COMM. MATH. SCI. (© 2003 International Press
Vol. 1, No. 3, pp. 593-621

COMPUTATIONAL HIGH-FREQUENCY WAVE PROPAGATION
USING THE LEVEL SET METHOD, WITH APPLICATIONS TO THE
SEMI-CLASSICAL LIMIT OF SCHRODINGER EQUATIONS*

LI-TIEN CHENG T, HAILIANG LIU#, AND STANLEY OSHER $

Abstract. We introduce a level set method for computational high frequency wave propagation
in dispersive media and consider the application to linear Schrédinger equation with high frequency
initial data. High frequency asymptotics of dispersive equations often lead to the well-known WKB
system where the phase of the plane wave evolves according to a nonlinear Hamilton-Jacobi equation
and the intensity is governed by a linear conservation law. From the Hamilton-Jacobi equation, wave
fronts with multiple phases are constructed by solving a linear Liouville equation of a vector valued
level set function in the phase space. The multi-valued phase itself can be constructed either from an
additional linear hyperbolic equation in phase space or an additional linear homogeneous equation
and component to the level set function in an augmented phase space. This phase is in fact valid
in the entire physical domain, but one of the components of the level set function can be used to
restrict it to a wave front of interest. The use of the level set method in this numerical approach
provides an Eulerian framework that automatically resolves the multi-valued wave fronts and phase
from the superposition of solutions of the equations in phase space.
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1. Introduction

In this work, we are interested in the computation of high frequency propagating
waves for equations arising in dispersive media. The intention of this paper is to
introduce a general level set method and framework for multi-phase computation of
problems of this type. However, the application that we focus on is the time-dependent
multi-dimensional Schrodinger equation,

2
iedp© = —%AM +V(2)Y, z€IR, (1.1)

subject to the high frequency initial data,

¥ (x,0) = Ag(x) exp (ZSW”)) : (1.2)

€

where ¢¢ is the complex wave field, V(z) is a given potential function, and € >
0, appearing in both the equation and the initial data, denotes a re-scaled Planck
constant. Here the regime of interest is the so-called semiclassical regime, where €
tends to zero.

Apart from quantum mechanics, problem (1.1) with (1.2) arises in many contexts
in classical wave propagation such as the paraxial approximation of forward propa-
gating waves [26]. Thus, it is of practical importance to compute high frequency wave
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propagation in many applied fields such as radio engineering [27], laser optics [59], un-
derwater acoustics [60], the investigation of light and sound propagation in turbulent
atmosphere [61], seismic wave propagation in the Earth’s crust [54], Bose Einstein
condensates [1], and a host of other subjects. In these applications, the potential V'
is explicitly related to the feature of the propagating medium.

In the semiclassical regime, where the scaled Planck constant e is small, one can
seek plane wave solutions with the WKB ansatz,

Y¢ = A%(x,t) exp(iS(z,t)/€).

Assuming that the phase S and the amplitude A€ are sufficiently smooth, we may
expand the amplitude in powers of ¢,

AE:A0—|—€A1+€2A2+"'.

Inserting this expression into (1.1) and balancing terms of O(1) order in € with separate
real and imaginary parts leads to separate equations for A and S. The phase function
S will satisfy a nonlinear first order equation of Hamilton-Jacobi type,

0:S+ H(x,VS) =0, H(z,p):=V(z)+|p*/2, (1.3)
and the amplitude Ag solves a transport equation,
0 A2 +V - (A2VS) = 0. (1.4)

When € is small, the leading term, Ay, becomes significant. The above system is
weakly coupled since the phase S can be solved independently from equation (1.3).
This Hamilton-Jacobi equation in general develops a singularity in finite time. A stan-
dard numerical method using the analogue of shock capturing ideas for the Hamilton-
Jacobi equation will select a unique solution, called the viscosity solution [17, 43]. Un-
fortunately, this class of weak solutions is not appropriate for treating dispersive wave
propagation problems. As is known in the literature, see, e.g., [9, 11, 12, 19, 31, 55],
using the entropy notion for the eikonal equation leads to a measure-valued solution,
i.e., solution of delta function type, in the intensity A2 on the shock curves of the
phase. These singularities are called caustics since the energy of the wave becomes
infinite there. This clearly contradicts the a priori estimates for (1.1). A natural
way to avoid such difficulties is to seek multi-valued phases corresponding to crossing
waves. This means in general, for every fixed (z,t) which is not on the caustic, one
tries to construct a set of phase functions {S;}, 7 = 1,2, - -, each of which is a solution
of the Hamilton-Jacobi equation in a neighborhood of (z,t). This set is referred to as
the multi-valued solution of the Hamilton-Jacobi equation. Actually in the context
of wave propagation, the correct solution generally allows a multi-valued phase while
the viscosity solution picks out the phase corresponding to the first arrival wave.

Given multi-valued phase functions, uniform asymptotic formulae for the wave
field near the caustics can be constructed via several techniques such as boundary layer
techniques [2, 10] as well as phase space approaches, Lagrangian integrals [18, 41, 42],
and the method of canonical operator [44, 63].

A relatively new phase space technique for studying oscillatory solutions of dis-
persive equations is based on the use of the Wigner transform, which has drawn
increasing interest, see e.g., [3, 29, 34, 37, 39, 56]. The Wigner transformation pro-
vides a phase space description of the equations of the problem and has been shown
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to be very useful for asymptotics since it “unfolds” the caustics, due to the linearity of
the Liouville equation used in the phase space. This technique provides an alternative
approach to the WKB method, see, e.g., [56]. There is, however, a serious drawback
in the direct numerical approximation of the Liouville equation. There are two ways
to rectify this problem in the literature. One is the moment method which is based on
reducing the number of independent variables by introducing equations for moments.
The other is based on computation of special wave front solutions. For tracking wave
fronts in geometrical optics, some geometry based methods in phase space such as the
segment projection method [23] and level set method [15, 47, 52] have been recently
introduced. Consult [21] for a recent survey on computational high frequency wave
propagation in geometrical optics.

