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A LEVEL SET APPROACH TO MODELING GENERAL SERVICE

RULES IN SUPPLY CHAINS∗

CHRISTIAN RINGHOFER†

Abstract. The need for service rules, or policies, in supply chains arises if not all the parts
processed in the chain are considered identical, but are distinguished by certain attributes. We
develop and analyze a methodology to model arbitrary service rules in large supply chains based on
a kinetic (traffic flow like) theory and a level set approach. The final result is a system of hyperbolic
conservation laws for the densities of parts, grouped by their attributes. The validity of the model
is verified against discrete event simulations for several test cases.
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1. Introduction

The goal of this paper is to model a quite general set of scheduling policies in the
framework of hyperbolic conservation law models for supply chains. Conservation law
models for supply chains and supply networks use an analogy to traffic flow models
and treat parts passing through a supply chains as vehicles traveling on a virtual road
(the stage of the process). Thus, parts enter the chain as raw product at stage x=0
and leave the supply chain as finished product at stage x=X. Their evolution through
the stages is described by a conservation law. The flux function governing this law
can either be derived from heuristic considerations [1], elementary queueing theory
(using so called clearing functions [8, 12]) or from microscopic models describing the
individual behavior of each part (i.e., from a kinetic theory) [5, 2, 7]. In the latter
case, macroscopic conservation laws are obtained by employing large time averages
or moment closures to the underlying kinetic equations. If the microscopic model
takes into account the random behavior of the nodes in the supply chain, the goal is
to derive macroscopic equations for the means and the variances of the probability
density that a given part is at stage x at time t.

This paper is concerned with the inclusion of scheduling policies in general supply
chain models. The need for such policies arises when not all parts in the chain are
treated as identical, but are distinguished by features such as, e.g., a product type,
i.e., more than one type of product is produced at the same time, or by individual
delivery dates, i.e., each part is supposed to be delivered at a certain due date, or
by the time they have already spent in the process [4, 11]. The latter criterion is
especially relevant if the parts in the supply chain represent a perishable good, that
is, their value decreases over time. In all these cases the parts are not necessarily
processed in sequence and each node in the chain decides on which parts to process
first according to a certain policy or service rule [6].

The general model considered in this paper is based on a priority function. Let
x∈ [0,X] denote the stage of the process and let y∈R

d denote the (vector valued)
attribute of an individual part. The Newton equations for an individual part are then
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of the form

dx

dt
=v,

dy

dt
=E

(for the examples considered in this paper, it will be convenient to let the attribute y
of an individual part change continuously over time). Let f(x,y,t) denote the density
of parts with attribute y which are at stage x at time t. The Newton equations imply
that the density function f(x,y,t) evolves according to the Vlasov equation

∂tf(x,y,t)+∂x[vf(x,y,t)]+∇y · [Ef(x,y,t)]=0,

expressing the conservation of parts. Modeling the evolution of the supply chain under
a given service rule then reduces to choosing a velocity v, depending on the state of
the chain and the individual supplier. We introduce a priority function p(x,y,t) which
denotes the priority the node at stage x assigns to a part with attribute y at time
t. The basic concept of priority scheduling is, that the velocity v of a part depends
on the number of parts with a higher priority at the same node. We compute the
number of parts at (x,t) with a priority higher than q as

φf (x,t,q)=

∫

H(p(x,y,t)−q)f(x,y,t) dy, (1.1)

where H denotes the usual Heaviside function. So, we assume that the velocity of a
part with attribute y is dependent only on the number of parts with higher priority,
and set v=v(x,t,φ(x,p(y),t)). The kinetic model we consider in this paper is therefore
of the form

(a) ∂tf(x,y,t)+∂x[vf (x,t,p(x,y,t))f(x,y,t)]+∇y · [E(x,t)f(x,y,t)]=0, (1.2)

(b) vf (x,t,q)=v(x,t,φf (x,t,q)),

with the function φf given by (1.1).
So, modeling the flow in the supply chain under priority scheduling rules requires

that we choose

• the priority function p(x,y,t), modeling the scheduling policy,

• the velocity vf (x,t,q), describing the flow picture.

To give the paper a somewhat more concrete setting we will discuss several pos-
sible choices for the priority function and the velocity in the next section.

Equation (1.2) still has to be supplemented by initial and boundary conditions,
which we write as

vff(x=0,y,t)=FB(y,t), f(x,y,t=0)=f I(x,y), (1.3)

where F b(y,t) denotes the influx of parts with attribute y and f I(x,y) denotes the
initial state of the system. The kinetic problem (1.2)–(1.3) is potentially rather high
dimensional. The goal of this work is therefore to find a macroscopic approximation to
the transport problem (1.2)–(1.3). We do so by finding a multi-phase approximation
to the kinetic density function f(x,y,t) of the form

f(x,y,t)=

N
∑

n=1

ρn(x,t)δ(y−Yn(x,t)), (1.4)
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where ρn(x,t) denotes the macroscopic density of parts with attribute y=Yn. And
find an approximate solution by deriving a system of hyperbolic conservation laws
for the densities ρn and the attributes Yn. This paper is a generalization, and an
alternative, to the work presented in [3], where only one dimensional attributes (y∈
R

1, p(x,y,t)=y) and a particular choice of the velocity profile vf is considered. In
[3] the equations for the macroscopic densities ρn and Yn in (1.4) are obtained by
computing moments of the kinetic equation, using the standard multi-phase approach
[9]. This paper treats general velocity profiles vf , which as will be seen, allows also
for the study of the influence of service rules on stochastic supply chain models.
Moreover, the present paper uses a reformulation of the kinetic equation (1.2) via a
level set approach which allows for almost exact multi-phase solution of the form (1.4),
in the sense that the only discretization error occurs when discretizing the initial and
boundary conditions.

This paper is organized as follows. In section 2 we establish the general relations
between the phase velocity vf and a macroscopic flux function for the whole ensemble.
In section 3 we derive the governing macroscopic conservation laws via a multiphase
approach for the level sets of parts of equal priority and discuss the approximation
properties of the approach. Section 4 is devoted to numerical experiments, verifying
the approximation for the case of a simple FIFO policy and illustrating the method
for a more complex policy. The proofs of the theorems in section 3 are given in the
appendix in section A.

