also

$$
\mathcal{E}=\lim _{n \rightarrow \infty} \psi^{n}(+)
$$

At last, if $i \leqslant j$ we write ${ }_{i} \mathcal{E}_{j}$ for the factor of \mathcal{E} whose first (resp. last) letter is the letter of rank i (resp. j) of \mathcal{E}. For example ${ }_{0} \varepsilon_{3}=+--+$. In the same way, the definitions of ψ and φ ensure that

$$
\begin{equation*}
{ }_{4 n} \varepsilon_{4 n+3}=\psi(+) \text { or } \psi(-) . \tag{7-2}
\end{equation*}
$$

and that +++ and --- are never factors of \mathcal{E}.
We now get back to polynomials. We write $\mathcal{R}(P)$ for the set of real roots of a polynomial P. Note that in general $|\mathcal{R}(P)| \neq \rho(P)$ since $\rho(P)$ counts the roots with multiplicity. If we consider a polynomial P with coefficients ± 1 it is well known that $\mathcal{R}(P) \subset\left[-2,-\frac{1}{2}\right] \cup\left[\frac{1}{2}, 2\right]$. In addition, for ThueMorse polynomials, we have:
Lemma 7.1. $\mathcal{R}\left(f_{n}\right) \cap[-0.95,0.95]=\varnothing$ for $n>255$.
Proof. Indeed,

$$
\left|f_{n}(x)-f_{255}(x)\right| \leqslant 0.95^{256} \frac{1}{1-0.95} .
$$

Now (7-1) shows that $f_{255}(x)=\prod_{l=0}^{7}\left(1-x^{2^{l}}\right)$ so that for $x \in[-0.95,0.95]$ we have

$$
f_{255}(x) \geqslant f_{255}(0.95)=0.000132 \ldots,
$$

whereas $0.95^{256} \frac{1}{1-0.95} \leqslant 0.00004$.
We now investigate odd degrees.

8. THUE-MORSE POLYNOMIALS OF ODD DEGREE

Lemma 8.1. If $n \equiv-1 \bmod 2^{k}$, namely if $n=v 2^{k}+$ $2^{k}-1$ with $v \geqslant 0$, then

$$
f_{n}(X)=f_{2^{k}-1}(X) f_{v}\left(X^{2^{k}}\right)
$$

Proof. We remark that every integer $i \in[0, n]$ can be written uniquely as the sum $i=2^{k} q+r$ with $0 \leqslant$ $q \leqslant v$ and $0 \leqslant r \leqslant 2^{k}-1$. Since $\varepsilon_{i}=\varepsilon_{r} \varepsilon_{q}$, we have

$$
\begin{aligned}
f_{n}(X) & =\sum_{i=0}^{n} \varepsilon_{i} X^{i}=\sum_{r=0}^{2^{k}-1} \sum_{q=0}^{v} \varepsilon_{r} X^{r} \varepsilon_{q} X^{q 2^{k}} \\
& =f_{2^{k}-1}(X) f_{v}\left(X^{2^{k}}\right)
\end{aligned}
$$

Now we specify the roots of $f_{2^{k}-1}$.
Lemma 8.2. Let k be a positive integer. The only real roots of $f_{2^{k}-1}$ are -1 and 1 respectively of order $k-1$ and k.

Proof. This relies on the factorization
$f_{2^{k}-1}(X)=(1-X)^{k}(1+X)^{k-1} \prod_{l=1}^{k-1}\left(1+X^{2^{l}}\right)^{k-1-l}$.
derived from $(7-1)$.
Lemma 8.3. For $k \geqslant 2, f_{2^{k}-1}$ is strictly increasing on $\left[-1,-\frac{1}{3}[\right.$ and strictly decreasing on $[0,1]$.
Proof. The equation in the proof of the preceding lemma asserts that $f_{2^{k}-1}(x)>0$ for x in $]-1,1[$. Moreover

$$
\frac{f_{2^{k}-1}^{\prime}(x)}{f_{2^{k}-1}(x)}=\sum_{l=0}^{k-1} \frac{-2^{l} x^{2^{l}-1}}{1-x^{2^{l}}}
$$

We deduce from this that $f_{2^{k}-1}^{\prime}(x)<0$ for $x \in[0,1[$ and that $f_{2^{k}-1}^{\prime}(x)>0$ on $\left[-1,-\frac{1}{3}[\right.$.

Now we prove that the derivative of Thue-Morse polynomials can be bounded, in some cases, on an neighbourhood of -1 and 1 . We set $I_{n}^{-}=[-1,-1+$ $\left.\frac{3}{2 n}\right]$ and $I_{n}^{+}=\left[1-\frac{3}{2 n}, 1\right]$.

Lemma 8.4. If $n \geqslant 3$ is an odd integer, we have $\left|f_{n}^{\prime}(x)\right| \leqslant 4$ on I_{n}^{+}. If $n \equiv 3 \bmod 4$ then $\left|f_{n}^{\prime}(x)\right| \leqslant 10$ on I_{n}^{-}.

