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The monomial initial ideals of a graded polynomial ideal are in
bijection with the vertices of a convex polytope known as the
state polytope of the ideal. The Grobner fan of the ideal is the
normal fan of its state polytope. In this paper we present a soft-
ware system called TiGERS (Toric Grobner bases Enumeration by
Reverse Search) for computing the Grobner fan of a toric ideal
by enumerating the edge graph of its state polytope. The key
contributions are an inexpensive algorithm for local change of
Grobner bases in toric ideals and the identification of a reverse
search tree on the vertices of the state polytope. Using these
ideas we obtain a combinatorial Grobner walk procedure for
toric ideals. TIGERS has been used to compute state polytopes
with over 200,000 vertices.

1. INTRODUCTION

Consider the polynomial ring k[z] := k[z1,...,z,]
where k is a field and an ideal I C k[x] that is
homogeneous with respect to a positive grading

degree(z;) = w; € N\{0}.

We use N to denote the set of nonnegative integers.
The initial ideal of I with respect to a term order
> on k[x] is the monomial ideal

in, (1) = (in, (f) : f € I),

where in, (f) is the initial term of f € I with respect
to . The reduced Grobner basis of I with respect
to > is the unique finite set of monic polynomials
9. (I)=A4g1,.-.,9:} C I such that

(i) in, (I) = (iny (g1),...,in, (g¢)), and
(i) for ¢ # j, no term of g; is divisible by in. (g;).

Reduced Grobner bases of polynomial ideals can be
computed using Buchberger’s algorithm. See [Adams
and Loustaunau 1994] or [Cox et al. 1997] for further
details.

Given an arbitrary weight vector ¢ € R™, and a
polynomial f = )" k,z® € k[z], the initial term of
f with respect to ¢ is defined to be the sum of all
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terms k,x® in f such that the inner product ¢ - «
is maximal. The initial ideal of I with respect to
c is then in.(I) := (in.(f) : f € I). If in.(I) is a
monomial ideal then c is said to be generic for I.
It is known that for a term order > on k[x], there
exists a weight vector ¢ € N" such that in.(I) =
in, (I). In this case we say that c represents > and
it can be shown that in.(/) = in, () if and only if
in.(g) = in, (g) for each g in G, (I).

Two weight vectors ¢; and ¢, in R" are said to
be equivalent modulo I whenever in., (I) = in., ().
The set of all weight vectors that are equivalent to
¢ € R" form a relatively open polyhedral cone in R™,
the closure of which is called the Grobner cone of c.
The Grébner cone of ¢ is n-dimensional if and only
if ¢ is generic for I. The set of all equivalence classes
of cost vectors fit together to form a polyhedral fan
in R™ called the Grébner fan of I [Mora and Rob-
biano 1988]. Since I is homogeneous with respect to
a positive grading, this fan is, in fact, complete (i.e.,
covers R") and further, each Grébner cone of I con-
tains a strictly positive vector of R™ in its relative
interior.

The Grobner fan of I is the normal fan of a poly-
tope in R" called the state polytope of I [Bayer and
Morrison 1988], denoted as St(I). Therefore, I has
only finitely many distinct reduced Grobner bases as
c varies over all weight vectors in R". (See [Macla-
gan 1998] for a new proof.) The faces of St(I) are
in bijection with the distinct initial ideals of I, with
the vertices of St(I) corresponding bijectively to the
distinct monomial initial ideals of I. The distinct
monomial initial ideals of I, in turn, are in bijec-
tion with the distinct reduced Grobner bases of I
obtained from term orders. Hence, computing all
monomial initial ideals (or reduced Grdbner bases
from term orders) of I amounts to searching the edge
graph of St(I). Two monomial initial ideals in., (1)
and in,, (I) are said to be adjacent if the correspond-
ing vertices of St(I) are adjacent or equivalently, if
the Grobner cones of the generic weight vectors ¢;
and ¢, share a common facet. See [Sturmfels 1996,
Chapters 1-3] for proofs of the results quoted above
and a full discussion of Grébner fans and state poly-
topes of graded polynomial ideals. Algorithms for
their construction are also included.

Given a matrix A = [a, - a,] € Z*" of rank d,
the toric ideal of A, denoted as I4, is the kernel of

the homomorphism k[zy,...,z,] — k[t ...t
such that z; — t% [Sturmfels 1996, Chapter 4]. The
ideal I, is a d-dimensional prime ideal that is gener-
ated by the binomials z*" —z* where u = ut —u~
lies in the (n — d)-dimensional saturated lattice

kery(A) :={u € Z" : Au=0}.