2. Velocities, priorities and level sets

In this section we present some choices for the velocity profile vf and the priority
function p. The purpose of this section is twofold. First it will give a somewhat more
concrete background to the derivation in the following sections, and second we will
choose the velocity profile vf according to a general principle, relating the microscopic
velocity vf to the flux function for the macroscopic flow of the the densities ρn.
This relation will be essential for the formulation of the approximation of the kinetic
equation by the multi- phase solution (1.4).

2.1. Velocity profiles. We start by observing a general relation between
the microscopic velocity profile vf and the macroscopic flux function. We define the
macroscopic part density ρ̄(x,t) as

ρ̄(x,t)=

∫

f(x,y,t) dy.

Integrating the kinetic equation (1.2) over the attribute space gives the macroscopic
conservation law

∂tρ̄(x,t)+∂xF (x,t)=0, F (x,t)=

∫

vf (x,t,p(x,y,t))f(x,y,t) dy=0.

Because of the definition (1.1) of the aggregate density φf we have that
∫

ψ(q)∂qφ(x,t,q) dq=−

∫

ψ(q)δ(p(x,y,t)−q)f(x,y,t) dydq

=−

∫

ψ(p(x,y,t))f(x,y,t) dy

holds for any function ψ(q). Setting ψ(q)=vf (x,t,q) gives

F (x,t)=−

∫

vf (x,t,q)∂qφf (x,t,q) dq=−

∫

v(x,t,φf (x,t,q))∂qφf (x,t,q) dq
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=−V (x,t,φf (x,t,q))|
∞
q=−∞,

where V denotes the antiderivative of the velocity profile v with respect to the third
variable. On the other hand, φf (x,t,∞)=0 and φ(x,t,−∞)= ρ̄(x,t) holds, giving

F (x,t)=V (x,t,ρ̄)−V (x,t,0).

Thus the kinetic equation (1.2) implies the macroscopic conservation law

∂tρ̄+∂xF =0, F (x,t)=V (x,t,ρ̄(x,t))−V (x,t,0), ∂zV (x,t,z)=v(x,t,z). (2.1)

Remark 2.1. We note that the relation between the kinetic equation (1.2) and
the macroscopic model (2.1) is a consequence of the fact that the velocity vf in (1.2)
solely depends on the number of parts with higher priority, i.e., on φf (x,t,p). This,
in turn, is a consequence of the priority scheduling policy.

Of course, the solution of (2.1) will not provide any information about the impact
of the service rules, i.e., the total density ρ̄ does not contain any information about
which parts have been processed first. The significance of (2.1) lies rather in the
modeling aspect. We will usually assume a given macroscopic conservation law, i.e.,
a flux function F , and will be interested in the impact of a given policy on the flux of
parts with different attributes. The relation (2.1) tells how to choose the microscopic
velocity v, namely as the derivative of the macroscopic flux, with respect to the
density, i.e., as the phase velocity of the macroscopic flux. For instance, in [2] a flux
function of the form

F (x,t)=min{c(x),v0(x)ρ̄(x,t)} (2.2)

has been derived from a deterministic automaton model, where v0 denotes the raw
velocity (the inverse of the cycle time) of the individual node and c(x) denotes the
capacity (the maximal service rate). This corresponds to a microscopic velocity v in
(1.2) of the form

v(x,t,φ)=v0(x)H(c(x)−v0(x)φ),

which is precisely the microscopic velocity used in [3] — but derived from differ-
ent considerations. On the other hand, in [5] a model for the same automaton has
been derived which includes the effect of random breakdows of suppliers, governed by
Markov processes. This results into a macroscopic flux function F of the form

F (x,t)=a(x)c(x)

[

1−exp

(

−
v0(x)ρ̄(x,t)

a(x)(c(x)

)]

where a(x) denotes the average availability of supplier x, and ρ̄ is now the expectation
of the density. Translating this to a microscopic policy model corresponds to

v(x,t,φ)=v0(x)exp

(

−
v0φ

ac

)

.

2.2. Attributes and policies. How to choose the attributes of individual
parts, and how to choose service rules, will of course depend on the particular appli-
cation. For demonstration purposes we will restrict ourselves in this paper to three
attributes, namely
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• y1: the cycle time, i.e., the time elapsed since entering the system,

• y2: the time to a due date, i.e., the time the part is supposed to be delivered
at a certain date and y2 measures the time left to this date,

• y3: the type of the part.

Since the type of the part will usually be integer valued, and will not change over
time the kinetic equation (1.2) will have a solution of the form

f(x,y,t)=
K
∑

k=1

fk(x,y1,y2,t)δ(y3−k).

This is, however, merely a notational detail. The attributes will change over time
according to

dy

dt
=E=





1
−1
0



 ,

i.e., the cycle time will grow linearly and the time to due date will decay linearly with
time. The influx FB(y,t) will be given by

FB(y,t)=
K
∑

k=1

dk(t,y2)δ(y1)δ(y3−k)

with dk(t,y2) the distribution of the time to due date at entry of parts of type k. (All
parts will have zero cycle time y1 upon arrival.)

If we order the parts strictly according to type, then p(x,y,t)=y3 would hold, i.e.,
parts of type K have the highest priority and will always be served first, regardless of
the other attributes. If we employ a FIFO (first in first out) policy then the parts will
be ordered according to their cycle time and p(x,y,t)=y1 will hold. In the same way,
if we only care about on time delivery p(x,y,t)=−y2 would be chosen. The model
allows however for more sophisticated policy choices. Assume that we are dealing
with perishable goods, then we might choose a priority of the form

p(x,y,t)=−y2H(T (y3)−y1)+y1H(y1−T (y3)).

That is we schedule according to the delivery date up to a certain time T (y3) (depen-
dent on the type) when the item gets too close to perishing. In this case we switch to
a FIFO policy to minimize cycle time from here onward.

Note, that if the priority function p does not depend on a certain component of
the attribute vector y, then this component can be integrated out of the whole kinetic
model (1.2), reducing the dimension of the problem. We might however choose not
to do so, in order to observe this component anyway. In this case the correspond-
ing attribute becomes just additional information carried along by the flow, without
influencing it.