Proof. For the first point, suppose that $n \equiv 3 \bmod 4$. Then,

$$
f_{n}(x)=f_{3}(x) g\left(x^{4}\right)=\left(1-x^{2}\right) h(x)
$$

It is easy to see that $g(x)$ and so also

$$
\begin{equation*}
h(x)=(1+x) g\left(x^{4}\right) \tag{8-1}
\end{equation*}
$$

have coefficients ± 1. The equality ($8-1$) then implies that $|h(x)| \leqslant(n+1) / 2$ on $[0,1]$ and that

$$
\left|h^{\prime}(x)\right| \leqslant \sum_{i=0}^{\frac{n-3}{4}}(4 i+4 i+1)=\frac{n^{2}-n-2}{4} .
$$

Since $f_{n}^{\prime}(x)=(1-x)^{2} h^{\prime}(x)-2(1-x) h(x)$, we have

$$
\begin{aligned}
\left|f_{n}^{\prime}(x)\right| & \leqslant\left(\frac{3}{2 n}\right)^{2} \frac{n^{2}-n-2}{4}+2 \cdot \frac{3}{2 n} \cdot \frac{n+1}{2} \\
& =\frac{33 n^{2}+15 n-18}{16 n^{2}}<3
\end{aligned}
$$

for all $n>0$.
If $n \equiv 1 \bmod 4$ we write

$$
f_{n}^{\prime}(x)=f_{n-2}^{\prime}(x) \pm\left((n-1) x^{n-2}-n x^{n-1}\right)
$$

Obviously, for $n \geqslant 3,\left|(n-1) x^{n-2}-n x^{n-1}\right| \leqslant 1$ on $[0,1]$. The result is proved on I_{n}^{+}since $\left|f_{n-2}^{\prime}(x)\right|<3$, by the previous point.

For $x \in I_{n}^{-}$we begin by the case $n \equiv 7 \bmod 8$, we write $f_{n}(x)=(1+x)^{2} k(x)$ and as previously we get $|k(x)| \leqslant 2 n+2$ and $\left|k^{\prime}(x)\right| \leqslant n^{2}-n-2$ which assert that $\left|f_{n}^{\prime}(x)\right|<4$ for all $n>0$.

If $n \equiv 3 \bmod 8$, relation $(7-2)$ ensures that
$\left|f_{n}^{\prime}(x)\right| \leqslant\left|f_{n-4}(x)\right|+\left|(n-3) x^{n-4} f_{3}(x)\right|+\left|x^{n-3} f_{3}^{\prime}(x)\right|$.
The summands are bounded by 4,2 , and 4 .

9. THUE-MORSE POLYNOMIALS OF EVEN DEGREE

If n is a positive integer we have

$$
\begin{aligned}
& f_{2 n}(X)=f_{n}\left(X^{2}\right)-X f_{n-1}\left(X^{2}\right) \\
& f_{2 n}(X)=(1-X) f_{n}\left(X^{2}\right)+\varepsilon_{n} X^{2 n+1}
\end{aligned}
$$

We continue with a result on the monotonicity of f_{n}^{\prime} near -1 and 1 .
Lemma 9.1. Let n be an even positive integer. Then f_{n}^{\prime} does not vanish on $I_{n}^{-} \cup I_{n}^{+}$. More exactly, on I_{n}^{-} we have

$$
\operatorname{sgn}\left(f_{n}^{\prime}\right)=\left\{\begin{aligned}
\varepsilon_{n} & \text { if } n \equiv 2 \bmod 4 \\
-\varepsilon_{n} & \text { if } n \equiv 0 \bmod 4
\end{aligned}\right.
$$

and on I_{n}^{+}we have $\operatorname{sgn}\left(f_{n}^{\prime}\right)=\varepsilon_{n}$.
Proof. For $x \in I_{n}^{+}$, we write $f_{n}^{\prime}(x)=f_{n-1}^{\prime}(x)+$ $\varepsilon_{n} n x^{n-1}$. Then for n large, Lemma 8.4 ensures that $n x^{n-1}$ is greater than $\left|f_{n}^{\prime}(x)\right|$ on I_{n}^{+}. For small n we check the result directly. On I_{n}^{-}, the starting relations are $f_{n}^{\prime}(x)=f_{n+1}^{\prime}(x)-\varepsilon_{n+1}(n+1) x^{n}$ or
$f_{n}^{\prime}(x)=f_{n-1}^{\prime}(x)+\varepsilon_{n} n x^{n-1}$ and we conclude with the same arguments.

Concerning the real roots of f_{n}, two criteria must be taken into account, namely the remainder of n modulo 4 and the coefficient of the highest term ε_{n} of f_{n}. So we define four sets: $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{B}_{0}$, and \mathcal{B}_{1}. The letter \mathcal{A} stands for the condition $n \equiv 0 \bmod 4$, and \mathcal{B} for $n \equiv 2 \bmod 4$. The indices 0 and 1 mean respectively that $\varepsilon_{n}=1$ and $\varepsilon_{n}=-1$. For example,

$$
\mathcal{A}_{1}=\left\{f_{n} \mid n \equiv 0 \bmod 4 \text { and } \varepsilon_{n}=-1\right\} .
$$

Figure 2 shows the behaviour of polynomials in each set.

