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DISCRETE TRANSPARENT BOUNDARY CONDITIONS FOR THE
SCHRÖDINGER EQUATION: FAST CALCULATION,

APPROXIMATION, AND STABILITY∗

ANTON ARNOLD † , MATTHIAS EHRHARDT ‡ , AND IVAN SOFRONOV §

Abstract. We propose a way to efficiently treat the well-known transparent boundary conditions
for the Schrödinger equation. Our approach is based on two ideas: to write out a discrete transparent
boundary condition (DTBC) using the Crank-Nicolson finite difference scheme for the governing
equation, and to approximate the discrete convolution kernel of DTBC by sum-of-exponentials for a
rapid recursive calculation of the convolution.

We prove stability of the resulting initial-boundary value scheme, give error estimates for the
considered approximation of the boundary condition, and illustrate the efficiency of the proposed
method on several examples.
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1. Introduction
The development of grid algorithms for solving initial–boundary–value problems

on unbounded domains involves the question of formulating boundary conditions on
an (artificial) boundary that cuts off a finite computational domain from the original,
infinite portion of space. These boundary conditions (BCs) are not contained in the
original problem formulation: they should be obtained by a transformation of the
given asymptotic conditions at infinity onto the artificial boundary. Such a trans-
fer must provide an approximation of the solution on the unbounded domain by the
solution calculated in a finite domain with an artificial boundary. If the approxima-
tion is exact, the transfer is called exact, and the corresponding artificial boundary
condition is called exact or transparent. For instance, different transparent boundary
conditions (TBCs) for the wave equation are derived in [47, 44, 21, 45]; examples for
other evolution problems are contained in [22].

Clearly, transparent boundary conditions permit us to consider computational
domains of a minimal size, and therefore, they allow potentially to construct fast
algorithms of computing solutions. However, there are several problems towards this
goal: the first one is connected with the derivation of the boundary conditions them-
selves. Secondly, the numerical treatment (approximation, stability, efficiency) of cor-
responding analytical formulas for the BCs is a very delicate question. As a promising
approach one can consider so–called discrete transparent boundary conditions (DT-
BCs) that are derived for a finite–difference approximation of the original evolution
problem on an unbounded domain. The idea of such boundary conditions for general
evolution difference equations is discussed in [36, 37]. DTBCs keep the approxima-
tion and stability properties of the difference scheme used. However, usually there
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still remains the question of relatively high computational costs required for their
implementation.

This paper is concerned with the numerical treatment of DTBCs for a finite–
difference scheme of the Schrödinger equation governing the time evolution of the wave
function ψ(x, y, t) ∈ CI in a 2D waveguide under the action of a given electrostatic
potential V (x, y, t) ∈ IR.

Schrödinger equation. Consider a rectangular geometry that appears e.g. in
the modeling of quantum waveguides and wave couplers (cf. [15]). In these applica-
tions the wave function ψ(x, y, t) satisfies (within a good approximation) homogeneous
Dirichlet BCs at the channel boundaries. Therefore, the (scaled) transient Schrödinger
equation for such an (infinitely long) channel (or “lead”) of a waveguide reads:

iψt = −1
2
∆ψ + V (x, y, t)ψ, x ∈ IR, 0 < y < Y, t > 0,

ψ(x, 0, t) = ψ(x, Y, t) = 0, lim
|x|→∞

ψ(x, y, t) = 0, (1.1)

ψ(x, y, 0) = ψI(x, y).

We assume that the given potential V is constant outside of the computational domain
[0, X]× [0, Y ] (cf. Figure 1.1):

computational

domain

exterior

domain

exterior

domain

0
0 X

Y

x

y

Fig. 1.1. The artificial BCs at x = 0, x = X cut off the exterior domains.

V (x, y, t) = V− ≡ const for x ≤ 0, V (x, y, t) = V+ ≡ const for x ≥ X,

0 < y < Y, t ≥ 0, and that the initial data has a compact support:

supp ψI ⊂ (0, X)× [0, Y ].

Discussions of strategies to soften these restrictions could be found in [25, 43, 20].
Also, the computational domain is chosen here as a rectangle only for simplicity

of the presentation. The geometry could be more complex, as it is the case in [15],
e.g. The only constrains for our subsequent discussion of TBCs is that the exterior
domains are semi–infinite strips (cf. [10] for a related stationary model).
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Equation (1.1) has also important applications in optics (“Fresnel equation”, [41])
and acoustics (“parabolic equation”, [48]) as a paraxial approximation to the wave
equation in the frequency domain.

Analytic TBCs. Let us exemplify first analytic TBCs that can be derived for
the Schrödinger equation. For simplicity, we restrict us here to the 1D case when
none of the considered functions depend on y. These TBCs were independently de-
rived by several authors from various application fields (cf. [34, 9, 23]; inhomogeneous
extensions are analyzed in [7, 11]). They are non–local in t and read

ψx(0, t) =

√
2
π

e−
π
4 ie−iV−t d

dt

∫ t

0

ψ(0, τ)eiV−τ

√
t− τ

dτ (1.2)

for the left boundary at x = 0, and

ψx(X, t) = −
√

2
π

e−
π
4 ie−iV+t d

dt

∫ t

0

ψ(X, τ)eiV+τ

√
t− τ

dτ (1.3)

for the right boundary at x = X.
Since TBCs are of memory–type, their numerical implementation requires to store

the boundary data ψ(0, .) and ψ(X, .) of all the past history. Moreover, the discretiza-
tion of the left and right TBCs (1.2), (1.3) is not trivial at all and has attracted lots of
attention. For the many proposed strategies of discretizations of the TBCs (1.2), (1.3)
(as well as semi–discrete approaches), we refer the reader to [3, 4, 9, 13, 31, 39, 41]
and references therein. We remark also that inadequate discretizations may introduce
strong numerical reflections at the boundary or render the discrete initial boundary
value problem only conditionally stable, see [20] for a detailed discussion.

Difference equations. We consider a Crank–Nicolson finite difference scheme,
which is one of the commonly used discretization methods for the Schrödinger equa-
tion. With the uniform grid points xj = j∆x, yk = k∆y (where J∆x = X, K∆y =
Y ), tn = n∆t, and the approximation ψj,k,n ∼ ψ(xj , yk, tn), j ∈ ZZ, 0 ≤ k ≤ K, n ∈
IN0, this scheme reads for the whole space problem:

− 4i

∆t
(ψj,k,n+1 − ψj,k,n) (1.4)

=
ψj+1,k,n+1 − 2ψj,k,n+1 + ψj−1,k,n+1

∆x2
+

ψj+1,k,n − 2ψj,k,n + ψj−1,k,n

∆x2

+
ψj,k+1,n+1 − 2ψj,k,n+1 + ψj,k−1,n+1

∆y2
+

ψj,k+1,n − 2ψj,k,n + ψj,k−1,n

∆y2

−2Vj,k,n+ 1
2

(ψj,k,n+1 + ψj,k,n) , j ∈ ZZ, 1 ≤ k ≤ K − 1, n ≥ 0,

with

Vj,k,n+ 1
2

= V (xj , yk, tn+ 1
2
).

Transparent boundary conditions are obtained by explicit solution of the equation
in the two exterior domains x ≤ 0 and x ≥ X. In order to reduce the problem to the
simpler 1D case, the Fourier method is used in y-direction. Due to the homogeneous
Dirichlet BCs at the channel walls (y = 0, y = Y ) we have

ψj,0,n = ψj,K,n = 0, j ∈ ZZ, n ≥ 0, (1.5)
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and hence, use discrete Fourier transform of ψj,k,n in y-direction with respect to sine-
functions:

ψm
j,n :=

1
K

K−1∑

k=0

ψj,k,n sin
(

πkm

K

)
, m = 1, . . . , K − 1. (1.6)

The scheme (1.4), (1.5) in the two exterior domains j ≤ 0 and j ≥ J then
transforms into:

− 4i

∆t
(ψm

j,n+1 − ψm
j,n) (1.7)

=
ψm

j+1,n+1 − 2ψm
j,n+1 + ψm

j−1,n+1

∆x2
+

ψm
j+1,n − 2ψm

j,n + ψm
j−1,n

∆x2

−2V m
j

(
ψm

j,n+1 + ψm
j,n

)
,

V m
j := Vj +

1− cos πm
K

∆y2
, j ∈ ZZ \ [1, J − 1], 1 ≤ m ≤ K − 1, n ≥ 0.

The modes ψm, m = 1, . . . ,K − 1 are independent of each other in the exterior
domains since the potential V is constant there. Therefore we can continue our
analysis for a separate mode only.

Thus, by omitting the superscript m in the notation, we will consider a discrete
1D–Schrödinger equation of the following form:

−iR(ψj,n+1 − ψj,n) = ψj+1,n+1 − 2ψj,n+1 + ψj−1,n+1 (1.8)
+ ψj+1,n − 2ψj,n + ψj−1,n − wVj,n+ 1

2
(ψj,n+1 + ψj,n) ,

where

R =
4∆x2

∆t
, w = 2∆x2, Vj,n+ 1

2
= V (xj , tn+ 1

2
),

V (x, t) = V− for x ≤ 0, V (x, t) = V+ for x ≥ X, t ≥ 0, (1.9)

with constant V− and V+. We remark that the spatial discretization on the compu-
tational interval [0, X] can be nonuniform (e.g. adaptive in time) for our subsequent
analysis.

Note two important advantages of this second order (in ∆x and ∆t) scheme: it
is unconditionally stable, and it preserves the discrete L2–norm

‖ψn‖22 := ∆x
∑

j∈ZZ

|ψj,n|2

with respect to time (these properties will be used for stability analysis in §5).

Discrete TBCs. Discrete transparent boundary conditions for the equation
(1.8) were introduced in [5]. These DTBCs at the two boundary points j = 0 and
j = J (with X = J∆x) can most easily be expressed for the Z–transformed problem:

ψ̂1(z) = ˆ̀
0(z)ψ̂0(z), ψ̂J−1(z) = ˆ̀

J(z)ψ̂J(z), (1.10)
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where the Z–transform of the sequence {ψj,n}, n ∈ IN0 (with j considered fixed) is
defined as the Laurent series, see [18]:

Z{ψj,n} = ψ̂j(z) :=
∞∑

n=0

ψj,nz−n, z ∈ CI . (1.11)

The two transformed boundary kernels ˆ̀
j(z) are respectively calculated as (cf. [5, 20]):

ˆ̀
0(z) = 1− iζ0 ±

√
−ζ0(ζ0 + 2i), ζ0 =

R

2
z − 1
z + 1

+ i∆x2V−, (1.12a)

ˆ̀
J (z) = 1− iζJ ±

√
−ζJ(ζJ + 2i), ζJ =

R

2
z − 1
z + 1

+ i∆x2V+. (1.12b)

In order to have decaying solutions ψ̂j(z) outside of the computational domain (i.e.
for j → ±∞) we have to choose the branch of the square root such that |ˆ̀0(z)| > 1
and |ˆ̀J(z)| > 1. The inverse Z–transform of ˆ̀

j , j = 0, J then defines the convolution
coefficients for the DTBCs:

{`j,n} := Z−1{ˆ̀j(z)}, j = 0, J.

Since the magnitude of `j,n does not decay as n →∞ (`j,n behaves like const ·(−1)n

for large n), it is more convenient to use a modified formulation of the DTBCs (cf.
[20]). We introduce

ŝj(z) :=
z + 1

z
ˆ̀
j(z), j = 0, J, (1.13)

and

{sj,n} = Z−1{ŝj(z)}, (1.14)

which satisfy

sj,0 = `j,0, sj,n = `j,n + `j,n−1 = O(n−
3
2 ), n ≥ 1. (1.15)

The corresponding Laurent series of

ŝj(z) =
∞∑

n=0

sj,nz−n (1.16)

converges (and is continuous) for |z| ≥ 1 because of the decay (1.15).
In physical space the DTBCs then read (cf. Th. 3.8 in [20]):

ψ1,n − s0,0ψ0,n =
n−1∑

k=1

s0,n−kψ0,k − ψ1,n−1, n ≥ 1, (1.17a)

ψJ−1,n − sJ,0ψJ,n =
n−1∑

k=1

sJ,n−kψJ,k − ψJ−1,n−1, n ≥ 1, (1.17b)
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with the explicitly calculated convolution kernel:

sj,n =
[
1− i

R

2
+

σj

2

]
δn,0 +

[
1+ i

R

2
+

σj

2

]
δn,1 +αj e−inϕj

Pn(µj)− Pn−2(µj)
2n− 1

, (1.18)

ϕj = arctan
2R(σj + 2)

R2 − 4σj − σ2
j

, µj =
R2 + 4σj + σ2

j√
(R2 + σ2

j )
[
R2 + (σj + 4)2

] ,

σj = 2∆x2Vj , αj =
i

2
4

√
(R2 + σ2

j )
[
R2 + (σj + 4)2

]
eiϕj/2, j = 0, J.