3. Multi-phase approximations

We now turn to deriving a multi-phase approximation for the initial boundary
value problem (1.2)–(1.3). So we approximate the kinetic density f(x,y,t) by a su-
perposition of Dirac delta functions in attribute space of the form (1.4) and the goal
is to derive a system of partial differential equations for the evolution of the densities
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ρn(x,t) and the attributes Yn(x,t). The standard approach [9] would be to compute
moments of the kinetic equation (1.2) in the attribute dimensions and close the mo-
ment equations by the ansatz (1.4). This is essentially the methodology employed in
[3]. We will follow a different route in this paper, which essentially gives an exact
solution of the kinetic equation (1.2). So, the only approximation error arises from
approximating the initial and boundary conditions in a way that is compatible with
(1.4). The principal problem we have to overcome, is that the kinetic equation (1.2)
is not well defined for multi-phase solutions of the form (1.4). Assuming a solution of
the form (1.4), the cumulative density φf in (1.1) becomes

φf (x,t,q)=
N
∑

n=1

ρn(x,t)H(p(x,Yn(x,t),t)−q),

and the corresponding velocity is given by

vf (x,t,q)=v(x,t,

N
∑

n=1

ρn(x,t)H(p(x,Yn(x,t),t)−q).

Evaluating the velocity vf at q=p(x,Ym(x,t),t), which is necessary to evolve the
multi-phase solution (1.4), implies that the φf (x,t,q) has to be evaluated precisely
at the values of q where φf is discontinuous. The key to deriving an exact multi-
phase approximation is to formulate the kinetic equation (1.2) appropriately. This is
achieved by deriving an appropriate formulation of the equation for the level sets of
parts with equal priority.

3.1. Level set evolution. We will address the problem of evaluating the
velocity vf at the points where φf is discontinuous by reformulating the problem as a
shock problem for the hyperbolic conservation law governing the evolution of the level
set function of all parts with equal priority. This is, in a sense, the reverse approach
to the general use of level set functions, where the higher dimensional equation is used
to deal with the nonlinearity in the lower dimensional equation [10, 13]. We define
the level set function Λ(x,t,q) by

Λ(x,t,q)=

∫

δ(p(x,y,t)−q)f(x,y,t) dy. (3.1)

Accordingly, we factor the kinetic density f(x,y,t) into

f(x,y,t)=Λ(x,t,p(x,y,t))g(x,y,t),

where the function g(x,y,t) denotes the distribution of attributes within the level set
of equal priorities. So,

∫

δ(p(x,y,t)−q)g(x,y,t) dy=1

holds for all values of x,q,t.
The evolution equation for Λ is given by the following

Lemma 3.1. The level set function Λ(x,t,q), defined by (3.1), satisfies the initial
boundary value problem

(a) ∂tΛ(x,t,q)+∂x[vf (x,t,q)Λ]+∂q[Af (x,t,q)]=0, (3.2)
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(b) Af (x,t,q)=

∫

δ(p(x,y,t)−q)f(x,y,t)[∂tp+vf (x,t,q)∂xp+E(x,t)∇yp] dy,

with initial and boundary conditions given by

(c) Λ(x,0,q)=ΛI(x,q)=

∫

δ(p(x,y,0)−q)f I(x,y) dy,

(d) vf (0,t,q)Λ(0,t,q)=F
B
Λ (t,q)=

∫

δ(p(0,y,t)−q)FB(y,t) dy.

The proof of Lemma 3.1 is deferred to the appendix in section A.
Note that if the priority p and the attribute y does not vary in space and time,

i.e., for p=p(y) and E=0, we obtain a closed initial boundary value problem for the
level set function Λ.

A multi-phase approximation of the form (1.4) for the kinetic density f would
correspond to an ansatz of the form

Λ(x,t,q)=
N
∑

n=1

ρnδ(p(Yn)−q)

for the level set function Λ. Note that we still face the same problem as before, since
the cumulative density φf would have to be evaluated at the points q=p(x,Yn,t)
where it is discontinuous. Also note that because of the definition (3.1) the level set
function Λ is just the derivative of the cumulative density φf with respect to the
variable q. So, because of the definition of the velocity profile v as the phase velocity
of the macroscopic flow, we have the relations

Λ(x,t,q)=−∂qφf (x,t,q), v(x,t,φ)=∂φF (x,t,φ).

This means that the term vf (x,t,φf (x,q,t))Λ(x,t,q) can be written as a derivative,
namely as −∂qF (x,t,φf (x,t,q)). This means we can integrate equation (3.2)(a) once
with respect to the variable q, yielding the following

Corollary 3.2. A solution of the level set equation (3.2)(a) can be obtained by
solving

∂tφf (x,t,q)+∂x[F (x,t,φf (x,t,q))]−Af (x,t,q)=0, ∂zF (x,t,z)=v(x,t,z) (3.3)

and defining Λ as Λ=−∂qφf .

Remark 3.1. Corollary 3.2 establishes the link between the model presented
in [3] and the macroscopic model derived in [2]. For the special case p(x,y,t)=y
the macroscopic model in [2], which uses the ’min’ function as flux, is obtained by
integrating the Heaviside function in the kinetic model [3] with respect to y.

The advantage of the form (3.3) of the level set equation (3.2)(a) in the context
of multi-phase approximations is the following Using the multi-phase ansatz (1.4),
φf (x,t,q) will be a piecewise constant function of the priority q. In this formulation,
the velocity of the shocks (the discontinuities of φf ) will be determined by a Rankine-
Hugoniot condition in terms of the size of the shocks and the size of the jump discon-
tinuities in the flux function F . In order to define the value vf (x,t,p(x,y,t)) at the
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jump discontinuity, we construct a distributional solution of the problem (3.2) of the
form

Λ(x,t,q)= Λ̃(x,t,q)+a(x,t)δ(P (x,t)−q) (3.4)

where Λ̃ is a smooth function, q=P (x,t) is the location of the discontinuity of φf ,
and a(x,t) is the size of the jump in φf . We formulate this in terms of

Theorem 3.3. A function Λ(x,t,q) of the form (3.4) is a weak solution of the equation
(3.2)(a) if the velocity vf (x,t,q) is defined as

vf (x,t,q)= lim
ε→0+

F (x,t,φf (x,t,q+ε))−F (x,t,φf (x,t,q−ε))

φf (x,t,q+ε)−φf (x,t,q−ε)
. (3.5)

The proof of Theorem 3.3 is deferred to appendix A.

As a consequence of Theorem 3.3, we replace the definition of vf (x,t,q) by the
definition (3.5) and solve the kinetic equation

(a) ∂tf(x,y,t)+∂x[vf (x,t,p(x,y,t))f ]+∇y · [Ef ]=0 (3.6)

(b) vf (x,t,q)= lim
ε→0+

F (x,t,φf (x,t,q+ε))−F (x,t,φf (x,t,q−ε))

φf (x,t,q+ε)−φf (x,t,q−ε)

(c) φf (x,t,q)=

∫

H(p(x,y,t)−q)f(x,y,t) dy.