In this paper we introduce a general level set method for computing multi-valued
solutions to more general HJ equations of the form (1.3), which includes the one
studied in [47]. Computation of the multi-valued density based on (1.4) is left to
a future work. We begin by sketching the idea explored in the present work. A
formal analysis of the HJ equation (1.3), obtained by tracking classical characteristics,
suggests that a solution will in general become multi-valued in finite time. The bi-
characteristics in (z,p) space, governed by (2.2)-(2.3), may be referred to as rays,
as in geometrical optics [47]. It is shown that in general the phase S changes its
shape along the ray in (z,p) space and in fact satisfies a forced hyperbolic transport
equation,

HS+F -V S=DB, F:=(V,H-V,H)", B=p V,H-H. (1.5)

The linearity of this equation “unfolds” the caustics in the phase space of (z,p) € IR?",
but the equation itself is not enough for us to resolve the multi-valued phase S in
physical space. In order to do so we need to restrict the phase value to the manifold
p = V.S in (z,p) space and then project to the physical space of z € IR". Our
approach to identify the manifold p = V.S is by the intersection of the zero level
sets of n functions in (z,p) space. These level set functions, labeled ¢ = ¢(t, z,p) in
general, evolve according to the linear homogeneous equation,

016+ VpH - Vg — Vo H - Vpp = 0 (1.6)

with proper chosen initial data, e.g., ¢g a component of p — V. Sy. This equation
has the advantage of the linear superposition property of the ray equations and, like
the HJ equation, the solution is defined by PDE’s and can easily be computed on a
uniform Eulerian grid. Note also that this equation has the same form as the Liouville
equation encountered in kinetic model based methods except that the solution here
is the level set function, instead of a particle density function. With this in mind we
still call it a Liouville equation.

In order to apply our approach to more general cases and if we wish to place the
computation of multi-valued S in the level set framework, we may look at the graph
of the phase z = S(z,p,t) in IR* . This translates to the addition of a level set
function, still labeled ¢ = ¢(t, x, p, z), in the augmented phase space (z, p, z) € IR*"*1,
Evolution of this function is under the equation

06+ F - Vi py& + Bd.¢ = 0, (1.7)

where the initial data can be taken to be ¢g = z—.Sy(x). In this way, the multi-valued
S on the whole physical domain can be obtained from the intersection of the zero level
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sets of the n + 1 level set functions in (x, p, z) which evolve under n equations of the
form (1.6) and the equation (1.7).

In order to gain further insight into the structure of the multi-valued solution .S,
we are also interested in computing the wave front solution, i.e., some special solution
associated with the underlying front surface. Note that in the context of geometrical
optics, as studied in [47], the phase does not change its shape along the ray. The wave
front is therefore defined as the level curve of the phase and the wave front solution
is completely determined by computing the front location. However in the current
Schrodinger setting the phase S does change its shape along the ray in (z,p) space.
The natural question is, in what sense is the wave front defined? Consistent with the
geometrical optics case, in this paper we define the wave front, or more specifically,
bicharacteristic strips, to be the n — 1 dimensional surface in (z,p) space, driven by
the Hamiltonian dynamics (2.2)-(2.3), and starting with a level surface of the initial
phase Sy. For the computation of such a defined wave front solution, we need to add
a level set function and an evolution equation for it. The location of our defined front
surface can be tracked, as in [47], by the intersection of the zero level sets of n+1 level
set functions in (x,p) space evolving according to (1.6). n of these functions can be
initialized as the components of p — V. Sy, as before, and the one remaining function
can be initialized as the level set of interest of the initial phase, e.g., So(z) — C.

In summary using the above two general level set equations, multi-valued phase
in the whole physical domain is resolved and multi-valued wave fronts are tracked via
the intersection of zero level sets of several level set functions. Note that in the above
procedures we always need the n level set equations initialized to the components
of p = V,S. This is not surprising since the Hamiltonian is nonlinear in p. The
intersection of these n level set equations actually gives an approximate phase gradient
for the HJ equation. It would be interesting to clarify how faithful the computed
multi-valued gradient V.S is.

We wish to point out that the “graph” idea used here is not new and is already
extensively explored in various contexts, see, e.g. [16, 24, 46, 62]. However the idea
of building the “graph” and the “gradient” into level set functions that satisfy linear
homogeneous PDE’s is new and very general. With this idea we have recently devel-
oped a new level set framework for tracking multi-valued solutions for a general class
of nonlinear first-order equations [40] which include quasilinear hyperbolic transport
equations and nonlinear Hamilton-Jacobi equations as two prototypical examples in
this category. The level set equations we obtained in this context are indeed consis-
tent with classical characteristic theory [16] in the sense that the level set function
evolves with the characteristic speed given by the theory. If the Hamiltonian is linear
in p, it is not necessary to include the gradient in the level set formulation for .S, thus
reducing the case to the one given in [16] for a scalar quasilinear transport equation.

We note that [38] have subsequently but independently derived the same level
set Liouville equations for the gradient of phase through an approach involving the
techniques of [16] and [62]. The technique they adopt can in addition be used to ob-
tain multi-valued solutions for scalar quasilinear hyperbolic equations. For Hamilton-
Jacobi equation, the multi-valued gradient of the solution is derived.

In the calculation of wave propagation, high frequency approximations have been
extensively used and proved to be quite accurate both numerically and analytically.
In such an approach, phase and amplitude vary on a much slower scale than the
wave field in the original wave equations and are thus easier to compute. However,
such approximations fail either on caustics and focal points, where they predict wave
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amplitudes, or in shadow regions (i.e., regions devoid of rays), where they yield zero
fields. On the other hand, the formation of caustics is a typical situation in many
physical systems, for example, in seismology as a result of multiphase propagation
from localized sources. From the mathematical point of view, the formation of caus-
tics and the related multi-valuedness of the phase function is the main obstacle in
constructing global high frequency solutions of the dispersive wave equation.

