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SHARP CONSTANT IN NONLOCAL INEQUALITY AND ITS
APPLICATIONS TO NONLOCAL SCHRÖDINGER EQUATION

WITH HARMONIC POTENTIAL∗

JIANQING CHEN† , BOLING GUO‡ , AND YONGQIAN HAN§

Abstract. This paper contains two parts. In the first part, we derive a variant of Gagliardo-
Nirenberg interpolation inequality involving nonlocal nonlinearity and determine its best (smallest)
constant. In the second part, we study two applications of this inequality and its best constant. In
the first application, we use this best constant to establish a sharp criterion for the global existence
and blow-up of solutions of the inhomogeneous Schrödinger equation with harmonic potential and
nonlocal nonlinearity

iϕt =−△ϕ+ |x|2ϕ−ϕ|ϕ|p−2

Z

|ϕ(y)|p

|x−y|α
dy

in the critical case p=2+(2−α)/N . The result indicates that the existence of blow-up solutions not
only depends on the mass of the initial data but also on the profile of the initial data. In the second
application, we use this best constant to prove that when 2+(2−α)/N <p< (2N −α)/(N −2), the
solutions exist globally in time for one class of initial data whose norm can be as large as one wants.

Key words. Nonlocal interpolation inequality, sharp constant, global solutions, blow-up, non-
local Schrödinger equation.
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1. Introduction
This paper is concerned with the nonlinear Schrödinger equation with harmonic

potential

iϕt+△ϕ−|x|2ϕ+F (ϕ)=0, x∈R
N , t≥0, (1.1)

where ϕ :=ϕ(x,t) : R
N ×R+→C is a complex-valued function and F (ϕ) is a nonlin-

earity (possibly nonlocal) satisfying suitable assumptions given later.
Equation (1.1) models a lot of physical phenomena. For example it is known

as the Gross-Pitaevskii (GP) equation in the context of Bose-Einstein condensates
(BEC) with parabolic traps. In fact, assuming a highly anistropic trap, Kivshar et al
[17] derived the GP-equation equation (1.1) with F (ϕ)=ϕ|ϕ|2 as a model equation for
the macroscopic dynamics of cooled atoms confined in a three dimensional parabolic
potential created by a magnetic trap. Deconinck et al derive a three dimensional
Schrödinger equation with potential and nonlocal nonlinearity; see [10, Equ. (5)].

Equation (1.1) with nonlocal nonlinearity F (ϕ) has also appeared in other appli-
cations. For example, Kurth derived in [18] that Schrödinger equation with harmonic
potential and nonlocal nonlinearity can be used to describe average pulse propagation
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in dispersion-managed fibers. Usually the nonlocal nonlinearity is assumed to be of
Hartree type, i.e.,

F (ϕ)=(V ∗|ϕ|2)ϕ,

where the kernel V is in some weak Lq-space and ∗ denotes convolution, see e.g.
[10, 14] and the references therein. It is of interest to understand the original nonlocal
problem directly, although in most applications it is hard to get a clue on properties
of the kernel.

These motivate us to study equation (1.1) directly with nonlocal nonlinearity of
the following form

iϕt=−△ϕ+ |x|2ϕ−ϕ|ϕ|p−2

∫

RN

|ϕ(y)|p

|x−y|α
dy, t≥0, x∈R

N , (1.2)

where p≥2 and 0<α<N . The purpose here is to extend those results for the
Schrödinger equation with local nonlinearity to the case of nonlocal nonlinearity and
shed some new light for the Schrödinger with nonlocal nonlinearity. We remark that
when α=1, p=2 and N =3, equation (1.2) is equivalent to the Schrödinger-Possion
system with harmonic potential,

{

iϕt+△ϕ = |x|2ϕ−V (x)ϕ, x∈R
N

△V = |ϕ|2.

This equation typically arises in the mean field approximation of many body effects,
modeled by the Possion equation with a confinement modeled by the quadratic po-
tential of the harmonic oscillator. If the potential vanishes, then this equation models
the classical limit of the field equations describing quantum mechnical non-relativistic
many boson system [1]. For other variants of the Schrödinger equation, we refer the
interested reader to [6] and the references therein.

Now we come back to equation (1.2). Given an initial data

ϕ(x,0)=ϕ0(x), (1.3)

we are interested in the following question: Under what conditions the solutions of
equations (1.2)–(1.3) exist globally in time and under what conditions the solutions
of equations (1.2)–(1.3) blow up in a finite time?

Noting that in the case of local nonlinearity F (ϕ)=ϕ|ϕ|p−2, one can use the stan-
dard Gagliardo-Nirenberg inequality to study equation (1.1); we refer the interested
readers to [11, 22, 25, 7, 8] for the stability of standing waves as well as global existence
of equation (1.1) with various initial data. However, for the nonlocal nonlinearity like
equation (1.2), the issue of whether or not a particular choice of initial data generates
a blow-up solution of equation (1.2) is more subtle. In particular the arguments used
in [7] cannot deduce a sharp condition on the existence of global solutions or blow-up
solutions of equation (1.2), so we need to find other ways as we will see in the present
paper.

In section 2, we derive a variant of the Gagliardo-Nirenberg interpolation in-
equality involving nonlocal nonlinearity and determine the best (smallest) constant;
see Theorem 2.3 and Theorem 2.7. We emphasize that the best constant determined
here is not only of independent interest, but can also be used to study equations
(1.2)–(1.3). In section 3, we sketch some results on the Cauchy problem of equation
(1.2). In section 4, since we deal with the problem harmonic potential |x|2, we use
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Theorem 2.7 to establish a sharp criterion on the solutions of equations (1.2)–(1.3)
in the critical nonlinearity p=2+(2−α)/N ; see Theorem 4.1 and Theorem 4.3. The
results indicate a sharp threshold on the existence of global solutions of equation (1.2).
Furthermore, the results suggest the existence of blow-up solutions of equation (1.2)
depends on both the mass of the initial data and the profile of the initial data. In
section 5, we give a sufficient condition to the existence of global solutions of equation
(1.2) in the case where 2+(2−α)/N <p< (2N−α)/(N−2). The interesting aspect
is that equation (1.2) possesses global solutions even when one takes the initial data
as large as one wants; see Theorem 5.3. The final section is an appendix where we
outline the proof of Proposition 3.1.

To establish the results in view, we base our approach on an idea originated from
[24, 2]. We emphasize that the use of Theorem 2.7 is essential in the proofs of Theorem
4.1, Theorem 4.3, and Theorem 5.3. We point out that Theorem 2.7 can also be used
to establish a sharp threshold to the existence and nonexistence of standing waves of
NLS-equation with nonlocal nonlinearity as well as their stability. The results will be
published elsewhere.

Notations. Throughout this paper, H1(RN ) denotes the standard Sobolev space with
the standard norm. We denote the norm of the space Lq(Rn) by ‖·‖Lq , 1≤ q≤∞,

and denote the integral

∫

RN

dx simply by

∫

unless stated otherwise. We also denote

various positive constants by C or Cj . v̄ denotes the complex conjugate and Re
denotes the real part.

2. Best (smallest) constant
The goal of this section is to derive a variant of the Gagliardo-Nirenberg inter-

polation inequality (see Theorem 2.3) and determine its best constant (see Theorem
2.7). This inequality and the best constant will play an essential role in what follows.
Firstly, we state some lemmas.