We approximate the solution of the problem (3.6) by a multi-phase ansatz of the form

f(x,y,t)=
∑

n

ρnδ(Yn−y),

which results in the cumulative density φf (x,t,q) being of the form

φf (x,t,q)=
∑

n

ρnH(Pn(x,t)−q), Pn(x,t)=p(x,Yn(x,t),t).

A rather straight forward calculation yields that an exact solution of equation (3.6)
is obtained by evolving the amplitudes ρn(x,t) and the attribute vectors Yn(x,t) are
evolved according to the equations

(a) ∂tρn+∂x[wnρn]=0, ∂tYn+wn∂xYn−E=0, (3.7)

where the velocities wn(x,t) are computed as

(b) wn(x,t)=vf (x,t,Pn(x,t)), Pn(x,t)=p(x,Yn(x,t),t)

and vf is evaluated via (3.6)(b). Of course, in order to obtain a multi-phase solution
of equation (3.6), the initial and boundary conditions have to be formulated compat-
ibly with with the multi-phase ansatz. Therefore, we have to replace the initial and
boundary conditions (1.3) by conditions of the form

vff(x=0,y,t)=

N
∑

n=1

FB
n (t)δ(Y B

n (t)−y), f(x,y,t=0)=

N
∑

n=1

ρI(x)δ(Y I(x)−y). (3.8)
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which leads to the appropriate initial and boundary conditions for the conservation
laws in (3.7). We reiterate that the multi-phase ansatz gives an exact solution of
equation (3.6). So the only approximation arises by approximating the initial and
boundary conditions in (3.8). How many terms to use in the expansion of f(x,y,t)
becomes therefore solely a question of how well the initial and boundary functions
can be approximated by the a multi-phase expansion of the form (3.8).

3.2. Computation of the phase velocity. We conclude this section by
elaborating on the actual computation of the velocities wn(x,t) in (3.7), since they
are given formally only in terms of the limit in (3.6)(b). It turns out that (3.6)(b)
uniquely determines the velocities even in the case of crossing priorities, i.e., if not all
of the values Pn(x,t)=p(x,Yn(x,t),t) are distinct for a given point in space and time.
The basic principle is that in the multi-phase approximation the function φf (x,t,q)
is piecewise constant in the variable q with discontinuities at q=Pn. Therefore, the
function F (x,t,φf (x,t,q)) is piecewise constant as well with discontinuities at the
same points q=Pn, and the difference quotient in (3.6)(b) becomes constant for ε
sufficiently small. This gives rise to the following

Algorithm:

• For a fixed x,t, given Yn, compute Pn(x,t)=p(x,Yn(x,t),t).

• Define a permutation n→σ(n), such that the permuted priorities are ordered,
i.e.,

Pσ(1)≥Pσ(2)≥ ...≥Pσ(N)

holds.

• Assume that we have αk of the values of Pn which coincide for a fixed (x,t).
So we have

Pσ(1)= · · ·=Pσ(α1)>Pσ(α1+1)= · · ·=Pσ(α2)>Pσ(α2+1) . . .

>Pσ(αK−1+1)= · · ·=Pσ(αK).

• Since the priority values Pσ(αk−1+1)= · · ·=Pσ(αk) all coincide, the values
w(σ(j))=vf (x,Pσ(j),t) have to be all equal for j=αk−1+1, . . . ,αk.

• The cumulative density φf (x,t,Pn±ε) is now given by

φf (x,t,Pσ(n)±ε)=

K
∑

k=1

H(Pσ(αk)−Pσ(n)∓ε)γk, γk=

αk
∑

m=αk−1+1

ρσ(m)

or

φf (x,t,Pσ(αj)+ε)=

j−1
∑

k=1

γk, φf (x,t,Pσ(αj)−ε)=

j
∑

k=1

γk

φf (x,t,Pσ(αj)+ε)−φf (x,t,Pσ(αj)−ε)=−γj .

• At the same time, we have

F (x,t,φf (x,t,Pσ(αj)+ε))−F (x,t,φf (x,t,Pσ(αj)−ε))

=F (x,t,

j−1
∑

k=1

γk)−F (x,t,

j
∑

k=1

γk)
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and because of (3.6)(b)

wσ(αj)=
1

γj
[F (x,t,

j
∑

k=1

γk)−F (x,t,

j−1
∑

k=1

γk)]=wσ(αj−1)= · · ·=wσ(αj−1+1).

(3.9)
• This determines the values wσ(n), n=1, . . . ,N uniquely, and wn is then ob-
tained by inverting the permutation σ.

The above algorithm expresses the following simple strategy. After reordering
the attributes according to their priority with the permutation σ, and grouping them
together according to equal priorities, the highest priority Pσ(α1) moves with the group
velocity

wσ(α1)=
1

γ1
F (x,t,γ1)=

F (x,t,
∑α1

m=1ρσ(m))
∑α1

m=1ρσ(m)

of the total flow. Subsequent lower priorities receive whatever is left of the flux of the
higher priorities. Note, that the total flux over all priorities satisfies

N
∑

n=1

wnρn=

N
∑

n=1

wσ(n)ρσ(n)=

K
∑

j=1

wσ(αj)γj =F (x,t,

K
∑

k=1

γk)=F (x,t,

N
∑

n=1

ρn)

because of the telescopic sum in (3.9). Therefore, after deciding on a global flux func-
tion F (x,t,φ), and using the the phase velocity vf (x,q,t)=∂φF (x,t,φf (q)) for the
kinetic model, the multi-phase approximation reproduces exactly the correct macro-
scopic flux for the total density. This total flux is distributed onto parts of different
priorities according to the above algorithm, and the evolution of the attribute vectors
Yn(x,t) rearranges the ordering of the priorities as the system evolves.

4. Numerical experiments

In this section we perform some numerical experiments on the multi-phase ap-
proximation from section 3. We verify the model on a simple test case against a
discrete event simulation in the deterministic as well as the stochastic case, including
random breakdown of individual nodes. Sections 4.1 and 4.2 deal with a straight
FIFO (First In First Out) policy and section 4.3 uses a more complex mixed policy.
Since we compare the FIFO results directly to discrete event simulation results, it is
necessary to precisely define the type of discrete event simulation used. The simple
discrete event algorithm used in this paper is given in section 4.2.