Here Pn denotes the Legendre polynomials (P−1 ≡ P−2 ≡ 0), and δn,k is the Kronecker
symbol.

In order to formulate the DTBC as in (1.10) it is necessary that the discrete initial
condition vanishes at the two adjacent (spatial) grid points appearing in (1.10). Here,
we chose to formulate the DTBC at the boundary of the computational interval and
one grid point in the interior. Hence we have assumed that the initial condition
satisfies ψ0,0 = ψ1,0 = 0 and ψJ−1,0 = ψJ,0 = 0. However, without any change
to our subsequent analysis one could also prescribe the DTBC at j = −1, 0 and at
j = J, J + 1, resp.

The use of the formulas (1.17) for calculations permits us to avoid any boundary
reflections and it renders the fully discrete scheme unconditionally stable (just like the
underlying Crank–Nicolson scheme). However, the linearly in t increasing numerical
effort to evaluate the DTBCs can sharply raise the total computational costs. Note
that we need to evaluate just one convolution of (1.17) at each time step (at the
endpoint of the interval [0, tn]). Since the other points of this convolution are not
needed, using an FFT is not practical. A strategy to overcome this drawback will be
the key issue of this paper.

The considered DTBCs (1.17) include the discrete convolution of the unknown
function with a given kernel (1.18). Our approach for fast evaluation of this convolu-
tion consists of approximating the kernel by a finite sum of exponentials that decay
with respect to time (cf. [29]): this will permit us to use recurrence formulas for the
time stepping, see Section 4. Such kind of trick has been proposed in [44] for the con-
tinuous TBC in case of the 3D wave equation, and developed in [1, 2, 45, 46, 16, 22]
for various hyperbolic problems.

Related results. As for the Schrödinger equation, we remark that a related
approach was proposed by Bruneau and Di Menza ([13, 17]). There the authors
consider the continuous TBC in Laplace space (for V− = 0):

ψ̂x(0, s) =
√

2e−
π
4 i +
√

s ψ̂(0, s); s = iξ, ξ ∈ IR (1.19)

where +
√ denotes the branch of the square root with positive real part. Its symbol

+
√

s is represented by a rational function calculated with the help of a least-squares
approximation on the imaginary axis. This approach gives decaying sums of expo-
nentials for the convolution kernel but does not allow for a convergence analysis or
error estimates of the resulting finite difference scheme (see Example 6.3 below).

The limit ∆x → 0 of the DTBCs (1.17) coincides with the temporally semi–
discrete TBC of Schmidt and Deuflhard [41] and of Lubich and Schädle, cf. [28, 38].
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On the other hand, alternative derivations of the DTBC (1.17) could be done by
applying the Mikusiński operator approach, cf. [42], or the operational calculus, cf. [28],
to the convolution–type BC of the spatially semi–discretized Schrödinger equation.
A temporal semi–discretization of the Dirichlet-to-Neumann map for the Schrödinger
equation on a circular domain was discussed in [38, 39].

In [29, 40] the continuous convolution kernel of the TBC for the Schrödinger
equation and its spatial semi–discretization is approximated by sums of exponentials
eλjt including terms with Re(λj) > 0, i.e. not decaying with respect to time. However,
the authors propose an algorithm allowing to maintain a uniform relative error of the
convolution kernel, but it requires to introduce new sums of exponentials to handle
time intervals of an exponentially growing length.

Notice that all of the key ideas that we use for the Schrödinger equation here
can easily be generalized to other types of partial differential equations like parabolic
problems where the DTBCs have a similar form: In [19] DTBCs for the θ-scheme for
linear parabolic equations were derived. Also, other interior discretization scheme for
the Schrödinger equation could be used (e.g. a Numerov–type discretization [32]).

The paper is organized as follows. In §2 we discuss the numerical computation
of the convolution coefficients (via the inverse Z–transform), approximate them by a
discrete sum of exponentials in §3, and present an efficient recursion for evaluating
these approximate DTBCs in §4. In §5 we analyze the stability of the resulting
initial-boundary-value scheme, and derive error estimates for the resulting Schrödinger
solution in §6. Finally, the numerical examples of §7 illustrate the efficiency of the
proposed method.

2. Calculation of convolution coefficients
The convolution coefficients s0,n, sJ,n appearing in the DTBC (1.17) can be cal-

culated by the explicit formulae (1.18) as well as by 3-term-recurrence formulae, see
[20]. Let us describe another, more general method based on a numerical calculation
of the inverse Z–transform, see [18]. According to the definition of the Z–transform,
see (1.11), we need to calculate the coefficients of the Laurent series (1.16). By using
the Cauchy integral representation on the circle with a radius ρ > 1 one obtains

sn =
ρn

2π

2π∫

0

ŝ(ρeiϕ)einϕ dϕ, n ∈ IN0, (2.1)

(for simplicity of notation we suppress here the index j).
The numerical approximation of (2.1) is made by the standard N–point summa-

tion rule:

sn ≈ s(N)
n =

ρn

N

N−1∑

k=0

ŝ(ρeiϕk) einϕk , n = 0, 1, . . . , N − 1, (2.2)

where ϕk = 2πk/N . It is easy to show that the sum (2.2) yields the first N values of
sn with the accuracy

s(N)
n = sn +O(ρ−N ), n = 0, 1, . . . , N − 1, (2.3)

provided that the sequence {sn} is bounded: Indeed, using the Laurent series (1.16)
with z = ρeiϕ and taking into account the orthogonality property

N−1∑

k=0

einϕke−imϕk = Nδn,(m mod N)
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we obtain

s(N)
n =

ρn

N

N−1∑

k=0

einϕk

( ∞∑
m=0

smρ−me−imϕk

)
= sn + ρ−Nsn+N + ρ−2Nsn+2N + . . . .

Hence

|s(N)
n − sn| ≤ ρ−N

1− ρ−N
max
k≥N

|sk|, n = 0, 1, . . . . (2.4)

Estimate (2.4) means that we can obtain very accurate coefficients s
(N)
n if we take an

appropriate value of ρ greater than 1: supposing that max
k≥N

|sk| < 1 − ρ−N , we find

from (2.4) that the accuracy

ε := max
n≥0

|s(N)
n − sn|

can be guaranteed by the choice ρ ≥ ε−
1
N ; for example if ε = 10−6, N = 50 then

ρ ≥ 1.32.
Note that estimates of kind (2.4) are well-known, see e.g. [27], [30], and references

therein.

Remark 1. By using the asymptotic behaviour |sn| ≤ Cn−3/2, see (1.15), we get the
sharper estimate

ρ ≥ (1 +
C

ε
N−3/2)1/N .

We shall now describe some numerical aspects of evaluating the inverse Z–transfo-
rm. Our tests show that the numerical inverse Z–transformation based on (2.2) is very
sensitive to the mantissa length (parameter Digits in Figure 2.1), i.e. to the round–off
error. For large numbers N , e.g. N > 100, the usual accuracy (e.g. Digits=15) could
be insufficient.

For instance, Figure 2.1 shows the relative error (discrete L2-norm) of s
(N)
n in de-

pendence of ρ ≥ 1 using N = 256 integration points. The curves look like a ‘hook’: for
each fixed mantissa length the error first drops with increasing ρ in accordance with
the error estimate (2.4); for larger ρ it then grows because of exponential amplification
of the round–off errors due to the factor ρN in (2.2). Note that for different values
of Digits the decreasing part of the error curve (corresponding to the approximation
error) overlaps exactly. For further discussions of the numerical inverse Z–transform,
we refer the reader to [27] where, in particular, the question of choosing the com-
putational radius ρ in (2.2) is considered, and to [49] where a detailed numerical
investigation of this situation is given.

3. Approximation of convolution coefficients by sums of exponentials

In order to derive a fast numerical method to calculate the discrete convolutions
in (1.17) (for the algorithm cf. Section 4), we will approximate the coefficients sn by
the following ansatz (sum of exponentials):

sn ≈ s̃n :=
{

sn, n = 0, . . . , ν − 1,∑L
l=1 blq

−n
l , n = ν, ν + 1, . . . ,

(3.1)
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Fig. 2.1. Relative error of the numerical inverse Z–transform of ŝ depending on ρ (the radius of
the integration circle) for different values of Digits (the mantissa length). The three curves overlap
exactly on the decaying branch, and their increasing branches – corresponding to the amplified round-
off error – are 10 orders of magnitude apart. Here ∆x = 1/160, ∆t = 2 · 10−5, N = 256.

where L ∈ IN, ν ≥ 0 are fixed numbers. Evidently, the approximation properties of
s̃n depend on L, ν, and the corresponding set {bl, ql}. Thus, the choice of an (in some
sense) optimal such approximation is a difficult nonlinear problem. Below we propose
a deterministic method of finding {bl, ql} for fixed L and ν.

The “split” definition of {s̃n} in (3.1) is motivated by the fact that the imple-
mentation of the DTBCs (1.17) involves a convolution sum with k ranging only from
1 to k = n − 1. Since the first coefficient s0 does not appear in this convolution, it
makes no sense to include it in our sum-of-exponential approximation, which aims at
simplifying the evaluation of the convolution. Hence, one may choose ν = 1 in (3.1).
The “special form” of s0 and s1 in definition (1.18) suggests even to exclude s1 from
this approximation and to choose ν = 2 in (3.1); note that α−1 einϕsn ∈ IR for n ≥ 2.
We use this choice in our numerical implementation.

Also, there is an additional motivation for choosing ν = 2: With the choice ν = 0
(or ν = 1) we typically obtain two (or, resp., one) coefficient pairs (bl, ql) of big mag-
nitude. These “outlier” values reflect the different nature of the first two coefficients.
Including them into our discrete sum-of-exponential would then yield less accurate
approximation results.

Let us fix L and ν in (3.1), and consider the formal power series:

f(x) := sν + sν+1x + sν+2x
2 + . . . (3.2)
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for |x| ≤ 1. If there exists the [L− 1|L] Padé approximation

f̃(x) :=
PL−1(x)
QL(x)

(3.3)

of (3.2), then its Taylor series

f̃(x) = s̃ν + s̃ν+1x + s̃ν+2x
2 + . . . (3.4)

satisfies the conditions

s̃n = sn, n = ν, ν + 1, . . . , 2L + ν − 1, (3.5)

according to the definition of the Padé approximation rule.

Theorem 3.1. Assume QL(x) have L simple roots ql with |ql| > 1, l = 1, . . . , L.
Then

s̃n =
L∑

l=1

blq
−n
l , n = ν, ν + 1, . . . , (3.6)

where

bl := −PL−1(ql)
Q′

L(ql)
qν−1
l 6= 0, l = 1, . . . , L. (3.7)

Proof. We use the following known representation of the rational function (3.3):

PL−1(x)
QL(x)

=
L∑

l=1

blq
1−ν
l

ql − x
(3.8)

in terms of {bl, ql} defined in the formulation of this theorem, see e.g. [16]. Substituting
the identity

1
ql − x

= q−1
l

∞∑
n=0

(
x

ql

)n

(3.9)

(with |x| < |ql|) in (3.8), we obtain (3.6) by comparing equations (3.3) and (3.4).

Remark 2. All our practical calculations confirm that the assumption on QL(x) in
Theorem 3.1 holds for any desired L, although we cannot prove this.