Lemma 2.1. (Gagliardo-Nirenberg inequality, see e.g. [5]) Let 1<q< N+2
N−2 when

N ≥3 and 1<q<+∞ when N =1, 2. Then there is a positive constant C depending
on N and q such that for any u∈H1(RN ),

∫

|u|q+1≤C

(
∫

|∇u|2
)

N(q−1)
4

(
∫

|u|2
)

q+1
2 −

N(q−1)
4

.

Lemma 2.2. [21, p. 31] Let 0<β<N and f ∈Lq(RN ), h∈Lr(RN ) with 1
q + 1

r + β
N =2

and 1<q, r<∞. Then
∫

RN×RN

|f(x)||h(y)|

|x−y|β
dxdy≤C(q,r,β,N)‖f‖Lq(RN )‖h‖Lr(RN ), x, y∈R

N ,

where C(q,r,β,N) is a positive constant depending on q, r, β, and N .

Next we use Lemma 2.1 and Lemma 2.2 to derive a variant of Gagliardo-Nirenberg
interpolation inequality.

Theorem 2.3. Let 0<α<N and (2N−α)/N <p<2∗(α), where 2∗(α) :=(2N−
α)/(N−2) when N ≥3 and (2N−α)/N <p<+∞ when N =1, 2. Then there is a
positive constant C(p,α,N) depending on p, α and N such that for any u∈H1(RN ),

∫

RN×RN

|u(x)|p|u(y)|p

|x−y|α
dxdy≤C(p,α,N)

(
∫

|∇u|2
)A(

∫

|u|2
)B

, (2.1)
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where A= N(p−2)+α
2 and B= 2p−(N(p−2)+α)

2 .

Proof. Taking |f(x)|= |u(x)|p, |h(y)|= |u(y)|p, q= r= 2N
2N−α , and applying

Lemma 2.2, we get that

∫

RN×RN

|u(x)|p|u(y)|p

|x−y|α
dxdy≤C

(
∫

|u|
2Np

2N−α

)

2N−α
N

. (2.2)

By the assumption of (2N−α)/N <p<2∗(α) and Lemma 2.1, we obtain that

∫

|u|
2Np

2N−α ≤C

(
∫

|∇u|2
)

N(Np−2N+α)
2(2N−α)

(
∫

|u|2
)

2Np−N(Np−2N+α)
2(2N−α)

. (2.3)

It is now deduced from (2.2) and (2.3) that (2.1) holds.

Lemma 2.4. Let N ≥2, 0<α<N and (2N−α)/N <p<2∗(α). If un⇀u weakly in
H1
radial(R

N ) :={u∈H1(RN ); u(x)=u(|x|)}, then

∫

RN×RN

|un(x)|
p|un(y)|

p

|x−y|α
dxdy→

∫

RN×RN

|u(x)|p|u(y)|p

|x−y|α
dxdy.

Proof. Firstly, for positive numbers a,b,c, and d, there holds

2|apbp−cpdp| = |(bp+dp)(ap−cp)+(ap+cp)(bp−dp)|
≤ (bp+dp)(ap−1 +cp−1)|a−c|+(ap+cp)(bp−1 +dp−1)|b−d|.

(IE)

Putting a= |un(x)|, b= |un(y)|, c= |u(x)|, d= |u(y)|, we obtain from Lemma 2.2 with
β=α, r= q= 2N

2N−α , and the fact that {un} is bounded in H1
radial(R

N ) that

∫

RN×RN

(|un(y)|
p+ |u(y)|p)(|un(x)|

p−1 + |u(x)|p−1)||un(x)|−|u(x)||

|x−y|α
dxdy

≤C1

[
∫

(

|un(x)−u(x)|||un(x)|
p−1 + |u(x)|p−1|

)
2N

2N−α
]

2N−α
2N

×

(
∫

(|un(y)|
p+ |u(y)|p)

2N
2N−α

)

2N−α
2N

≤C2

[(
∫

|un(x)−u(x)|
2Np

2N−α

)
1
p
(

∫
[

|un(x)|
2Np

2N−α + |u(x)|
2Np

2N−α

])

p
p−1

]

2N−α
2N

×

[
∫

(

|un(y)|
2Np

2N−α + |u(y)|
2Np

2N−α

)]

2N−α
2N

≤C3

(
∫

|un(x)−u(x)|
2Np

2N−α

)

2N−α
2Np

.

It is now deduced from the Strauss lemma, i.e.,

un⇀u weakly in H1
radial(R

N ) implies that un→u strongly in L
2Np

2N−α (RN ),

that
∫

|un(x)−u(x)|
2Np

2N−α →0 as n→∞.
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Therefore as n→∞, we have that

∫

RN×RN

(|un(y)|
p+ |u(y)|p)(|un(x)|

p−1 + |u(x)|p−1)||un(x)|−|u(x)||

|x−y|α
dxdy→0.

By a similar argument, we obtain that as n→∞,

∫

RN×RN

(|un(x)|
p+ |u(x)|p)(|un(y)|

p−1 + |u(y)|p−1)||un(y)|−|u(y)||

|x−y|α
dxdy→0.

Combining these with (IE), we easily obtain that

∫

RN×RN

|un(x)|
p|un(y)|

p

|x−y|α
dxdy→

∫

RN×RN

|u(x)|p|u(y)|p

|x−y|α
dxdy.

The proof is complete.

Now we are going to determine the best (smallest) positive constant C(p,α,N)
such that (2.1) holds. This will be done by minimizing the functional

J(u)=
(
∫

|∇u|2)A(
∫

|u|2)B
∫

RN×RN

|u(x)|p|u(y)|p

|x−y|α dxdy
, u∈H1(RN ),

where

A=
N(p−2)+α

2
, B=

2p−(N(p−2)+α)

2
.

According to inequality (2.1), the functional J is well defined and C1 in H1(RN ).
Moreover, we have that:

Lemma 2.5. Let N ≥2, 0<α<N , (2N−α)/N <p< (2N−α)/(N−2) when N ≥3,
and (2N−α)/N <p<+∞ when N =2. Then

m=inf{J(u); u∈H1(RN ), u 6=0}

is attained by a function ψ∈H1(RN ). Moreover ψ is the minimal action solution of

−2A△ψ+2Bψ−2mpψ|ψ|p−2

∫

RN

|ψ(y)|p

|x−y|α
dy=0, ψ>0 and ψ∈H1(RN ) (2.4)

and

m−1 =

∫

RN×RN

|ψ(x)|p|ψ(y)|p

|x−y|α
dxdy.

Proof. First, it is easy to see that for any 0 6=u∈H1(RN ), J(u)>0. (2.1) implies
that we can find a sequence {vn}⊂H

1(RN ) such that

0<m= lim
n→∞

J(vn)<+∞.

For any λ, µ>0, if we set uλ,µ(x)=λu(µx) then we have that

∫

|∇uλ,µ(x)|2 =λ2µ2−N

∫

|∇u|2,
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∫

|uλ,µ(x)|2 =λ2µ−N

∫

|u|2 and

∫

RN×RN

|uλ,µ(x)|p|uλ,µ(y)|p

|x−y|α
dxdy=λ2pµα−2N

∫

RN×RN

|u(x)|p|u(y)|p

|x−y|α
dxdy.

It follows from the choice of A and B that

J(uλ,µ)=
(λ2µ2−N

∫

|∇u|2)A(λ2µ−N
∫

|u|2)B

λ2pµα−2N
∫

RN×RN

|u(x)|p|u(y)|p

|x−y|α dxdy
=J(u).