In this context the main numerical issue is to compute the multi-valued solution
of the Hamilton-Jacobi equation in order to capture the multiple phases in the wave
propagation. For this a number of numerical techniques have been proposed, see,
e.g., [4, 5, 20, 22, 53]. For multi-phase computations in the semiclassical limit of the
Schrodinger equation, see, e.g. [32, 37]. Our main goal in this paper is, again, to
formulate a generic level set framework to compute the multi-valued solutions of the
above Hamilton-Jacobi equations and to track the wave fronts and associated phases.

The problem of numerically obtaining multiple phases in geometrical optics has
traditionally been handled by solving the characteristic field related to the eikonal
equation. This involves ray tracing methods using the linear superposition principle
and can be formulated, in the Lagrangian view point, as solving a system of ODE’s to
track the wave front. An obvious drawback of this method lies in obtaining adequate
spatial resolution of the wave front in regions with diverging rays. Recently, the multi-
valued phase function has been handled by properly partitioning the propagation
domain and using eikonal solvers (see, e.g., [20]). A different approach is based on
the kinetic formulation in phase space, in terms of a density function that satisfies
Liouville’s equation, where the technique used to capture the multi-valued solutions
is based on a closure assumption of a system of equations for the moments of the
density, as remarked earlier, see, e.g., [6, 7, 22, 30, 32, 33, 37, 53].

Before closing this section, we would like to point out the similarities and dif-
ferences of the Wigner transform approach and the level set approach we employ
in this work. Our interest via the level set method is to track the wave front with
multi-phases and compute the multi-valued solution S in the whole domain. For the
Hamilton-Jacobi equation for phase S, we choose the zero level set to be the wave
front of the phase and track its evolution by solving a level set equation, i.e., the
Liouville equation (1.6) in the phase space (z,p). As remarked earlier we resolve the
phase S by evolving a zero level set in an extended space (x,p, z) via the level set
equation (1.7). Since the phase does not stay on any zero level set in (z,p) space, it
satisfies the forced hyperbolic equation,

0S8 + (p7 _va)T ’ Vx,pS = ‘p|2/2 - V(I)

In the Wigner approach, the Wigner transform of the wave field is defined by

" eap(-iky) e+ L0~ Loy,

We(a, k,t) == %/ :

— 00

The most natural candidate for the solution of the Wigner equation is the Wigner
transform of the WKB solution ¢ = A(z,t)exp(iS(z,t)/€), which reads,

1
WeGakt) = - [ Alw + 3 Alw -y esp(iF vk /e)dy
me
where the Wigner phase F' is given by
F=5x+y,t)—S(x—y,t)—2ky.
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The main contribution of this integral comes from the stationary point of the phase
F, ie., 0yF = 0, which relates the kinetic speed to the phase gradient around the
Lagrangian manifold {(x, k)|k = V,S}, i.e.,

~ VoS(z+y)+ VeS(z —y)

= 5 ,

and the weak limit of this Wigner integral becomes |A(x)|25(k—V . S(x)), see, e.g., [25].
After the Wigner function is computed, the position density |1|> and the momentum
|$|?V .S are recovered via the moment procedure, see, e.g., [37]. It is interesting to
see that both Wigner function and the level set function we consider in (z,p) space
both satisfy the Liouville equation of the same form (1.6) even though the phase
speed in both cases calls for a different interpretation.

This paper is organized as follows: §2 is devoted to formulating a new level set
equation for which the switch from Lagrangian coordinates to Eulerian formulation
is described. In §3 we discuss the possible reduction of the phase space dimension
and explain the possible failure of such a reduction in some cases. §4 is devoted
to documenting the numerical techniques used in our level set approach in a multi-
dimensional setting. In §5 we present a selected group of numerical simulations.

The main observation and results in this paper were reported in detail by the first
author at several occasions including the IPAM Lake Arrowhead Reunion Workshop,
September 15-19, 2002; Princeton University, September 30, 2002, CSCAMM in the
University of Maryland, December 3, 2002, and the IPAM workshop on “Emerging
Applications of Nonlinear Schrodinger equations”, Feb 6-10, 2003. For slides see [14].

k

2. Level Set Formulation

The level set method is a computational method for tracking the evolution of
interfaces, proposed in [49]. The idea is to represent a curve/surface as a zero level
set of some properly chosen function. The motion of the curve/surface is given by a
transport equation based on the physics describing the evolution of the interface.

The choice of the level set function depends on the interface considered. In the
context of the semiclassical regime, we are interested in both wave front propagation
and the phase determined by Schrodinger’s equation.

We proceed in two steps to realize the phase value S via the level set method.
Step 1. Evolution in phase space, (z,p) € IR*™,

The solution S of the Hamilton-Jacobi equation,
oS+ H(z,V.S) =0, (2.1)

can be obtained, at least locally, by the method of characteristics. This means that
each point in the neighborhood of the initial manifold is reached by a unique integral
curve z(t, o), called a ray, with z(«,0) = « being the initial position of each ray. Set

p = V,S(z(t, ), t),
the curves, (t,a) — (x(t, «), p(t, «)), called bicharacteristics, and solve the ODE’s
do _
dt

P Vo H(p), p(0.0) = VaSi(a) (23)

V,oH(z,p), z(0,a)=a, (2.2)
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Having solved this system we obtain the solution of the HJ equation (2.1) by inte-
grating

dS(x,t

B 9, Hep) ~ Hrp), S@0.0).0)=Spfa).  (24)
Let the initial manifold be parameterized as {a = y(6), 6 € I C IR} and let po(6)
and Sp(6) be given functions on the initial manifold. The projection {x = z(t,0), t¢€
IR",0 I } of the characteristics onto R™ are the usual rays of geometrical optics.
The solution of the Hamilton-Jacobi equation is given by

S((0.0).0) = So(a(0) + [ -V, — W)

where the integral is calculated along the characteristics.
The transformation

(t,0) — z(t,0)

is invertible and (¢,6) may be non-smooth or multi-valued functions of x. Thus rays
may intersect but the characteristics will never intersect in phase space. The phase
solution S(z,t) may also be a multi-valued function.