Therefore we shall show that for n even, f_{n} has at most 2 real roots. The proof of this fact requires different methods depending on the part of $[-2,2]$ that we consider.

The next lemma enables us to reduce the domain where we can expect f_{n} to vanish.

Lemma 9.2. Let f_{n} be a Thue-Morse polynomial of even degree, then $\mathcal{R}\left(f_{n}\right) \subset[-2,1]$. In addition, if $n \equiv 0 \bmod 4$ then $\mathcal{R}\left(f_{n}\right) \subset[-1,1]$.

Proof. As $n-1$ is odd, Lemma 8.1 ensures that

$$
\begin{equation*}
\left|f_{n}(x)\right| \geqslant\left|\left|x^{n}\right|-\left|f_{1}(x) f_{v}\left(x^{2}\right)\right|\right| . \tag{9-1}
\end{equation*}
$$

Now if $x>1$ then $\left|x^{n}\right|>\frac{|x-1|\left|x^{n}-1\right|}{\left|x^{2}-1\right|}$. This and (9-1) imply that f_{n} has no real root greater than 1 .

If $n \equiv 0 \bmod 4$, Lemma 8.1 shows that $\left|f_{n}(x)\right| \geqslant$ $\left|\left|x^{n}\right|-\left|f_{3}(x) f_{v}\left(x^{4}\right)\right|\right|$. Moreover if $|x|>1$ it is immediate that

$$
\left|x^{n}\right|>\left|\frac{(x-1)\left(x^{n}-1\right)}{x^{2}+1}\right|=\left|\frac{f_{3}(x)\left(x^{n}-1\right)}{x^{4}-1}\right| .
$$

Therefore $\left|x^{n}\right|-\left|f_{3}(x) f_{v}\left(x^{4}\right)\right|>0$ if $|x|>1$, which completes the proof.

Lemma 9.3. Let $f_{n} \in \mathcal{A}_{0} \cup \mathcal{B}_{0}$, then f_{n} is positive on $[0,1]$. In particular, $\mathcal{R}\left(f_{n}\right) \cap[0,1]=\varnothing$.
Proof. We consider the set $\mathcal{C}_{0}=\mathcal{A}_{0} \cup \mathcal{B}_{0}$, ordered by the degree.

FIGURE 2. Typical representatives of $\mathcal{A}_{0}, \mathcal{A}_{1}, \mathcal{B}_{0}, \mathcal{B}_{1}$.

We prove the lemma by induction on the rank of the elements of \mathcal{C}_{0}. This result is true for the first polynomials of \mathcal{C}_{0}, namely, f_{6}, f_{10} and f_{12}.

Suppose the result is true for all polynomials in \mathcal{C}_{0} whose rank is at most $r \geqslant 3$. Let d be the degree of the polynomial of rank r and f_{n} the polynomial of \mathcal{C}_{0} whose rank is $r+1$. Examining $\varphi^{3}(+)$ and $\varphi^{3}(-)$ we deduce that

$$
\begin{equation*}
n-d \leqslant 6 . \tag{9-2}
\end{equation*}
$$

From (9) we know that

$$
f_{n}(x)=(1-x) f_{n / 2}\left(x^{2}\right)+x^{n+1} .
$$

If $f_{n} \in \mathcal{A}_{0}$ then $f_{n / 2} \in \mathcal{C}_{0}$ and by the hypothesis of induction, $f_{n / 2}(x)>0$ on $[0,1]$. Therefore f_{n} is positive on $[0,1]$, and the condition is fulfilled for a polynomial of rank $r+1$.

If $f_{n} \in \mathcal{B}_{0}$, we search the Thue-Morse polynomial of smallest degree m greater than n such that $f_{m} \in$ \mathcal{A}_{0}. The idea is to show that the difference $f_{n}(x)-$ $f_{m}(x)$ is positive. We check that m must satisfy $m=$ $n+2$ or $m=n+6$ and therefore that $f_{n}(x)-f_{m}(x)$ must equal $x^{n+1}-x^{n+2}$ or

$$
x^{n+1}+x^{n+2}-x^{n+3}-x^{n+4}+x^{n+5}-x^{n+6} .
$$

Moreover, from (9-2), we have $m-d \leqslant 12$. Since $12 \leqslant d$,

$$
\frac{m}{2} \leqslant d
$$

So we can write

$$
f_{m}(x)=(1-x) f_{m / 2}\left(x^{2}\right)+\varepsilon_{m} x^{m+1}
$$

and conclude that f_{m} does not vanish on $[0,1]$.
To complete the proof, we verify that $x^{n+1}-x^{n+2}$ and $x^{n+1}+x^{n+2}-x^{n+3}-x^{n+4}+x^{n+5}-x^{n+6}$ are positive on $] 0,1\left[\right.$. Since $f_{n}(0)=f_{n}(1)=1$, the hypothesis is fulfilled in this case too. The polynomial f_{n} of rank $r+1$ does not vanish on $[0,1]$.
Lemma 9.4. Let $f_{n} \in \mathcal{A}_{0} \cup \mathcal{B}_{1}$, then f_{n} is positive on $[-1,0]$. In particular, $\mathcal{R}\left(f_{n}\right) \cap[-1,0]=\varnothing$.
Proof. We consider the set