Here v~ = (—u)" and u? is defined as u = u,

if u; > 0 and u] = 0 otherwise. Hence u*,u~ €
N™. The mechanics of the Buchberger algorithm
ensure that every reduced Grébner basis of 14 again
consists of finitely many binomials of the above type.
We will assume that kerz(A) N N" = {0}, which
guarantees a positive integral vector w in the row
space of A. Then I, is homogeneous with respect
to the grading degree(z;) = w; fori=1,...,n.

Let G, = {z® — 2P : 1 =1,...,t} be the reduced
Grdobner basis of 14 with respect to a generic weight
vector ¢ € R". (The positive term of a binomial
in G, is always assumed to be the initial term with
respect to c¢.) The Grébner cone of ¢ is then the
n-dimensional polyhedral cone

Ke={ueR":a;-u>pfi-ui=1,...,t},

whose lineality space X, N —X, is the row space of

A. The equivalence class of ¢ is the interior fJoCc of
X.; in particular, c lies in JOCC. We may assume that
c is a strictly positive integral vector since X, is a
rational cone and w € X.. The weight vector ¢ is
equivalent to c if and only if in. (x* —2P) = x* for
each binomial z% — z% € G.. State polytopes and
Grobner fans of toric ideals were studied in [Sturm-
fels and Thomas 1997]. That paper gives several
custom-tailored construction methods for these en-
tities.

The Grobner fan of I, has various applications:
In [Sturmfels and Thomas 1997] it was used as a
model for sensitivity analysis for the family of inte-
ger programs min{c-x : Ax = b, z € N"} as b varies
in Z% and ¢ in R™. The secondary fan of A [Billera
et al. 1990; Gel'fand et al. 1994] is a coarsening of the
Grobner fan of 14 [Sturmfels 1996, Chapter 8]. This
fan has important applications in discrete geometry.
In between the secondary fan and the Grobner fan
of A lives the hypergeometric fan of A which has
been used for studying A-hypergeometric differential
equations using Gréobner deformations [Saito et al.
2000]. Both these coarser fans can be obtained from



the Grobner fan of I4. Finally, the Grébner walk
procedure introduced in [Collart et al. 1997] uses
the Grobner fan for Grobner basis conversions.

11111
Example 1.1. Let A:= [ 0 1 2 1 0 ]. For ease
0 01 21

of exposition we associate the variables a, b, ¢, d, e to
the five columns of A and consider the toric ideal
I, C kla,b,c,d,e]. This ideal yields eight distinct
monomial initial ideals. The state polytope St(I,)
is an octagon in R® and the Grébner fan of I, can
be drawn in R? after moding out the row space of A
from each Grobner cone. Figure 1 shows a schematic
representation of the resulting pointed Grébner fan
of I4. Each maximal cone is labeled by the reduced
Grobner basis induced by the weight vectors in the
interior of that cone. The binomials in a reduced
Grobner basis that contribute the facet inequalities
of its Grobner cone are marked with dots. Notice
that for two adjacent reduced Grobuer bases, their
common facet binomial * — z” appears in both re-
duced Grobner bases with z® as initial term in one
basis and z” as initial term in the other.

In this paper we introduce a software system called
TiGERS (Toric Grébner bases Enumeration by Re-
verse Search) for computing the Grébner fan of a
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toric ideal. The program searches the edge graph
of the state polytope St(I4) to find all the distinct
monomial initial ideals (reduced Grobner bases) of
I,. (For now on, when we refer to a reduced Grobner
basis of I, we assume that it has been computed us-
ing a generic weight vector and hence is indexed by
a vertex of St(I4).) This search can be done in two
ways: For moderate sized examples, the graph is
searched by a breadth-first search strategy on the
entire edge graph of St(l4). This approach needs
to maintain and search the list of all Grobner bases
found. When St(/,) is too large this approach will
bog down and we use a reverse search technique in-
stead. This involves a depth-first search on a di-
rected subgraph of the edge graph of St(1,) called
the reverse search tree, and can be implemented so
that no more than one Grobner basis ever needs
to be stored. In Section 2 we give an overview of
the main algorithm in TiGERS and describe the re-
verse search procedure. These ideas allow combina-
torial Grobner walks in toric ideals. For each re-
duced Grobner basis found, the algorithm does two
main local computations. The first is to determine
all the facets of that Grobner cone and the second
is to determine an adjacent Grobner basis to the
current one. In Section 3 we give an algorithm for
local change of Grobner bases in toric ideals based

FIGURE 1. A schematic of the Grébner fan in Example 1.1.
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on [Collart et al. 1997]. Unlike usual local change al-
gorithms, our procedure does not require any weight
vectors to be computed. We then discuss some spe-
cial tricks to find the facets of a fixed Grébner cone
in the case of toric ideals. Section 4 reports compu-
tational experience with TiGERS.

