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RECOVERY-BASED ERROR ESTIMATION AND ADAPTIVE
SOLUTION OF ELLIPTIC VARIATIONAL INEQUALITIES

OF THE SECOND KIND∗

VIOREL BOSTAN † AND WEIMIN HAN ‡

Abstract. In this paper, we present and analyze gradient recovery type a posteriori error
estimates for the finite element approximation of elliptic variational inequalities of the second kind.
Both reliability and efficiency of the estimates are addressed. Some numerical results are reported,
showing the effectiveness of the error estimates in adaptive solution of elliptic variational inequalities
of the second kind.

1. Introduction
A posteriori error analysis has become an important tool for reliability assessment

and efficiency improvement of the finite element method in solving both linear and
nonlinear problems. An important class of a posteriori error estimates is based on
local or global averaging of the gradient, e.g. in the form of Zienkiewicz-Zhu gradient
recovery technique, [19, 20, 21]. It is known that in the case of structured grids and
higher regularity solutions, such estimators are both efficient and reliable. Some work
has been done for unstructured meshes as well, e.g. [16, 18]. A systematic study of
various averaging techniques for a posteriori error estimation can be found in [2, 8].

The papers mentioned above are on a posteriori error estimation for solving elliptic
boundary value problems of partial differential equations. For numerical solutions of
variational inequalities, a few papers can be found for their a posteriori error analysis.
E.g., residual type error estimators were obtained for an elliptic obstacle problem in
[10] and for an elliptic variational inequality of the second kind in [5], and gradient
recovery type error estimates for an elliptic obstacle problem have been shown recently
in [3, 17].

In this paper, we derive and study a posteriori error estimates of gradient recovery
type for finite element solutions of elliptic variational inequalities of the second kind.
The paper is organized as follows. In Section 2 we introduce the model problem.
Section 3 contains the finite element method setting. In Section 4 we derive a poste-
riori error estimates based on both global and local averaging techniques. Section 5 is
devoted to an analysis of the efficiency of the estimators. In Section 6 we report some
numerical results. We restrict ourselves in this paper to linear elements since they
are popularly used in solving variational inequalities due to a lack of higher solution
regularity. Also, our discussion focuses on one particular gradient recovery technique.
The discussion and results presented here can be extended to other elements and other
averaging techniques as studied in [2, 8].

We now list some notations used in the paper. Let Ω be a bounded domain in
R

d, d ≥ 1, with Lipschitz boundary Γ = ∂Ω. Let ΓD be a closed subset of Γ with
meas(ΓD) > 0 and ΓC be the remaining part. For any open subset ω of Ω with
Lipschitz boundary ∂ω, we denote by Hm(ω), L2(ω) and L2(∂ω) the usual Sobolev
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2 ELLIPTIC VARIATIONAL INEQUALITIES OF THE SECOND KIND

and Lebesgue spaces with the standard norms ‖·‖m;ω := ‖·‖Hm(ω), ‖·‖0;ω := ‖·‖L2(ω)

and ‖ ·‖0;∂ω := ‖ ·‖L2(∂ω). Also, we will make use of the standard seminorm | · |m,ω :=
‖Dm · ‖0;ω on Hm(ω). Throughout this paper we will use the same notation v to
denote both v ∈ H1(Ω) and its trace γv ∈ L2(Γ) on the boundary. We reserve the
symbol γ to denote sides of the finite elements.

2. Model problem
The discussion of the a posteriori error estimates in this paper is focused on a

model elliptic variational inequality of the second kind. Such a variational inequal-
ity is featured by the presence of non-differentiable terms in the formulation. The
techniques and results presented in this paper can be extended to general elliptic
variational inequalities of the second kind in a straightforward fashion.

Let there be given f ∈ L2(Ω) and a constant g > 0. Over the space V = {v ∈
H1(Ω) | v = 0 on ΓD}, we define

a(u, v) =
∫

Ω

(∇u · ∇v + u v) dx,

l(v) =
∫

Ω

fv dx,

j(v) =
∫

ΓC

g |v| ds.

The model problem is the following elliptic variational inequality of the second kind:
Find u ∈ V such that

a(u, v − u) + j(v) − j(u) ≥ l(v − u) ∀ v ∈ V. (2.1)

This model is a so-called simplified friction problem (cf. [13]) as it can be viewed as
a simplified version of a frictional contact problem in linearized elasticity. Existence
and uniqueness of a solution for the problem (2.1) follow from a classical result on
elliptic variational inequalities (see e.g. [13] or [14]).