$$
\mathcal{A}_{0}^{-}=\left\{f_{n} \in \mathcal{A}_{0} \mid \varepsilon_{n-1}=-1\right\}
$$

ordered by the degree. So the terms of f_{n} of degree n to $n-4$ are known. They correspond to the factor ${ }_{n-4} \mathcal{E}_{n}=\psi(-)+$.

First we show by a descending induction that every polynomial in \mathcal{A}_{0}^{-}is positive on $\left[-1,-\frac{3}{4}\right]$.

For this, we display polynomials in \mathcal{A}_{0}^{-}which are positive on $\left[-1,-\frac{3}{4}\right]$ and whose degree is arbitrarily large. If $n_{k}=2^{k+2}+2^{k+1}$ with k odd, then $f_{n_{k}} \in \mathcal{A}_{0}$, $\varepsilon_{n_{k}-1}=-1$ and we are able to prove that $f_{n_{k}}$ is positive on $\left[-1,-\frac{3}{4}\right]$.

Now we focus our attention on the second step of the induction. We suppose that f_{n}, the polynomial of rank r in \mathcal{A}_{0}^{-}is positive on $\left[-1,-\frac{3}{4}\right]$ and we want to deduce that $f_{m} \in \mathcal{A}_{0}^{-}$whose rank is $r-1$ is also positive on $\left[-1,-\frac{3}{4}\right]$.

In fact the terms of higher degree of f_{n} are well known. Examining \mathcal{E} we find four cases:

$$
\begin{aligned}
{ }_{n-12} \varepsilon_{n} & =\psi(-+-)+, \\
{ }_{n-16} \varepsilon_{n} & =\psi(-++-)+, \\
{ }_{n-16} \varepsilon_{n} & =\psi(-+--)+, \\
{ }_{n-20} \varepsilon_{n} & =\psi(-++--)+.
\end{aligned}
$$

We obtain respectively $m=n-8, m=n-12$, $m=n-12, m=n-16$, so that

$$
f_{m}(x)=f_{n}(x)+x^{m+1} P(x)
$$

where $P(x)$ must be a polynomial among four determined polynomials. For example, if $m=n-8$ then $P(x)=1+x-x^{2}+x^{3}-x^{4}-x^{5}+x^{6}-x^{7}$. We point out that $m+1$ is odd and that $P(x)$ is negative on $\left[-1,-\frac{3}{4}\right]$ in all the cases. Therefore the hypothesis $f_{n}(x)>0$ proves that $f_{m}(x)>0$ on $\left[-1,-\frac{3}{4}\right]$. Every polynomial in \mathcal{A}_{0}^{-}is then positive on $\left[-1,-\frac{3}{4}\right]$.

If $f_{n} \in \mathcal{A}_{0} \backslash \mathcal{A}_{0}^{-}$, we see that ${ }_{n-4} \mathcal{E}_{n+11}=\psi(++-+)$ or ${ }_{n-4} \mathcal{E}_{n+15}=\psi(++--+)$. Then

$$
f_{n}(x)=f_{m}(x)+x^{m+1} P(x)
$$

with $f_{m}(x) \in \mathcal{A}_{0}^{-}, m=n+8$ or $m=n+12$ and $P(x)$ negative on $\left[-1,-\frac{3}{4}\right]$ in all the cases. It follows that $f_{n}(x)>0$ on $\left[-1,-\frac{3}{4}\right]$ for every polynomial $f_{n} \in \mathcal{A}_{0}$.

Finally, if $f_{n} \in \mathcal{B}_{1}$ then $f_{n-2} \in \mathcal{A}_{0}$ and $f_{n}(x)-$ $f_{n-2}(x)$ is positive on $\left.]-1,-\frac{3}{4}\right]$ which ensures that every polynomial in $\mathcal{A}_{0} \cup \mathcal{B}_{1}$ is positive on $\left[-1,-\frac{3}{4}\right]$ since $f_{n}(-1)=-1$.
Let f_{n} be in $\mathcal{A}_{0} \cup \mathcal{B}_{1}$. If $n \leqslant 255$ a direct study with the command polsturm of PARI-GP shows that f_{n} does not vanish on $[-1,0]$. If $n>255$, Lemma 7.1 proves that f_{n} does not vanish on $\left[-\frac{3}{4}, 0\right] \subset$ $[-0.95,0]$ so that $\mathcal{R}\left(f_{n}\right) \cap[-1,0]=\varnothing$.
The two following lemmas display intervals containing a root.