Now let {un}⊂H
1(RN ) be a minimizing sequence of m. We can assume that

un>0 since
∫

|∇|un||
2≤

∫

|∇un|
2. Furthermore, by symmetrization [3, 19, 4], we can

take un(x)=un(|x|). Choosing

µn=
‖un‖2

‖∇un‖2
, λn=

‖un‖
N
2 −1
2

‖∇un‖
N
2
2

,

we obtain a sequence ψn(x)=uλn,µn
n (x) satisfying the following properties:

ψn∈H
1(RN ), ψn(x)=ψn(|x|) and ψn≥0;

‖ψn‖
2
2 =1 and ‖∇ψn‖

2
2 =1;

m= lim
n→∞

J(ψn).

Going if necessary to a subsequence, still denoted by {ψn}, we may assume that
ψn⇀ψ weakly in H1

radial(R
N ). It is now deduced from Lemma 2.4 that

∫

RN×RN

|ψn(x)|
p|ψn(y)|

p

|x−y|α
dxdy→

∫

RN×RN

|ψ(x)|p|ψ(y)|p

|x−y|α
dxdy.

On the other hand, by weak convergence ‖ψ‖2≤1 and ‖∇ψ‖2≤1. Therefore

m≤J(ψ)≤
1

∫

RN×RN

|ψ(x)|p|ψ(y)|p

|x−y|α dxdy
= lim
n→∞

J(ψn)=m.

It follows that (
∫

|∇ψ|2)A(
∫

|ψ|2)B =1 and hence ‖ψ‖2 =1 and ‖∇ψ‖2 =1. So ψn→ψ
strongly in H1(RN ) and

m=J(ψ)=
(
∫

|∇ψ|2)
A
2 (

∫

|ψ|2)
B
2

∫

RN×RN

|ψ(x)|p|ψ(y)|p

|x−y|α dxdy
=

(
∫

RN×RN

|ψ(x)|p|ψ(y)|p

|x−y|α
dxdy

)−1

.

Noticing that

d

dε

∣

∣

∣

∣

ε=0

J(ψ+εη)=0 for all η∈ C∞
0 (RN ),

we have from a direct computation that ψ satisfies (2.4).
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Remark 2.6. Here and after, a minimal action solution of an equation is defined
in the following sense. For example, for equation

−△u+u−u|u|p−2

∫

RN

|u(y)|p

|x−y|α
dy=0, u∈H1(RN ) (2.5)

and functional

L(u)=

∫

|∇u|2 + |u|2

2
−

1

2p

∫

RN×RN

|u(x)|p|u(y)|p

|x−y|α
dxdy, u∈H1(RN ),

we give the following definitions. The set of solutions of equation (2.5) is denoted by
Γ, namely

Γ={φ∈H1(RN ); φ 6=0, L′(φ)=0}.

The set of minimal action solutions of equation (2.5) is denoted by G, namely

G={φ∈Γ; L(φ)≤L(ψ) for any ψ∈Γ}.

Theorem 2.7. Suppose the assumptions of Lemma 2.5 hold. The best constant
C(p,α,N) in inequality (2.1) is exactly given as

C(p,α,N) =
p

B

(

B

A

)A

‖w‖2−2p
2

=
2p

2p−(N(p−2)+α)

(

2p−(N(p−2)+α)

N(p−2)+α

)

N(p−2)+α

2

‖w‖2−2p
2 ,

where w is the minimal action solution of

−△φ+φ−φ|φ|p−2

∫

RN

|φ(y)|p

|x−y|α
dy=0, φ>0 and φ∈H1(RN ). (2.6)

Remark 2.8. We emphasize that when p=2+ 2−α
N and w is a minimal action

solution of (2.6), then the following

ϕ(x,t)=(T − t)−
N
2 e−

i|x|2

4(T−t)w

(

x

T − t

)

e
it

T (T−t)

is a solution of iϕt+△ϕ+ϕ|ϕ|p−2(|x|−α ∗|ϕ|p)=0 and ϕ blows up at finite time. But
for general p, the blow-up derived by self-similarity is still open and we can not
solve it at this moment. Actually, considering the Schrodinger equation with local
nonlinearity iϕt=−△ϕ−|ϕ|qϕ, one can get the blowup profile by self-similarity and
pseudo-conformal invariance holds only for q= 4

N . These are problems for further
study.

Proof of Theorem 2.7.
Proof. Scaling

ψ(x)=(2pm)−
1

2p−2u(x)
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we know from Lemma 2.5 that u(x) satisfies

−2A△φ+2Bφ−φ|φ|p−2

∫

RN

|φ(y)|p

|x−y|α
dy=0, φ>0 and φ∈H1(RN ).

A second scaling

u(x)=

(

2B

(

B

A

)

N−α
2

)
1

2p−2

w

((

B

A

)
1
2

x

)

shows that w(x) is the ground state solution of equation (2.6). Now using

ψ(x)=(2pm)−
1

2p−2

(

2B

(

B

A

)

N−α
2

)
1

2p−2

w

((

B

A

)
1
2

x

)

and the fact that ‖ψ‖2 =1, we obtain that

C(p,α,N) =m−1 =
p

B

(

B

A

)A

‖w‖2−2p
2

=
2p

2p−(N(p−2)+α)

(

2p−(N(p−2)+α)

N(p−2)+α

)

N(p−2)+α

2

‖w‖2−2p
2 .

The proof is complete.

Remark 2.9. We emphasize that although we do not know whether the minimal
action solution of equation (2.6) is unique or not, the best constant C(p,α,N) is
independent of the choice of w. Indeed, denote d=inf{L(u); u∈Γ}, then for a
minimal action solution w of equation (2.6), we have that 0<d=L(w)<+∞ and d is
independent of the choice of w; see e.g. [9]. On the other hand, since w is a solution
of equation (2.6) we have that

∫

|∇w|2−
Np+α−2N

2p

∫

RN×RN

|w(x)|p|w(y)|p

|x−y|α
dxdy=0 and

∫
(

|∇w|2 + |w|2
)

−
Np+α−2N

2p

∫

RN×RN

|w(x)|p|w(y)|p

|x−y|α
dxdy=0.

Therefore
∫

RN×RN

|w(x)|p|w(y)|p

|x−y|α
dxdy=

2p

2p−(N(p−2)+α)

∫

|w|2

and
∫

|∇w|2 =
N(p−2)+α

2p−(N(p−2)+α)

∫

|w|2.

It is deduced that

d=L(w)=
p−1

2p−(N(p−2)+α)
‖w‖2

L2 ,

which is equivalent to

‖w‖L2 =

(

2p−(N(p−2)+α)

p−1
d

)
1
2

.

Thus C(p,α,N) is independent of the choice of w.
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3. Cauchy problem
In this section, we sketch some results on the existence of a local or global solution

of equations (1.2)–(1.3). Define

Σ={u∈H1(RN );

∫

|x|2|u|2<+∞}.

Then Σ is a Hilbert space under the inner product

〈u,v〉Σ =Re

∫
(

∇u∇v̄+ |x|2uv̄+uv̄

)

.

The norm on Σ is denoted by ‖u‖2
Σ =

∫

(|∇u|2 + |x|2|u|2 + |u|2). The following Propo-
sition is proved in the appendix for the readers convenience.

Proposition 3.1. Let 0<α<min{N,4} and 2≤p<2∗(α). For any ϕ0∈Σ, there
is a T =T (‖ϕ0‖Σ)>0 and a unique solution ϕ of equation (1.2) with ϕ∈C([0,T ),Σ)
and ϕ(0)=ϕ0. Moreover, we have conservation of particle number

∫

|ϕ|2≡

∫

|ϕ0|
2 (3.1)

and conservation of energy

E(ϕ)=
1

2

∫
(

|∇ϕ|2 + |x|2|ϕ|2
)

−
1

2p

∫

RN×RN

|ϕ(x)|p|ϕ(y)|p

|x−y|α
dxdy=E(ϕ0) (3.2)

for all t∈ [0,T ), where either T =+∞ or T <+∞ and limt→T− ‖ϕ‖Σ =+∞.