In the analysis of a posteriori error estimators later, we will need the following
characterization of the solution u of (2.1):

There exists a unique λ ∈ L∞(ΓC) such that

a(u, v) +
∫

ΓC

g λ v ds = l(v) ∀ v ∈ V, (2.2)

|λ| ≤ 1, λ u = |u| on ΓC . (2.3)

A proof of this characterization in the case ΓC = Γ can be found in [13]; the
proof can be easily extended to the general case, cf. [6]. It follows from the above
characterization that the solution u of (2.1) is the weak solution of the boundary value
problem

−∆u+ u = f in Ω,
∂u

∂n
+ gλ = 0 on ΓC ,

u = 0 on ΓD.

Here, ∂/∂n denotes the outward normal derivative.
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3. Finite element approximation
For simplicity, we suppose that Ω has a polyhedral boundary Γ. In order to

define the finite element method for (2.1) we introduce a family of regular partitions
Ph of Ω consisting of triangles (d = 2) or tetrahedrons (d = 3). The partitions Ph

are compatible with the decomposition of ∂Ω into ΓD and ΓC . In other words, if
an element side lies on the boundary, then it belongs to one of the sets ΓD or ΓC .
For every element K ∈ Ph, let hK be the diameter of K and ρK be the diameter
of the largest ball inscribed in K. For a side γ of the element K, we denote by hγ

the diameter of γ. We shall assume that the family of partitions Ph, h > 0, satisfies
the shape regularity assumption, i.e. the ratio hK/ρK is uniformly bounded over the
whole family by a constant C. Note that the shape regularity assumption does not
require that the elements be of comparable size and thus locally refined meshes are
allowed. Define the finite element spaces

Sh = {vh ∈ C(Ω) | vh|K is affine ∀K ∈ Ph}
and

Vh = {vh ∈ Sh | vh = 0 on ΓD}.
We will use Eh for the set of the element sides, Eh,C for the subset of the element

sides lying on the ΓC part of the boundary, and Eh,0 is the subset of the element sides
that do not lie on Γ. Let Nh be the set of all vertices in Ph and Nh,0 ⊂ Nh the set of
free vertices, i.e. those vertices that do not lie on ΓD. For a given element K ∈ Ph,
N (K) and E(K) denote the sets of the vertices of K and sides of K, respectively. The
patch K̃ associated with any element K from a partition Ph consists of all elements
sharing at least one vertex with K, i.e. K̃ =

⋃{K ′ ∈ Ph : K ′ ∩ K 	= ∅}. Similarly,
for any side γ ∈ Eh, the patch γ̃ consists of the elements sharing γ as a common side.
Note that in the case when the side γ lies on the boundary Γ, the patch γ̃ consists
of only one element. For a given element K ∈ Ph or a given side γ ∈ Eh, nK or nγ

denotes the unit normal vector to the sides of K or to the side γ, respectively. In
what follows, for any piecewise continuous function ϕ and any interior side γ ∈ Eh,0,
[ϕ]γ denotes the jump of ϕ across γ in the direction nγ , i.e.

[ϕ]γ(x) = lim
t→0+

(ϕ(x + tnγ) − ϕ(x − tnγ)), x ∈ γ.

The discretization of variational inequality (2.1) is defined by the Galerkin finite
element method: Find uh ∈ Vh such that

a(uh, vh − uh) + j(vh) − j(uh) ≥ l(vh − uh) ∀ vh ∈ Vh. (3.1)

We need the following characterization of the finite element solution (cf. [6]), similar
to that of the solution of the continuous problem.
Theorem 3.1. The unique solution uh ∈ Vh of the discretized problem (3.1) is
characterized by the existence of λh ∈ L∞(ΓC) such that

a(uh, vh) +
∫

ΓC

g λhvh ds = l(vh) ∀ vh ∈ Vh, (3.2)

|λh| ≤ 1, λhuh = |uh| a.e. on ΓC . (3.3)
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In the derivation of the a posteriori error estimate we use the so-called weighted
Clément-type interpolation operator. There are several variants of such operators (see
e.g. [2, 7, 8, 9, 17]), which are all versions of the interpolation operator introduced by
Clément [11]. The main difference among these interpolants lies in the way the inter-
polation is performed near the boundary. In this paper we will follow the approach
used in [8].

Given a vertex A ∈ Nh, let ϕA ∈ Sh be the nodal basis function associated with
A. For each fixed vertex A ∈ ΓD, choose ξ(A) ∈ Nh,0 to be a vertex of an element
containing A. Let ξ(A) = A if A ∈ Nh,0. For each vertex A ∈ Nh,0 define the class
I(A) = {Ã ∈ Nh | ξ(Ã) = A}. In this way, the set of all vertices Nh is partitioned
into card(Nh,0) classes of equivalence. For each A ∈ Nh,0 set

ψA =
∑

ξ∈I(A)

ϕξ

and notice that {ψA | A ∈ Nh,0} is a partition of unity. Let K̃A = supp(ψA) and
hA = diam(K̃A). It is evident that K̃A is connected and that ψA 	= ϕA implies that
ΓD ∩ K̃A has a positive surface measure. For a given v ∈ L1(Ω), let

vA =

∫
K̃A

ψAv dx∫
K̃A

ϕAdx
, A ∈ Nh,0.