4.1. The basic setup. We restrict ourselves essentially to the three dimen-
sional attribute vector of section 2.2. So, y=(y1,y2,y3) holds, with y1 the elapsed
cycle time, y2 the time to a given due date, and y3 the (integer valued) type of the
part. We will use two types. So we have y3∈{1,2}.

Before we proceed, we have to make a slight modification to this setup. The
need for this modification arises from the fact that the phase velocity v(x,t,φ)=
v0(x)H(c(x)−v0(x)φ), corresponding to the flux F (x,t,ρ̄)=min{c(x),v0(x)ρ̄}, in sec-
tion 2.1 (2.2) is discontinuous. This gives rise to the following problem: since by design
all parts with the same priority p(x,y,t) move with the same velocity vf (x,t,p), all
parts with priority p will be held back if the corresponding flux would exceed the
capacity c(x), while, in reality, a certain number of them would still be processed, up
to the point where the capacity is exceeded. We point out that this is a modeling issue
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of the kinetic model (1.2), rather than one of the theory in section 3, and arises only
if the level sets of equal priority have a nonzero measure in the space of attributes.
This problem, in turn, arises only in the case where the macroscopic flux function F
in section 2.1 is not continuously differentiable with respect to the density ρ, as is the
case for the min function in (2.2).

We remedy this problem by introducing an additional — artificial — attribute
y4, which will remain constant over space and time, and prioritizes the parts slightly
within the same level set. So, we modify the priority function p(x,y1,y2,y3,t) to

p̃(x,y1,y2,y3,y4,t)=p(x,y1,y2,y3,t)+εy4. (4.1)

This means we spread parts of equal priority p over the additional dimension y4, and
the correct portion of the parts would still be processed, or, in other words, if the level
set has a nonzero measure in (y1,y2,y3) space, it still has zero measure in the enlarged
(y1,y2,y3,y4) space. Parts with different priority p will still have different priority p̃,
if the parameter ε is chosen small enough. Since y4 is an artificial attribute, it might
as well be chosen uniformly distributed in the interval [0,1]. According to (3.7), this
gives the equations

∂tρn+∂x[wnρn]=0, ∂tYn+wn∂xYn−E=0, E=









1
−1
0
0









. (4.2)

The velocities wn have to be computed according to the algorithm in section 3.2, with
the priority function p replaced by p̃ from (4.1). From the results in section 3, we
know that the approximation of the kinetic solution (1.2) by the multi-phase solution
(4.1) is given solely in terms of the approximation quality of the boundary conditions.
Thus, we have to approximate the boundary flux density

vff(0,y,t)=
2

∑

k=1

λ(y3,t)δ(y1)δ(y2−d(y3))δ(y3−k)χ[0,1](y4) (4.3)

by the appropriate flux density for the multi-phase solution in (3.7). The boundary
flux (4.3) states that particles of type y3=k, k=1,2 enter at a rate λ(y3,t). The
elapsed cycle time y1 at entry is zero, the time to the due date at entry is given by
the functions d(y3), dependent on the type, and the density is spread uniformly in the
artificial attribute y4. The kinetic influx (4.3) is, according to (3.8), approximated by
a multi-phase influx of the form

vff(0,y,t)≈

N
∑

n=1

F b
n(t)δ(Y

b
n (t)−y). (4.4)

We do so by replacing the indicator function χ in (4.3) by the approximation

1

M

M
∑

m=1

δ
(

y4−
m

M

)

,

and the index n by the double index n=(k,m), k=1,2, m=1, . . . ,M, N =2M . Setting
F b
km and Y b

km in (4.4) to

vff(0,y,t)≈
2

∑

k=1

M
∑

m=1

F b
km(t)δ(Y b

km(t)−y), F b
km=

1

M
λ(k,t), (4.5)
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Y b
km(t)=

(

0,d(k),k,
m

M

)

gives (4.3), with the indicator function replaced by the superposition of δ− measures.
So, essentially we have replaced one particle with weight λ(y3,t) entering the system,

by M particles with weights λ(y3,t)
M

. We note that the last two attributes (y3,y4) are
just indices, i.e., the equation (4.2) with the boundary conditions (4.5) has the obvious

exact solution Y
(3)
km (x,t)=k and Y

(4)
km (x,t)= m

M
, and the last two components of the

attribute vector Y (x,t) do not really have to be solved for. So, altogether, we have
to solve 3N =6M one dimensional hyperbolic equations for the densities ρkm and the
first two components of the attribute vector Ykm, k=1,2, m=1, . . . ,M . In order to
employ standard numerical methods for hyperbolic conservation laws, we rewrite the
system (4.2) in conservative form as

∂tρn+∂x[wnρn]=0, ∂t(ρnYn)+∂x[wnρnYn]−ρnE=0. (4.6)

The boundary conditions now take the form that the fluxes wkmρkm(0,t)=F b
km(t) and

wkmρkmYkm(0,t)=F b
kmY

b
km(t) have to be prescribed at influx at x=0. The system

(4.6) is solved by a standard Lax-Wendroff scheme, and the velocities wn are computed
via the algorithm in section 3.2.

4.2. Verification for a FIFO policy. We first verify the the multi-phase
approximation against a discrete event simulation, i.e., a stochastic automaton. In
previous work [2, 5] it has been shown that, in an appropriate scaling limit, the
solution of the automaton converges to the solution of a conservation law with the
flux functions described in section 2.1. In the case of a pure FIFO policy it is possible
to modify the automaton, such that it also simulates the scheduling rule. In the
following we briefly describe the precise workings of the stochastic automaton. We
consider a system of M>>1 processors which we locate in the interval x∈ [0,1].
So processor m occupies the cell [(m−1)∆x,m∆x), m=1, . . . ,M, ∆x= 1

M
. Each

processor has an individual processing time T (x)= ∆x
v0(x)

and a capacity c(x)= p(x)
T (x) ,

i.e., it can handle up to p(x) parts at the same time. Each processor breaks down
and is repaired according to a Markov process, that is the time intervals between
breakdowns and repairs are exponentially distributed. The basic variables involved
in the automaton are the following:

• Let τ(x,r) denote the time part number r arrives at the queue in front of
processor number x.

• Let s(r) denote the type of part number r. We consider a system with two
types of parts, i.e., s(r)∈{1,2}.

• Let α(x,r) denote the time part number r arrives at the top of the queue in
front of processor x. So, at t=α(x,r) the part could be fed into the processor,
if it were running.