2. THE MAIN ALGORITHM IN TiGERS

Let

G ={z* —2P:i=1,...,t}

be the reduced Grébner basis of 14 with respect to
the generic weight vector ¢ € R". An inequality
ak - u > B -u, with k € {1,...,t}, is irredundant
for the Grobner cone

K.={ueR":aq;-u>pf-ufori=1,...,t}

if the relaxed cone {u € R" : ;- u > ;- u for i =
1,...,t, 7 # k} properly contains K.. If a.-u > Bi.-u
is irredundant for X, then

K.N{ueR":ap -u= L0 u}

is called a facet of K, and % — xP* is a facet bino-
mial of G..

Lemma 2.1 [Sturmfels and Thomas 1997]. The bi-
nomial 2 — zP € G, is a facet binomial of G, if
and only if the linear system {a,; -u > ;- u : i =
L. tyiZkueR"}N{By-u>a,-u:ueR"}
is feasible.

Therefore, all facets of the Grobner cone X, can be
found by checking the feasibility of ¢ systems of lin-
ear inequalities, which in turn can be done by linear
programming. In practice this can be computation-
ally expensive when ¢ is large and we discuss certain
speed-ups in Section 3.2.

Suppose z® — z” is a facet binomial of G, such
that in.(z® — 2”) = z® and S. be adjacent to G,
with in. (z® — 2°) = 2%, In order to compute the
edge graph of St(I4), we require a subroutine to
make a local change of reduced Grobner bases from
G. to G through the facet given by z® — z°. We
use flip(G., z® — z”) to denote both the subroutine
that yields G from §. and the reduced Grobner
basis G, that results from the “flip”. In Section
3.1 we describe the precise local change algorithm
in TiGERS.

Remark 2.2. If z® —z” lies in the reduced Grobner ba-
sis of a toric ideal, then the supports of o and (3 are
disjoint. This guarantees that each facet in a toric
Grébner cone corresponds to precisely one binomial
in the corresponding Grobner basis. However, this
is not true for general homogeneous binomial ideals.
Consider J = (b*d — b*ce, a’c — b’e, bed — c*e). Un-
der the reverse lexicographic order a > c > d > e >
b, its reduced Grobner basis is G = {ceb® — db®,
e — cdb, a’db® — €*b*, a’c — eb®’}. The inequal-
ity us + us > uy + uy is a facet inequality of the
Grobuner cone of G. For w in the relative interior of
this facet, we get both in, (ceb® — db®) = ceb® — db?
and in,(c?e — cdb) = c*e — cdb.

Algorithm 2.3 (Enumerating the edge graph of St(l,) via
breadth-first search).
Input: Any reduced Grobner basis Gy of I4.
Output: All reduced Grobner bases of 1,4 (all vertices
of St(14)).
Todo := [Gy);
Verts := [ |;
While(Todo not empty) do
G := first-element-in(Todo);
Remove G from Todo;
add § to Verts;
determine list L of facet binomials of G
for each  — 2” in L do
Compute §' = flip(g, z® — z”)
If § € Todo U Verts then add §' to Todo;
End
End
output Verts

This algorithm works well in practice but does have
the drawback that all vertices must be stored, and
that every time a vertex is visited it must be checked
against all other vertices seen thus far in order to de-
termine if it is indeed a new vertex. The storage and
search costs involved in this procedure can become
prohibitive as the size of St([4) increases. As an
example consider
3 2 2 11 0 0 O
A=(0 1 0 2 0 2 10
001 0 2 01 2 3
The ideal 14 involves only nine variables and most
reduced Grobner bases of this ideal have fewer than
36 elements each of degree no greater than seven.



Yet, St(Z4) has 54,828 vertices and our breadth first
search algorithm was exhausting a personal com-
puter with 64 megabytes of memory before getting
through about 13,000 vertices.