To allow the multi-valued description of the phase S(z,t) = {S;(z, 1)}, we
study the evolution of S in the phase space of (z,p) € IR*™, governed by

OS + VpH(z,p) - VS =V H(z,p)-VpS =p-V,H(z,p) — H(z,p). (2.5)

since this equation is linear we know that the solution S exists for all time. In contrast
to the case of a nonlinear HJ equation (2.1), we have global solutions for (2.5), i.e.,
no caustics appear in phase space! Note that the initial data is given by p = V,Sp(«)
and the curves z(t, o) are the rays associated to the Hamilton-Jacobi equation (2.1)
with initial data S(x,0) = Sp(a). This reflects the fact that the bicharacteristics
in phase space are projected down to rays z(t,«) in physical space and include an
additional curve p(t, @), which is the gradient of the phase S along the rays.

Clearly the phase S does not stay on any zero level set in (x, p) space since it sat-
isfies a forced hyperbolic transport equation (2.5). To evolve S as a whole solution to
(2.1) via a zero level set, one can extend the phase space by introducing an additional
variable.

Step 2. The choice of the level set function

The wave front to be tracked can be realized as the intersection of the zero level
sets of n+1 level set functions as described previously. Each level set function remains
unchanged along the characteristics, which implies that each level set function ¢ solves
the Liouville equation

Ohp+U -Vo=0 (2.6)

with velocity field U = (V,H,—V,H). Among the n + 1 level set functions, n are
used to represent p = V.S and one is used to identify the front location.
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The choice of the level set for realizing the multi-valued phase S depends on the
specific form of the Hamiltonian H (z,p).

1) If H(x,p) is homogeneous of degree 1 in p, i.e., for any A € IR, H(z, \p) =
AH (z,p), then p- V,H = H, and thus S satisfies the homogeneous equation

S + VpH(z,p) VS -V H(z,p)-V,S =0, (2.7)

which implies that S remains constant along the ray. One can simply solve this
homogeneous hyperbolic PDE, the same as the Liouville equation (2.6) above, since
its linearity already “unfolds” the possible multi-valuedness in (x, p) space. For the
wave front solution one just needs to locate the multi-valued front surface as above,
see [47], since S remains the same on the wave front surface. The multi-valued S on
the physical domain, which was not computed in [47], is simply the restriction of S,
obtained by solving (2.7) directly with initial data Sy(z), on the manifold p = V.5,
which is obtained by the intersection of the first n zero level sets stated above.

A prototypical example is the geometrical optics approximation for the wave
equation

02u = *(x)Au,
for which the phase satisfies
S + c(z)|V, S| =0,
which is the HJ equation (1.3) with H = ¢(x)|p|, see [22, 23, 47].

2) For a general Hamiltonian H(x,p), the source term p - V,H — H may not
be identically zero. The phase of the wave function will change its shape along the
rays. The level set method in [47] does not work in this case even for computing the
multi-valued wave front solution. Thus we derive here a new level set formulation for
realizing S.

We introduce an artificial space variable z and consider the characteristic field
(2.2)-(2.3) augmented with velocity field in z,

dz

5 =P VHp(w,p) — H(z,p).

Note that the above equation when combined with (2.4) implies that the graph z =
S(t,z,p) is preserved along the extended characteristics,

d

o = Vel 2(0.0) =0,

dp

E = *V$H($,p), p(oa a) = VISO(O‘)a

dz

it VH,(x,p) — H(z,p), =2(0,a)= S(a).

We introduce a level set function ¢ = ¢(t,z,p, z) so that the graph z = S can be
realized as a zero level set,

¢(t7xap7 Z) = 07 = S(t7.%',p). (28)
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This level set function should also be preserved along the extended characteristics,
i.e., it solves the transport equation

0o+ U - V{x7p72}¢ =0, (2.9)
where the corresponding velocity field is
U= (V,H, -V H, p-V,H-H).

In fact the above level set equation can also be formally derived from the hyperbolic
PDE (2.5) in a similar manner as in [16, 62]. Taking the gradient of the zero level set
(2.8), one has

Vitepy®+0:0V 0515 =0, (2.10)

where we have used the fact that z = S(¢,x, p). Note that 9,¢ # 0, so multiplication
of (2.5) by —¢, when combined with (2.10) leads to the above level set equation (2.9).

To realize S in (z,p) space one needs just one level set function, which can be
generated by solving (2.9) with initial data simply chosen as

¢(0,$,p, Z) =2 SO(ir)

To resolve S in the physical space x € IR one needs to also resolve p by an additional
n level set functions, call them ¢;, which can be generated by solving the level set
equation (2.9) with initial data chosen as

¢i(0a$ap72’)=pi—8xi50(x), 1=1---n.

Since both H and the initial data chosen in this way do not depend explicitly on .S,
the level set equation (2.9) reduces to the linear Liouville equation (2.6) without z
involved. Geometrically the graph z = S is realized by the intersection of a z related
zero level set and n gradient-related zero level sets; the multi-valued front surface is
tracked by the intersection of a front related zero level set and n gradient-related zero
level sets. In both procedures the intersection of the latter n gradient-related zero
level sets also approximately resolves V.S in the whole physical domain.

Clearly in order to track wave fronts one can still work in (x,p) space and solve
the linear Liouville equation (2.6). However using level set functions in the extended
(x, p, z) space enables us to evolve the phase S as a zero level set in the entire physical
domain.

3. Reduction of the Phase Space

In practice, one encounters problems with available computer memory when per-
forming higher dimensional computations. This section is devoted to the possible
reduction of the phase space dimension. We shall illustrate this with the case z € IR%.