It follows from (3.5) and (3.6) that the set {bl, ql} defined in Theorem 3.1 can be
used in (3.1) at least for n = ν, ν + 1, . . . , 2L + ν − 1. The main question now is: is it
possible to use these {bl, ql} also for n > 2L + ν − 1? In other words, what quality of
approximation

s̃n ≈ sn, n > 2L + ν − 1 (3.10)

can we expect?
Having in mind to outline our approach for a general case (not only for the specific

sn defined in (1.18)) we will use (a slight generalization of) the Baker-Gammel-Wills
conjecture [8] concerning the existence of convergent subsequences of diagonal Padé
approximants.
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Conjecture (generalization of Baker-Gammel-Wills, [8]) 1. Let p(x) be a
power series representing a function which is meromorphic in |x| < 1 and continuous
on |x| ≤ 1 (except at the poles inside the unit circle). Then, at least a subsequence of
the [L|L] Padé approximants converges uniformly to p(x) (as L →∞) in the domain
formed by removing from the closed unit disk small open circles around the poles of
p.

Remark 3. The study of [L− 1|L] Padé approximants can be reduced to the study of
the [L|L] case by simply considering Padé approximants to g(x) = xp(x).

Coming back to our function f(x) with sn defined in (1.18), we note that it is
analytic on |x| < 1 and continuous on |x| ≤ 1. This follows from the analogous
properties of ŝ(z) for |z| ≥ 1.

Theorem 3.2. If the Conjecture holds, we then have:
(i) at least a subsequence of the [L− 1|L] (bounded) Padé approximants to (3.2)

converges uniformly on the disk |x| ≤ 1, as L →∞, and we have

ˆ̃s(L)(z) L→∞−→ ŝ(z), uniformly for |z| ≥ 1;

{s̃(L)
n } L→∞−→ {sn} in `2(IN0).

Here, s̃
(L)
n denotes the coefficients (3.6) obtained for a fixed L.

(ii) all roots of QL(x) (of the above subsequence) have absolute values greater than
1;

(iii) |sn − s̃n| = O(n−
3
2 ), L fixed, n →∞.

Proof. The power series (3.2) with sn defined in (1.18) is analytic on |x| < 1 and
continuous for |x| ≤ 1. Therefore we obtain the first part of conclusion (i) directly
from the conjecture. With z = 1/x the convergence of f̃ (L)(x), |x| ≤ 1 immediately
implies the convergence of

ˆ̃s(L)(z) =
ν−1∑
n=0

snz−n + f̃ (L)
(
z−1

)
z−ν ,

and hence the convergence of its inverse Z–transform, the convolution coefficients
s̃
(L)
n . The property (ii) follows from (i) since any root ql of QL(x) with |ql| ≤ 1 would

violate (i). Finally, (iii) follows from (ii) and (3.6) (or its modifications for multiple
roots), which shows that |s̃n| → 0 exponentially, and from (1.15).

Remark 4. We remark that the assumption (from Theorem 3.1) on the roots of
QL(x) to be simple is not essential for Theorem 3.2. For multiple roots one only has
to reformulate Theorem 3.1.

The above analysis permits us to give the following description of the approxi-
mation to the convolution coefficients (1.18) by the representation (3.1) if we use a
[L− 1|L] Padé approximant to (3.2): the first 2L + ν − 1 coefficients are reproduced
exactly, see (3.5); however, the asymptotic behaviour of sn and s̃n (as n →∞) differs
strongly (algebraic versus exponential decay). A typical graph of |sn − s̃n| versus n
for L = 20 is shown in Figure 3.1.

So far we discussed how to calculate and to approximate the DTBCs for one
fixed discretization of the 1D–Schrödinger equation. However, a nice property of
the considered approach consists of the following: once the approximate convolution
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Fig. 3.1. Convolution coefficients sn (left axis, dashed line) and error |sn − s̃n| of the convo-
lution coefficients (right axis); ∆x = 1/160, ∆t = 2 · 10−5, V = 0 (L = 20)

coefficients {s̃n} are calculated for particular discretization parameters {∆x, ∆t, V },
it is easy to transform them into appropriate coefficients for any other discretization.
We shall confine this discussion to the case ν = 2:

Transformation rule 3.1. For ν = 2, let the rational function

ˆ̃s(z) = s0 +
s1

z
+

L∑

l=1

bl

qlz − 1
1

qlz
(3.11)

be the Z–transform of the convolution kernel {s̃n}∞n=0 from (3.1), where {s̃n} is as-
sumed to be an approximation to a DTBC for the equation (1.8) with a given set {∆x,
∆t, V }.
Then, for another set {∆x?, ∆t?, V?}, one can take the approximation

ˆ̃s?(z) := s?
0 +

s?
1

z
+

L∑

l=1

b?
l

q?
l z − 1

1
q?
l z

, (3.12)
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where

q?
l :=

qlā− b̄

a− qlb
, (3.13)

b?
l := blql

aā− bb̄

(a− qlb)(qlā− b̄)
1 + q?

l

1 + ql
, (3.14)

a := 2
∆x2

∆t
+ 2

∆x2
?

∆t?
+ i(∆x2V −∆x2

?V?), (3.15)

b := 2
∆x2

∆t
− 2

∆x2
?

∆t?
− i(∆x2V −∆x2

?V?), (3.16)

and s?
0, s?

1 are the exact convolution coefficients for the parameters {∆x?, ∆t?, V?}
as given by (1.18).
Derivation. This transformation rule is based on the observation that the exact Z-
transformed boundary kernel ˆ̀(z) = z

z+1 ŝ(z) depends on the parameters ∆x, ∆t, and
V only via the variable

ζ = 2
∆x2

∆t

z − 1
z + 1

+ i∆x2V, (3.17)

cf. (1.12).
Making the assumption that also the approximate transformed boundary kernels

ˆ̀̃(z) :=
z

z + 1
ˆ̃s(z), (3.18)

ˆ̀̃?(z?) :=
z?

z? + 1
ˆ̃s?(z?) (3.19)

only depend on ζ yields a transformation between two sets of parameters (we shall
elaborate on this choice in §5, cf. (5.12)). By equating the functions ζ and ζ? corre-
sponding to the sets {∆x, ∆t, V } and {∆x?, ∆t?, V?}, respectively, we obtain the
map

z? =
az − b

ā− b̄z
(3.20)

with a, b defined above.
With (3.18) and (3.19) the obvious transformation for ˆ̀̃, i.e.

ˆ̀̃?(z?) ≡ ˆ̀̃(z(z?)) with z(z?) =
āz? + b

a + b̄z?

translates into a transformation for ˆ̃s:

ˆ̃s?(z?) =
z? + 1

z?

ˆ̀̃?(z?) =
z? + 1

z?

ˆ̀̃(z(z?)) =
z? + 1

z?

z(z?)
z(z?) + 1

ˆ̃s(z(z?)). (3.21)

Using z(z?) in (3.11) a lengthy but straight forward calculation yields

ˆ̃s?(z?) = c?
0 +

c?
1

z?
+

L∑

l=1

b?
l

q?
l z? − 1

1
q?
l z?

, (3.22)
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where q?
l and b?

l are defined, respectively, in (3.13) and (3.14). The constants c?
0 and

c?
1 depend on s0, s1, bl, and ql, and, in general, they do not coincide with the exact

values s?
0 and s?

1. For our purposes, however, this does not matter: Here, we are only
interested in the transformation of the exponential approximation, since only this part
enters the convolution (1.17) (cf. §4 below). Otherwise,the calculation of {s̃n} would
require to use the Padé -algorithm discussed in Theorem 3.1.

(3.22) shows that the transformation (3.21) preserves the structure of our approx-
imate convolution coefficients {s̃n} as a sum of discrete exponentials for n ≥ ν = 2
(cf. (3.1)).

It remains to note that due to |b| < |a|, the bilinear function (3.20) maps the
unit disc onto itself (see [24], e.g.). Therefore, for |ql| > 1 the map (3.13) gives also
|q?

l | > 1. Hence, {s̃?
n} also contains only decaying exponentials. ¤

The importance of this Transformation rule is twofold: While the Padé –algorithm
provides a method to calculate approximate convolution coefficients s̃n for fixed param-
eters {∆x, ∆t, V }, the Transformation rule yields the natural link (via the assumption
(3.17)–(3.19)) between different parameter sets {∆x?, ∆t?, V?} (and L fixed). This
will be an important basis for the stability analysis (as ∆x?, ∆t? → 0) in Section 5.

Moreover, it allows to extend the convergence result Theorem 3.2(i) on the con-
volution coefficients s̃

(L)
n as L →∞, uniformly in ∆x?, ∆t?:

Theorem 3.3. If the Conjecture holds, we then have:
Let the coefficients {s̃(L)

n } be obtained for the parameters {∆x, ∆t, V } via the above
Padé–method for L ∈ IN.
Then the coefficients {s̃?(L)

n } for ∆x?, ∆t?, and V? = V , obtained via the transforma-
tion (3.21)–(3.22) satisfy

‖s̃?(L)
n − s?

n‖2 ≤ C‖s̃(L)
n − sn‖2, (3.23)

where the constant C is uniform for ∆x? ≤ C1, ∆x2
?/∆t? ≤ C2. And (at least a

subsequence of) the error ‖s̃(L)
n − sn‖2 L→∞−→ 0 by Theorem 3.2(i).

Proof. Using (3.21) for ˆ̃s?(L) and ŝ? we have

|ˆ̃s?(L)(z?)− ŝ?(z?)| = ∆t

4∆x2
|w(z?)| · |ˆ̃s(L)(z(z?))− ŝ(z(z?))|.

Here, the bilinear function w(z?) = (āz? + b)/z? maps the unit circle z? = eiϕ onto
the circle that is determined by the two “diagonal points”

w(1) = 4
∆x2

∆t
− 2iV (∆x2 −∆x2

?),

w(−1) = 4
∆x2

?

∆t?
.

Hence, w(eiϕ) is uniformly bounded with respect to 0 ≤ ϕ ≤ 2π, ∆x? ≤ C1,
∆x2

?/∆t? ≤ C2. Since z(eiϕ) is a self–map of the unit circle, the assertion (3.23)
follows from Plancherel’s Theorem for Z–transforms.

We remark that the assumption V? = V in Theorem 3.3 is only due to the fact
that we are interested here in the stability of one fixed model w.r.t. to the discretiza-
tion parameters ∆x, ∆t, L. In fact, estimate (3.23) could be extended to V? 6= V .
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We now return to the discrete 2D–Schrödinger equation, which was decomposed
into the modes ψm, m = 1, ..., K−1 in (1.7). Provided an exponential approximation
of DTBCs for a single mode is known, we can use formulae (3.13), (3.14) for a rapid
calculation of approximate DTBCs for the remaining Fourier modes by taking the
corresponding values V m

j .
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Fig. 3.2. Approximation error of the approximate convolution coefficients for ν = 2, ∆x =
1/160, ∆t = 2 · 10−5, V = 4500: The error of s̃∗n (- - -) obtained from the transformation rule and
the error of s̃n (—) obtained from a direct Padé approximation of the exact coefficients sn.

Example 3.1. (Transformation rule) We present a numerical example for
applying the above transformation rule. For L = 10 we calculated the coefficients
{bl, ql} with the parameters ∆x = 1, ∆t = 1, V = 0 (cf. Appendix A) and then
used the Transformation 3.1 to calculate the coefficients {b∗l , q∗l } for the parameters
∆x∗ = 1/160, ∆t∗ = 2 · 10−5, V∗ = 4500.