• Let ω(x,α) denote the time it has to wait if the processor is down at time
t=α. So, β(x,r)=α(x,r)+ω(α(x,r)) denotes the time it is actually fed into
the processor, and τ(x+∆x,r)=β(x,r)+ ∆x

v0(x)
, denotes the time it leaves

processor x and arrives at the queue in front of the next processor in the
chain.

The automaton works according to the following rules:

• α(x,r)≥ τ(x,r): The part has to have arrived before it can be fed into the
processor.
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• α(x,r)≥β(x,r−∆r)+ T (x)
p(x) : The processor can only accept parts in time in-

tervals of length T (x)
p(x) .

This yields the recursion

(a) α(x,r)=max{τ(x,r),β(x,r−∆r)+
T (x)

p(x)
}, β(x,r)=α(x,r)+ω(x,α(x,r)),

(4.7)

(b) τ(x+∆x,r)=β(x,r)+
∆x

v0(x)
.

The waiting time ω(x,α) is computed as

ω(x,α)=

(

0, if processor x is up at time α
tnext−α, if processor x is down at α with tnext the next time it is up again

)

In the case of a deterministic automaton, the processors are up all the time, and
ω(x,α)=0 will always hold. In this case α and β can be eliminated via β(x,r)=
α(x,r)= τ(x+∆x,r)− ∆x

v0(x)
, yielding the simple deterministic recursion

τ(x+∆x,r)=max

{

τ(x,r)+
∆x

v0(x)
,τ(x+∆x,r−∆r)+

T (x)

p(x)

}

, (4.8)

It has been shown in previous work [2] [5], that, in an appropriate scaling limit, the
solution of the recursion (4.7) converges to the solution of the conservation law

∂tρ+∂xF =0

for ∆x→0, ∆r→0. In the deterministic case (no breakdowns), corresponding to the
recursion (4.8), the flux function is of the form F (x,ρ)=v0(x)min{p(x),ρ(x)}. In the
case of exponentially distributed up and down times with means 〈Tup〉 and 〈Tdown〉,
the flux function is given by F (x,ρ)=a(x)p(x)v0(x)[1−exp(ρ

p
)], with a(x) the average

availability, i.e., a(x)=
〈Tup〉

〈Tup〉+〈Tdown〉
.

The density ρ(x,t) and the flux F are related to the arrival times τ via the
relations

ρ(x,t)=

∫

δ(t−τ(x,r))∂xτ(x,r) dr, F (x,t)=

∫

δ(t−τ(x,r)) dr. (4.9)

The recursion (4.7) can be used directly to simulate a FIFO policy. The significance
of a FIFO (First in First Out) policy is that the parts remain ordered in the sequence
of their arrival, as is guaranteed by (4.7). (We have β(x,r)≥α(x,r)>β(x,r−∆r),
and the same relation hods for τ(x,r).) Therefore we can use the recursion (4.7) to
compute partial densities and fluxes belonging to each species by modifying (4.9). So,
for each individual species, we first compute the arrival times in the system according
to a given influx density. Then we sort the parts according to their arrival time
and run the automaton given by the formulas (4.7). At the end of the discrete event
simulation, we simply invert the sort and compute the density and flux for each species
according to

(a) ρk(x,t)=

∫

δ(t−τ(x,r))∂xτ(x,r)δ(s(r)−k) dr, (4.10)
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(b) Fk(x,t)=

∫

δ(t−τ(x,r))δ(s(r)−k) dr

for k=1,2.

The system:

We consider a chain of forty processors. Each processor has a throughput time ∆x
v0

=1,

except for processors 11−20, which have a throughput time ∆x
v0

=2. Each processor
can handle p(x)=30 parts at the same time. This yields a bottleneck capacity of
c(x)=15parts

time
for processors 11−20 and a capacity c(x)=30parts

time
for the rest. Figure

4.1 shows the influx for both species. So, the total influx (the sum of both curves in
figure 4.1) exceeds the bottleneck capacity in the interval 40<t<80.

0 50 100 150 200
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16

18

time
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flu

x

Fig. 4.1. Influx, +=species 1, solid=species 2,

The deterministic case:

We first test the deterministic case. So, we set the waiting times ω(x,α) in (4.7)
to zero and solve only the recursion (4.8), computing densities and fluxes, according
to (4.10). We compare this to the multi-phase solution, using the deterministic flux
function F (x,ρ)=v0(x)min{p(x),ρ}. Figure 4.2 shows the quantity ∆xρ, i.e., the
number of parts corresponding to each processor (those in the queue and the processor
itself), for one of the species in a contour plot.

To give a more quantitative comparison, we plot the density over time at various
stages. Figure 4.3 shows the densities of the two species in processor 5 (before the bot-
tleneck), processor 11 (the first bottleneck stage), and stage 21 (after the bottleneck).
The right panel shows the densities for the sum of both species.

The random case:

Next we test the multi-phase solution on the stochastic system. So, we use the recur-
sion (4.7) where we generate the up and down times from exponential distributions
with means 〈Tup〉(x)=3T (x) and 〈Tdown〉(x)=T (x). So each processor runs on av-
erage for three cycle times, and then shuts down for the next cycle time, giving an
availability of a=0.75. We compute 300 realizations of the automaton (4.7), compute
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Fig. 4.2. Parts per processor comparison (contour plot) between the deterministic automaton
and the deterministic conservation law for species 2. Left panel: automaton. Right panel: the
multiphase solution
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Fig. 4.3. Parts per processor comparison between the deterministic automaton and the deter-
ministic conservation law for stages 5,11 and 21. Left panel: species 1. Middle panel: species 2.
Right panel: both species. solid line=multiphase solution. += automaton.
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the means, and compare this to the mean field multi-phase solution, using the flux
function F (x,ρ)=a(x)p(x)v0(x)[1−exp(ρ

p
)]. As in the deterministic case, we compare

the quantity ∆xρ, for one of the species in a contour plot in figure 4.4. To give a

Fig. 4.4. Parts per processor comparison (contour plot) between the average over 300 realiza-
tions of the stochastic automaton and the mean field conservation law for species 2. Left panel: the
mean field multiphase solution. Right panel: average over 300 automaton realizations.

more quantitative comparison again, we plot the density over time at stages 5,11,21
in figure 4.5.