To push this calculation through we resorted to
the reverse enumeration paradigm of Avis and Fu-
kuda [1992], a memoryless algorithm that runs in
linear time in the size of the output. It was origi-
nally formulated for enumerating the vertices of the
edge graphs of polytopes. Suppose G is the edge
graph of a polytope P and c¢ a generic cost vector
such that no two vertices of P have the same cost
value c-x. Let vy be the unique vertex of P at which
c-x is maximized. We fix a pivot rule on the vertices
of P that assigns a unique neighbor to a vertex v
from among all neighboring vertices of v with higher
cost value than v. Together, these create a directed
graph on the vertices of P with a unique sink at v,
and out degree one for every other vertex. The basic
idea in the Avis-Fukuda algorithm is to start at v
and do a depth first reverse search on this directed
subgraph. No intermediate storage of vertices is re-
quired during the search since a vertex seen once
will not be encountered again as one traverses down
a branch in the directed tree. See Algorithm 2.8 for
details. This algorithm has been used with great
success in several applications such as enumerating
all vertices of a polytope, all regular triangulations
of a point configuration [Masada et al. 1996], all cells
in a hyperplane arrangement and all lattice points
in a polytope [Sturmfels 1996, Algorithm 5.7].

We say that a polynomial f € k[z] is marked by
a term order > on k[z|, if the initial term of f with
respect to > has been distinguished from among all
terms in f. A polynomial f that has been marked
with respect to > is said to be mismarked with re-

spect to >', if in, (f) # in./(f).

Lemma 2.4. Let G, be the reduced Grobner basis of
I, with respect to the term order >=. Then for a
term order =' # >, the reduced Grobner basis G,
equals Gy if and only if no facet binomial of G, is
mismarked with respect to >'.

Proof. Suppose no facet binomial of G, is mismarked
with respect to >’ and let ¢ be a weight vector from
the interior of the Grébner cone K, .. Then for each
facet binomial z® — z? in G., we have ¢ - a > ¢ -
G, which implies that ¢ lies in the interior of the

Huber and Thomas: Computing Grébner Fans of Toric Ideals 325

Grobner cone K, . Hence K., = K, which implies
that G, = G,.,. Conversely, if §, = G, ,, no binomial
in G, is mismarked with respect to >'. O

Definition 2.5. For a given term order > we define
the reverse search tree T. (1,4) as follows:

The vertices of T\ (I4) are the vertices of St(I,4) (i.e.,
the various reduced Grobner bases of 14 arising from
term orders). For two reduced Grobner bases ;
and §;, [9;, ;] directed from G; to G, is an edge of
T, (I4) if G; is obtained from §; by the subroutine
flip(G;, z* — zP) where z* — z” is the unique facet
binomial of §; whose leading term is lexicographi-
cally maximal among all facet binomials of G; that
are mismarked with respect to .

Theorem 2.6. The reverse search tree T. (I4) is an
acyclic directed graph with a unique sink.

Proof. By Lemma 2.4 each reduced Grobner basis §
of I4 (vertex of St(I,)) except G, has at least one
mismarked facet binomial with respect to >. By the
definition of T\ (I4), each such G has a unique adja-
cent reduced Grébner basis given by flip(G, x* — x°)
where z®—z” is the unique facet binomial of G whose
leading term is lexicographically maximal among all
mismarked facet binomials of §. Therefore T\ (I,4)
is a directed graph such that the out-degree of G,
in T\ (I4) is zero and of all other reduced Grébner
bases is one.

Suppose there was a cycle C = (vy,...,v;) of
length [ in T\ (I4) where vertex v; corresponds to
the reduced Grobner basis G; of I, and v;.1 = vy
and §,1 = G;. If 2> — 27 is the common facet
binomial of §; and G;,; with % the leading term in
G; and z” the leading term in G, for i = 1,...,1,
then v, ; —v; = 6; —a; fort =1,...,1. Since C' is a
cyclein T, (14) we get (81 — o) + (B2 —ag) + -+ +
(6; — ;) = 0. However, each binomial z% — z% for
i = 1,...,1 is mismarked with respect to > which
implies that for a weight vector c representing > we
have, ¢ (8; — a;) > 0. This leads to the contradic-

tion 0 =c-3' (Bi—a) =" e (Bi—a;)>0. O
Corollary 2.7. From any reduced Grébner basis G. of

14 there is a unique path in the reverse search tree
T. (1) to the sink G, .

This implies that toric ideals admit combinatorial
Grobner walks that can be used for converting one
reduced Grobner basis of 14 into another. Given any
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be? — a2d

A

b2e — a?c

ce — bd

be? — a2d

ce® — a?d?

A

ce — bd

b%e — a’c

FIGURE 2. T\ (I4) with A as in Example 1.1 using pure lex for >. Mismarked facet binomials are underlined and
arrows are labeled by the binomials which are being flipped.

reduced Grobner basis G of 14 and any term order
>, we can move from G to G, by tracing the unique
path in the reverse search tree 7. (I4) from G to G, .
Unlike in the usual Grobner walk procedure [Col-
lart et al. 1997; Amrhein et al. 1997], to convert one
Grobner basis into another there are no explicit cost
vectors involved in these walks. These combinato-
rial walks also have the advantage that there is no
danger of walking through a lower dimensional face
of a Grobner cone, thus eliminating several numer-
ical considerations that otherwise have to be dealt
with. The tradeoff is that at every vertex of the state
polytope, all facets of the current Grobner cone have
to be computed, which can be highly nontrivial for
general ideals, but is relatively easy for toric ideals.