Theorem 3.2. Let 0<α<min{N,4} and 2≤p<2∗(α).

• If 2≤p<2+(2−α)/N , then for any ϕ0∈Σ the solution ϕ(x,t) of equation
(1.2) exists globally in time.

• If 2≤p=2+(2−α)/N , then the solution ϕ(x,t) of equation (1.2) exists glob-
ally in time provided the initial data ‖ϕ0‖L2 sufficiently small.

Proof. Let ϕ(x,t)∈C([0,T ),Σ) be the solution of equation (1.2) with initial data
ϕ0. By Proposition 3.1 and Theorem 2.3, we have that

E(ϕ0) =E(ϕ)

≥
1

2

∫

(|∇ϕ|2 + |x|2|ϕ|2)−C

(
∫

|∇ϕ|2
)

N(p−2)+α

2
(

∫

|ϕ|2
)

2p−(N(p−2)+α)
2

≥
1

2

∫

(|∇ϕ|2 + |x|2|ϕ|2)

−C

(
∫

(|∇ϕ|2 + |x|2|ϕ|2)

)

N(p−2)+α

2
(

∫

|ϕ|2
)

2p−(N(p−2)+α)
2

.

If 2≤p<2+(2−α)/N , then the Young inequality implies that there is 0<ε< 1
2 and

Cε such that

E(ϕ0)≥ (
1

2
−ε)

∫

(|∇ϕ|2 + |x|2|ϕ|2)−Cε

(
∫

|ϕ|2
)

2p−(N(p−2)+α)
2−(N(p−2)+α)

.

Hence
∫

(|∇ϕ|2 + |x|2|ϕ|2) is bounded with respect to t. Proposition 3.1 implies that
ϕ(x,t) exists globally in time.
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If p=2+(2−α)/N , then

E(ϕ0) ≥
1

2

∫

(|∇ϕ|2 + |x|2|ϕ|2)−C

∫

|∇ϕ|2
(

∫

|ϕ|2
)p−1

≥
1

2

∫

(|∇ϕ|2 + |x|2|ϕ|2)−C

∫

(|∇ϕ|2 + |x|2|ϕ|2)

(
∫

|ϕ|2
)p−1

≥C1

∫

(|∇ϕ|2 + |x|2|ϕ0|
2)

provided ‖ϕ0‖L2 sufficiently small. It follows that the solution ϕ(x,t) of equation
(1.2) exists globally in time when p=2+(2−α)/N and ‖ϕ0‖L2 is small enough.

Remark 3.3. It is observed that in Theorem 3.2, “‖ϕ0‖L2 small enough” is vague.
It is naturally to ask: how small? This is one of the goals of the next section.

4. Critical mass for critical nonlinearity
In this section, we will use “our best constant” to give a sharp condition on the

solution of equations (1.2)–(1.3) which exists globally in time or blows up in a finite
time. In particular, we give an answer to the question: how small an initial data
can ensure the existence of global solution of equations (1.2)–(1.3) in the case of
p=2+(2−α)/N? The answer is simple, as we see below.

Theorem 4.1. Let N ≥2, 0<α<min{N,4}, and p=2+(2−α)/N . If ϕ0∈Σ and

‖ϕ0‖L2 <‖w‖L2 , (4.1)

where w is a minimal action solution of equations (2.6), then equation (1.2)–(1.3)
has a global solution ϕ(x,t)∈C(R+,Σ).

Proof. Let ϕ(x,t)∈C([0,T ),Σ) be a solution of equations (1.2)–(1.3) in the case
of p=2+(2−α)/N . Using Theorem 2.7, one has

∫

RN×RN

|ϕ(x)|p|ϕ(y)|p

|x−y|α
dxdy≤

2N+2−α

N

(
∫

|ϕ|2
∫

|w|2

)

N+2−α
N

∫

|∇ϕ|2. (4.2)

Combining (4.2) with the conservation of energy equation (3.2), we obtain that

E(ϕ0) =
1

2

∫
(

|∇ϕ|2 + |x|2|ϕ|2
)

−
N

2(2N+2−α)

∫

RN×RN

|ϕ(x)|p|ϕ(y)|p

|x−y|α
dxdy

≥
1

2

[

1−

(
∫

|ϕ|2
∫

|w|2

)

N+2−α
N

]
∫

|∇ϕ|2 +
1

2

∫

|x|2|ϕ|2.

(4.3)

As
∫

|ϕ|2≡

∫

|ϕ0|
2<

∫

|w|2,

both
∫

|∇ϕ|2 and
∫

|x|2|ϕ|2 are bounded for t∈ [0,T ). It is deduced from Proposition
3.1 that ϕ(x,t) exists globally in t∈ [0,+∞).

Remark 4.2. We point out that we are studying the Schrodinger equation with
harmonic potential, and the condition (4.1) is sharp in the sense of the following
theorem.
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Theorem 4.3. Let N ≥2, 0<α<min{N,4}, and p=2+(2−α)/N . If ϕ0∈Σ with
the form

ϕ0(x)= cλ
N
2 w(λx),

where λ>0, w is the minimal action solution of (2.6), and c is a complex number
with |c|≥1, then

‖ϕ0‖L2 ≥‖w‖L2 . (4.4)

Moreover the solution ϕ(x,t) of equations (1.2)–(1.3) must blow up in a finite time.
In order to prove Theorem 4.3, we need several lemmas. Firstly, we have the

following virial identity which originated from Glassey [16].

Proposition 4.4. Let N ≥2, 0<α<min{N,4}. Let ϕ0∈Σ and ϕ∈C([0,T ),Σ) be
the solution of equations (1.2)–(1.3). If h(t)= 1

2

∫

|x|2|ϕ|2 and p=2+(2−α)/N , then
one has

h′′(t)=8E(ϕ0)−16h(t). (4.5)

Proof. We only prove equation (4.5) formally. Since ϕ satisfies equation (1.2), we
have that

ϕt= i

(

△ϕ−|x|2ϕ+ϕ|ϕ|p−2

∫

RN

|ϕ(y)|p

|x−y|α
dy

)

.

Therefore

h′(t)=Re

∫

|x|2ϕ̄ϕt=2Im

∫

ϕ̄x∇ϕ

and

h′′(t) =2Im

∫

(ϕ̄tx∇ϕ+ ϕ̄x∇ϕt)

=2Im

∫

ϕ̄tx∇ϕ−2Im

∫

ϕt(Nϕ̄+x∇ϕ̄)

=−2Im

∫

ϕt(Nϕ̄+2x∇ϕ̄)

=−2Re

∫

(Nϕ̄+2x∇ϕ̄)

(

△ϕ−|x|2ϕ+ϕ|ϕ|p−2

∫

RN

|ϕ(y)|p

|x−y|α
dy

)

.