Then define the interpolation operator Πh : V → Vh as follows:

Πhv =
∑

A∈Nh,0

vAϕA. (3.4)

The next result summarizes some basic estimates for Πh. Its proof can be found in
[8].

Theorem 3.2. There exists an h-independent constant C > 0 such that for all v ∈ V
and f ∈ L2(Ω) there holds

|v −Πhv|21;Ω ≤ C|v|21;Ω, (3.5)∫
Ω

f(v −Πhv) dx ≤ C|v|1;Ω
⎛⎝ ∑

A∈Nh,0

h2
A min

fA∈R

‖f − fA‖2
0;K̃A

⎞⎠1/2

, (3.6)

∑
K∈Ph

‖h−1
K (v −Πhv)‖2

0;K ≤ C|v|21;Ω, (3.7)

∑
γ∈Eh

‖h−1/2
γ (v −Πhv)‖2

0;γ ≤ C|v|21;Ω. (3.8)

4. Gradient recovery-based a posteriori error estimate
The a posteriori error estimate presented in this paper is derived from the fol-

lowing theorem, which is given in [6], in a slightly different problem setting. Its proof
makes use of the duality theory in convex analysis.

Theorem 4.1. Let u ∈ V be the unique solution of (2.1), and w ∈ V an approxima-
tion of u. Then for any r∗ = (r∗

1, r
∗
2 , r

∗
3) ∈ (L2(Ω))d × L2(Ω) × L2(ΓC), |r∗3 | ≤ g a.e.
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on ΓC , the following error bound is valid:

1
2
a(u− w, u − w) ≤

∫
Ω

(|∇w + r∗
1|2 + |w + r∗2 |2) dx

+ R(r∗)2 +
∫

ΓC

(g |w| + r∗3w) ds, (4.1)

where the residual R(r∗) is given by

R(r∗) = sup
v∈V

1
‖v‖V

{∫
Ω

(r∗
1 · ∇v + (r∗2 + f) v) dx+

∫
ΓC

r∗3v ds
}
. (4.2)

In Theorem 4.1, w can be any approximation of the solution u, though we will only
use the Galerkin finite element solution uh in the following. Theorem 4.1 provides
a general framework for deriving various a posteriori error estimates with different
choices of the auxiliary variable r∗. For example, residual-type error estimates were
derived in [6] by choosing r∗ = −(∇uh, uh, gλh), where uh is the finite element solution
and λh is provided by Theorem 3.1. In this paper we consider a different choice for
auxiliary variable r∗, which will lead to a gradient recovery type a posteriori error
estimates.

To formulate the error estimator we need a gradient recovery operator. There are
many types of gradient recovery operators. In order to have a “good” approximation
of the true gradient ∇u, a set of conditions to be satisfied by the recovery operator
were identified in [1]. These conditions lead to a more precise characterization of the
form of the gradient recovery operator, summarized in Lemma 4.5 in [1]. In particular,
the recovered gradient at a vertex A is a linear combination of the values of ∇uh in
a patch surrounding A.

We define the gradient recovery operator Gh : Vh → (Vh)d as follows

Ghvh =
∑

A∈Nh

Ghvh(A)ϕA, Ghvh(A) =
1

|K̃A|

∫
K̃A

∇vh dx. (4.3)

Since linear elements are used,

Ghvh(A) =
NA∑
i=1

αi
A(∇vh)Ki

A
, (4.4)

where (∇vh)Ki
A

denotes the vector value of the gradient ∇vh on the element Ki
A,

K̃A =
⋃NA

i=1K
i
A, αi

A = |Ki
A|/|K̃A|, i = 1, . . . , NA.

With the finite element solution uh, the error estimator based on the gradient
recovery can be defined as follows:

η2
G =

∑
K∈Ph

η2
K,G, η2

K,G = ‖∇uh −Ghuh‖2
0;K +

∑
γ∈E(K)∩Eh,C

hγ‖Ghuh ·nγ + g λh‖2
0;γ .