Algorithm 2.8 (Enumerating the edge graph of St(l,) via

reverse search).

Input: A reduced Grobner basis R, of I, and its
term order >.

Output: All reduced Grébner bases of 14 (all vertices
of St(I,)).

§:=Re; =0
L := list of facet binomials of § marked by >
output §
repeat
while j < |L| do
ji=74+1
§' == 1lip(§, L[j]);
if [§/,G] in T\ (I4) then
§:=G"5j:=0;
L := list of facets of § marked by >
output §
endif
endwhile
If § # R, then
G’ := unique element such that [§,9] in T\ (1,);
j:=0; L := list of facets of §’ marked by >

repeat j := j + 1 until the common facet of §
and G’ is the j-th facet of L.
5=
endif

until G =R, and j = |L|.
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3. LOCAL COMPUTATIONS

Now that we have given an overview of the algorithm
in TiGERS for computing the Grébner fan of a toric
ideal, we focus on the computations that have to be
made at a fixed reduced Grébner basis encountered
while searching the edge graph of St(I4). The two
main issues here are how to compute a Grobner ba-
sis that shares a prescribed facet binomial with the
current basis, and how to compute all the facets of
a toric Grobner cone.

3A. Local Change of Griobner Bases in Toric Ideals

The following algorithm is a specialization of [Col-
lart et al. 1997] and [Sturmfels 1996, Subroutine 3.7].

Algorithm 3.1 (Local change of reduced Grobner bases in

[A)-

Input: (i) A reduced Grobner basis § = {z% — xb* :
k=1,...,t} of I4. (The weight vector inducing G
is generic and the underlined terms are the leading
terms.)

(i) A prescribed facet binomial z% — z% of G.

Output: The reduced Grobner basis adjacent to G in
which z% — 2% is a facet binomial.

a. Old:={z% —zb}U{z% : 2% —2% € G, j #i}.

b. Let Temp be obtained from Old by switching the
marking on the binomial in Old, that is, Temp :=
{zb —z%} U{z% : 2% € Old}.

c. Compute the reduced Grébner basis of Temp with
respect to the new marking. Store the (marked)
result in New.

d. § :={z" — x“}.

e. For each monomial A in New, do:

Reduce h with G to obtain the monomial A'.
Add h— h' to § with h marked as the leading
term.

f. Auto-reduce G’ to get Gnew-

Then G, is the reduced Grébner basis adjacent
to G such that z% — z% is a facet binomial in G
and z% — 2% is a facet binomial in G, .

Proof of of correctness. Let K and X, be the Grobner
cones of § and G,,.,, respectively. The linear span of
the common facet of X and K¢y, is {u € R" : a;-u =
b;-u}. Let ¢ € ff(, cy € .’JOCHGW and let ¢ be a vector
in the relative interior of K N K,.,. By definition,
Old = in.(§) := {in.(f) : f € G} and with respect to
the markings specified in Step a, Old is the reduced

Grobner basis of in.(l4) with respect to ¢;. Since
Temp is obtained from Old by simply reversing the
marking on the facet binomial 2% — x%, Temp is a
generating set for in.(I4).

We first show that the set New computed in Step c,
using Temp as input, is the reduced Grobner basis
of in.(I4) with respect to ¢;. The marked monomi-
als in Temp are the leading terms with respect to ¢,
of each polynomial in Temp. The nontrivial S-pair
computations in Step c¢ are those between a mono-
mial %, j # 4, and the binomial z% — x%. This
results in a monomial which either reduces to zero
with respect to the current partial Grobner basis or
reduces to a monomial that gets added to the cur-
rent partial Grébner basis. There is no point during
this process at which an unmarked binomial is pro-
duced that is required to be marked. No binomials
are produced during such an S-pair reduction either.
Hence all subsequent S-pair computations are also
of the above nature and so in fact, the set New is as
claimed above and consists of the binomial z% — 2%
along with monomials some of which were possibly
produced during the Buchberger process. Step e lifts
New to the set of marked binomials §’, the leading
terms of whose elements are precisely the minimal
generators of in.,(in.(l4)) = iNciee,(La) for some
small € > 0. However, ¢ + €c, lies in the interior
of Kyew and hence, in,,(in.(l4)) = in.,(l4). Hence
g’ is a minimal Grobner basis of I, with respect to
cy. Step f then auto-reduces this minimal Grobner
basis to the reduced Grobner basis Gpew Of 14 with
respect to c,. ]

The most important computational advantage of the
above local change algorithm is that it does not
require the computation of a weight vector in the
interior of X,., in order to compute the reduced
Grobner basis G- This is possible due to the bino-
mial/monomial nature of all intermediate polynomi-
als produced during the algorithm. The weight vec-
tors are carried implicitly in the markings of these
elements. This observation leads to considerable
speed-up of the procedure.