Lemma 9.5. Let $f_{n} \in \mathcal{A}_{1} \cup \mathcal{B}_{1}$, then f_{n} has a unique root in $[0,1]$.

Proof. Let $\mathcal{C}_{1}=\mathcal{A}_{1} \cup \mathcal{B}_{1}$ be ordered by the degree. If $f_{n} \in \mathcal{C}_{1}$ we show that $f_{n}^{\prime}(x)<0$ on $\left[\frac{1}{2}, 1\right]$ by a descending induction on the rank of the elements of \mathfrak{C}_{1}.

First of all, for $k \geqslant 2, f_{2^{k}}$ belongs to \mathcal{A}_{1}. Moreover, Lemma 8.3 asserts that $f_{2^{k}}^{\prime}<0$ on $[0,1]$. So we can start the induction at degrees arbitrarily large.

If f_{n}, the polynomial of rank r of \mathcal{C}_{1}, is strictly decreasing on $\left[\frac{1}{2}, 1\right]$, then we prove that f_{m}, the polynomial of rank $r-1$ of \mathcal{C}_{1}, satisfies the same property.

If $f_{n} \in \mathcal{A}_{1}$, the tail of f_{n} corresponds to the factor

$$
{ }_{n-4} \varepsilon_{n}=\psi(+)-\text { or }_{n-4} \mathcal{E}_{n}=\psi(-)-
$$

so that $m=n-2$ or $m=n-4$.
If $f_{n} \in \mathcal{B}_{1}$, the tail of f_{n} must be

$$
{ }_{n-6} \varepsilon_{n}=\psi(-)+-- \text { or }_{n-6} \varepsilon_{n}=\psi(+)+--
$$

and $m=n-6$ or $m=n-4$.
So

$$
f_{m}(x)=f_{n}(x)+x^{m+1} Q(x)
$$

with 3 possibilities for $Q(x)$. In each case, it is easy to check that $x^{m+1} Q(x)$ is decreasing on $\left[\frac{1}{2}, 1-\frac{3}{2 m}\right]$, because $Q(x)$ and $x Q^{\prime}(x)$ are increasing on this interval. On I_{m}^{+}, Lemma 9.1 asserts that $f_{m}^{\prime}(x)<0$.

So each polynomial of $f_{m} \in \mathcal{C}_{1}$ is strictly decreasing on $\left[\frac{1}{2}, 1\right]$. Since f_{m} satisfies

$$
f_{m}(0) f_{m}(-1)=-1
$$

and does not vanish on $\left[0, \frac{1}{2}\right]$, we have proved the result.

Lemma 9.6. Let $f_{n} \in \mathcal{A}_{1} \cup \mathcal{B}_{0}$. Then f_{n} has a unique root in $[-1,0]$.

Proof. For $n \leqslant 255$ a direct study shows that every $f_{n} \in \mathcal{A}_{1} \cup \mathcal{B}_{0}$ has a unique root in $[-1,0]$. We suppose until the end of the proof that $n>255$.

Let

$$
\mathcal{A}_{1}^{+}=\left\{f_{n} \in \mathcal{A}_{1} \mid \varepsilon_{n-1}=1\right\}
$$

be ordered by the degree. We show with the help of a descending induction that every element of \mathcal{A}_{1}^{+} with a degree greater than 255 is strictly increasing on $[-1,-0.92]$.
First, if $k \geqslant 2$ is an even integer then $f_{2^{k}}$ belongs to \mathcal{A}_{1}^{+}and $f_{2^{k}}^{\prime}(x)>0$ on $[-1,-0.92]$, by Lemma 8.3.

The second step of the induction consists in proving that f_{m}, the polynomial of \mathcal{A}_{1}^{+}of rank $r-1$, is increasing on $[-1,-0.92]$ assuming that f_{n} the polynomial of rank r is also increasing on this interval. The different possible tails of f_{n} are

$$
\begin{aligned}
& { }_{n-12} \varepsilon_{n}=\psi(+-+)-, \\
& { }_{n-16} \varepsilon_{n}=\psi(+--+)-, \\
& { }_{n-16} \varepsilon_{n}=\psi(+-++)-, \\
& { }_{n-20} \varepsilon_{n}=\psi(+--++)-,
\end{aligned}
$$

so that

$$
f_{m}(x)=f_{n}(x)+x^{m+1} R(x),
$$

where $R(x)$ can take four different values. In each case, we check that $x^{m+1} R(x)$ is strictly increasing on $[-1+3 / 2 m,-0.92]$.

As Lemma 9.1 proves that $f_{m}^{\prime}(x)>0$ on I_{m}^{-}, the monotonicity of $f_{m}(x)$ on $[-1,-0.92]$ is established for all the polynomials in \mathcal{A}_{1}^{+}of degree >255.
If $f_{n} \in \mathcal{A}_{1} \backslash \mathcal{A}_{1}^{+}$we point out that ${ }_{n-4} \mathcal{E}_{n+11}=$ $\psi(--+-)$ or ${ }_{n-4} \mathcal{E}_{n+15}=\psi(--++-)$. So

$$
f_{n}(x)=f_{m}(x)+x^{m+1} R(x)
$$

with $f_{m}(x) \in \mathcal{A}_{1}^{+}, m=n+8$ or $m=n+12$ and $x^{m+1} R(x)$ strictly increasing on $[-1+3 / 2 m,-0.92]$. Thus as previously, $f_{n}^{\prime}(x)>0$ on $[-1,-0.92]$.