(4.5)
Theorem 4.2. Let u and uh be the unique solutions of (2.1) and (3.1), respectively.
Then the error u− uh satisfies the a posteriori estimate

‖u− uh‖2
1;Ω ≤ C η2

G + C
∑

A∈Nh,0

(
h4

A‖∇uh‖2
0;K̃A

+ h2
A min

fA∈R

‖f − fA‖2
0;K̃A

)
. (4.6)
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Proof. Let uh be the finite element solution, λh ∈ L∞(ΓC) be provided by The-
orem 3.1 and Ghuh be the recovered gradient defined in (4.3). Apply Theorem 4.1
with w = uh and r∗ = −(Ghuh, uh, gλh) to obtain

1
2
a(u− uh, u− uh) ≤

∫
Ω

|∇uh −Ghuh|2 dx+ R2, (4.7)

where residual R is given by

R = sup
v∈V

1
‖v‖V

{∫
Ω

[Ghuh · ∇v + (uh − f)v] dx+
∫

ΓC

gλhv ds

}
. (4.8)

Let Πh be the interpolation operator defined by (3.4). Use characterization (3.2)
with vh = Πhv to get∫

Ω

[∇uh · ∇Πhv + (uh − f)Πhv] dx+
∫

ΓC

g λhΠhv ds = 0.

Therefore, we can rewrite (4.8) as

R = sup
v∈V

1
‖v‖V

{∫
Ω

[Ghuh · ∇(v − Πhv) + (uh − f)(v − Πhv)] dx

+
∫

ΓC

gλh(v − Πhv) ds+
∫

Ω

(Ghuh −∇uh) · ∇Πhv dx

}
.

By estimate (3.5), we have ‖∇Πhv‖0;Ω ≤ C ‖v‖V and so

sup
v∈V

1
‖v‖V

∫
Ω

(Ghuh −∇uh) · ∇Πhv dx ≤ C ‖∇uh −Ghuh‖0;Ω.

Thus,

R ≤ C ‖∇uh −Ghuh‖0;Ω + R1 (4.9)

where residual R1 is given by

R1= sup
v∈V

1
‖v‖V

{∫
Ω

[Ghuh · ∇(v−Πhv)+(uh−f)(v−Πhv)] dx+
∫

ΓC

gλh(v−Πhv) ds
}
.

Integrate by parts over each element K ∈ Ph to get

R1= sup
v∈V

1
‖v‖V

∑
K∈Ph

{∫
K

(−div(Ghuh)+uh−f)(v−Πhv) dx

+
∑

γ∈E(K)

∫
γ

Ghuh · nγ(v−Πhv) ds+
∑

γ∈E(K)∩Eh,C

∫
γ

g λh(v−Πhv) ds
}
.

(4.10)

Since Ghuh is continuous, the integrals on interior sides γ ∈ Eh,0 in (4.10) cancel each
other. Rewrite

−div(Ghuh) + uh − f = div(∇uh −Ghuh) + (−∆uh + uh − f)
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and rearrange the terms in (4.10) to obtain

R1 = sup
v∈V

1
‖v‖V

{ ∑
K∈Ph

∫
K

div(∇uh −Ghuh)(v −Πhv) dx

+
∑

K∈Ph

∫
K

rK(v −Πhv) dx

+
∑

γ∈Eh,C

∫
γ

(Ghuh · nγ + g λh)(v −Πhv) ds
}

= sup
v∈V

1
‖v‖V

{
I + II + III

}
, (4.11)

where rK = −∆uh +uh−f = uh−f denotes the interior residual on element K ∈ Ph.
We will use r to denote the piecewise interior residual, i.e., r|K = rK for K ∈ Ph. To
estimate the first summand on the right side of (4.11), we use an elementwise inverse
inequality of the form

‖div(∇uh −Ghuh)‖0;K ≤ Ch−1
K ‖∇uh −Ghuh‖0;K . (4.12)

Apply the Cauchy-Schwarz inequality, the inverse inequality (4.12) and the estimate
(3.7) to get

I ≤ C
∑

K∈Ph

‖div(∇uh −Ghuh)‖0;K‖v −Πhv‖0;K

≤ C
∑

K∈Ph

‖∇uh −Ghuh‖0;K‖h−1
K (v −Πhv)‖0;K

≤ C

( ∑
K∈Ph

‖∇uh −Ghuh‖2
0;K

)1/2( ∑
K∈Ph

‖h−1
K (v −Πhv)‖2

0;K

)1/2

≤ C |v|1;Ω
( ∑

K∈Ph

‖∇uh −Ghuh‖2
0;K

)1/2

. (4.13)

For the second summand, we apply the estimate (3.6) to obtain

II ≤ C|v|1;Ω
⎛⎝ ∑

A∈Nh,0

h2
A min

rA∈R

‖r − rA‖2
0;K̃A

⎞⎠1/2

.