Remark 3.2. As in the proof of Algorithm 3.1, let ¢; €
% and ¢y € Kpew. Then notice that in., (I,) is the
initial ideal of W,, ;, := (% —xb)+(x% : i # j, 2%
minimal generator of in., (I4)) with respect to the
marking z% > z while in.,(I4) is the initial ideal
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of W,,_s, with respect to z% > z%. See [Maclagan
and Thomas 1999 for a generalization of this obser-
vation to the theory of A-graded ideals [Sturmfels
1996, Chapter 10] and the toric Hilbert scheme.

Example 3.3. For

1 1 1 1 1

A=101 2 1 0],

0 01 2 1
consider the adjacent reduced Grobner bases §; and
G, that share the facet binomial a®d — be?. The
basis G, = {bd — ce, a’d — be?, b*e — a’c} has facet
binomials a?d — be? and b%e — a?c and G, = {bd — ce,
be* — ad, a*d® — ce®, b*e — a’c} has facet binomials
a’d® — ce® and be? — a?’d. We use Algorithm 3.1 to
compute Gy from G;.

Step a. Old := {a?d — be?, bd, b’e}.

Step b. Temp := {be? — a?d, bd, be}.

Step c. (i) S-pair(be? — a?d, bd) = a*d?. Temp =
{be? — a’d, bd, b%e, a’d*}. (i) S-pair(be® — a?d,
b%e) = a’bd — 0. (iii) S-pair(be®—a?d, a*d*) — 0.
Therefore New = {be? — a?d, bd, b%e, a®d?}.

Step d. §’ := {be® — a’d}.

Step e. bd reduces modulo G; to ce. Therefore we add
bd — ce to G'.

b%e reduces to a’c modulo G;.
b%e —a’cto G'.

a’d?* = d(a®d — be?) + e*(bd — ce) + ce®. Therefore
we add a?d?® — ce® to §'.

Hence §' = {be?—a?d, bd—ce, b’e —a’c, a*d* —ce®},
with the positive terms as the leading terms.
Step f. Gpew = {be? — a?d, bd — ce, b’e — a’c, a*d® —

ce’}.

Therefore we add

3B. Finding the Facets of a Toric Grobner Cone

For a general ideal, the Grobner cone of one of its
reduced Grobner bases is described by a large set
of inequalities many of which are redundant. Even
for a toric ideal, empirical evidence shows that the
number of facet binomials of a reduced Grobner ba-
sis may be much smaller than the cardinality of
the Grobner basis. In fact, it was conjectured in
[Sturmfels and Thomas 1997] that there is a func-
tion ¢ : N — N such that the number of facet bino-
mials of a reduced Grobner basis of I4 of codimen-
sion k is bounded above by ¢(k). As a special case,
it was conjectured in [Sturmfels and Thomas 1997]

that ¢(3) = 4 based on empirical evidence with ex-
isting codes at the time. Recently, Serkan Hosten
and Diane Maclagan have found counterexamples to
this second conjecture using TiGERS. Lower bounds
for ¢ are given in [Sturmfels and Thomas 1997], al-
though no good upper bound is known for the num-
ber of facets of a toric Grobner cone. Hence, identi-
fying the facet binomials in a reduced Grobner basis
can become a computationally expensive subroutine
during the computation of the Grobner fan. In this
section we discuss several ways to find the facet bi-
nomials of a Grobner cone in the case of a toric ideal.

A first algorithm to compute the facets of a toric
Grobner cone follows from Lemma 2.1. In practice
this can be an expensive procedure since we need to
solve as many linear programs as the cardinality of
G, and most binomials in § are not facet binomials.

Algorithm 3.4 (Finding the facet binomials of a reduced

Grobner basis of 1,).

Input: A reduced Grobner basis § = {z% — zb : i =
1,...,t} of 1.

Output: The facet binomials of G.

Facets := @.

For each binomial z% — z% in G do:
If a; —b; is not in the cone generated by the vectors
{a;—bj : 2% —z% € G,i # j}, set Facets := Facets
U {z% — xb}.