Finally, $f_{n} \in \mathcal{A}_{1}$ is equivalent to $f_{n+2} \in \mathcal{B}_{0}$. Now $f_{n+2}(x)-f_{n}(x)$ is increasing on

$$
[-1+3 /(2 n+4),-0.92]
$$

and we conclude on I_{n+2}^{-}by Lemma 9.1.
So every polynomial $f_{n} \in \mathcal{A}_{1} \cup \mathcal{B}_{0}$ is strictly increasing on $[-1,-0.92]$. From Lemma 7.1, f_{n} does not vanish on $[-0.92,0]$ and it satisfies

$$
f_{n}(0) f_{n}(-1)=-1
$$

So f_{n} has a unique root in $[-1,0]$.
We now study the property of the reciprocal polynomial f_{n}^{*} of f_{n} in order to determine the real roots of f_{n} outside the unit circle.

Lemma 9.7. Let $f_{n} \in \mathcal{B}_{0} \cup \mathcal{B}_{1}$. We can then write

$$
f_{n}(X)=\varepsilon_{n} Q(X) X^{n-\operatorname{deg} Q}+f_{r}(X)
$$

with $r=n-\operatorname{deg} Q-1$ and where $Q(X)$ is one of $f_{10}(X),-f_{14}(X), f_{18}(X),-f_{22}(X)$.
Proof. For convenience, we first prove a similar result for $m \equiv 3 \bmod 4$.

If $m \equiv 3 \bmod 4$ then $f_{m}(X)=f_{3}(X) f_{v}\left(X^{4}\right)$. Without loss of generality we can assume that $\varepsilon_{m}=$ 1. As $\psi(+-+-+)$ never occurs in the Thue-Morse word \mathcal{E}, we see that the tail of f_{m} must be one of the following words

$$
\begin{aligned}
{ }_{m-11} \mathcal{E}_{m} & =\psi(-++) \\
{ }_{m-15} \mathcal{E}_{m} & =\psi(+--+) \\
{ }_{m-19} \mathcal{E}_{m} & =\psi(-++-+) \\
{ }_{m-23} \mathcal{E}_{m} & =\psi(+--+-+)
\end{aligned}
$$

Thus $f_{m}(X)$ equals

$$
P(X) X^{m-\operatorname{deg} P}+f_{r}(X)
$$

where $P(X)$ is one of $-f_{11}(X), f_{14}(X),-f_{18}(X)$, or $f_{22}(X)$. If $n=m-1$ then

$$
f_{n}(X)=Q(X) X^{n-\operatorname{deg} Q}+f_{r}(X)
$$

where $Q(X)$ is one of $-f_{10}(X), f_{14}(X),-f_{18}(X)$, or $f_{22}(X)$. Finally, $\varepsilon_{m}=-\varepsilon_{n}$ and the proof is completed.

Lemma 9.8. Let $f_{n} \in \mathcal{B}_{0} \cup \mathcal{B}_{1}$. Then

$$
\mathcal{R}\left(f_{n}\right) \cap[-1.3,-1]=\varnothing
$$

Proof. Let $f_{n} \in \mathcal{B}_{0} \cup \mathcal{B}_{1}$. Using Lemma 9.7 we write

$$
f_{n}(x)=\varepsilon_{n} Q(x) x^{n-\operatorname{deg} Q}+f_{r}(x)
$$

with $Q \in\left\{-f_{10}, f_{14},-f_{18}, f_{22}\right\}$ and

$$
r=n-\operatorname{deg} Q-1 \equiv 3 \bmod 4
$$

If f_{n} vanishes at x then $x^{n-\operatorname{deg} Q}|Q(x)|=\left|f_{r}(x)\right|$ and

$$
\begin{aligned}
\left|f_{r}(x)\right| & \leqslant\left|\frac{\left(x^{2}-1\right)\left(x^{n-\operatorname{deg} Q}\right)}{x^{2}+1}\right| \leqslant\left|x^{n-\operatorname{deg} Q}-1\right| \\
& =x^{n-\operatorname{deg} Q}-1
\end{aligned}
$$

Thus

$$
|Q(x)| \leqslant \frac{x^{n-\operatorname{deg} Q}-1}{x^{n-\operatorname{deg} Q}} \leqslant 1
$$

Therefore if $|Q(x)|>1$ then $f_{n}(x) \neq 0$. Now the minimum of

$$
-f_{10}(x), f_{14}(x),-f_{18}(x), f_{22}(x)
$$

is >1 on $\left[-1.3,-1\left[\right.\right.$. Since $f_{n}(-1) \neq 0$ we have $\mathcal{R}\left(f_{n}\right) \cap[-1.3,-1]=\varnothing$.