Now ∑
A∈Nh,0

h2
A min

rA∈R

‖r − rA‖2
0;K̃A

≤ 2
∑

A∈Nh,0

h2
A‖uh − uh‖2

0;K̃A

+ 2
∑

A∈Nh,0

h2
A min

fA∈R

‖f − fA‖2
0;K̃A

,

where uh denotes the integral mean of uh over K̃A. Use the Poincare inequality and
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an inverse inequality of the form (4.12) to get∑
A∈Nh,0

h2
A min

rA∈R

‖r − rA‖2
0;K̃A

≤ C
∑

A∈Nh,0

h4
A‖∇uh‖2

0;K̃A

+ 2
∑

A∈Nh,0

h2
A min

fA∈R

‖f − fA‖2
0;K̃A

.

Therefore,

II ≤ C|v|1;Ω
∑

A∈Nh,0

(
h4

A‖∇uh‖2
0;K̃A

+ h2
A min

fA∈R

‖f − fA‖2
0;K̃A

)
. (4.14)

Finally, with the aid of the Cauchy-Schwarz inequality and the estimate (3.8), the
third summand on the right side of (4.11) can be bounded by

III ≤ C |v|1;Ω
⎛⎝ ∑

γ∈Eh,C

hγ‖Ghuh · nγ + g λh‖2
0;γ

⎞⎠1/2

. (4.15)

Inserting (4.13), (4.14) and (4.15) into (4.11), and using the Cauchy-Schwarz inequal-
ity and (4.9), we deduce that

R ≤ C

⎧⎨⎩ ∑
K∈Ph

‖∇uh −Ghuh‖2
0;K +

∑
γ∈Eh,C

hγ‖Ghuh · nγ + g λh‖2
0;γ

+
∑

A∈Nh,0

(
h4

A‖∇uh‖2
0;K̃A

+ h2
A min

fA∈R

‖f − fA‖2
0;K̃A

)⎫⎬⎭
1/2

. (4.16)

Split the first term on the right side of estimate (4.7) into local contributions from
each K ∈ Ph and insert (4.16) to conclude the proof.

We can write (4.6) as

‖u− uh‖1;Ω ≤ CηG +Rh (4.17)

where

Rh = C

⎡⎣ ∑
A∈Nh,0

h4
A‖∇uh‖2

0;K̃A

⎤⎦1/2

+ C

⎡⎣ ∑
A∈Nh,0

h2
A min

fA∈R

‖f − fA‖2
0;K̃A

⎤⎦1/2

.

We observe that usually the term Rh is of higher order compared to ‖u − uh‖1;Ω

which is of order O(h) in the nondegenerate situations. This observation is argued
as follows: First, it is easy to show from the definition of the finite element solutions
that there is a constant C such that ‖uh‖1;Ω ≤ C for any h. So the term⎡⎣ ∑

A∈Nh,0

h4
A‖∇uh‖2

0;K̃A

⎤⎦1/2
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is bounded by O(h2). Next, for f ∈ L2(Ω),⎛⎝ ∑
A∈Nh,0

h2
A min

fA∈R

‖f − fA‖2
0;K̃A

⎞⎠1/2

= o(h);

and if f ∈ H1(Ω), then⎛⎝ ∑
A∈Nh,0

h2
A min

fA∈R

‖f − fA‖2
0;K̃A

⎞⎠1/2

= O(h2).

Thus, (4.17) illustrates the reliability of the error estimator ηG.

5. Efficiency of the estimator
In what follows, we investigate the efficiency of the error estimator ηG. For this

purpose, we will prove that for each element K ∈ Ph, ηK,G is dominated by the
residual-type estimator ηK,R derived in [6]:

η2
K,R = h2

K‖rK‖2
0;K +

∑
γ∈E(K)

hγ‖Rγ‖2
0;γ

with the interior residual rK = −∆uh + uh − f = uh − f in K ∈ Ph and side residual

Rγ =
{

[∂uh

∂n ]γ if γ ∈ Eh,0,
∂uh

∂n + g λh if γ ∈ Eh,C .
(5.1)

For the error estimator η2
R =

∑
K∈Ph

η2
K,R, we have proved in [6] the following esti-

mate

η2
R ≤ C

(
‖u− uh‖2

1;Ω +
∑

γ∈Eh,C

hγ‖λ− λh‖2
0;γ

+
∑

K∈Ph

h2
K‖rK − rK‖2

0;K +
∑

γ∈Eh,C

hγ‖Rγ −Rγ‖2
0;γ

)
(5.2)

with discontinuous piecewise polynomial approximations rK , Rγ of rK , Rγ .
Lemma 5.1. Let ηK,G be defined by (4.5). Then the following bound holds

η2
K,G ≤ C

⎛⎝ ∑
γ∈E(K)∩Eh,C

hγ‖Rγ‖2
0;γ +

∑
γ′∈E

K̃

hγ′‖Rγ′‖2
0;γ′

⎞⎠ , (5.3)

where EK̃ denotes the set of inner edges of the patch K̃ corresponding to the element
K.