Higher dimensions can be handled in a similar manner.
Along the flow determined by the velocity field, U = (V,H, -V H),

d
ZH=U-ViH=0,

hence the energy is conserved,

H(x,p) :H(Oé7p0(04)), (31)
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where o denotes the initial position of each particle path.
One of our goals is to visualize the propagation of the wave front for any given
initial wave profile. Assume the initial level curve is determined by ¢o(z) = 0, then

a€{x, ¢o(z)=0}.

Let this level curve be parameterized in terms of a single quantity ¢. Then one has
a = a(y) and also H (o, po(a)) = Ho(t)). Since along the particle path this parameter
does not change, we have

d
=0, (3.2)

This technique was introduced in [35]. Since H (z,p) = |p|?>/2+V (z), the conservation
of the energy (3.1) tells us that the amplitude of the ray |p| can be expressed in terms
of x and 9, i.e.,

Ip| = V2(Ho(¥) — V(). (3.3)

The above facts enable us to reduce the phase space from (z,p, z) € IR® to IR?.
Let p = |p|(cos8, sinf) in polar coordinates with 6 € [—m, w]. One then has

p’ = |p|'(cosb, sinb) + |p|(—sinb, cosd)d’ .

Multiplying this by (—sinf, cos) ™ on the right gives

/
o ="L. (—sinb, cosf) "

Ip|

Therefore from H = @ + V(z) it follows that the velocity field is

d

ditc = V,H = p = |p|(cosb, sinf),

dp

_ = — H =

i Ve V.V (z),

dz p|?

aI =p-V,H—-—H==—" —V(x)=Hy) — 2V (z).

This when combined with (3.3) leads to the reduced Lagrangian formulation for
4 (r,0,2) = U with velocity field

dt
Uy = /2(Ho(¥) — V(z))cosh, (3.4)
Us = \/2(Ho(0) — V(@))sind, (3.5)
Vi, sinf — V., cosf
Us = , 3.6
' VRl - V) >0
Us = Ho(w) — 2V (1), (3.7)

Therefore in the reduced phase space, (z,6,z) € IR?, the level set equation (2.9)
becomes

at(b + U({E797’¢) . v{m,9,2}¢ =0, ((E,a,Z) € |R4
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This equation is not closed because the velocity depends on the Lagrangian index v,
which is constant just along the flow. In the Eulerian formulation this Lagrangian
index satisfies the same transport equation as the level set does, i.e.,

O+ U (2,0,9) - Vg% = 0.

We can use an upwind type scheme to solve this transport equation, even if it is very
slightly nonlinear. The level set function evolves based on the updated velocity field.

The choice of 9 is not unique, however, one can take ¥» = H in the above setting
since the energy H is conserved along the characteristics. Note, in fact, that i appears
only in the term H (%)) and so, alternatively, we may track the value of H along with
the wave front, using the value when needed for the velocity field.

From the velocity in the reduced space we observe that the singularity may appear
for non-vanishing potential, thus working in the full space is still necessary.

For z € IR' such reduction is unnecessary. In this case there is no wave front to
be tracked, however the phase value in the whole space = € IR' can be easily realized
via the intersection of two zero level sets

¢i(t,x,p,z) =0, =12,
where ¢ is generated by solving the linear Liouville equation,
Ocp1 + OpHOpp1 — 0, HOpp1 =0 (3.8)
with initial data chosen as
$1(0,2,p,2) = p — 0250 ();
the level set function ¢ is obtained by evolving the generalized Liouville equation,
Orp2 + OpHOyp2 — O HOpgo + (pOpH — H)022 =0 (3.9)
subject to initial data chosen as

¢2(0,2,p, 2) = z — Sp(x).

4. Numerical Techniques

Our main task is two-fold: (1) construct the wave front and track its evolution;
resolve the associated multi-valued phase. (2) resolve the multi-valued phase S in the
entire domain.

As shown in Section 2, for (1), we need to compute n + 2 level set functions,
among which n + 1 level set functions can be used to resolve the multi-valued phase
S in the whole physical domain. In our numerical simulations we shall focus mainly
on the 2-dimensional case. We thus compute the multi-valued wave front solution
in (z,p) space by solving the Liouville equation (1.6), where the multi-valued S is
obtained by solving the forced hyperbolic equation (2.5) and then extracting it on
the obtained front surface. In the one-dimensional case, we illustrate (2) by the use
of n 4+ 1 = 2 level set functions in (z,p, z) space by solving a coupled system (1.6)
and (1.7). Consult [40] for the computation of multi-valued solutions of more general
nonlinear first-order PDE’s.
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The numerical technique for wave front construction in the setting we describe
here follows the framework and ideas of [47] for geometrical optics. Wave front con-
struction in geometrical optics encounters many of the same difficulties, namely that of
resolving wave fronts and handling multi-valued solutions. The approach taken in the
recent works of [23, 28, 47] is to work in phase space on bicharacteristic strips, which
represent the wave fronts when projected to physical space. The fact that bichar-
acteristic strips remain smooth in phase space in spite of multi-valued wave fronts
addresses the difficulties of multi-valuedness. Furthermore, an Eulerian method em-
ploying a fixed grid in phase space can be used to capture desired bicharacteristic
strips and hence desired wave fronts. This grid handles the problem of resolution.
The Eulerian approach adopted in [47] involves the vector valued level set method
[8] for representing the high codimensional bicharacteristic strips and solving the Li-
ouville PDE to capture their evolution. We follow the basic framework set in [47]
and comment on changes that need to be made specific to our Schrodinger equation
setting.

Let ¢(t, x, p) denote the vector valued level set function that represents the bichar-
acteristic strips in phase space (z,p) € IR?. In the two dimensional physical space
case, phase space is four dimensional and the bicharacteristic strips, which have the
same dimension as the wave fronts, are one dimensional. Following the procedure
outlined in [8], a vector valued function ¢ over phase space with three components,
¢i,i =1,2,3, is used to represent the bicharacteristic strips, i.e., they are determined
by the set of points where ¢ = 0, the zero level set.