Lemma 9.9. If $f_{n} \in \mathcal{B}_{0} \cup \mathcal{B}_{1}$ then f_{n} has a unique root in $[-2,-1]$.

Proof. By Lemma 9.7,

$$
f_{n}^{*}(x)-\varepsilon_{n} Q^{*}(x)=f_{r}^{*}(x) x^{\operatorname{deg} Q+1}
$$

with $r=n-\operatorname{deg} Q-1 \equiv 3 \bmod 4$. Therefore

$$
f_{r}^{*}(x)=f_{3}(x) g\left(x^{4}\right)
$$

where g is a unimodular polynomial. Thus

$$
\left|\left(f_{r}^{*}(x) x^{\operatorname{deg} Q+1}\right)^{\prime}\right| \leqslant \sum_{k=0}^{v}\left|\left(x^{4 k} f_{3}(x) x^{\operatorname{deg} Q+1}\right)^{\prime}\right|
$$

Now for n odd and x in $[-0.8,-0.5],\left|\left(f_{3}(x) x^{n}\right)^{\prime}\right| \leqslant$ $2.52(-0.8)^{n}-0.81(-0.8)^{n} n$. As
$\sum_{k=0}^{\infty} 2.52(-0.8)^{4 k+11}-0.81(-0.8)^{4 k+11}(4 k+11)<1.3$, we deduce that on this interval $\left|\left(f_{r}^{*}(x) x^{\operatorname{deg} Q+1}\right)^{\prime}\right|<$ 1.3 as soon as $\operatorname{deg} Q \geqslant 10$. The study of the derivatives of $f_{10}^{*},-f_{14}^{*}, f_{18}^{*}$ and $-f_{22}^{*}$, ensures that they are greater than $1.3671 \ldots$ in modulus and that they keep the same sign on $[-0.8,-0.5]$. The derivative of f_{n}^{*} then keeps its sign on $[-0.8,-0.5]$. Now

$$
f_{n}^{*}(0) f_{n}^{*}(-1)=-1
$$

and $f_{n}^{*}(x)$ does not vanish on $[-1,-0.8]$ by Lemma 9.8. Thus f_{n}^{*} has a unique real root in $[-1,-0.5]$. This proves that f_{n} vanishes only once in $[-2,-1]$.

We can now prove Theorems 6.1 and 6.2.

10. PROOF OF THE THEOREMS

Proof of Theorem 6.1. Let n be even. Lemmas 9.2, 9.3, 9.4 establish the theorem when $f_{n} \in \mathcal{A}_{0}$.

If $f_{n} \in \mathcal{A}_{1}$, Lemmas $9.2,9.5$ and 9.6 ensure the result.

If $f_{n} \in \mathcal{B}_{0}$, Lemmas $9.2,9.3,9.6$ and 9.9 allow us to conclude.

If $f_{n} \in \mathcal{B}_{1}$, Lemmas $9.2,9.4,9.5$ and 9.9 complete the proof for the case n even.

Let n be odd. If k is the 2 -adic valuation of $n+1$ then we see that

$$
f_{n}(X)=f_{2^{k}-1}(X) f_{v}\left(X^{2^{k}}\right)
$$

with v even. From what we have just proved f_{v} has a real positive root if and only if $\varepsilon_{v}=-1$. The relation $\varepsilon_{2^{k}-1}=(-1)^{k}$ and Lemma 8.2 complete the proof.

Proof of Theorem 6.2. Let N be an integer. We investigate polynomials of even degree $n<N$. The relation $\left|f_{N-1}(1)\right| \leqslant 1$ implies that

$$
\frac{N-1}{2} \leqslant\left|\left\{0 \leqslant i \leqslant N-1 \mid \varepsilon_{i}=1\right\}\right| \leqslant \frac{N+1}{2} .
$$

The same inequalities hold for

$$
\left|\left\{0 \leqslant i \leqslant N-1 \mid \varepsilon_{i}=-1\right\}\right| .
$$

Since $\varepsilon_{i}=1$ is equivalent to $\varepsilon_{2 i}=1$ and $\varepsilon_{i}=1$ is equivalent to $\varepsilon_{2 i+1}=-1$, the four sets

$$
\left\{0 \leqslant i \leqslant N-1 \mid \varepsilon_{i}=(-1)^{r} \text { and } i \equiv s \bmod 4\right\}
$$

for $r \in\{0,1\}$ and $s \in\{0,2\}$, have between $N / 8-C$ and $N / 8+C$ elements, for some constant C independent of N. So the Thue-Morse polynomials of even degree less than N contribute to at least $\frac{3 N}{4}-6 C$ and to at most $\frac{3 N}{4}+6 C$ real roots.