Proof. It follows from the definition of Gh that on each element K,

|∇uh −Ghuh|2 =

∣∣∣∣∣∣
∑

A∈N (K)

ϕA

( NA∑
i=1

αi
A((∇uh)K − (∇uh)Ki

A
)
)∣∣∣∣∣∣

2

≤ C
∑

K′⊂K̃

|(∇uh)K − (∇uh)K′ |2. (5.4)
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For any K ′ ⊂ K̃ there is a sequence of inner edges γ1, . . . , γm, such that γ̃j ∩ γ̃j+1 	= ∅
and K ⊂ γ̃1, K ′ ⊂ γ̃m. Hence,

|(∇uh)K − (∇uh)K′ | ≤
∣∣∣∣∣∣

m∑
j=1

[∇uh]γj

∣∣∣∣∣∣ ≤
m∑

j=1

∣∣[∇uh]γj

∣∣ ≤ ∑
γ∈E

K̃

∣∣[∇uh]γ
∣∣. (5.5)

Since uh is continuous in Ω, [∂uh/∂t]γ = 0 for all γ ∈ Eh,0, where ∂uh/∂t is the
tangential derivative of uh. Therefore, |[∇uh]γ | = |[∂uh/∂n]γ| if γ ∈ Eh,0. The
estimates (5.4) and (5.5) together with the shape regularity of the partition Ph imply

‖∇uh −Ghuh‖2
0;K ≤ Ch2

K

∑
γ∈E

K̃

[
∂uh

∂n

]2

γ

≤ C
∑

γ∈E
K̃

hγ

∫
γ

[
∂uh

∂n

]2

γ

ds. (5.6)

Let K ∈ Ph be such that E(K) ∩ Eh,C = ∅. It follows from (5.6) and definitions
of ηK and Rγ that

η2
K ≤ C

∑
γ∈E

K̃

hγ‖Rγ‖2
0;γ . (5.7)

Consider now the case when the element K has at least one side lying on the
boundary ΓC . Let γ ∈ E(K) ∩ Eh,C . Apply the triangle inequality to get

η2
K,G = ‖∇uh −Ghuh‖2

0;K +
∑

γ∈E(K)∩Eh,C

hγ‖Ghuh · nγ + gλh‖2
0;γ

≤ ‖∇uh −Ghuh‖2
0;K +

∑
γ∈E(K)∩Eh,C

hγ (‖(∇uh −Ghuh) · nγ‖0;γ + ‖Rγ‖0;γ)2

≤ ‖∇uh −Ghuh‖2
0;K +

∑
γ∈E(K)∩Eh,C

2hγ

(‖(∇uh −Ghuh) · nγ‖2
0;γ + ‖Rγ‖2

0;γ

)
.

(5.8)

From an inverse inequality and (5.6) we have

hγ‖(∇uh −Ghuh) · nγ‖2
0;γ ≤ hK‖∇uh −Ghuh‖2

0;∂K

≤ C‖∇uh −Ghuh‖2
0;K

≤ C
∑

γ′∈E
K̃

hγ′‖Rγ′‖2
0;γ′. (5.9)

Inserting (5.6) and (5.9) into (5.8) concludes the proof.
From Lemma 5.1 and the inequality (5.2) we obtain

η2
G ≤ C

⎛⎝‖u− uh‖2
1;Ω +

∑
γ∈Eh,C

hγ‖λ− λh‖2
0;γ

+
∑

K∈Ph

h2
K‖rK − rK‖2

0;K +
∑

γ∈Eh,C

hγ‖Rγ −Rγ‖2
0;γ

⎞⎠ . (5.10)

Since linear elements are used, the term
∑

K∈Ph
h2

K‖rK − rK‖2
0;K can be replaced

by
∑

K∈Ph
h2

K‖f − f‖2
0,K , and the term

∑
γ∈Eh,C

hγ‖Rγ − Rγ‖2
0;γ can be replaced
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by
∑

γ∈Eh,C
hγg

2‖λh−λh‖2
0,γ , for discontinuous piecewise polynomial approximations

f and λh. The term
∑

K∈Ph
h2

K‖f − f‖2
0,K is clearly of higher order than O(h2).

Numerical evidence from the next section shows that
∑

γ∈Eh,C
hγ‖λ − λh‖2

0;γ , and∑
γ∈Eh,C

hγg
2‖λh − λh‖2

0,γ as well, can be expected to be of higher order than ‖u −
uh‖2

1;Ω.