The Liouville equation (1.6) governs the evolution of the bicharacteristic strips in
(z,p) € IR*, and thus the wave fronts. This PDE is a transport equation whose veloc-
ity field U(z,p) comes from the directions derived in the method of characteristics on
our Hamilton-Jacobi equation of interest. In the level set framework we are adopting,
the evolution is translated to evolution of the level set function through the Liouville
PDE on the components,

at¢i +U- v{z,p}¢i =0,

for i = 1,2,3. Note each of these equations can be considered independently. The
initial ¢, which we denote by ¢, of course represents the bicharacteristic strips of the
initial given wave fronts, usually certain level set curves of the phase. Construction
of this function can be easily accomplished. For example, if ¢g(z) = So(z) — C is the
level set function over spatial space that represents the initial given wave fronts, then
¢ is determined through satisfying two conditions. One is that the projection of the
zero level set of ¢ to physical space equals the zero level set of qgo, i.e., the initial wave
fronts. This can be accomplished by setting the first component (¢o)1(z,p) = ¢o(z).
The second condition is that p = V,Sy must be satisfied at the zero level set of ¢,
where Sy is the initial given phase. This can be accomplished by setting the rest of
the components as

(¢0)i(x,p) = pi—1 — (S0)a;_, (%),

for ¢ = 2,3. The evolution PDE’s can then be solved with this initial condition in
four dimensional phase space to capture the desired bicharacteristic strips and hence
the desired wave fronts.

In geometrical optics, the phase S on the wave fronts remains constant during
evolution, however, this is not the case in the Schrédinger equation setting. Thus,
the phase needs also to be captured so as not to lose important information in the
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transfer from the linear Schrodinger equation to the Hamilton-Jacobi form. This can
be accomplished by solving the Liouville PDE with forcing term,

8tS+U'V{x7p}S=p-VpH—H, (4.1)

for S(t,x,p) in phase space. The initial condition here is S(0,z,p) = Sp(x). We
can thus realize the phase value in the entire domain and, especially, the phase on
the bicharacteristic strips can be extracted by looking at S on the zero level set of
¢. Note that S can be multi-valued when considered in the physical domain. As
remarked before, solving the above linearly forced hyperbolic equation is equivalent
to solving the level set equation we introduced in §2 in light of “unfolding” the multi-
valuedness in (x,p) space. Numerically we choose to solve (4.1) directly and then
extract the phase value on the front surface. However in the 1-D setting we use the
level set approach to realize the phase value in the whole physical domain, as stated
at the end of §3.

The PDE evolution equations for evolution of the bicharacteristic strips and the
associated phase can be solved numerically by using explicit finite difference methods
over a uniform grid in phase space. The forcing function in the equation for phase can
be determined analytically or approximated using central differencing on derivatives.
The rest of the terms in all the PDE’s look the same and can be discretized using
high order upwind schemes for the derivatives in phase space and high order Runge-
Kutta methods for the time derivative. We use WENO-Godunov of fifth order [36]
and SSP-RK of fourth order [57] or TVD-RK of third order [50] in our simulations.
The CFL stability condition in this case says that the time step At needs to satisfy

Ax

At < ————
2maxg , |U]

a relatively mild condition to the time step. Note that phase space can be reduced
one dimension by replacing p by its angle 6 as stated in §3. Such techniques have been
successfully used in the geometrical optics case but cannot easily be performed for the
problem we are studying since singularities may develop in the evolution equations
when p-V,H — H = 0. As the locations of these singularities are not known a priori,
we resign ourselves to the full phase space formulation.

In spite of this, we do not, however, need to perform all our calculations at every
point of the four dimensional phase space. This is because only the zero level set of
¢ is of interest. Thus it is possible to work in a thin tube surrounding the zero level
set, ignoring points far away. This is the main idea behind the local level set method
[51], which was implemented successfully for the framework in geometrical optics in
[47]. Despite the higher dimension involved in our setting here, the same techniques
can be applied to localize around the bicharacteristic strips, working just in a tube
of radius proportional to the phase space step size Ax, thus producing an efficient
algorithm for wave front construction. We have not yet produced such an algorithm,
and thus all our simulations occur over coarse grids in four dimensional phase space,
but it is clearly doable. In fact, recent conversations with Chohong Min reveal that a
local level set algorithm for vector valued level set functions in arbitrary dimensions
may soon be available.

In the local level set approach, reinitialization, i.e., replacement of the nonunique
level set functions by better versions, is needed to prevent inaccuracies at the tube
boundary from affecting the core, the zero level set. However, reinitialization is also
needed to prevent the zero level set surfaces of the components from becoming near
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parallel to each other at their intersection. This is particularly important when using
coarse grids in certain situations, as results in our simulations show. The reintializa-
tion algorithm in our work here should differ from that in [47] and those previously
investigated since we are dealing with a three component level set function. The
desired form for the components are that each is a signed distance function with or-
thogonal zero level set surfaces. However, in practice, we only need approximations of
these properties near the zero level set of the vector valued level set function. In fact,
coarse approximations are acceptable in many situations. In this direction, we have
implemented numerous ad hoc but fast methods in our studies. A better approach
seems to be to evolve the first level set function so that its zero level set, when viewed
on the zero level set surface of the second function, is orthogonal to the zero level set
of the third function on that surface. This can be accomplished through techniques
found in [13]. Then the zero level sets of the first and third can be made orthogonal to
that of the second by using the techniques of [8, 47]. Signed distance of the level set
functions should be enforced between these steps for a better form. This procedure
can be iterated until a desired, numerically more robust form near the bicharacteristic
strips is achieved. However, a more careful study of the behavior in general situations
is needed.