Direct computations show that

Re

∫

(Nϕ̄+2x∇ϕ̄)△ϕ=−2

∫

|∇ϕ|2;

Re

∫

(Nϕ̄+2x∇ϕ̄)|x|2ϕ=−2

∫

|x|2|ϕ|2;

Re

∫

(Nϕ̄+2x∇ϕ̄)ϕ|ϕ|p−2

∫

RN

|ϕ(y)|p

|x−y|α
dy

= N

∫

RN×RN

|ϕ(x)|p|ϕ(y)|p

|x−y|α
dxdy+Re

∫

2x∇ϕ̄ϕ|ϕ|p−2

∫

RN

|ϕ(y)|p

|x−y|α
dy.
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Since

Re

∫

2x∇ϕ̄ϕ|ϕ|p−2

∫

RN

|ϕ(y)|p

|x−y|α
dy=

α−2N

p

∫

RN×RN

|ϕ(x)|p|ϕ(y)|p

|x−y|α
dxdy,

we obtain that

Re

∫

(Nϕ̄+2x∇ϕ̄)ϕ|ϕ|p−2

∫

RN

|ϕ(y)|p

|x−y|α
dy=

N(p−2)+α

p

∫

RN×RN

|ϕ(x)|p|ϕ(y)|p

|x−y|α
dxdy.

It is now deduced that

h′′(t) =4

(
∫

(|∇ϕ|2−|x|2|ϕ|2)−
N(p−2)+α

2p

∫

RN×RN

|ϕ(x)|p|ϕ(y)|p

|x−y|α
dxdy

)

=8E(ϕ)−16h(t).

Lemma 4.5. Let N ≥2, 0<α<min{N,4}, and p=2+(2−α)/N . If ϕ0 6≡0 satisfies
that

h(0)=
1

2

∫

|x|2|ϕ0|
2≥E(ϕ0),

then the solution ϕ of equations (1.2)–(1.3) blows up in a finite time.

Proof. From Proposition 4.4, we have that

h(t)=β sin(4t+θ)+
1

2
E(ϕ0), (4.6)

where β and θ are constants determined by h(0) and h′(0). Moreover,

β2 =

(

h(0)−
1

2
E(ϕ0)

)2

+
1

16

(

h′(0)

)2

. (4.7)

Thus if h(0)≥E(ϕ0), (4.6) and (4.7) imply that there exists T0<∞ such that

lim
t→T−

0

h(t)=0.

It is deduced from (see e.g. [24])

∫

|ϕ|2≤C

(
∫

|x|2|ϕ|2
)

1
2
(

∫

|∇ϕ|2
)

1
2

that there exists 0<T <+∞ such that

lim
t→T−

∫

|∇ϕ|2 =+∞.

This proves that ϕ(x,t) blows up in a finite time.

Proof of Theorem 4.3.
Proof. For any positive constant λ and complex number c with |c|≥1, a direct

computation yields that
∫

|ϕ0|
2 = |c|2

∫

|λ
N
2 w(λx)|2dx= |c|2

∫

|w|2≥

∫

|w|2.
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On the other hand, since the function w(x) makes the inequality (2.1) into an equality,
one has that

∫

RN×RN

|w(x)|p|w(y)|p

|x−y|α
dxdy=

2N+2−α

N

∫

|∇w|2.

Therefore

E(ϕ0) =
1

2

∫

|∇ϕ0|
2−

N

2(2N+2−α)

∫

RN×RN

|ϕ0(x)|
p|ϕ0(y)|

p

|x−y|α
dxdy+h(0)

=
1

2
(1−|c|

2N+4−2α
N )λ2|c|2

∫

|∇w|2 +h(0)

≤h(0).

It follows from Lemma 4.5 that ϕ(x,t) blows up in a finite time. The proof of Theorem
4.3 is complete.

Remark 4.6. From Theorem 4.1 and 4.3, we see that when p=2+(2−α)/N , ‖w‖L2

is the critical mass for the solutions of equations (1.2)–(1.3) which exist globally in
time. The prescribed initial data in Theorem 4.3 also implies that the existence
of blow-up solutions of equations (1.2)–(1.3) not only depends on the mass of the
initial data but also on the profile of the initial data. So it is very reasonable to
conjecture that for some class of initial data ϕ0 with ‖ϕ0‖L2 ≥‖w‖L2 , the solutions
of equations (1.2)–(1.3) exist globally in time. In fact, this conjecture is true in the case
of 2+(2−α)/N <p<2∗(α). Furthermore, we can prove that when 2+(2−α)/N <
p<2∗(α), the solutions of equations (1.2)–(1.3) exist globally in time for a large class
of initial data whose norm can be taken as large as one wants.

5. Global solutions for supercritical nonlinearity
After developing the critical mass for the existence of global solutions and the

blow-up solutions of equations (1.2)–(1.3) in the critical nonlinearity p=2+(2−α)/N ,
attention is now focused on the existence of global solutions of equations (1.2)–(1.3) in
the case of supercritical nonlinearity 2+(2−α)/N <p<2∗(α). An interesting aspect
is that we can obtain global solutions for arbitrarily large data. We emphasize that
the use of Theorem 2.7 is essential. First we need the following lemma from Bégout
[2].

Lemma 5.1. Let I⊂R be an open interval, s0∈ I, θ>1, a>0, b>0 and Φ(s)∈

C(I,R+). Set f(y)=a−y+byθ for any y≥0. Define y∗ =(bθ)−
1

θ−1 and b∗ = θ−1
θ y∗.

Assume that Φ(s0)<y∗, a≤ b∗, and f ◦Φ>0. Then Φ(s)<y∗ for any s∈ I.

Proof. Since Φ(s0)<y∗ and Φ is a continuous function, there exists a δ>0 such
that Φ(s)<y∗ for any s∈ (s0−δ,s0 +δ)⊂ I. If Φ(s)<y∗ were not true for any s∈ I, by
continuity there would exist a s∗∈ I satisfying Φ(s∗)=y∗. Then f ◦Φ(s∗)=f(y∗)=
a−b∗≤0. However, this is impossible from f ◦Φ>0. Therefore Φ(s)<y∗ for any
s∈ I. The proof is complete.

Next, we define a real valued function V (λ) as follows,

V (λ)=

(

A−1

B

)

A−1
2B

‖w‖
p−1

B

L2 λ−
A−1
2B , λ>0,

where A= N(p−2)+α
2 and B= 2p−(N(p−2)+α)

2 . Denote

S ={u∈Σ; ‖u‖L2 ≤V (‖∇u‖2
L2 +‖xu‖2

L2)}.
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Lemma 5.2. Let N ≥2, 0<α<min{N,4}, and 2+(2−α)/N <p<2∗(α). S is an
unbounded subset of Σ.

Proof. For any M>0, we choose v∈Σ such that
∫

|x|2|v|2>M . Define uλ(x)=

λ
N+2

2 v(λx) (λ>0), then we have from direct computations that
∫

|x|2|uλ(x)|
2dx=

∫

|x|2λN+2|v(λx)|2dx=

∫

|x|2|v|2dx>M,

∫

|∇uλ(x)|
2dx=λ4

∫

|∇v|2dx and

∫

|uλ(x)|
2dx=λ2

∫

|v|2dx.

Therefore for λ small enough, we have

‖uλ‖L2

(

‖∇uλ‖
2
L2 +‖xuλ‖

2
L2

)

A−1
2B

=λ‖v‖L2

(

λ4‖∇v‖2
L2 +‖xv‖2

L2

)

A−1
2B

<

(

A−1

B

)

A−1
2B

‖w‖
p−1

B

L2 .

According to the definition of S, we obtain that uλ∈S for λ small enough. On the
other hand,

‖uλ‖
2
Σ>

∫

|x|2|uλ|
2 =

∫

|x|2|v|2dx>M.

These prove that S is unbounded in Σ.