We now examine odd degrees. Let k be an integer. We consider the integers $i \in[0, N-1]$ such that the 2 -adic valuation of $i+1$ is precisely k. These i 's can be written generically $q 2^{k+1}+2^{k-1}$ with $q \in \mathbb{N}$ and $\varepsilon_{i}=\varepsilon_{q}(-1)^{k}$. So for $q \equiv 0 \bmod 4$ and $t=q, q+1, q+2, q+3$, the Thue-Morse polynomials of degree $t 2^{k+1}+2^{k-1}$ have $8 k$ roots. Now for every N and k fixed, one can make $\left\lfloor N / 2^{k+3}\right\rfloor$ such groups which give $8 k\left\lfloor N / 2^{k+3}\right\rfloor$ roots, and for each k we forget at most $8 k$ roots in the sum.

Thus it is easy to see that

$$
\begin{aligned}
-\frac{6 C}{N} & \leqslant \frac{1}{N} \sum_{n=0}^{N-1} \rho\left(f_{n}\right)-\frac{1}{N}\left(\sum_{k=0}^{\infty} 8 k\left\lfloor\frac{N}{2^{k+3}}\right\rfloor+\frac{3 N}{4}\right) \\
& \leqslant \frac{6 C}{N}+\frac{1}{N} \sum_{k=0}^{\left\lfloor\log _{2} N\right\rfloor} 8 k
\end{aligned}
$$

which ensures that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \rho\left(f_{n}\right)=\frac{11}{4} .
$$

ACKNOWLEDGEMENTS

We were greatly helped in this work by Laurent Habsieger. Camille Laurent-Gengoux $[\geq 2000]$ and Jian-yan Yao extended the results of [Mendès France 1991] to higher dimensions. We thank them wholeheartedly.

ADDENDUM

After this article was submitted, a generalization of its methods allowed Doche to find families of $(+,-)$ sequences for which

$$
\liminf _{n \rightarrow \infty} \rho\left(f_{n}\right) / \log n>0
$$

See [Doche 1999] for details.

REFERENCES

[Dekking and Mendès France 1981] F. M. Dekking and M. Mendès France, "Uniform distribution modulo one: a geometrical viewpoint", J. Reine Angew. Math. 329 (1981), 143-153.
[Doche 1999] C. Doche, "On the real roots of generalized Thue-Morse polynomials", preprint, 1999. Submitted for publication.
[Edelman and Kostlan 1995] A. Edelman and E. Kostlan, "How many zeros of a random polynomial are real?", Bull. Amer. Math. Soc. (N.S.) 32:1 (1995), 1-37. Erratum in 33:3 (1996), 325.
[Erdős and Offord 1956] P. Erdős and A. C. Offord, "On the number of real roots of a random algebraic equation", Proc. London Math. Soc. (3) 6 (1956), 139160.
[Favard 1932] J. Favard, "Une définition de la longueur et de l'aire", C. R. Acad. Sci. Paris 194 (1932), 344346.
[Kac 1943] M. Kac, "On the average number of real roots of a random algebraic equation", Bull. Amer. Math. Soc. 49 (1943), 314-320. Correction in 49 (1943), 938.
[Kac 1949] M. Kac, "On the average number of real roots of a random algebraic equation, II", Proc. London Math. Soc. (2) 50 (1949), 390-408.
[Kac 1959] M. Kac, Probability and related topics in physical sciences, Lectures in Appl. Math. 1A, Interscience, New York, 1959. Reprinted by the Amer. Math. Soc., 1976.
[Klain and Rota 1997] D. A. Klain and G.-C. Rota, Introduction to geometric probability, Lezione Lincee, Cambridge University Press, Cambridge, 1997.
[Laurent-Gengoux ≥ 2000] C. Laurent-Gengoux, "Courbes du plan et droites aléatoires", Jour. math. des élèves ENS. Submitted.
[Mendès France 1991] M. Mendès France, "The Planck constant of a curve", pp. 325-366 in Fractal geometry and analysis (Montreal, 1989), edited by J. Bélair and
S. Dubuc, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 346, Kluwer Acad. Publ., Dordrecht, 1991.
[Mendès France and Tenenbaum 1981] M. Mendès France and G. Tenenbaum, "Dimension des courbes planes, papiers pliés et suites de Rudin-Shapiro", Bull. Soc. Math. France 109:2 (1981), 207-215.
[Santaló 1976] L. A. Santaló, Integral geometry and geometric probability, Encycl. Math. and its Appl. 1, Addison-Wesley, Reading, MA, 1976.
[Sulanke 1966] R. Sulanke, "Integralgeometrie ebener Kurvennetze", Acta Math. Acad. Sci. Hungar. 17 (1966), 233-261.

Christophe Doche, Laboratoire d'Algorithmique Arithmétique, Université Bordeaux I, 351, cours de la Libération, F-33405 Talence Cedex France (cdoche@math.u-bordeaux.fr)
Michel Mendès France, Laboratoire d'Algorithmique Arithmétique, Université Bordeaux I, 351, cours de la
Libération, F-33405 Talence Cedex France (mmf@math.u-bordeaux.fr)

Received April 7, 1999; accepted in revised form October 11, 1999