After the evolution equations are solved to the desired time, the desired wave
fronts can be plotted to show the results of the simulation. The high dimension of
the phase space considered here, however, complicates matters. At this moment, our
simplistic approach to plotting the zero level set of ¢ involves starting with grid points
neighboring it. This is already an approximation of the desired bicharacteristic strips,
albeit a rough one. The criterion we use to determine if a point neighbors the zero
level set is to see if all the components ¢;,7 = 1,2, 3, have different sign at neighboring
points. The approximation of the bicharacteristic strips can then be sharpened by
considering for each point its projection onto the zero level set surfaces of each of the
level set function components, looking at the intersection of the tangent planes there,
and replacing the original approximating point by, for example, the closest point in
this intersection. Normals of the level set surfaces of ¢;,7 = 1,2, 3, written as

Vi

Vil

are used for projecting and finding tangent planes. This process can be repeated to sat-
isfaction. Note flowing the original approximating points to satisfy \/¢? + ¢3 + ¢3 =
1, as done in [47], can also be employed. The final result is a set of points that
approximately lie on the zero level set of ¢. These points can then be projected to
spatial space to form the wave front of interest. Better plotting schemes that produce
curves approximating the wave fronts rather than a cloud of points can be found in
the recent work of [45].

We now discuss the numerical treatment when construction of the wave fronts
and realizing the phase value thereon, in reduced space, is a better choice.

In the phase space (z,60,z) € IR* we denote a curve as an intersection of three
level set functions ¢; for ¢ = 1,2,3. Thus the system of evolution equations for the
time dependent level set functions can be written as

at(bi + U(xa 9,2,1/)) : v{ac,é),z}¢i =0,0=1,2,3,
where the Lagrangian index evolves according to

atl/} + U(-T7 0, z, ’(/}) : V{mﬂ,z}d] =0,
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with velocity field U given in (3.4)-(3.7). The role of the z variable is to realize the
phase value S on the wave front.

Hence the problem of constructing wave fronts and realizing the phase value
becomes one in solving a system of PDE’s in IR%.

In addition to the techniques described above for working in the full phase space,
we comment on the choice of initial data and prediction of the Lagrangian index .

It is necessary to initialize the three level set functions to represent a given curve
in IR*. For a given initial curve, we may represent it by constructing level set functions
based on the following guiding principles.

(1) One level set gives the initial given front when projected onto physical space;

(2) Another level set is chosen to take care of the angle of the curves;

(3) The last one is chosen to take care of the graph of the initial phase.

One choice for the initial level set (¢1, ¢2, ¢3)(t = 0) is to take

(;bl = (Z)O(x)v
P2 = oz, SINO — Doz, 080,
¢3 =z — So(x).

We should point out when we use the level set method introduced in §2 to resolve the
phase value S in the entire domain, we do need to work in the space of (z,p,z) € IRS.
In the reduced space we also need to predict the Lagrangian index 1 via solving a
nonlinear transport equation

Oyh + U(x,0,1) - Vip = 0.

In the evolution step, one may just use upwind type methods. Initial data needs to
be properly chosen. As described above, the initial data of ¥ is the parameter of the
initial curve ¢g(z) = 0. One needs to express this parameter in terms of the variables
(z,0, z) in reduced phase space. Let this curve be parameterized as
1 =2x1(8), 2 = ma(s).
Then the initial level set ¢; = 0 leads to
dSL‘l dCL‘g
¢Ow1 75 + ¢0w2 E =0.
From this and the second initial level set ¢ = 0 we find that
dxy dry  Gox,
§)i=——-/—— = = tan(0).
o) o=~ G2 = 52 = tan(0)

Therefore if g is invertible, we have

s =g ' (tg(9)).

This can be done at least for convex curves, see the following illustrative example.

2 2
Example. A level curve of an ellipse ¢p(x) = % + i—;% — 1 can be parameterized

as
x = acos(s), y=bsin(s), -w<s<m.
The corresponding function g is determined by g = —% % = ¢tan(s) Therefore

s =tg~![2tg(6)]. For a circle, i.e., a = b it turns into s = 6.
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5. Numerical Examples

We present several computational examples in order to describe different aspects
of our approach. We first consider free motion, where V(z) = 0. Thus the total
energy is just the kinetic energy

p|?
H=H(p)= N
The associated Hamiltonian flow is given by = « + pot and the velocity p = pg
remains constant. We consider examples of phase motion subject to different types
of initial phases Sp(x).
2
Example 1. (No caustics) So(z) = %, z € IR?
We take as the initial wavefront one of the circles that make up the level sets of
So(z). The velocity field in Liouville’s equation in this case takes the form

U(z,p) = (p,0)

and the circle grows.

Figure 5.1 shows the growth without any added reinitialization. In this case, the
zero level sets of the components of the vector valued level set function become close
to parallel at a later time and hence the plotter fails to produce a stable curve. Figure
5.2 shows the same growth with reinitialization. This provides a more desirable level
set representation that the plotter can handle. There is no multi-valuedness in this
example.

05 05
0 O 0
05 05
- 0 Y 0 1
1 1
05 05
0 Q 0 0
05 05
-1 -1

F1a. 5.1. The first row shows the effects of a growing circle under free motion when no reini-
tialization is employed. The second row shows the effects of a shrinking circle in the same setting.
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-1 -1 -1

Fic. 5.2. The evolution of a growing circle under free motion. Reinitization fixes the problems
seen in figure 5.1.

In fact solving the characteristic equation %(m, p) = (p,0) with initial data
(a, VSp(@)) = (e, @) one gets z = a1 +t). From £S5 = |’72|2 one has S = Sy(a) +
|p0|2 t = \x|2

2 VT 3+t

— =P 2
Example 2. (Focus) Sp(z) = —5- z€IR
In this case, the initial circular wavefront shrinks under the same Liouville equa-
tion. Figure 5.1 once again shows the results with no added reinitialization and figure
5.3 shows the fixed results when reinitialization is used. Multi-valuedness occurs in

this example when the circle becomes a point and then subsequently grows into a
circle.

The next series of examples we consider is on the harmonic oscillator. In this

case, V(z) = @ and so

2 2
H(z,p) = % + %, z, pelR”

In this case the Hamiltonian flow is given by
x = acos(t) + posin(t),
p = —asin(t) + pocos(t).