Theorem 5.3. Let N ≥2, 0<α<min{N,4} and 2+(2−α)/N <p<2∗(α). If ϕ0∈S,
then the solutions ϕ(x,t) of equations (1.2)–(1.3) exist globally in t∈ [0,+∞). More-
over for any t∈ (0,T ) we have that

‖ϕ0‖
2B

A−1

L2 (‖∇ϕ(t)‖2
L2 +‖xϕ(t)‖2

L2)<
A

B
‖w‖

2(p−1)
A−1

L2

and

‖ϕ(t)‖2
Σ≤

2N(p−2)+2α

N(p−2)+α−2
E(ϕ0)+‖ϕ0‖

2
L2 . (5.1)

Proof. For any t∈ [0,T ), applying Theorem 2.7 to ϕ(t,x) and using the choice of
A and B, we obtain that

∫

RN×RN

|ϕ(x)|p|ϕ(y)|p

|x−y|α
dxdy≤C(p,α,N)‖ϕ0‖

2B
L2 ‖∇ϕ‖2A

L2 . (5.2)

Denote a=
∫

(|∇ϕ0|
2 + |x|2|ϕ0|

2)>0. It is deduced from the energy identity and (5.2)
that

∫
(

|∇ϕ|2 + |x|2|ϕ|2
)

=2E(ϕ)+
1

p

∫

RN×RN

|ϕ(x)|p|ϕ(y)|p

|x−y|α
dxdy

=2E(ϕ0)+
1

p

∫

RN×RN

|ϕ(x)|p|ϕ(y)|p

|x−y|α
dxdy

<a+
1

p

∫

RN×RN

|ϕ(x)|p|ϕ(y)|p

|x−y|α
dxdy

≤a+
C(p,α,N)

p
‖ϕ0‖

2B
L2 ‖∇ϕ‖2A

L2 .

≤a+
C(p,α,N)

p
‖ϕ0‖

2B
L2

(
∫

(|∇ϕ|2 + |x|2|ϕ|2)

)A

. (5.3)
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Let

b :=
C(p,α,N)

p
‖ϕ0‖

2B
L2 =

1

B

(

B

A

)A

‖w‖2−2p
L2 ‖ϕ0‖

2B
L2 ,

θ=A=
N(p−2)+α

2
>1 and

Φ(t)=

∫
(

|∇ϕ(t)|2 + |x|2|ϕ(t)|2
)

.

Obviously Φ(0)=a. At the same time, we define f(y)=a−y+byθ. Then (5.2) implies
that

0<a−y+byθ, where y=Φ(t).

Denote

y∗ =(bθ)−
1

θ−1 , b∗ =
θ−1

θ
y∗.

Then b∗<y∗. By direct computation and the exact value of C(p,α,N) we have that

y∗ =
A

B
‖w‖

2(p−1)
A−1

L2 ‖ϕ0‖
− 2B

A−1

L2

and

b∗ =
A−1

B
‖w‖

2(p−1)
A−1

L2 ‖ϕ0‖
− 2B

A−1

L2 . (5.4)

Moreover, using ‖ϕ0‖L2 ≤V (‖∇ϕ0‖
2
L2 +‖xϕ0‖

2
L2)=V (a), we know that

‖ϕ0‖L2 ≤

(

A−1

B

)

A−1
2B

‖w‖
p−1

B

L2 a−
A−1
2B ,

which implies that

a≤
A−1

B
‖w‖

2(p−1)
A−1

L2 ‖ϕ0‖
− 2B

A−1

L2 (5.5)

because of 2+(2−α)/N <p<2∗(α).

Now using (5.4), (5.5) and Lemma 5.1, we obtain that Φ(t)<y∗ for any t∈ [0,T ).
It follows from

∫

|ϕ|2≡
∫

|ϕ0|
2 that ‖ϕ(t)‖2

Σ is bounded from above uniformly with
respect to t∈ [0,T ). In other words, the solutions of equations (1.2)–(1.3) with ϕ0

satisfying (5.1) exist globally in t∈ [0,+∞).

Since Φ(t)<y∗ for any t∈ [0,T ), we obtain that

‖ϕ0‖
2B

A−1

L2 (‖∇ϕ(t)‖2
L2 +‖xϕ(t)‖2

L2)<
A

B
‖w‖

2(p−1)
A−1

L2 .

Next, for the solutions obtained in the above, we give an explicit upper bound on
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‖ϕ(t)‖2
Σ. First we have that

E(ϕ0) =E(ϕ)=
1

2

∫

(|∇ϕ|2 + |x|2|ϕ|2)−
1

2p

∫

RN×RN

|ϕ(x)|p|ϕ(y)|p

|x−y|α
dxdy

≥
1

2

∫

(|∇ϕ|2 + |x|2|ϕ|2)−
C(p,α,N)

2p
‖ϕ‖2B

L2 ‖∇ϕ‖2A
L2

≥
1

2

∫

(|∇ϕ|2 + |x|2|ϕ|2)−
C(p,α,N)

2p
‖ϕ‖2B

L2

(
∫

(|∇ϕ|2 + |x|2|ϕ|2)

)A

=
1

2

∫

(|∇ϕ|2 + |x|2|ϕ|2)

[

1−
C(p,α,N)

p
‖ϕ‖2B

L2

×

(
∫

(|∇ϕ|2 + |x|2|ϕ|2)

)A−1]

=
1

2

∫

(|∇ϕ|2 + |x|2|ϕ|2)

(

1−
1

A

[(

AC(p,α,N)

p
‖ϕ0‖

2B
L2

)− 1
A−1

×

(
∫

(|∇ϕ|2 + |x|2|ϕ|2)

)−1]1−A)

.

Since Φ(t)<y∗, we have that

(

AC(p,α,N)

p
‖ϕ0‖

2B
L2

)− 1
A−1

(
∫

(|∇ϕ|2 + |x|2|ϕ|2)

)−1

>1

by using the exact value of C(p,α,N) obtained in Theorem 2.7. Therefore

[(

AC(p,α,N)

p
‖ϕ0‖

2B
L2

)− 1
A−1

(
∫

(|∇ϕ|2 + |x|2|ϕ|2)

)−1]1−A

<1

because of 2+(2−α)/N <p< 2N−α
N−2 . It follows that

E(ϕ0)≥
1

2

∫
(

|∇ϕ|2 + |x|2|ϕ|2
)(

1−
1

A

)

,

which yields that

∫
(

|∇ϕ|2 + |x|2|ϕ|2
)

≤
2N(p−2)+2α

N(p−2)+α−2
E(ϕ0).

Therefore

‖ϕ(t)‖2
Σ≤

2N(p−2)+2α

N(p−2)+α−2
E(ϕ0)+‖ϕ0‖

2
L2 .

The proof is complete.

Remark 5.4. By Lemma 5.2, we get that equations (1.2)–(1.3) possesses global
solutions for a large class of initial data whose norm can be as large as we want. On the
other hand, from the definition of V (λ) and Theorem 5.3 we know that V (λ)→‖w‖L2

as p→2+(2−α)/N . So we obtain the sharp condition for global existence in the case
of initial data ‖ϕ0‖L2 <‖w‖L2 , which coincides with Theorem 4.1. In the case of
critical nonlinearity p=2+(2−α)/N , the condition (4.1) is sharp. However, we do
not know whether or not the condition (5.1) is sharp in the case of supercritical
nonlinearity 2+(2−α)/N <p<2∗(α).
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Appendix. In this appendix, we outline the proof of Proposition 3.1 by using
similar arguments [20]. Consider the Schrödinger operator in R

N ,

A=−∆+ |x|2.

Let S(t) be the propagator of A and k(t,x,y) be its Schwartz kernel. It is known from
[20] that

k(t,x,y)=
( −i

2π sint

)N/2

ei{cost(|x|
2+|y|2)−2x·y}/2sint.