6. Numerical experiment
In this section, we show some numerical results in solving the following problem:

Find u ∈ H1(Ω) such that∫
Ω

[∇u · ∇(v−u)+u (v−u)] dx+g
∫

Γ

|v| ds−g
∫

Γ

|u| ds ≥
∫

Ω

f (v−u) dx ∀ v ∈ H1(Ω).

We choose Ω = [0, 1]× [0, 1], ΓC = Γ, g = 1 and f = −∆w + w with

w(x) = arctan(20(r − 1/2)), r2 = (x1 − 0.8)2 + (x2 + 0.2)2.

Triangular partitioning and linear elements are used in the experiment. The im-
plementation was performed in MATLAB and a seven-point Gauss-Legendre quadra-
ture was used to compute the load vector on each triangle. Numerical integration
over a general triangle is reduced that over a reference triangle through a linear trans-
formation of the variables. On the reference triangle

K̂ = {(ξ, η) | ξ ≥ 0, η ≥ 0, 1 − ξ − η ≥ 0},

the seven-point Gauss-Legendre quadrature formula is defined by∫
K̂

F (ξ, η) dξdη ≈
7∑

i=1

ωiF (ξi, ηi),

where the nodes (ξi, ηi) and weights ωi are given in Table 6.1. The discretized solution
is computed by solving the equivalent minimization problem using an over-relaxation
method with a relative error tolerance, in the maximum norm, of 10−6 (see [13], [14]).

i ξi ηi ωi

1 1/3 1/3 9/80
2 (6 +

√
15)/21 (6 +

√
15)/21 (155 +

√
15)/2400

3 (9 − 2
√

15)/21 (6 +
√

15)/21 (155 +
√

15)/2400
4 (6 +

√
15)/21 (9 − 2

√
15)/21 (155 +

√
15)/2400

5 (6 −√
15)/21 (6 −√

15)/21 (155 −√
15)/2400

6 (9 + 2
√

15)/21 (6 −√
15)/21 (155 −√

15)/2400
7 (6 −√

15)/21 (9 + 2
√

15)/21 (155 −√
15)/2400

Table 6.1. Nodes and weights of 7-point Gauss-Legendre quadrature formula over reference
triangle.

In order to show the effectiveness of the adaptive procedure we compare numer-
ical convergence orders of the approximate solutions. We compute these orders by
considering families of uniform and adaptively refined partitions. Consider a sequence



12 ELLIPTIC VARIATIONAL INEQUALITIES OF THE SECOND KIND

of finite element solutions uun
h based on uniform partitions of the domain Ω. Starting

with an initial coarse partition P1, we construct a family of nested meshes by subdi-
viding each element into four congruent elements. The solution from the most refined
mesh will be taken as the “exact” solution u, that will be used to compute the errors
of the approximate solutions obtained on the other meshes.

Adaptive finite element solutions are obtained by the following algorithm:
1. Start with the initial partition Ph and corresponding finite element subspace
Vh.

2. Compute the finite element solution uad
h ∈ Vh.

3. For each elementK ∈ Ph compute the error estimator ηK (residual or gradient
recovery type).

4. Let η = 1
N

∑
K∈Ph

ηK with N being the number of elements in partition Ph.
An element K is marked for refinement if ηK > µη, where µ is a prescribed
threshold. We take µ = 0.5.

5. Perform refinement and obtain a new triangulation Ph.
6. Return to step 2.

In the computation of the error indicator ηK we make use of the multiplier λh

defined on Γ. In what follows we describe how λh can be (approximately) recovered
from the solution uh using characterization

a(uh, vh) +
∫

Γ

g λh vh ds = l(vh) ∀ vh ∈ Vh. (6.1)

Denote by {xi}m
i=1 the nodes of the partition Ph belonging to Γ, and let {ϕi}m

i=1

be the basis functions corresponding to the nodes {xi}. We first determine a piecewise
linear function

λh,0 =
m∑

i=1

λi
h,0ϕi

by requiring an analogue of (6.1):

a(uh, vh) +
∫

Γ

g λh,0vh ds = l(vh) ∀ vh ∈ Vh. (6.2)

Denote λh,0 = (λ1
h,0, . . . , λ

m
h,0)

T . We then project the components of λh,0 onto the
interval [−1, 1] to get λh,1 = (λ1

h,1, . . . , λ
m
h,1)

T :

λi
h,1 =

⎧⎪⎨⎪⎩
−1 if λi

h,0 < −1,
λi

h,0 if − 1 ≤ λi
h,0 ≤ 1,

1 if λi
h,0 > −1,

for i = 1, 2, . . . ,m. The piecewise linear approximation of the multiplier λh on Γ can
be computed as