Example 3. Sy(z) = @ The initial wavefront is once again a circle. The velocity
field for the Liouville equation is

U(x,p) = (pv —.’L‘).



610 LEVEL SET METHOD FOR SCHRODINGER EQUATIONS

In this case, reinitialization is not needed, at least when the chosen final time is not
too large.

Figure 5.4 shows the oscillating nature of the circle in this setting. Multi-valuedness
occurs when the circle shrinks to a single point and then expands out again. Actually
if the initial wave front is a circle, then the moving wave front is also a circle with
oscillating radius, i.e., |z|?> = 1 + sin(2t).

Example 4. We collect here results for different initial phases that lead to initial
wavefronts of a shifted circle in figure 5.5 and two circles in figure 5.6. Note that
mult-valuedness occurs both when the circles collapse to a point and, in the case of
two circles, when two wavefronts pass through each other.

Finally, figure 5.7 shows the evolution of an initial wavefront that is a horizon-
tally elongated ellipse and the values of the phase, plotted in the vertical direction,
computed for the wavefronts at different times.

Example 5. We consider in this example the case of
1
V(a) = 5 + i),

for some constant w > 0. Results are shown in figure 5.8, with phase in figure
5.9, when considering an initial elliptical wavefront. Multi-valuedness occurs during
the evolution and is successfully dealt with using our approach. Such non-isotropic
potential appears, among others, in the context of Bose-Einstein condenste, in which
the trapped potential has different frequencies in the x1 and x5 directions, respectively,
see e.g. [1].

Example 6. Finally, we consider a different computation of the phase solution in
the space (x,p, z), where x, p, z € IR. The initial phase is given by z = —Incoshz in
the case of free motion. Level set functions ¢; = z 4+ Incosh z, s = p + 9, (In cosh x)
are used to represent the codimension object of interest. Evolution follows the velocity
field (p, 0, —%) in the space and thus the curve motion can be captured by solving a
transport equation. Results of this computation, with the curve projected into (x, z)
space, are shown in figures 5.10 and 5.11. We note that a caustic appears and its
time and location of appearance agree with the theoretical predictions of t = 1,2 = 0.
Figure 5.12 shows the results when the projection is made into (z, p) space and figure
5.13 shows the actual smooth curve evolved in the full (z,p, z) space.
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Fic. 5.3. The evolution of a shrinking circle under free motion. Reinitization fizes the problems
seen in figure 5.1. Multi-valuedness occurs in this evolution.

1 1
05 0.5 05 05
o100 10
~05 ~05 ~05 05
= 0 1 0 1 0 1 0 1
1 1 1
05 0.5 05
0 O 0 o 0 O
-05 -05 -05
= 0 1 0 1 0 1

Fi1G. 5.4. An oscillating circle in the harmonic oscillator setting.

Note multi-valuedness occurs
when the circle collapses to a point.



612

LEVEL SET METHOD FOR SCHRODINGER EQUATIONS

1
0.5 0.5 0.5
/"\
N\
-0.5 -0.5 -0.5
-1 -1 -1
-1 0 1 -1 0 -1 0 1
1 1 1
0.5 0.5 0.5
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-1 0 1 -1 0 1 -1 0 1

Fi1c. 5.5. An initial circular wavefront not centered at the origin shown in the harmonic oscilla-

tor setting. This causes the circle to move left and right while its radius oscillates. Multi-valuedness
occurs during the evolution when the circle collapses to a point.

1 1
05 05 05
of O O oo O O ¢ 0O
-05 -05 -05
- 0 - 0 - 0 1
1 1 1
05 05 05
0 oo 0 - 0 (oo}
05 05 -05
. 0 PR 0 PR 0 1

F1c. 5.6. Results of the evolution of two initially circlar wavefronts for the harmonic oscillator.

In this case, multi-valuedness in addition occurs when the two circles move toward each other and
pass through each other while oscillating.
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-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

FiG. 5.7. In the figure on the left, results of the evolution at different times of an initial
horizontally elongated ellipse are plotted in one diagram in the harmonic oscillator setting. The
figure on the right shows the corresponding phases on the curves with the vertical direction denoting
the value of the phase.

1 1 -1
05 05 -05
O 1) 1o
-05 -05 05
= 0 1 h 0 1 h 0 -1
1 1 1
05 05 05
of  — o O 0 O
-05 -05 -05
= 0 1 h 0 1 h 0 1

Fi1Gc. 5.8. An initial elliptical wavefront expands, then contracts, exhibiting multi-valuedness
during the flow.
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-1 -1

Fic. 5.9. The phase values, given by height in vertical direction, on the wavefronts of figure 5.8.
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1 1
0 0
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I 0 2 I 0 2
3 3
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-2 -2
I 0 2 I 0 2

F1c. 5.10. Results of phase evolution, with caustic appearing, in free motion. The vertical azis
is the phase z and the horizontal axis represents space x. This is projected from (x,p, z) space.
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0.5 0.5
0 0
-0.5 -0.5
-0.5 0 0.5 -0.5 0 0.5
0.5 0.5
0 0
-0.5 -0.5
-0.5 0 0.5 -0.5 0 0.5

Fic. 5.11. A more detailed look at the caustic of the case considered in figure 5.10. The figures
in the top row are a zoomed picture at the area around x = 0 tmmediately before t = 1. The figures
in the bottom row are the continuation in time showing the caustic immediately after t = 1. The
location and time of appearance of the caustic agree with theoretical studies.
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F1G. 5.12. Results of the phase evolution of figure 5.10 from a different viewpoint. In this plot,
the vertical azis is p and the horizontal axis is x. This is projected from (x,p, z) space. Note there
is no caustic from this viewpoint.
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2 2
0 0
-2 -2

2 2
0 0
-2 -2

F1c. 5.13. The actual curve being evolved in (x,p, z) space in the case considered in figure 5.10.
In this plot, the vertical axis is z and the horizontal axes are x and p. The curve is smooth, but this
does mot prevent its projection to (x,z) space from having caustics.
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