Oh [20] proved the following proposition

Proposition A.1 ([20]). For any q≥2 and 0< |t|≤T0, S(t) is a bounded
operator from Lq

′

to Lq, 1/q+1/q′ =1, and the map t→S(t) is strongly continuous
to B(Lq

′

, Lq). Moreover, for 0< |t|≤T0, we have

‖S(t)u‖q≤
(2π|t|

C1

)N/q−N/2

‖u‖q′ , (A.1)

where C1 = sup
x,y,|t|≤T0

∣

∣

∣

t
sint

∣

∣

∣

1/2

.

Definition A.2 (admissible pair). The pair (r, q) is admissible if 2/r=N(1/2−
1/q), 2≤ q≤∞ for N =1, 2≤ q<∞ for N =2, and 2≤ q<2N/(N−2) for N ≥3.

Lemma A.3. Let (r, q) be any admissible pair.

(I) For any 0<T ≤T0 and ψ∈L2(RN ), we have S(t)ψ∈Lr(−T,T ; Lq), and there
exists a constant C such that

‖S(t)ψ‖Lr(−T,T ;Lq)≤C‖ψ‖L2 . (A.2)

(II) For any 0<T ≤T0 and g∈Lr
′

(−T,T ; Lq
′

(RN )), we have
∫ t

0
S(t−τ)g(τ)dτ ∈

Lr(−T,T ; Lq)∩C([−T,T ]; L2), and there exists a constant C such that

∥

∥

∥

∫ t

0

S(t−τ)g(τ)dτ
∥

∥

∥

Lr(−T,T ;Lq)
≤C‖g‖Lr′ (−T,T ;Lq′ ), (A.3)

∥

∥

∥

∫ t

0

S(t−τ)g(τ)dτ
∥

∥

∥

C([−T,T ];L2)
≤C‖g‖Lr′ (−T,T ;Lq′ ). (A.4)

Proof. For any ψ∈L2(RN ) and f ∈Lr
′

(−T,T ; Lq
′

(RN )), we obtain

∣

∣

∣

∫ T

−T

∫

RN

S(t)ψ f̄(t)dxdt
∣

∣

∣
=

∣

∣

∣

∫ T

−T

∫

RN

ψ S̄(−t)f̄(t)dxdt
∣

∣

∣

≤‖ψ‖L2
x

∥

∥

∥

∫ T

−T

S(−t)f(t)dt
∥

∥

∥

L2
x

, (A.5)

∥

∥

∥

∫ T

−T

S(−t)f(t)dt
∥

∥

∥

2

L2
x

=

∫ T

−T

∫

RN

f(t,x)

∫ T

−T

S̄(t−τ)f̄(τ)dτ dxdt
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≤‖f‖Lr′ (−T,T ;Lq′ )

∥

∥

∥

∫ T

−T

S(t−τ)f(τ)dτ
∥

∥

∥

Lr(−T,T ;Lq)
. (A.6)

By using equation (A.1) and Hardy-Littlewood-Sobolev inequality (see, e.g. [23, 117–
120]) we obtain

∥

∥

∥

∫ T

−T

S(t−τ)f(τ)dτ
∥

∥

∥

Lr(−T,T ;Lq)
≤C

∥

∥

∥

∫ T

−T

‖t−τ |N/q−N/2|f(τ)‖
Lq′

x
dτ

∥

∥

∥

Lr(−T,T )

≤C‖f‖Lr′ (−T,T ;Lq′ ). (A.7)

From equations (A.5)–(A.7) we have equation (A.2).
For any f ∈Lr

′

(−T,T ; Lq
′

(RN )), by using equation (A.2) and equation (A.7) we
obtain

∣

∣

∣

∫ T

−T

∫

RN

∫ t

0

S(t−τ)g(τ)dτ f̄(t,x)dxdt
∣

∣

∣

=
∣

∣

∣

∫ t

0

∫

RN

g(τ,x)

∫ T

−T

S̄(τ− t)f̄(t)dtdxdτ
∣

∣

∣

≤‖g‖Lr′ (−T,T ;Lq′ )

∥

∥

∥

∫ T

−T

S(t−τ)f(τ)dτ
∥

∥

∥

Lr(−T,T ;Lq)

≤C‖g‖Lr′ (−T,T ;Lq′ )‖f‖Lr′ (−T,T ;Lq′ ),
∥

∥

∥

∫ t

0

S(t−τ)g(τ)dτ
∥

∥

∥

Lr(−T,T ;Lq)
≤C‖g‖Lr′ (−T,T ;Lq′ ), (A.8)

∥

∥

∥

∫ t

0

S(t−τ)g(τ)dτ
∥

∥

∥

2

L2
x

=

∫ t

0

∫

RN

g(τ,x)S̄(τ− t)

∫ t

0

S̄(t−s)ḡ(τ)dsdxdτ

≤‖g‖Lr′
τ (−T,T ;Lq′ )

∥

∥

∥
S(τ− t)

∫ t

0

S(t−s)g(s)ds
∥

∥

∥

Lr
τ (−T,T ;Lq)

≤C‖g‖Lr′
τ (−T,T ;Lq′ )

∥

∥

∥

∫ t

0

S(t−s)g(s)ds
∥

∥

∥

L2
x

,

∥

∥

∥

∫ t

0

S(t−τ)g(τ)dτ
∥

∥

∥

C([−T,T ];L2)
≤C‖g‖Lr′ (−T,T ;Lq′ ).

(A.9)

This completes the proof of Lemma A.3.

Now applying Lemma A.3, we can prove the local existence of solution for equa-
tions (1.2)–(1.3) and obtain some conservation laws with ϕ0∈

∑

. We consider the
integral equation associated to equation (1.2)

ϕ(t)=S(t)ϕ0− i

∫ t

0

S(t−τ)F
(

ϕ(τ)
)

dτ, F (ψ) :=ψ|ψ|p−2

∫

RN

|ψ(y)|p

|x−y|α
dy. (A.10)

For getting some conservation laws precise, we also consider regularized versions of
equation (A.10), as in [20, 15]

ϕ(t)=S(t)h∗(gϕ0)− i

∫ t

0

S(t−τ)h∗{gF
(

h∗ϕ(τ)
)

}dτ, (A.11)
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where we let h belong to the Schwarz space and be an even function with ‖h‖L1 =1,
and g be a C∞ cut-off function with compact support. From now on, we denote φ=
(g,h) for notational convenience. Let δ denote the Dirac delta function. If φ=(1,δ),
then equation equation (A.11) is equivalent to equation equation (A.10).

Let

1

ρ
=

{ 2N−α+2p−2
2pN , N ≥3

1
2

(

N−α
2N +max

{

1
2 −

1
pN ,

2N−α
2pN

})

, N =1,2
(A.12)

and 2/γ=N(1/2−1/ρ). It is obvious that (γ, ρ) is an admissible pair.

Lemma A.4. Let 0<α<N , 2≤p<2∗(α), and ρ be defined in equation (A.12). For
any ψ∈H1

ρ(R
N ), we have

‖F (ψ)‖H1
ρ′
≤C‖ψ‖2p−1

H1
ρ
. (A.13)

Proof. By using the Hölder inequality, we obtain

‖F (ψ)‖H1
ρ′
≤ C‖ψ‖H1

ρ
‖ψ‖p−2

Lρ∗ ‖|ψ|
p ∗|y|−α‖Lq1

+C‖ψ‖p−1
Lρ∗ ‖{|ψ|

p−2(ψ̄∂yψ+ψ∂yψ̄)}∗|y|−α‖Lq2 ,

where

1

ρ∗
=

1

2p−2

(

1−
2

ρ
+
N−α

N

)

,
1

q1
=
p

ρ∗
−
N−α

N
,

1

q2
=

1

ρ
+
p−1

ρ∗
−
N−α

N
. (A.14)

By the Hardy-Littlewood-Sobolev inequality (see, e.g. [23, 117-120]), we obtain

‖F (ψ)‖H1
ρ′
≤C‖ψ‖H1

ρ
‖ψ‖2p−2

Lρ∗ . (A.15)

From (A.12), we have

1

ρ
≥

1

ρ∗
≥

1

ρ
−

1

N
.