Figure 3.2 shows that the resulting convolution coefficients s̃∗n are in this example
even better approximations to the exact coefficients sn than the coefficients s̃n, which
are obtained directly from the Padé algorithm discussed in Theorem 3.1. Hence, the
numerical solution of the corresponding Schrödinger equation is also more accurate
(cf. Example 7.2, Figure 7.6).
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4. Fast evaluation of the discrete convolution with an “exponential”
kernel

Let us consider the approximation (3.1) of the discrete convolution kernel appear-
ing in the DTBC (1.17). With these “exponential” coefficients the convolution

C(n)(u) :=
n−ν∑

k=1

uks̃n−k, s̃n =
L∑

l=1

blq
−n
l , |ql| > 1, (4.1)

of a discrete function uk, k = 1, 2, . . . , can be calculated by recurrence formulae, cf.
[44]. Note that similar recursive convolution algorithms are successfully used in other
applications as well, see [12] and references therein. This will reduce the numerical
effort drastically (cf. Figure 7.7 in Example 7.2).

Theorem 4.1. The function C(n)(u) from (4.1) for n ≥ ν + 1 is represented by

C(n)(u) =
L∑

l=1

C
(n)
l (u), (4.2)

where

C
(n)
l (u) = q−1

l C
(n−1)
l (u) + blq

−ν
l un−ν , n = ν + 1, ν + 2, . . . (4.3)

C
(ν)
l (u) ≡ 0.

Proof. A straightforward calculation yields:

C(n)(u) =
n−ν∑

k=1

uk

L∑

l=1

blq
−(n−k)
l =

L∑

l=1

C
(n)
l (u),

with

C
(n)
l (u) :=

n−ν∑

k=1

blq
−(n−k)
l uk.

And for each C
(n)
l (u) we have the recursion:

C
(n)
l (u) = q−1

l

n−ν−1∑

k=1

blq
−(n−1−k)
l uk + blq

−ν
l un−ν = q−1

l C
(n−1)
l (u) + blq

−ν
l un−ν ,

with

C
(ν)
l (u) ≡ 0.

Finishing the algorithmic part of this study let us summarize the steps of the
proposed method to evaluate approximate DTBCs:

Step 1: Prescribe L, ν (e.g. ν = 2) in (3.1), take ∆x = ∆t = 1, ρ ≥ 1, N ≥ 2L+1, and
calculate by (1.18) or (2.2) the coefficients s

(N)
n , n = ν, ν + 1, · · · , 2L + ν− 1.
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Step 2: Use the [L − 1|L]–Padé algorithm for the series (3.4) with s̃n := s
(N)
n , n =

ν, ν + 1, · · · , 2L + ν − 1 in order to find {bl, ql} for (3.1) in accordance with
Theorem 3.1.
The Steps 1 and 2 are made once and for all; see Appendix A with the table
of coefficients for L = 5, 10.

Step 3: For given {∆x?, ∆t?, V?} use formulae (3.13)-(3.16) with {∆x = 1, ∆t =
1, V = 0} and {bl, ql} from Step 2 for the calculation of {b?

l , q
?
l }.

Step 4: Implement the recurrence formulae (4.2), (4.3) to calculate approximate con-
volutions in (1.17). The coefficients s∗0, s

∗
1, . . . , s

∗
ν−1 have to be calculated by

(1.18) or (2.2).

5. Stability analysis of the numerical scheme
In this section we shall give a stability analysis (as ∆x, ∆t → 0) of our numerical

scheme for the Schrödinger equation (1.8) along with BCs of convolution form like
(1.17). Usually, these BCs will be exactly or approximately transparent (with L, the
number of exponential terms fixed), depending on the chosen convolution kernel.

L2–a-priori estimate of continuous solution. To illustrate our subsequent
calculations for the discrete case we shall first give an a-priori estimate for a continuous
IBVP for the Schrödinger equation:





iψt = − 1
2ψxx + V (x, t)ψ, 0 < x < X, t > 0,

ψ(x, 0) = ψI(x), 0 < x < X,

ψx(0, t) =
∫ t

0
f0(t− τ)ψ(0, τ) dτ, t > 0,

ψx(X, t) =
∫ t

0
fX(t− τ)ψ(X, τ) dτ, t > 0,

(5.1)

where f0(t), fX(t) are given functions, and we shall assume ψI ∈ L2(0, X).
Alternatively, the two boundary conditions can be written in the Laplace trans-

form space as

ψ̂x(0, s) = f̂0(s)ψ̂(0, s), Re s ≥ 0, (5.2a)

ψ̂x(X, s) = f̂X(s)ψ̂(X, s), Re s ≥ 0, (5.2b)

where f̂0(s) and f̂X(s), s ∈ CI are the Laplace transforms of f0(t) and fX(t), t ≥ 0,
respectively.

For the system (5.1) we have the following estimate:

Proposition 5.1. (Stability condition) Let the transformed boundary kernels
f̂0, f̂X satisfy for some α1 ∈ IR:

Im f̂0(α1 + iξ) ≤ 0, Im f̂X(α1 + iξ) ≥ 0, ∀ξ ∈ IR. (5.3)

Then the solution of (5.1) satisfies the a-priori estimate

‖ψ(., t)‖L2(0,X) ≤ ‖ψI‖L2(0,X) eα1t, t > 0. (5.4)

Proof. For smooth solutions ψ this proposition is easily proved by using an energy
estimate for the function φ(x, t) := ψ(x, t)e−α1t and by using Plancherel’s identity for
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Laplace transforms:

‖φ(., t)‖2L2(0,X) ≤ ‖ψI‖2L2(0,X) + Im
∫ t

0

[
φ(X, τ) φx(X, τ)− φ(0, τ)φx(0, τ)

]
dτ

= ‖ψI‖2L2(0,X) + Im
∫ ∞

0

[
χ[0,t](τ)φ(X, τ) {(χ[0,t]φ) ∗ f̃X}(X, τ)

− χ[0,t](τ)φ(0, τ) {(χ[0,t]φ) ∗ f̃0}(0, τ)
]

dτ

= ‖ψI‖2L2(0,X) −
1
2π

∫

IR

[
|χ̂[0,t]φ|2(X, iξ) Imf̂X(α1 + iξ)

− |χ̂[0,t]φ|2(0, iξ) Imf̂0(α1 + iξ)
]

dξ

≤ ‖ψI‖2L2(0,X).

(5.5)

Here χ denotes the characteristic function, and we used the fact that

φx(τ) =
(
φ ∗ f̃0

)
(τ) =

(
(χ[0,t]φ) ∗ f̃0

)
(τ), τ ≤ t,

with the notation ˆ̃
f0(s) = f̂0(α1 + s) (and analogously for fX).

We remark that the calculation in (5.5) is rigorous for ψ(0, .), ψ(X, .) ∈ L2
loc(IR

+
0 )

and f0, fX ∈ L1
loc(IR

+
0 ) 1.

Example 5.1. (Stability of TBC) The functions

f̂TBC
0 (s) =

√
2 e−

π
4 i +

√
s + iV−, f̂TBC

X (s) = −
√

2 e−
π
4 i +

√
s + iV+ (5.6)

correspond to the TBCs (1.2), (1.3). An easy calculation shows that they satisfy the
stability conditions (5.3) for all α1 ≥ 0.

However, the above regularity assumptions on fTBC
0 , fTBC

X are not satisfied here:
With V− = 0 the left TBC (1.2) reads

ψx(0, t) =
√

2 e−
π
4 i d

1
2 ψ

dt
1
2

(0, t),

where d
1
2

dt
1
2

denotes the semiderivative (cf. §7 in [33]). For smooth functions ψ(0, .) it
can be rewritten as

ψx(0, t) =

√
2
π

e−
π
4 i

[
1
2

∫ t

0

ψ(0, t)− ψ(0, τ)
(t− τ)3/2

dτ +
ψ(0, t)√

t

]
.

A part of a singular (distributional) contribution at t = 0, its convolution kernel (as
appearing in (5.1)) is

fTBC
0 (t) = −(2π)−

1
2 e−

π
4 i t−

3
2 , t > 0. (5.7)

Note that this is the same decay rate as in the discrete case (1.15).

1With Lp
loc we denote spaces of locally integrable functions.
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For the free Schödinger equation (i.e. for V ≡ 0) with the TBCs (1.2), (1.3)
the stability estimate (5.4) with α1 = 0 was proved in Theorem 2.2.2 of [17] for ψI ∈
H1(0, X). That proof easily extends to the case with a potential V ∈L∞(IR+

t ; W 1,∞(IR))
that is constant outside the computational domain.

Example 5.2. (Sufficient condition for stability of “cut-off TBC”) For
the kernel of an approximate BC we assume a cut–off for t ≥ T and define:

f0(t) = fTBC
0 (t)H(T − t), (5.8)

with H(t) being the Heaviside function and fTBC
0 (t) given by (5.6), (5.7).

We shall verify that this kernel f0(t) satisfies the stability condition (5.3). To this
end we rewrite it as

f0(t) = fTBC
0 (t)− fTBC

0 (t)H(t− T ).

Hence, its Laplace transform reads

f̂0(s) = f̂TBC
0 (s)−

∫ ∞

T

fTBC
0 (t) e−st dt

=
√

2 e−
π
4 i +
√

s +
1√
2π

e−
π
4 i

∫ ∞

T

t−
3
2 e−st dt

=
1√
T

(√
2 e−

π
4 i +
√

s̃ +
1√
2π

e−
π
4 i

∫ ∞

1

τ−
3
2 e−s̃τ dτ

)
, s = α1 + iξ, ξ ∈ IR,

(5.9)

where s̃ = α̃1 + iξ̃, α̃1 = α1T , ξ̃ = ξT , τ = t/T . It is easy to find numerically that
(5.9) with T = 1 satisfies the stability condition (5.3) if α̃1 ≥ 0.23. For general T > 0
condition (5.3) therefore holds for α1(T ) = α̃1/T . Note that α1(T ) → 0 for T → ∞,
which corresponds to Example 5.1.

Discretization. In the discrete case we shall use the following standard notation
for finite difference operators:

∆+ψj = ψj+1 − ψj , ∆−ψj = ψj − ψj−1, ∆2ψj = ψj+1 − 2ψj + ψj−1.

We are concerned with the stability (as ∆x, ∆t → 0) of the Crank-Nicolson scheme
for the Schrödinger equation (1.8) along with convolution-type BCs:





−iR(ψj,n+1 − ψj,n) = ∆2 (ψj,n+1 + ψj,n)− wVj,n+ 1
2

(ψj,n+1 + ψj,n) ,

j = 1, . . . , J − 1,
ψj,0 = ψI(xj), j = 0, 1, 2, . . . , J − 1, J ;

with ψ0,0 = ψ1,0 = ψJ−1,0 = ψJ,0 = 0,

∆+ψ̂0(z) = (ĝ0(z)− 1) ψ̂0(z), |ĝ0(z)| > 1,
∆−ψ̂J(z) = −(ĝJ (z)− 1) ψ̂J(z), |ĝJ(z)| > 1,

(5.10)

where ĝ0(z), ĝJ(z) are given functions. Alternatively, the two BCs can be written as

∆+ψ0,n = ψ0,n ∗ g̃0,n =
n∑

k=0

ψ0,k g̃0,n−k; g̃0,n := g0,n − δ0,n, (5.11a)

∆−ψJ,n = −ψJ,n ∗ g̃J,n = −
n∑

k=0

ψJ,k g̃J,n−k; g̃J,n := gJ,n − δ0,n. (5.11b)
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We assume that the Z–transforms of the given sequences {gj,n}; j = 0, J , ĝj(z) :=
Z{gj,n} are analytic in a neighbourhood of z = ∞.

Typically, the BCs (5.11) should be a discrete approximation of the two contin-
uous, convolution-BCs in (5.1). Hence the two functions ĝj ; j = 0, J are of course
functions of z, ∆x, and ∆t, just as in the DTBCs (1.12a), (1.12b). In this example
their functional dependence is of the form

ˆ̀
j ≡ ĝj(z, ∆x, ∆t) = ĥj(y) with y = y(z, ∆x, ∆t) =

R

2

(z − 1
z + 1

+ iνj

)
, (5.12)

where νj = ∆tVj/2 depends on the external potentials V0 and VJ . In analogy to (1.9)
we assume Vj = V− for j ≤ 0 and Vj = V+ for j ≥ J .
Note that y appearing in these discrete BCs is just the symbol of ∂t + iV in the
Crank-Nicolson scheme, and the Z–transformed equation (1.8) can be recast in the
exterior domain (i.e. for j ≤ 0 or j ≥ J) as

iy ψ̂j(z) = −∆2

2
ψ̂j(z).