Remark 4.1. At first glance, it is surprising that the present approach is able to
accurately simulate the effects of the FIFO policy on the expectation of the density,
since we apparently have interchanged the evaluation of the expectation operator with
the evolution of a nonlinear stochastic dynamical system. However, as shown in [5],
we are using the correct conservation law for the expectation of the density ρ̄ of the
whole ensemble, and the process of re-ordering the parts according to the elapsed
cycle time can apparently be commuted with the expectation operator. Note that
the agreement in figure 4.5 is not perfect. In particular, there is some disagreement
between the automaton and the conservation law solution at the higher stages. The
deviation occurs actually in the total part density (in the right panel of figure 4.5), and
is therefore due to the imperfection of the exponential flux function. The exponential
flux function in [5] is derived from a molecular chaos assumption on the individual
parts. We conjecture that this assumption is violated temporarily in the rather com-
plex situation simulated here, leading to the discrepancy in the total density, and
consequently to the discrepancy in the density of the individual species.

4.3. A more complex policy. We conclude the numerical experiments with
a numerical study of the influence of different policies. We consider the same system
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Fig. 4.5. Parts per processor comparison between 300 realizations of the stochastic automaton
and the mean field conservation law for stages 5,11 and 21. Left panel: species 1. Middle panel:
species 2. Right panel: both species. solid line=mean field multiphase solution. += automaton
expectation.

as in section 4.2. Each species now has a ’due date’, i.e., a certain limit on the cycle
time, after which it is delivered late. This models essentially the production of a
perishable good which is spoiled and worthless after spending too much time in the
system. We compare the FIFO policy from section 4.2, where the priority is set to
p(y)=y1+εy4, to a more complex policy with a priority function of the form

p(y)=y1H

(

y2−
1

2
d(y3)

)

−y2H

(

1

2
d(y3)−y2

)

+εy4. (4.11)

The policy given by the priority function (4.11) can be interpreted in the following
way:

• We schedule according to FIFO, using y1, until the time to due date y2 has
reached half its limiting value d, where d is dependent on the species y3. From
this point on we switch policies, prioritizing the parts according to the time
until the part becomes worthless.

• We choose as the as maximal acceptable cycle times d(1)=75, d(2)=200.
So species one ’spoils’ after 150% of the raw throughput time, while species
number two can spend 400% of the raw throughput time in the system before
spoiling.

The left panel in figure 4.6 shows result for the FIFO policy, and the right panel
for the policy corresponding to the priority function (4.11). The top row shows the

cycle time Y
(1)
k (x=40,t), k=1,2 at exit, i.e., the total time parts have spent in the

system. The middle row shows the cycle time Y
(2)
k (x=40,t), k=1,2 at exit, i.e., the

time to due date for each system at the exit.
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• The cycle times at exit for FIFO (top, left panel in figure 4.6) are identical
for both species, as they should be, using a FIFO policy.

• Using FIFO, there is a significant amount of spoiled parts of species 1 at the
exit. That is the curve in the middle left panel of figure 4.6 for species 1 dips
significantly below 0. Using the policy given by (4.11), essentially all parts
of both species can be delivered on time, as seen in the middle right panel of
figure 4.6.

• Note, that the attributes vanish for certain periods of time. This is an artifact
of the conservative discretization (4.6)(b) of the attribute equations. The
primary variable used in the code is ρnYn and the attributes in the top two
panels of figure 4.6 are computed as ρnYn

ρn
. So, if there are no parts (ρn=0),

the attribute Yn is meaningless.

• The bottom panel of figure 4.6 shows the average attribute ρnYn for each
species, for the FIFO policy and the policy given by (4.11). This represents
a measure of the cost.
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Fig. 4.6. Attribute comparison. Left panel: FIFO. Right panel: service rule for perishable
goods, defined by the priority function (4.11). Top: cycle time at exit. Middle: time to due date at

exit. Bottom: attribute density ρnY
(2)
n of the time to due date. += species 1, solid = species 2.

5. Conclusions

The evolution of parts in a supply chain, governed by a quite general class of
service rules based on prioritizing attributes, can be modeled by a set of hyperbolic
conservation laws. These conservation laws yield an exact solution to the underlying
kinetic equations, as long as the level sets of parts of equal priority form a set of
measure zero in a sufficiently high dimensional attribute space. This situation can be
created by artificially inflating the attribute space, essentially breaking down parts of
equal priority into subgroups. The resulting macroscopic model can even be used to
model stochastic systems as long as the correct flux function for the evolution of the
expectation of the whole ensemble is known.

Appendix A. Proof of Lemma 3.1.

Proof. In order to keep the conservative form of the equation it is convenient to
formulate the problem (1.2)–(1.3) in a weak form. This weak form is given by

∫ ∞

0

dx

∫ ∞

0

dt

∫

dy × . . . (A.1)

f(x,y,t)[∂tψ(x,y,t)+vf (x,t,p(x,y,t))∂xψ(x,y,t)+E(x,t)∇yψ(x,y,t)]=B[ψ]
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for all test functions ψ(x,y,t), with the functional B[ψ] given by

B[ψ]=

∫ ∞

0

dx

∫

dy ψ(x,y,0)f I(x,y)+

∫ ∞

0

dt

∫

dy ψ(0,y,t)FB(y,t),

describing the initial and boundary conditions.
The evolution equation for the level set function Λ is derived by using a test

function ψ whose dependence on the attribute y is solely through the priority p. So
we set

ψ(x,y,t)=ψ1(x,t,p(x,y,t))=

∫

ψ1(x,t,q)δ(p(x,y,t)−q) dq

and obtain

R[ψ1]+S[ψ1]=B[ψ1]

with the functionals R, S and B given by

R[ψ1]=

∫ ∞

0

dx

∫ ∞

0

dt

∫

dq

∫

dy × ...

f(x,y,t)δ(p(x,y,t)−q)[∂tψ1(x,t,q)+v(x,t,φf (x,t,q))∂xψ1(x,t,q)],

S[ψ1]=

∫ ∞

0

dx

∫ ∞

0

dt

∫

dy

∫

dq × ... (A.2)

f(x,y,t)ψ1(x,t,q)δ
′(p(x,y,t)−q)[∂tp+vf (x,t,p)∂xp+E(x,t)∇yp],

B[ψ1]=

∫ ∞

0

dx

∫

dq ψ1(x,q,0)Λ
I(x,q)+

∫ ∞

0

dt

∫

dq ψ1(0,t,q)F
B
Λ (q,t),

and ΛI , FB
Λ defined as in (3.2)(b,c). Now, by definition

∫

f(x,y,t)δ(p−q) dy=
Λ(x,t,q), ∀x,q,t holds. Therefore, R[ψ1] becomes

R[ψ1]=

∫ ∞

0

dx

∫ ∞

0

dt

∫

dq Λ(x,t,q)[∂tψ1(x,t,q)+v(x,t,φf (x,t,q))∂xψ1(x,t,q)]

integrating by parts with respect to the variable q in (A.2) gives

S[ψ1]=

∫ ∞

0

dx

∫ ∞

0

dt

∫

dy

∫

dq × ...