Output Facets.

Algorithm 3.4 is dual to the algorithm suggested
by Lemma 2.1 since a; - u > b; - u is a facet in-
equality of the Grobner cone X of G if and only
if a; — b; is an extreme ray (essential generator) of
K*:={veR":v-u >0, Yu € K} the polar cone of
X. The vector a; — b; is an extreme ray of X* if and
only if a; — b; cannot be expressed as a nonnegative
linear combination of the vectors a; —b;, i # j where
% —z% € G. Algorithm 3.4 can be implemented by
solving one linear program per binomial in § or by
finding the generators of the cone X* using a con-
vex hull package. We also obtain an easy sufficient
condition for a binomial in G to be a facet binomial.

Lemma 3.5. Let % — x% be an element of a reduced
Grébner basis G of Ix C klzy,...,x,] and x be
a variable in klxy,...,x,]| such that x; divides the
leading term x® (respectively, the trailing term z)
of 2% —x% but does not divide the leading terms (re-



spectively, trailing terms) of any other binomial in
G. Then z% — x% is a facet binomial of G.

Proof. If k is in the support of a; (respectively b;) but
not in the support of a; (respectively b;) for j # i,
j =1,...,t, then a; — b; cannot be a nonnegative
linear combination of a; — b, for j #14, j =1,...,t.
Hence a; — b; is an extreme ray of the cone polar to
the Grobner cone of G. O

We now describe an algorithm to find a superset of
the facet binomials of a fixed reduced Grobner basis
of I that does not require linear programming. Our
idea comes from results in [Maclagan and Thomas
1999] (compare Remark 3.2).

Theorem 3.6 [Maclagan and Thomas 1999]. Let G, be
the reduced Grobner basis of 1, with respect to the
generic weight vector c € R". Then x*—z° € G, is a
facet binomial of G. only ifin.(14) is the initial ideal
of W,y := (z*—2)+(2° : 2° is a minimal generator
of in.(14), x¢ # x*) with respect to x® > z°.

The exact result in [Maclagan and Thomas 1999] is
that if z* — 2 € G, and in.(7,) is the initial ideal of
W,_, with respect to % > z°, then the initial ideal
M of W,_, with respect to 2 > z® has the same
A-graded Hilbert function as in.(4). The latter is
a necessary condition for M to be an initial ideal of
I,. For M to be an adjacent initial ideal to in.(4),
you need the additional geometric requirement that
M and in.(I,) share the facet given by z® — z°.
Hence the binomials in §. that satisfy the condition
in Theorem 3.6 form a superset of the facet binomi-
als of G.. Once this superset has been found, we use
linear programming as before to identify the true
facet binomials.

Algorithm 3.7 (Finding a superset of the facet binomials
of a reduced Grobner basis of 1,).
Input: A reduced Grobner basis G, of I4.
Output: A superset SS of the facet binomials of G..
SS:=o
For z¢ — 2 € G, do:
Set W, := (2% —x°) + (2 : ° minimal generator
of in.(I4), z° # z%).
If in.(I4) is the initial ideal of W,_, with respect
to 2% > b set SS := SS U {z* — z}.
Output SS.
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The computation of the reduced Grobner basis and
hence of the initial ideal of W,_, with respect to
x® > x° proceeds exactly as in Algorithm 3.1 and is
possible because of the specific monomial/binomial
structure of W,_,. Surprisingly, the use of Algo-
rithm 3.7 can often result in a 50% speed-up over
using linear programming alone.

4. COMPUTATIONAL EXPERIENCE

TiGERS, the program that implements the algo-
rithms described in this paper, is written in C and
is available from http: //www.math.washington.edu/
~thomas/programs.html. In this section we describe
some implementation issues, optimizations and tim-
ings. All timings in Table 1 were obtained by run-
ning TiGERS on a dual processor Pentium 450 with
1GB of RAM. With each example problem, we list
the following information about its state polytope:
d its dimension, f, the number of vertices, f; the
number of edges, and td the tree depth— the longest
chain in the reverse search tree. We also list m,,, the
cardinality of the largest Grobner basis computed,
my, the largest number of facets in any Grobner ba-
sis, and md, the highest degree of a binomial appear-
ing in any of the Grobner bases. Timings are then
given both for reverse search (RS) and exhaustive
search (ES). Timings computed using Algorithm 3.7
to cut down on the use of linear programming are
given in parentheses.