Next we shall specify the typical ∆x– and ∆t–dependence of general transformed
boundary kernels ĝj . For arbitrary functions f0, fX the BCs in (5.1) are usually not
perfectly transparent. Therefore, their natural discretization cannot be obtained by
calculating the discrete Dirichlet–to–Neumann map for the fully discretized whole
space problem, as it was done in [5, 20] to derive the DTBCs.
After replacing ψx in the BCs (5.1) by a finite difference quotient we now discuss the
time discretization of their convolution integrals: A very natural method is based on
the operational quadrature of [26, 27] by using the same time discretization for the
BCs as for the evolution equation, i.e. the trapezoidal rule in our case. We shall hence
assume that the transformed boundary kernels in (5.10) are also of the form

ĝj(z, ∆x, ∆t) = ĥj(y), (5.13)

with y given in (5.12) and some appropriate function ĥj . We remark that this ap-
proach also reproduces the DTBCs (1.10)-(1.12b). In the Transformation rule 3.1
we had already assumed this form (5.13) when calculating the explicit ∆x- and ∆t-
dependence of the sum-of-exponentials-BCs derived in §3.

`2–a-priori estimate of discrete solution. In the following lemma we shall
derive an a-priori estimate for the temporal growth of the solution to (5.10) with ∆x
and ∆t considered fixed. This discrete analogue of Proposition 5.1 will then be the
key ingredient for our stability result (given in Theorem 5.1 and Theorem 5.2 below).
We shall use the discrete L2–norm:

‖ψn‖22 := ∆x

J−1∑

j=1

|ψj,n|2. (5.14)

Lemma 5.1. (Growth condition) Let the transformed boundary kernels ĝ0, ĝJ

satisfy

Im ĝ0(βeiϕ) ≤ 0, Im ĝJ(βeiϕ) ≤ 0, ∀ 0 ≤ ϕ ≤ 2π, (5.15)
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for some (sufficiently large) β ≥ 1. Assume also that ĝ0, ĝJ are analytic for |z| ≥ β.
Then, the solution of (5.10) satisfies the a-priori estimate

‖ψn‖2 ≤ ‖ψ0‖2βn, n ∈ IN. (5.16)

Proof. The proof is analogous to that of Proposition 5.1 and it is based on a
discrete energy estimate for the new variable

φj,n := ψj,n β−n,

which satisfies the equation

−iR (φj,n+1 − φj,n) =
(
∆2 − wVj,n+ 1

2

)
(φj,n+1 + φj,n) (5.17a)

+ (β − 1)
(
∆2 − wVj,n+ 1

2
+ iR

)
φj,n+1; j = 1, . . . , J − 1,

φj,0 = ψj,0; j = 0, . . . , J, (5.17b)

∆+φ̂0(z) = (ĝ0(βz)− 1) φ̂0(z), (5.17c)

∆−φ̂J(z) = −(ĝJ(βz)− 1) φ̂J(z). (5.17d)

In physical space, the two BCs can be written as

∆+φ0,n = φ0,n ∗ g̃0,n

βn
=

n∑

k=0

φ0,k

(
g̃0,n−k βk−n

)
, (5.18a)

∆−φJ,n = −φJ,n ∗ g̃J,n

βn
= −

n∑

k=0

φJ,k

(
g̃J,n−k βk−n

)
. (5.18b)

First we multiply (5.17a) by φ̄j,n/β and its complex conjugate by φj,n+1:

−iRφ̄j,n (φj,n+1 − φj,n) = φ̄j,n

(
∆2 − wVj,n+ 1

2

)
(φj,n+1 + φj,n) (5.19)

+(β−1 − 1)φ̄j,n

(
∆2 − wVj,n+ 1

2
− iR

)
φj,n,

iRφj,n+1

(
φ̄j,n+1 − φ̄j,n

)
= φj,n+1

(
∆2 − wVj,n+ 1

2

) (
φ̄j,n+1 + φ̄j,n

)
(5.20)

+(β − 1)φj,n+1

(
∆2 − wVj,n+ 1

2
− iR

)
φ̄j,n+1.

Note that we used equation (5.17a) to modify the last term of (5.19). Next we subtract
(5.20) from (5.19), sum from j = 1 to j = J − 1, and take imaginary parts. After a
simple, but lengthy calculation we obtain:

J−1∑

j=1

(|φj,n+1|2 − |φj,n|2
)

= −(1− β−1)
J−1∑

j=1

|φj,n|2 − (β − 1)
J−1∑

j=1

|φj,n+1|2

+
1

βR
Im

[(
φ̄0,n + βφ̄0,n+1

)
∆+

(
φ0,n + βφ0,n+1

)

− (
φ̄J,n + βφ̄J,n+1

)
∆−(φJ,n + βφJ,n+1

)]
.

(5.21)
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Summing (5.21) from n = 0 to n = N yields (note that β ≥ 1):

‖φN+1‖22 ≤ ‖φ0‖22 +
∆x

β2R
Im

N∑
n=0

[(
φ̄0,n + βφ̄0,n+1

)
∆+(φ0,n + βφ0,n+1)

− (
φ̄J,n + βφ̄J,n+1

)
∆−(φJ,n + βφJ,n+1)

]

= ‖φ0‖22 +
∆x

β2R
Im

N∑
n=0

[(
φ̄0,n + βφ̄0,n+1

)
(φ0,n + βφ0,n+1) ∗ g̃0,n

βn

+
(
φ̄J,n + βφ̄J,n+1

)
(φJ,n + βφJ,n+1) ∗ g̃J,n

βn

]
. (5.22)

For the last identity we used the BCs (5.18) and φ0,0 = φJ,0 = 0.
To finish the proof it remains to determine the sign of the last term in (5.22). To

this end we define (for N fixed) the two sequences,

un :=
{

φ0,n + βφ0,n+1, n = 0, . . . , N,
0, n > N,

vn := un ∗ g̃0,n

βn
=

n∑

k=0

uk
g̃0,n−k

βn−k
, n ∈ IN0.

The Z–transform Z{un} = û(z) is analytic for |z| > 0, since it is a finite sum.
The Z–transform Z{vn} then satisfies v̂(z) = (ĝ0(βz) − 1)û(z) and is analytic for
|z| ≥ 1. Using Plancherel’s Theorem for Z–transforms (cf. §38 in [18]) we have

N∑
n=0

vnūn =
∞∑

n=0

vnūn =
1
2π

∫ 2π

0

v̂(eiϕ)û(eiϕ) dϕ

=
1
2π

∫ 2π

0

|û(eiϕ)|2(ĝ0(βeiϕ)− 1) dϕ. (5.23)

Using (5.23) for the two boundary terms in (5.22) now gives:

‖φN+1‖22 ≤ ‖φ0‖22 +
∆x

2πβ2R

∫ 2π

0

[
|(1 + βeiϕ)φ̂0(eiϕ)|2 Im(ĝ0(βeiϕ)− 1)

+|(1 + βeiϕ)φ̂J (eiϕ)|2 Im(ĝJ(βeiϕ)− 1)
]
dϕ. (5.24)

Our assumptions on ĝ0 and ĝJ hence imply

‖φN‖2 ≤ ‖φ0‖2, ∀N ≥ 0,

and the result follows.

Remark 5. Above we have assumed that the two transformed boundary kernels ĝj ; j =
0, J – as Z–transforms – are analytic for |z| ≥ β. Hence their imaginary parts are
harmonic functions there. Since the average of ĝj(z) on the circles z = βeiϕ equals
gj,0 = ĝj(z = ∞), condition (5.15) implies Im ĝj(z = ∞) ≤ 0; j = 0, J . Then we have
the following simple consequence of the maximum principle for the Laplace equation:

If condition (5.15) holds for some β0, it also holds for all β > β0.
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Example 5.3. (Discrete counterpart of 5.1) For the exact DTBC (1.17)
(with ĝj = ˆ̀

j , j = 0, J) the stability condition (5.15) is clearly satisfied for β = 1
(see Figure 5.1). In fact the DTBC satisfies (5.15) for all ∆x and ∆t. Hence, the
discrete L2-norm of ψn always decreases monotonically in time. And in this case the
L2-stability of the scheme (5.10) is trivial.

  0  π/2   π 3/2π  2π 
−10

−8

−6

−4

−2

0

2

ϕ

Imag l
0

^ (z)

β = 1
β = 1.01
β = 1.1
β = 1.2

Fig. 5.1. The imaginary part of ˆ̀
0(z) is non–positive on the unit circle z = eiϕ, 0 ≤ ϕ ≤ 2π

(and hence also for β ≥ 1). ∆x = 1/160, ∆t = 2 · 10−5, V ≡ 0.

Example 5.4. (Discrete counterpart of Example 5.2) As a second example
we consider a simplification of the exact DTBC (1.17), where the convolution coeffi-
cients sj,n are cut off for n ≥ N (cf. [20] for a discussion of the accuracy and practical
relevance of these BCs). The corresponding Z–transform,

ˆ̀(N)
j (z) =

z

z + 1
ŝ
(N)
j (z) =

z

z + 1

N∑
n=0

sj,nz−n (5.25)

satisfies the growth condition (5.15) only for β ≥ 1.25 if N = 10 (see Figure 5.2).
(The continuous analogue of such a cut–off kernel was given in (5.8)).

`2–stability. Now we turn to the stability of the numerical scheme (5.10) as
∆t → 0. To this end we shall derive uniform estimates for ‖ψn‖2 (as ∆t → 0 and
0 ≤ n∆t ≤ T ) by using Lemma 5.1. This lemma bounds the exponential growth of
solutions to the numerical scheme for a fixed discretization (∆x, ∆t) and it will be
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Stability of simplified DTBC: N=10

β = 1      
β = 1.25   
β = 2      
β = 5      
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^

Fig. 5.2. Growth condition Im ˆ̀(N)
0 (z = β eiϕ) ≤ 0 for simplified discrete transparent boundary

conditions with cut–off after N = 10 convolution coefficients, ∆x = 1/160, ∆t = 2 · 10−5, V ≡ 0.
The stability condition (5.15) is satisfied for β ≥ 1.25, and Im `0,0 < 0 holds.

applied for each value of ∆t along with a corresponding radius β(∆t). Since the case
β(∆t) ≡ 1 is trivial (cf. the DTBC illustrated in Figure 5.1) we focus on the case
when β = β(∆t) > 1. For estimating ‖ψn‖2 we shall require that there exists a fixed
ρ ≥ 0 such that

β(∆t) ≤ eρ∆t, ∀ 0 < ∆t ≤ ∆t0.

Using (5.16) this would then yield our final stability estimate

‖ψn‖2 ≤ ‖ψ0‖2β(∆t)n ≤ ‖ψ0‖2eρn∆t ≤ ‖ψ0‖2eρT , ∀n∆t ≤ T. (5.26)

Next we shall discuss conditions on the boundary function ĝj(z) for one fixed
discretization (∆x0, ∆t0), which imply that the stability estimate (5.15) holds for all
0 < ∆t ≤ ∆t0 on circles with radius β(∆t) = eρ∆t, which decrease as ∆t → 0.
In the following three cases we shall assume different behaviours of the function
∆x = ∆x(∆t) (as ∆t → 0) that permit to prove stability of the scheme (5.10):

Case 1. R = 4∆x2/∆t = const as ∆t → 0, and Vj = 0:
Because of the functional dependence (5.12), ĝj is here independent of ∆t, and there-
fore β in (5.15) would also be independent of ∆t. Hence, the stability estimate (5.26)
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can only be obtained if the condition (5.15) holds for β = β(∆t0) = 1.
Case 2. ∆x = ∆x0 = const and Vj ∈ IR:

Theorem 5.1. Let the transformed boundary kernels ĝ0, ĝJ satisfy

Im ĝ0(z, ∆x0, ∆t0)
∣∣∣
C1
≤ 0, Im ĝJ(z, ∆x0, ∆t0)

∣∣∣
C1
≤ 0 (5.27)

for some fixed ∆x0 and ∆t0. Here, the circle C1 is defined by

z =
β0 − 1

2
+

β0 + 1
2

eiϕ, 0 ≤ ϕ ≤ 2π,

(cf. Figure 5.3) with some sufficiently large β0 = eρ∆t0 ≥ 1 (note that z = −1 and
z = β0 ∈ C1).