By applying the Sobolev imbedding theorem and equation (A.15), we obtain equation
(A.13).

Lemma A.5. Let 0<T ≤T0, 0<α<N , 2≤p< (2N−α)/(N−2), ρ be defined in
equation (A.12), and (γ, ρ) be the admissible pair. For any u, v∈Lγ(−T,T ;H1

ρ(R
N )),

we have

∥

∥

∥

∫ t

0

S(t−τ)h∗{gF (h∗u)−gF (h∗v)}dτ
∥

∥

∥

Lγ(−T,T ;Lρ)

≤CT 1−2p/γ{‖u‖2p−2
Lγ(−T,T ;H1

ρ) +‖v‖2p−2
Lγ(−T,T ;H1

ρ)}‖u−v‖Lγ(−T,T ;Lρ), (A.16)

∥

∥

∥

∫ t

0

S(t−τ)h∗{gF (h∗u)}dτ
∥

∥

∥

Lγ(−T,T ;H1
ρ)
≤CT 1−2p/γ‖u‖2p−1

Lγ(−T,T ;H1
ρ), (A.17)
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where the constant C is independent of φ=(g, h).

Proof. By using equation (A.3), the Hölder inequality, and the Sobolev imbedding
theorem, we have

∥

∥

∥

∫ t

0

S(t−τ)h∗{gF (h∗u)−gF (h∗v)}dτ
∥

∥

∥

Lγ(−T,T ;Lρ)

≤ C‖F (h∗u)−F (h∗v)‖Lγ′ (−T,T ;H1
ρ′ )

≤ C
(

∫ T

−T

{

‖(u−v)(t)‖γ
′

Lρ

(

‖u(t)‖
(p−2)γ′

Lρ∗ +‖v(t)‖
(p−2)γ′

Lρ∗

)

‖|h∗u|p ∗|y|−α‖γ
′

Lq1

+‖v(t)‖
(p−1)γ′

Lρ∗ ‖(|h∗u|p−|h∗v|p)∗|y|−α‖γ
′

Lq2

}

dt
)1/γ′

≤ C
(

∫ T

−T

‖(u−v)(t)‖γ
′

Lρ

(

‖u(t)‖
(2p−2)γ′

Lρ∗ +‖v(t)‖
(2p−2)γ′

Lρ∗

)

dt
)1/γ′

≤ CT 1−2p/γ{‖u‖2p−2
Lγ(−T,T ;H1

ρ) +‖v‖2p−2
Lγ(−T,T ;H1

ρ)}‖u−v‖Lγ(−T,T ;Lρ),

where ρ∗, q1 and q2 are defined in equation (A.14), constant C is independent of
φ=(g, h).

From Lemmas A.3 and A.4, we obtain that

∥

∥

∥

∫ t

0

S(t−τ)h∗{gF (h∗u)}dτ
∥

∥

∥

Lγ(−T,T ;H1
ρ)
≤C‖F (h∗u)‖Lγ′ (−T,T ;H1

ρ′ )

≤C
(

∫ T

−T

‖u(t)‖
(2p−1)γ′

H1
ρ

dt
)1/γ′

≤CT 1−2p/γ‖u‖2p−1
Lγ(−T,T ;H1

ρ),

where the constant C does not depend on φ=(g, h).

Lemma A.6. Let 0<α<N and 2≤p<2∗(α). For any ϕ0∈H
1(RN ), there exists a

0<T =T (‖ϕ0‖H1)≤T0 and a unique solution ϕ of equations (A.11) and (A.12) such
that ϕ∈C([−T,T ];H1(Rn))∩Lγ(−T,T ;H1

ρ(R
N )), where T does not depend on φ, ρ

is defined in equation (A.12), and (γ, ρ) is admissible pair.

Proof. Let constants T >0 and R0>0 be selected later, and

E=E(T,R0)={ϕ|ϕ∈Lγ(−T,T ;H1
ρ(R

N )), ‖ϕ‖Lγ(−T,T ;H1
ρ(RN ))≤R0}.

Note that E is never empty by Lemma A.3. Endowed with the metric

dist(u, v)=‖u−v‖Lγ(−T,T ;Lρ),

E is a complete metric space. Indeed, since Lγ(−T,T ;H1
ρ(R

N )) is reflexive, the closed
ball of radius R0 is weakly compact. We wish to find conditions on T and R0 such
that the map M : ϕ→Mϕ given by

Mϕ=S(t)h∗(gϕ0)− i

∫ t

0

S(t−τ)h∗{gF
(

h∗ϕ(τ)
)

}dτ and

F (ψ) :=ψ|ψ|p−2

∫

RN

|ψ(y)|p

|x−y|α
dy
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is a strict contraction on E. For any ϕ∈E, from Lem. A.3 and A.5 we have

‖Mϕ‖Lγ(−T,T ;H1
ρ(RN ))≤C‖ϕ0‖H1 +CT 1−2p/γ‖ϕ‖2p−1

Lγ(−T,T ;H1
ρ(RN ))

,

where the constant C is independent of φ=(g, h). Let us take R0 =2C‖ϕ0‖H1 . Note
that 1−2p/γ >0. Thus there exists T >0, which does not depend on φ=(g, h), such
that for any ϕ∈E we have

CT 1−2p/γ‖ϕ‖2p−1
Lγ(−T,T ;H1

ρ(RN ))
≤R0/2.

This implies that M : E→E. For any u, v∈E, it follows from Lemma A.5 that

‖Mu−Mv‖Lγ(−T,T ;Lρ)

≤CT 1−2p/γ{‖u‖2p−2
Lγ(−T,T ;H1

ρ) +‖v‖2p−2
Lγ(−T,T ;H1

ρ)}‖u−v‖Lγ(−T,T ;Lρ),

where the constant C is independent of φ=(g, h). Then there exists 0<T =T (ϕ0‖H1),
which does not depend on φ=(g, h), such that

‖Mu−Mv‖Lγ(−T,T ;Lρ)≤
1

2
‖u−v‖Lγ(−T,T ;Lρ).

So M : E→E is strictly contractive. There exists a unique fixed point ϕ∈E. From
Lemma A.3, ϕ∈C([−T,T ];H1(RN )). Lemma A.6 is proved.

Lemma A.7. Let 0<α<N , 2≤p<2∗(α), ϕ0∈
∑

, and ϕ∈C([−T,T ];H1(RN )) be
the solution of equation (A.12). Then ϕ∈C([−T,T ];

∑

) and for all t∈ [−T,T ], ϕ
satisfies the equalities

∫

RN

|ϕ(t)|2dx=

∫

RN

|ϕ0|
2dx, (A.18)

E
(

ϕ(t)
)

=E
(

ϕ0

)

. (A.19)

Proof. Following the proof of Theorem 4.7 in [20], we can prove this lemma.

Proof of Proposition 3.1.
Proof. Applying Lemma A.6 and Lemma A.7, we obtain Proposition 3.1.
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