f(x,y,t)∂qψ1(x,t,q)δ(p(x,y,t)−q)[∂tp+vf (x,t,p)∂xp+E(x,t)∇yp]

or

S[ψ1]=

∫ ∞

0

dx

∫ ∞

0

dt

∫

dq ∂qψ1(x,t,q)Af (x,t,q),

Af (x,t,q)=

∫

f(x,y,t)δ(p(x,y,t)−q)[∂tp+vf (x,t,p)∂xp+E(x,t)∇yp] dy.
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So the equation R[ψ1]+S[ψ1]=B[ψ1], ∀ψ1 is the weak form of the problem (3.2).

Proof of Theorem 3.3.

Proof. The weak formulation of (3.2)(a) is given by

∫

Λ(x,t,q)∂tψ dxqt+

∫

Λ(x,t,q)vf (x,t,q)∂xψ dxqt+

∫

Af∂qψ dxqt=0,

where ψ(x,t,q) is a smooth test function vanishing at t=0 and x=0. Inserting the
form (3.4) for Λ into the weak form of the equation gives

∫

Λ̃(x,t,q)[∂tψ+vf (x,t,q)∂xψ]+Af (x,t,q)∂qψ dxqt+

∫

a(x,t)∂2ψ(x,t,P ) dxt+

∫

a(x,t)vf (x,t,P )∂1ψ(x,t,P ) dxt=0,

where we denote with ∂1ψ, ∂2ψ the partial derivative of the test function ψ with
respect to its first and second variable (to distinguish from the total derivative).
Since the smooth part Λ̃ of the solution has to satisfy the equation (3.2) pointwise
away from the discontinuity at q=P (x,t), we obtain

∫

a(x,t)∂2ψ(x,t,P ) dxt+

∫

a(x,t)vf (x,t,P )∂1ψ(x,t,P ) dxt=0, (A.3)

At the same time the cumulative density φ(x,t,q), satisfying ∂qφ=−Λ has to satisfy
equation (3.3). The Rankine Hugoniot condition for equation (3.3) implies that if
φ(x,t,q) has a jump discontinuity (a shock) of the form

φ(x,t,q)= φ̃(x,t,q)+a(x,t)H(P (x,t)−q), Λ̃=−∂qφ̃,

then the function P (x,t) has to satisfy

∂tP [φ]P +[F ]P∂xP =0,

with the jumps [φ]P and [F ]P defined by

[φ]P (x,t)= lim
ε→0+

φ(x,t,P (x,t)+ε)−φ(x,t,P (x,t)−ε),

[F ]P (x,t)= lim
ε→0+

F (x,t,φ(x,t,P (x,t)+ε))−F (x,t,φ(x,t,P (x,t)−ε)).

So, the jump in φ is given by [φ]P =a. We write the jump [F ]P in the flux as [F ]P =aw
with

w(x,t)=
[F ]P
[φ]P

=
1

a
[F (x,t,φ̃(x,t,P (x,t)+a))−F (x,t,φ̃(x,t,P (x,t)))]

and obtain the equation

∂tP +w∂xP =0 (A.4)

from the Rankine Hugoniot condition. We rewrite the first term in (A.3) as

∫

a(x,t)∂2ψ(x,t,P ) dxt=

∫

a(x,t)δ(P −q)∂tψ(x,t,q) dxqt
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=−

∫

∂ta(x,t)δ(P −q)ψ(x,t,q) dxqt−

∫

a(x,t)δ′(P −q)∂tPψ(x,t,q) dxqt

=−

∫

∂ta(x,t)δ(P −q)ψ(x,t,q) dxqt−

∫

a(x,t)δ(P −q)∂tP∂qψ(x,t,q) dxqt

=−

∫

∂ta(x,t)ψ(x,t,P ) dxt+

∫

a(x,t)w(x,t)∂xP∂3ψ(x,t,P ) dxt (A.5)

where the last equality holds because of (A.4). Similarly, we obtain for the second
term in (A.3):

∫

a(x,t)vf (x,t,P )∂1ψ(x,t,P ) dxt

=

∫

a(x,t)vf (x,t,P )δ(P −q)∂xψ(x,t,q) dxqt

=−

∫

∂x[a(x,t)vf (x,t,P )]δ(P −q)ψ(x,t,q) dxqt

−

∫

a(x,t)vf (x,t,P )δ
′(P −q)∂xPψ(x,t,q) dxqt

=−

∫

∂x[a(x,t)vf (x,t,P )]δ(P −q)ψ(x,t,q) dxqt

−

∫

a(x,t)vf (x,t,P )δ(P −q)∂xP∂qψ(x,t,q) dxqt

=−

∫

∂x[a(x,t)vf (x,t,P )]ψ(x,t,P ) dxt

−

∫

a(x,t)vf (x,t,P )∂xP∂2ψ(x,t,P ) dxt. (A.6)

Summing the expressions (A.5) and (A.6) to give (A.4) we obtain

∫

{−∂ta−∂x[a(x,t)vf (x,t,P )]}ψ(x,t,P ) dxt

+

∫

a(x,t)[w(x,t)−vf (x,t,P )]∂xP∂2ψ(x,t,P ) dxt=0.

Since ψ(x,t,q) is an arbitrary test function, the terms ψ(x,t,q) and ∂3ψ(x,t,P (x,t))
can be chosen independently. Therefore

vf (x,t,P (x,t))=w(x,t)=
1

a
[F (x,t,φ̃(x,t,P (x,t)+a))−F (x,t,φ̃(x,t,P (x,t)))] (A.7)

has to hold for a function Λ of the form (3.4) to be weak solution of the equation (3.2).
If we define the velocity vf (x,t,q) according to (3.5), then vf (x,t,q)=∂qF (x,t,q) holds
away from q=P (x,t), where φ is smooth. At q=P (x,t) the definition (3.5) reduces to
the correct expression (A.7). So, if we redefine vf (x,t,q) by (3.5) we obtain a solution
of the level set equation (3.2) in the weak sense.
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