Then, the stability estimate (5.26) holds for all 0 < ∆t ≤ ∆t0 and ∆x = ∆x0.
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Im

)( jb i
ey

y

)( 0

10 Cy

)(Re 00 by

Fig. 5.3. Illustration of the 2 maps y0(z) and y(z) from the proof of Theorem 5.1: The circle
z = βeiϕ (dashed line) is mapped onto y(βeiϕ) which lies inside the (shaded) stability region y0(Co

1).

Proof. Following the above remark (after the proof of Lemma 5.1) we first note
that condition (5.27) implies

Im ĝj(z, ∆x0,∆t0) ≤ 0 ∀z ∈ Co
1 , (5.28)

where Co
1 denotes the part of the complex plane “outside” of the circle C1. The idea

of the proof is to conclude that (5.28) implies

Im ĝj(z = β(∆t)eiϕ, ∆x0,∆t) ≤ 0, ∀ 0 < ∆t ≤ ∆t0, 0 ≤ ϕ ≤ 2π, (5.29)

with β(∆t) = eρ∆t. To this end we shall compare the images of Co
1 and the circles

β(∆t)eiϕ from (5.29) under the respective maps y0(z) = y(z, ∆x0, ∆t0) and y(z) =
y(z, ∆x0, ∆t) from (5.12).
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We first consider the rational map

y0(z) =
2∆x2

0

∆t0

(z − 1
z + 1

+ i
∆t0Vj

2

)
: CI → CI (5.30)

from (5.12). y0(Co
1), the image of Co

1 is the set y ∈ CI with

Re y ≥ Re y0(z = β0) =
2∆x2

0

∆t0

β0 − 1
β0 + 1

=
2∆x2

0

∆t0
tanh

ρ∆t0
2

. (5.31)

In order to verify the estimate (5.15) with β(∆t) = eρ∆t for 0 < ∆t ≤ ∆t0 we
calculate:

ĝj(z = eρ∆t+iϕ, ∆x0,∆t) = ĥj(y(∆t, ϕ)), (5.32)

with

y(∆t, ϕ) :=
2∆x2

0

∆t

[
eρ∆t+iϕ − 1
eρ∆t+iϕ + 1

+ i
∆tVj

2

]
.

Using the rational map y(z) = 2∆x2
0

∆t

(
z−1
z+1 + i

∆tVj

2

)
we see that

Re y(∆t, ϕ) ≥ Re y(∆t, 0) =
2∆x2

0

∆t
tanh

ρ∆t

2
, ∀ 0 ≤ ϕ ≤ 2π.

Due to the monotonicity of the function tanhx/x we finally obtain for the argument
of ĥj in (5.32):

Re y(∆t, ϕ) ≥ 2∆x2
0

∆t0
tanh

ρ∆t0
2

= Re y0(z = eρ∆t0 = β0),
∀ 0 < ∆t ≤ ∆t0, 0 ≤ ϕ ≤ 2π.

Hence,

y−1
0 (y(∆t, ϕ)) ∈ Co

1 , ∀ 0 < ∆t ≤ ∆t0, 0 ≤ ϕ ≤ 2π.

(5.28) now shows that

Im ĝj(βeiϕ, ∆x0, ∆t) ≤ 0

holds with β = eρ∆t, and (5.26) follows.
Summarizing, the idea of the proof is based on the fact that all circles β(∆t)eiϕ

(with 0 < ∆t ≤ ∆t0) are mapped via y−1
0 ◦ y into Co

1 (cf. Figure 5.3).

Case 3. ∆x = α∆tγ (with α = ∆x0/∆tγ0 , γ ≥ 1) and Vj ∈ IR:

Theorem 5.2. (a) Let Vj = 0 and let the transformed boundary kernels ĝ0, ĝJ satisfy

Im ĝ0(z, ∆x0, ∆t0)
∣∣∣
C2
≤ 0, Im ĝJ(z, ∆x0, ∆t0)

∣∣∣
C2
≤ 0 (5.33)

for some ∆x0 and ∆t0. Here, the circle C2 is defined by

z = −β0 − 1
2

+
β0 + 1

2
eiϕ, 0 ≤ ϕ ≤ 2π,



ANTON ARNOLD, MATTHIAS EHRHARDT, AND IVAN SOFRONOV 527

and some sufficiently large β0 = eρ∆t0 ≥ 1 (note that z = −β0 and z = 1 ∈ C2).
Then, the stability estimate (5.26) holds for all 0 < ∆t ≤ ∆t0 and ∆x = α∆tγ .

(b) Let Vj ∈ IR and let ĝ0
0 , ĝ0

J , the transformed boundary kernels pertaining to
Vj = 0, satisfy condition (5.33) for some ∆x0, ∆t0, and β0 = eρ∆t0 ≥ 1.

Then, the stability estimate (5.26) holds for all 0 < ∆t ≤ ∆t1 (with some 0 <
∆t1 ≤ ∆t0) and ∆x = α∆tγ .

Proof. Part (a):
We follow the strategy of the previous proof and first note that condition (5.33) implies

Im ĝj(z, ∆x0,∆t0) ≤ 0 ∀z ∈ Co
2 , (5.34)

where Co
2 denotes the “outside” of circle C2. y0(Co

2), its image under the rational map

y0(z) =
2∆x2

0

∆t0

z − 1
z + 1

(5.35)

is characterized by y ∈ CI with
∣∣∣∣y +

∆x2
0

∆t0

β0 + 1
β0 − 1

∣∣∣∣ ≤
∆x2

0

∆t0

β0 + 1
β0 − 1

. (5.36)

The disk y0(Co
2) is symmetric to the real axis, with left vertex at yl = 0 and right

vertex at yr = 2∆x2
0

∆t0
coth ρ∆t0

2 .
In order to verify the estimate (5.15) with β(∆t) = eρ∆t for 0 < ∆t ≤ ∆t0 we

calculate:

ĝj(z = eρ∆t+iϕ, α∆tγ ,∆t) = ĥj(y(∆t, ϕ)), (5.37)

with

y(∆t, ϕ) := 2α2∆t2γ−1 eρ∆t+iϕ − 1
eρ∆t+iϕ + 1

. (5.38)

For fixed 0 < ∆t ≤ ∆t0 the set {y(∆t, ϕ) | 0 ≤ ϕ ≤ 2π} is a circle, lying symmetric to
the real axis with left vertex at

y(∆t, 0) = 2α2∆t2γ−1 tanh
ρ∆t

2
> yl = 0,

and right vertex at

y(∆t, π) = 2α2∆t2γ−1 coth
ρ∆t

2
≤ yr.

Therefore the circles {y(∆t, ϕ) | 0 ≤ ϕ ≤ 2π} ⊂ y0(Co
2), for 0 < ∆t ≤ ∆t0.

Hence, (5.34) and (5.36) show that

Im ĝj(βeiϕ,∆x, ∆t) ≤ 0

holds with β = eρ∆t, ∆x = α∆tγ , and the stability estimate (5.26) follows.

Part (b):
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Fig. 5.4. Illustration of the proof of Theorem 5.2 (b): For ∆t ≤ ∆t1 ≈ 0.82 the (small) circles
{y(∆t, ϕ) | 0 ≤ ϕ ≤ 2π} are inside the (shaded) stability region y0(Co

2). Parameters: ∆x0 = ∆t0 =
V = γ = 1, ρ = 4.

To verify the estimate (5.15) we have to show that Im ĝj(z = eρ∆t+iϕ, α∆tγ ,∆t) =
Im ĥj(y(∆t, ϕ)) ≤ 0, with

y(∆t, ϕ) := 2α2∆t2γ−1

[
eρ∆t+iϕ − 1
eρ∆t+iϕ + 1

+ i
∆tVj

2

]
.

The circles y(∆t, ϕ), 0 ≤ ϕ ≤ 2π are only vertical shifts of the circles (5.38), and their
left vertex is at

y(∆t, 0) = α2∆t2γ(ρ + iVj) +O(∆t2γ+1) for ∆t → 0.

Hence, the circles {y(∆t, ϕ) | 0 ≤ ϕ ≤ 2π} ⊂ y0(Co
2), for 0 < ∆t ≤ ∆t1 (for some

0 < ∆t1 ≤ ∆t0; cf. Figure 5.4) and the stability estimate (5.26) follows.

We now illustrate the stability condition (5.27) of Case 2 and condition (5.33) of
Case 3 for the exponential–sum–coefficients introduced in Section 3. The upper left
graphic of Figure 5.3 shows the unit circle (dotted line) in the complex plane and the
circle C1 (solid line), on which we shall check the stability condition.

Example 5.5. We consider the free 1D–Schrödinger equation with the discretiza-
tion ∆x = 1/160, ∆t = 2 · 10−5. The transformed boundary kernel has the form
ˆ̀̃(z) = z

z+1
ˆ̃s(z), where the Z–transform of {s̃n} with ν = 2 reads

ˆ̃s(z) = s0 + s1z
−1 +

L∑

l=1

bl

qlz − 1
1

qlz
, |z| ≥ 1. (5.39)
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We recall that |ql| > 1, l = 1, . . . , L (cf. Theorem 3.2(ii)), and hence all poles of ˆ̃s are
inside the unit circle.
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Fig. 5.5. Stability condition (5.27), i.e. Im
ˆ̃
`|C1 ≤ 0 for exponential–sum–coefficients with

L = 5. The condition is not satisfied for β0 = 1 but is satisfied for β0 ≥ 1.0000008.

Figure 5.5 shows Im ˆ̀̃|C1 for L = 5 and various values of β0. For β0 = 1, Im ˆ̀̃

is not always negative on the unit circle (max Im ˆ̀̃|C1 = 3.06x10−6 if L = 5). Thus
the stability condition is not satisfied for β0 = 1, but it is satisfied for lager values of
β0. Comparing these plots with the transformed boundary kernel of the exact DTBC
(Figure 5.1 in Example 5.3) we observe that the ‘valley’ of the graph is at the same

position. With increasing β0 this valley becomes flatter and Im ˆ̀̃|C1 converges to Im
s0 ≈ −7.93.

Note that the imaginary part of ˆ̀̃ = ˆ̃s z
z+1 has no singularity at z = −1 ∈

C1. This is due to the fact that Re ŝ(z = −1) = 0 (cf. (1.12a), (1.12b)) and its
(reasonable) approximations (5.39) also satisfy Re ˆ̃s(z = −1) = 0. Furthermore,
Re z

z+1 is continuous at z = −1 on the circle C1.

Similarly, Figure 5.6 shows that condition (5.33), i.e. Im ˆ̀̃|C2 ≤ 0 is satisfied for
β0 ≥ 1.00025

Remark 6. We recognized in this example that Im ˆ̀̃ is positive on parts of the unit
circle. This means that some modes of the discretized Schrödinger equation could grow
very fast. However, we never observed this in our numerical experiments.

We remark that the stability condition of Theorem 5.1 is independent of the
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L=5: Im l(z) on shifted circle C
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0
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Fig. 5.6. Stability condition (5.33), i.e. Im
ˆ̃
`|C2 ≤ 0 for exponential–sum–coefficients with

L = 5. The condition is not satisfied for β0 = 1 but is satisfied for β0 ≥ 1.00025.

potential Vj in the exterior domain:

Proposition 5.2. Let the stability condition (5.27) hold on Co
1 for one value of the

potential Vj ∈ IR. Then this condition holds on the same circle (i.e. for the same β0)
for all Vj ∈ IR.

Proof. This result in easily seen from the properties of the map y0, defined in
(5.30): Note that y0 maps Co

1 onto the half plane {y ∈ CI |Re y > Re y0(β0)},
independently of Vj (cf. Figure 5.3).