λh,1 =
m∑

i=1

λi
h,1ϕi. (6.3)

We briefly comment on the method for finding λh,0. Let n = dimVh. Denote by K
the standard (n × n) stiffness matrix and by l ∈ R

n the standard load vector. Let



VIOREL BOSTAN AND WEIMIN HAN 13

Fig. 6.1. Solution on a uniform mesh with 66,049 nodes.

u ∈ R
n be the nodal value vector of the finite element solution uh. Then the algebraic

representation of (6.2) becomes

(Ku,v)Rn + (Mλh,0,vc)Rm = (l,v)Rn ∀v ∈ R
n, (6.4)

where vc denotes the subvector of v, containing the nodal values of vh at the nodes
{xi}m

i=1 ⊂ Γ and M is a tridiagonal (m×m) matrix. We can write v = (vT
i ,v

T
c )T ∈

R
n−m ×R

m by assuming that the components of vc are listed last. We similarly split
l to li and lc. This decomposition yields a block structure for K,

K =
(

Kii Kic

Kci Kcc

)
.

Then (6.4) is equivalent to the following two relations:

Kiiui + Kicuc = li,

Kciui + Kccuc + Mλh,0 = lc.

Once the approximate solution uh is computed, we can obtain from the second relation
that

λh,0 = M−1(lc − Kciui − Kccuc).

We start with a coarse triangulation shown on the left plot in Figure 6.2. Here,
the interval [0, 1] is divided into 1/h equal parts with h = 1/4 which is successively
halved. The numerical solution corresponding to h = 1/256 is taken as the “exact”
solution u. The “exact” solution is shown in Figure 6.1.

We use the regular refinement technique (red-blue-green refinement), where the
triangle is divided into four triangles by joining the midpoints of edges and adjacent
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triangles are refined in order to avoid hanging nodes. For a detailed description of this
and other refinement techniques currently used see e.g. [15] and references therein.
Also, in order to improve the quality of triangulation, a smoothing procedure is used
after each refinement. For each triangleK of the triangulation we compute the triangle
quality measure defined by

Q(K) =
4
√

3 area(K)
h2

1 + h2
2 + h2

3

,

where hi, i = 1, 2, 3, are the side lengths of the triangle K. Note that Q(K) = 1 if
h1 = h2 = h3. A triangle is viewed to be of acceptable quality if Q > 0.6, otherwise
we modify the mesh by moving the interior nodes toward the center of mass of the
polygon formed by the adjacent triangles.

We use uun
h for finite element solutions on uniform meshes, and uad

h for finite ele-
ment solutions on adaptive meshes. Since adaptive solutions are involved, numerical
solution errors will be plotted against the number of degrees of freedom, rather than
the meshsize.

We use an adaptive procedure based on both residual type and gradient recovery
type estimates to obtain a sequence of approximate solutions uad

h . The adaptive finite
element mesh after 5 adaptive iterations is shown on the right plot in Figure 6.2.
Figures 6.3 and 6.4 contain the error values ‖u − uun

h ‖1;Ω and ‖u − uad
h ‖1;Ω. We

observe a substantial improvement of the efficiency using adaptively refined meshes.
The errors ‖u − uad

h ‖1;Ω computed using residual type and gradient recovery type
estimators are shown in Figure 6.5. Table 6.2 contains the values of CI computed for
uniform and adaptive solutions:

CI =
‖u− uh‖1;Ω

ηI
, ηI = (

∑
K

η2
K,I)

1/2, I∈{R,G}. (6.5)

It is clear from Table 6.2 that for this numerical example, the gradient recovery
type error estimator provides a better prediction of the true error than the residual
type error estimator, a phenomenon observed in numerous references. Note that
implementation of the gradient recovery type error estimator is simpler than that of
the residual type error estimator.

To have an idea of the convergence behavior of the discrete Lagrange multipliers,
we analyze the errors ‖λ − λh‖0;Γ corresponding to the sequence of uniform refine-
ments. Here, λ is the Lagrange multiplier corresponding to the parameter h = 1/256.
Figure 6.6 provides the error values ‖u−uun

h ‖1;Ω and h1/2‖λ−λh‖0;Γ. The numerical
convergence order of h1/2‖λ − λh‖0;Γ is obviously higher than that of ‖u − uun

h ‖1;Ω,
indicating that the second term in the efficiency bound (5.10) is expected to be of
higher order compared to the first term ‖u − uh‖2

1;Ω. Graphs of λh,0 and λh,1 with
h = 1/256 are provided in Figures 6.7 and 6.8.

Acknowledgment. We thank the two referees for their comments on the first
version of the paper.
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