We first give a brief description of the examples
in Table 1. The first four examples are unrelated:
In Pent the matrix is

11111
A=|0 1 2 1 0],
001 21

the convex hull of whose columns is a pentagon in
the plane. The matrix for V23 is

21010 0
01211 0],
0000 1 2

whose toric variety is the second Veronese embed-
ding of P?. The name PV33 refers to the pinched
Veronese surface, for which

3 2 21
0
1

A=

10 0 00
A=10 1 2 03 210
0 0 0 2 01 2 3



330 Experimental Mathematics, Vol. 9 (2000), No. 3

The name gti stands for the generic toric ideal from
[Peeva and Sturmfels 1998, Example 4.5], for which
A = (20 24 25 31). Examples K5 and K6 are spe-
cific instances of Kn, the complete graph on n ver-
tices. The matrix associated to Kn is the node-
edge incidence matrix of the graph [Sturmfels 1996,
Chapter 9]. The matrix An := (123 ...n) and the
Grobner basis elements of the toric ideal I4,, corre-
spond to primitive partition identities with largest
part n (see [Sturmfels 1996, Chapter 6] for details).
The name Dr X s refers to the (r+s) x rs node-edge
incidence matrix of an undirected bipartite graph
with 7 nodes in one vertex class and s nodes in the
other. The last example, HM, is explained at the
end of this section.

The exhaustive search approach required a large
amount of memory—in the A9 example, for in-
stance, it was using about 600MB by the end. In
addition to this, the amount of time needed to deter-
mine if a vertex has been seen increases as the num-
ber of vertices found increases. Even when memory
size is not an issue we found that the reverse search
approach could end up being faster than the exhaus-
tive search (see the A9 example).

On the other hand, the reverse search implemen-
tation requires us to traverse every edge and then

check if it belonged to the reverse search tree by
finding the down edge for the new vertex. If the edge
used belongs to the reverse search tree, we keep the
new vertex, otherwise we discard it knowing that it
has been seen before or will be seen again. Thus
instead of a large list search we need only find the
first mismarked facet binomial to decide whether a
vertex should be output. Furthermore, at each node
we keep, we must recompute its facet list every time
we pass through it. By comparison the exhaustive
search algorithm required us to find facets only once
per vertex. One trick that we used to mitigate this
re-computation of facets was to save vertices and
facet information every time we went up in the tree,
so as to avoid recomputing the facets already vis-
ited. While this approach means that we are no
longer storing just one Grébner basis, the amount of
storage required is still quite small, being bounded
by the tree depth. In all the examples listed, the
reverse search (with caching) ran in under 750KB.

The last line on the table, HM, is Hosten and
Maclagan’s original counterexample, found using Ti-
GERS, to the conjecture that the maximum valency
of a vertex in the state polytope of a corank three
matrix is four [Sturmfels and Thomas 1997]. It cor-
responds to A = (247 248 345 15).

Example d fo f td  m, my mgq RS ES

Pent 2 8 8 4 4 2 4 | 0.00 0.00

V23 3 29 45 6 7 4 3 | 0.02 0.02 (0.01)
gti 3 288 467 30 18 4 31 2.30 (1.27) 1.50 (0.76)

PV33 6 54828 190253 48 36 12 7 | (4343.31) (3731.24)

K5 5 102 255 14 11 5 3 | 0.36 (0.32) 0.28 (0.24)
K6 9 195720 56 37 14 4 110111.68 (50662.29)

A4 3 20 31 6 8 4 4 | 0.01(0.01) 0.01 (0.01)
A5 4 114 249 11 14 8 5 | 0.35(0.28) 0.25 (0.16)
A6 5 488 1394 18 20 12 6 | 6.78 (4.39) 4.33 (2.37)
AT 6 4073 14800 28 29 18 7 | 239.80 (139.40) 159.96 (82.01)
A8 7 25334 111558 41 38 24 8 | 5010.37 (2732.71) 3624 (1867.85)
A9 8 206444 1080981 58 49 32 9 127978.46 (67565.22) (71404.29)
A10 9 > 578435

D2x2 3 108 222 9 10 6 3 | 0.24 (0.20) 0.23 (0.16)

D2x3 5 4488 14184 19 20 8 3 | 171.74 (97.48) 124.06 (71.02)

D3x3 8 > 257057

HM 3 904 1546 52 40 5 345 | 96.72 (35.80) 76.08 (21.53)

TABLE 1. TiGERS performance. The middle columns give the characteristics of the state polytope (see beginning
of Section 4) and the two rightmost columns give timings, in seconds, for the reverse search and exhaustive search.



ELECTRONIC AVAILABILITY

TiGERS, the program that implements the algo-
rithms described in this paper, is written in C and
is available from http: //www.math.washington.edu/
~thomas/programs.html.
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