`2–stability in 2D. To finish this section we return to the original 2D-waveguide
problem and discuss the stability properties of the complete scheme (1.4) (for j =
1, . . . , J − 1) along with the Dirichlet BCs (1.5) and (exact or approximate) DTBCs
for each transversal mode ψm; m = 1, . . . , K − 1:

∆+ψ̂m
0 (z) = (ĝm

0 (z)− 1) ψ̂m
0 (z), (5.40)

∆−ψ̂m
J (z) = − (ĝm

J (z)− 1) ψ̂m
J (z).

We recall that the potential V = V (x, y, t) may be x, y and t−dependent on the
computational domain [0, X]×[0, Y ], but it is assumed to be constant (with the values
V±) in the leads. Each mode satisfies in the 2 exterior domains a 1D-Schrödinger
equation with the effective potential V m

j ; j = 0, J (cf. (1.7)). If ĝj(z); j = 0, J are the
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chosen transformed boundary kernels for the free 1D-Schrödinger equation (i.e. with
V± = 0), the corresponding kernels for the 2D-modes read

ĝm
j (z∗) = ĝj(z(z∗)) = ĝj

(
¯̃az∗ + b̃

ã + ¯̃
bz∗

)
,

with ã = 4− i∆tV m
j , b̃ = i∆tV m

j (cf. the derivation of the Transformation rule 3.1).

In fact the stability result of the 1D case easily carries over to 2 dimensions where
we shall use the notation

‖ψn‖22 = ∆x ∆y

J−1∑

j=1

K−1∑

k=1

|ψj,k,n|2.

Proposition 5.3.

(a) Let the transformed boundary kernels ĝj(z); j = 0, J of the free 1D–Schrödinger
equation satisfy condition (5.27) for some fixed ∆x0 and ∆t0.

Then the 2D–Schrödinger scheme (1.4) with the BCs (1.5), (5.40) satisfies the
following stability estimate:

‖ψn‖2 ≤ ‖ψ0‖2eρT , ∀n∆t ≤ T, 0 < ∆t ≤ ∆t0, ∆x = ∆x0, ∀∆y > 0,

where ρ = ρ(β0) is defined in Theorem 5.1.

(b) Let ĝj(z); j = 0, J satisfy condition (5.33) for some fixed ∆x0 and ∆t0.

Then, for each fixed γ ≥ 1 and each fixed ∆y0 > 0, there exists a ∆t1 ∈ (0,∆t0],
such that

‖ψn‖2 ≤ ‖ψ0‖2 eρT , ∀n∆t ≤ T, 0 < ∆t ≤ ∆t1, ∆x = α∆tγ , ∆y = ∆y0,

with α = ∆x0/∆tγ0 .

Proof. Since this proof closely follows the strategy of the 1D situation we shall
only give the key estimates: Proceeding as in Lemma 5.1 we shall estimate the growth
of the new variable

φj,k,n := ψj,k,n β−n,

where ψj,k,n satisfies (1.4), and β = eρ∆t. Following exactly the steps of (5.17) - (5.21)
and summing from k = 1 to k = K − 1 yields (with the notation Rx := 4∆x2/∆t,
Ry := 4∆y2/∆t, and ∆2

y is the standard second order finite difference operator acting
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in the y-direction):

J−1∑

j=1

K−1∑

k=1

(|φj,k,n+1|2 − |φj,k,n|2
)

≤ 1
β2Rx

Im
K−1∑

k=1

[(
φ̄0,k,n + βφ̄0,k,n+1

)
∆+

(
φ0,k,n + βφ0,k,n+1

)

− (
φ̄J,k,n + βφ̄J,k,n+1

)
∆−(φJ,k,n + βφJ,k,n+1

)]

+
1

βRy
Im

J−1∑

j=1

K−1∑

k=1

[
−φ̄j,k,n∆2

y

(
φj,k,n + φj,k,n+1

)

+ φj,k,n+1∆2
y

(
φ̄j,k,n + φ̄j,k,n+1

)]

+
1

βRy
Im

J−1∑

j=1

K−1∑

k=1

[
(1− β−1)φ̄j,k,n∆2

yφj,k,n

+ (β − 1)φj,k,n+1∆2
yφ̄j,k,n+1

]

(5.41)

Using the Plancherel relation corresponding to the discrete Fourier-sine transform
(1.6) we obtain:

‖φn+1‖22 − ‖φn‖22

≤ 2K∆x∆y

β2Rx
Im

K−1∑
m=1

[(
φ̄m

0,n + βφ̄m
0,n+1

)
∆+

(
φm

0,n + βφm
0,n+1

)

− (
φ̄m

J,n + βφ̄m
J,n+1

)
∆−(φm

J,n + βφm
J,n+1

)]

+
4K∆x∆y

βRy
Im

J−1∑

j=1

K−1∑
m=1

[
−φ̄m

j,n

(
cos

mπ

K
− 1

)(
φm

j,n + φm
j,n+1

)

+ φm
j,n+1

(
cos

mπ

K
− 1

)(
φ̄m

j,n + φ̄m
j,n+1

)]

+
4K∆x∆y

βRy
Im

J−1∑

j=1

K−1∑
m=1

[
(1 + β−1)φ̄m

j,n

(
cos

mπ

K
− 1

)
φm

j,n

+ (β − 1)φm
j,n+1

(
cos

mπ

K
− 1

)
φ̄m

j,n+1

]

(5.42)

Note that the last two terms of (5.42) are both zero.
Summing (5.42) from n = 0 to n = N , and using the BCs (5.40) as in (5.22) -

(5.24) gives:

‖φN+1‖22 ≤ ‖φ0‖22 +
∆xY

πβ2Rx

K−1∑
m=1

∫ 2π

0

[
|(1 + βeiϕ)φ̂m

0 (eiϕ)|2 Im(ĝm
0 (βeiϕ)− 1)

+|(1 + βeiϕ)φ̂m
J (eiϕ)|2 Im(ĝm

J (βeiϕ)− 1)
]
dϕ. (5.43)
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Next we shall use the assumptions on the transformed boundary kernels ĝj(z) to
show that the integral terms of (5.43) are non-positive.

Part (a):
In the assumptions of Part (a) condition (5.27) is imposed on the kernel ĝj of the free
1D Schrödinger equation. By using Proposition 5.2 it implies

Im ĝm
j (z, ∆x0, ∆t0)

∣∣∣
C1
≤ 0; j = 0, J ; m = 1, ..., K − 1

for the boundary kernels of each transversal mode m. Theorem 5.1 then implies

Im ĝm
j (βeiϕ, ∆x0,∆t) ≤ 0; ∀0 < ∆t ≤ ∆t0, 0 ≤ ϕ ≤ 2π,

and the assertion follows from

‖ψN‖2 β−N = ‖φN‖2 ≤ ‖φ0‖2, ∀N ≥ 0.

Part (b):
As before, we have to prove for all modes m:

Im ĝm
j (βeiϕ, α∆tγ , ∆t) ≤ 0; ∀0 < ∆t ≤ ∆t1, 0 ≤ ϕ ≤ 2π. (5.44)

Following the proof of Theorem 5.2(b), we see that all circles ym
j ; j = 0, J ; m =

1, ..., K − 1 are inside the stability region:

{ym
j (∆t, ϕ) | 0 ≤ ϕ ≤ 2π} ⊂ y0(Co

2)

for 0 < ∆t ≤ ∆t1, and hence (5.44) follows. Note that such a ∆t1 > 0 exists, since
the effective potentials V m

j stay within a finite interval.

6. Error estimates
In this section we consider the numerical scheme for the 1D–Schrödinger equation

(1.8) with (approximatively) transparent BCs of convolution form (1.17). We shall
derive error estimates for the numerical solution when replacing the exact DTBC by
an approximation (like those introduced in §3). First we extend the analytic a-priori
estimate of Proposition 5.1 for the continuous IBVP for the Schrödinger equation
when modifying the BCs. To this end, let ψ(x, t) solve (5.1) with given functions f0,
fX satisfying (5.3) for some α1 ∈ IR.

H1–a-priori estimate of continuous solution. First we derive an energy
estimate for the function ψx(x, t):

Proposition 6.1. Assume that Vx ∈ L2
loc(IR

+
t ; L∞(0, X)), ψI ∈ H1(0, X). Let the

transformed boundary kernels f̂0, f̂X satisfy for some α2 ≥ 0:

Re
{

(s + iV−)f̂0(s)
}
≥ 0, Re

{
(s + iV+)f̂X(s)

}
≤ 0, s = α2 + iξ, (6.1)

for all ξ ∈ IR. Then the solution ψ of (5.1) satisfies the a-priori estimate

‖ψx(., t)‖2L2(0,X) ≤ e2ct
[
‖ψI

x‖2L2(0,X) + ‖ψI‖2L2(0,X)V
max
x (t)

]
, (6.2)
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where V max
x (t) :=

∫ t

0
e2(α1−α2)τ‖Vx(., τ)‖2L∞(0,X) dτ and c = max(α2, 1/2).

Proof. A simple energy estimate for θ(x, t) := ψx(x, t)e−α2t, α2 ≥ 0, gives

d

dt
‖θ(., t)‖2L2(0,X) = Im

{
θ(x, t)θ̄x(x, t)

}∣∣∣
x=X

x=0

− 2α2‖θ(., t)‖2L2(0,X) + 2
∫ X

0

Vx(x, t) Im
{
ψ(x, t)e−α2tθ̄(x, t)

}
dx. (6.3)

Using the Proposition 5.1 we can estimate the last term:

2
∫ X

0

Vx(x, t) Im
{
ψ(x, t)e−α2tθ̄(x, t)

}
dx

≤ 2‖θ(., t)‖L2(0,X)‖ψ(., t)e−α2t‖L2(0,X)‖Vx(., t)‖L∞(0,X)

≤ ‖θ(., t)‖2L2(0,X) + ‖ψI‖2L2(0,X)e
2(α1−α2)t‖Vx(., t)‖2L∞(0,X).

By integrating in time we obtain from (6.3)

‖θ(., t)‖2L2(0,X) ≤ ‖ψI
x‖2L2(0,X) + 2(c− α2)

∫ t

0

‖θ(., τ)‖2L2(0,X) dτ

+ ‖ψI‖2L2(0,X)

∫ t

0

e2(α1−α2)τ‖Vx(., τ)‖2L∞(0,X) dτ

+ Im
∫ t

0

[
θ̄(0, τ)θx(0, τ)− θ̄(X, τ)θx(X, τ)

]
dτ.

(6.4)

It remains to show that the last term in (6.4) is negative. We rewrite the two
boundary conditions (5.2)

ψ̂x(0, s) = f̂0(s)ψ̂(0, s) = ĥ0(s)ψ̂xx(0, s), ĥ0(s) =
f̂0(s)

2(V− − is)
, (6.5a)

ψ̂x(X, s) = f̂X(s)ψ̂(X, s) = ĥX(s)ψ̂xx(X, s), ĥX(s) =
f̂X(s)

2(V+ − is)
, (6.5b)

Re s ≥ 0. Note that ψxx is not necessarily continuous at x = 0, x = X. Since the two
boundary terms have to be evaluated at x = 0+, x = X−, the Laplace transformed
Schrödinger equation (5.1) was used to replace ψ̂ by ψ̂xx in (6.5).

By again denoting the cut–off function by χ[0,t] we use Plancherel’s identity for
Laplace transforms (cf. (5.5)). This gives

Im
∫ t

0

θ̄(0, τ)θx(0, τ) dτ = Im
∫ ∞

0

{(χ[0,t]θx) ∗ h̃0}(0, τ)χ[0,t](τ)θx(0, τ) dτ

= − 1
2π

∫

IR

|χ̂[0,t]θx|2(0, iξ)Imĥ0(α2 + iξ) dξ ≤ 0,

provided that (6.1) holds. Here h̃0 is given by ˆ̃
h0(s) = ĥ0(α2 + s). An analogous

estimate holds for the boundary term at x = X. Finally a Gronwall estimate yields
the estimate (6.2).

Remark 7. Note that the choice of ĥ0(s), ĥX(s) in (6.5) is not uncommon; if f̂0(s),
f̂X(s) correspond to the TBCs (1.2), (1.3) (cf. Example 5.1) then

ĥ0(s) =
e

π
4 i

√
2

1
+
√

s + iV−
.
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An inverse Laplace transformation yields the impedance boundary condition [34]:

ψ(0, t) =
ei π

4√
2π

∫ t

0

ψx(0, τ) e−iV−(t−τ)

√
t− τ

dτ, (6.6)

which is equivalent (for smooth functions) to (1.2).
Combining Propositions 5.1 and 6.1 yields an a-priori estimate for the solution at

the boundaries (by using a Sobolev–imbedding):

|ψ(0, t)|2 + |ψ(X, t)|2

≤ C
{

e2α1t‖ψI‖2L2(0,X) + e2ct
[
‖ψI

x‖2L2(0,X) + ‖ψI‖2L2(0,X)V
max
x (t)

]}
, (6.7)

where C denotes here and in the sequel generic but not necessarily equal constants.

Example 6.1. (exact TBC) We return to the exact TBC of Example 5.1 Its
Laplace-transformed kernels f̂TBC

0 , f̂TBC
X , satisfy the condition (6.1) for all α2 ≥ 0, i.e.

Re
{

(s + iV−)f̂0(s)
}

=
√

2Re
{

e−
π
4 i(s + iV−) +

√
s + iV−

}
≥ 0, s = α2 + iξ,

(6.8)
holds for all ξ ∈ IR and analogously for f̂TBC

X . This is easily deduced from arg(s+
iV−) ∈ [−π/2, π/2], which implies arg

(
(s + iV−) +

√
s + iV−

) ∈
[−π/4, π/4].

Error estimate of continuous solution. Now let µ(x, t) solve (5.1) with the
exact TBC kernels fTBC

0 , fTBC
X (cf. Example 5.1) and let ψ(x, t) solve (5.1) with

given functions f0, fX satisfying (5.3) for some α1 ∈ IR. Then the error κ(x, t) :=
µ(x, t)− ψ(x, t) solves the system





iκt = − 1
2κxx + V (x, t)κ, 0 < x < X, t > 0,

κ(x, 0) = 0, 0 < x < X,

κ̂x(0, s) = f̂TBC
0 (s)κ̂(0, s) + [f̂TBC

0 (s)− f̂0(s)]ψ̂(0, s), Re s ≥ 0,

κ̂x(X, s) = f̂TBC
X (s)κ̂(X, s) + [f̂TBC

X (s)− f̂X(s)]ψ̂(X, s), Re s ≥ 0,

(6.9)

and we can formulate the following error estimate:

Theorem 6.1. Let the assumptions of Proposition 6.1 be fulfilled and let c =
max(α2, 1/2). Then the following estimate holds for all α ≥ 0, α 6= α1, α 6= c:

‖κ(., t)‖2L2(0,X) ≤ fmax
0,X

[
a1 (e2α1t − e2αt) + a2 (e2ct − e2αt)

+ a3(e2ctV max
x (t)− e2αt

∫ t

0

e2(α1−α2)τ‖Vx(., τ)‖2L∞(0,X)e
2(c−α)τ dτ)

] (6.10)

with

fmax
0,X := ‖f̂TBC

0 (α+iξ)−f̂0(α+iξ)‖L∞(IRξ) + ‖f̂TBC
X (α+iξ)−f̂X(α+iξ)‖L∞(IRξ)

and

a1 =
C‖ψI‖2L2(0,X)

(α1 − α)
, a2 =

C‖ψI
x‖2L2(0,X)

(c− α)
, a3 =

C‖ψI‖2L2(0,X)

(c− α)
.
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For α = α1 or α = c one takes the obvious limits in (6.10).

Proof. As for Proposition 5.1 the theorem is easily proved by using an energy
estimate for the function η(x, t) := κ(x, t)e−αt, α ≥ 0, which satisfies:




iηt = − 1
2ηxx + (V (x, t)− iα)η, 0 < x < X, t > 0,

η(x, 0) = 0, 0 < x < X,

η̂x(0, s) = f̂TBC
0 (s+α)η̂(0, s) +

[
f̂TBC
0 (s+α)− f̂0(s+α)

]
ψ̂(0, s+α),

η̂x(X, s) = f̂TBC
X (s+α)η̂(X, s) +

[
f̂TBC

X (s+α)− f̂X(s+α)
]
ψ̂(X, s+α),

(6.11)

with Re s ≥ 0. An energy estimate for η(x, t) yields:

‖η(., t)‖2L2(0,X) = −2α

∫ t

0

‖η(., τ)‖2L2(0,X) dτ

+ Im
∫ t

0

[
η̄(0, τ)ηx(0, τ)− η̄(X, τ)ηx(X, τ)

]
dτ. (6.12)

Now Plancherel’s identity for Laplace transforms gives

Im
∫ t

0

η̄(0, τ)ηx(0, τ) dτ

= Im
∫ ∞

0

χ[0,t](τ)η(0, τ){(χ[0,t]η) ∗ f̃TBC
0 }(0, τ)

+ {(χ[0,t]ψe−ατ ) ∗ [f̃TBC
0 − f̃0]}(0, τ) dτ

=
1
2π

∫

IR

|χ̂[0,t]η|2(0, iξ) Imf̂TBC
0 (α+iξ)

+ Im
[
f̂TBC
0 (α+iξ)− f̂0(α+iξ)

] ̂(χ[0,t]ψ)(0, α+iξ) ̂(χ[0,t]η)(0, iξ) dξ

and analogously for the right boundary term. Here ˆ̃
f0 is given by ˆ̃

f0(s) = f̂0(α + s).
Since Imf̂TBC

0 (α+iξ) ≤ 0 and Imf̂TBC
X (α+iξ) ≥ 0 for all α ≥ 0, ξ ∈ IR (cf. Example

5.1) we obtain

‖η(., t)‖2L2(0,X)

≤ ‖f̂TBC
0 (α+iξ)− f̂0(α+iξ)‖L∞(IRξ)‖η(0, τ)‖L2(0,t)‖ψ(0, τ)e−ατ‖L2(0,t)

+ ‖f̂TBC
X (α+iξ)− f̂X(α+iξ)‖L∞(IRξ)‖η(X, τ)‖L2(0,t)‖ψ(X, τ)e−ατ‖L2(0,t).

It only remains to estimate the above boundary terms. Using the estimate (6.7) we
obtain

|η(0, t)|2 = e−2αt |µ(0, t)− ψ(0, t)|2

≤ Ce−2αt
{

e2α1t‖ψI‖2L2(0,X) + e2ct
[
‖ψI

x‖2L2(0,X) + ‖ψI‖2L2(0,X)V
max
x (t)

]}

and analogously for |η(X, t)|2. Integrating in time yields

‖η(0, .)‖2L2(0,t) ≤ a1(e2(α1−α)t − 1) + a2(e2(c−α)t − 1)

+ a3(e2(c−α)tV max
x (t)−

∫ t

0

e2(α1−α2)τ‖Vx(., τ)‖2L∞(0,X)e
2(c−α)τ dτ) (6.13)
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and an estimate of the same form holds for ‖ψ(X, τ)e−ατ‖L2(0,t), i.e. we obtain the
estimate (6.10).

To illustrate this result we now consider two simple examples:

Example 6.2. (“cut-off” TBC) We continue the discussion of Example 5.2
with the approximate BC–kernel

f0(t) = fTBC
0 (t)H(T − t).

Analogously to the procedure in Example 5.2 one can verify numerically that its
Laplace transform

f̂0(s) =
√

2 e−
π
4 i +

√
s + iV− +

1√
2π

e−
π
4 i

∫ ∞

T

t−
3
2 e−st dt, s = α2 + iξ, ξ ∈ IR,

satisfies the condition (6.1) (with V− = 0) for α̃2 ≥ 0.25 if T = 1.
Next we verify that the two kernels fTBC

0 and f0 satisfy an error estimate like
those appearing on the right hand side of (6.10). These two kernels satisfy

‖fTBC
0 − f0‖L1(0,∞) =

√
2

πT
,

and hence

‖f̂TBC
0 (α+iξ)− f̂0(α+iξ)‖L∞(IRξ) ≤

√
2

πT
e−αT

holds for all α ≥ 0.

Example 6.3. (rational function kernel) As a second example assume now
that f̂0 is a rational function (as proposed in [3, 13, 17]):

f̂0(s) =
PL−1(s)
QL(s)

.

Since f̂TBC
0 (s) =

√
2 e−

π
4 i +
√

s and f̂0(s) have different asymptotic behaviours for large
|s|, we conclude

f̂TBC
0 (α+iξ)− f̂0(α+iξ) /∈ L∞(IRξ)

for any α ≥ 0. Hence Theorem 6.1 does not apply. We remark that this difficulty
will not arise for the discrete BCs with exponential–sum–coefficients derived in §3 (cf.
Example 6.5).

h1–a-priori estimate of discrete solution. Analogously to the continuous
case let ψj,n solve the Crank–Nicolson scheme (5.10) with ĝ0, ĝJ satisfying (5.15) for
some β = β1 ≥ 1. From now on we shall assume that Vj = V− for j ≤ 1 and Vj = V+

for j ≥ J − 1 in addition to the assumptions in §5. First we derive a discrete h1–
estimate of the solution of (5.10) which is the discrete analogue of Proposition 6.1:

Proposition 6.2. Let the transformed boundary transfer functions ĝ0, ĝJ satisfy the
following condition for some (sufficiently large) β2 ≥ 1:

Re
{

ȳ1(β2e
iϕ)

[
1− 1

ĝ0(β2eiϕ)

]}
≥ 0, 0 ≤ ϕ ≤ 2π, (6.14a)
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Re
{

ȳJ−1(β2e
iϕ)

[
1− 1

ĝJ(β2eiϕ)

]}
≥ 0, 0 ≤ ϕ ≤ 2π, (6.14b)

with

yj(z) =
R

2

(z − 1
z + 1

+ iνj

)
, ν1 =

∆tV−
2

, νJ−1 =
∆tV+

2
. (6.15)

Assume also that ĝ0, ĝJ are analytic for |z| ≥ β2. Then the following estimate holds
for ∆t < 2, n ∈ IN:

‖∆+ψn‖22,∗ ≤ c2n

[
‖∆+ψ0‖22,∗ +

(1 + β1)2

2β2
2

‖ψ0‖22
2−∆t

V max
∆+,n−1

]
, (6.16)

where

V max
∆+,n

:= ∆t

n∑

k=0

(
β1

β2

)2k

‖∆+Vk+ 1
2
‖2∞, c = max

(
β2,

√
2 + ∆t

2−∆t

)

and the discrete norms are defined by

‖∆+ψn‖22,∗ = ∆x
J−2∑

j=1

|∆+ψj,n|2, ‖∆+Vn+ 1
2
‖∞ = max

j=1,...,J−2
|∆+Vj,n+ 1

2
|.

(Note the difference to the discrete L2–norm in (5.14).)

Proof. The proof is based on a discrete energy estimate for the new variable

θj,n := β−n
2 ∆+ψj,n,

which solves the equation

−iR(θj,n+1 − θj,n) = (∆2 − wVj,n+ 1
2
) (θj,n+1 + θj,n)

+ (β−1
2 − 1)(∆2 − wVj,n+ 1

2
− iR)θj,n

− wβ−n−1
2 (ψj+1,n+1 + ψj+1,n)∆+Vj,n+ 1

2
.

(6.17a)

Alternatively this can be written as

−iR(θj,n+1 − θj,n) = (∆2 − wVj,n+ 1
2
) (θj,n+1 + θj,n)

+ (β2 − 1)(∆2 − wVj,n+ 1
2

+ iR)θj,n+1

− wβ−n
2 (ψj+1,n+1 + ψj+1,n) ∆+Vj,n+ 1

2
,

(6.17b)

for j = 1, . . . , J − 2 together with the initial condition

θj,0 = ∆+ψj,0, j = 1, . . . , J − 2,

and the two transformed boundary conditions

θ̂0(z) =[ĝ0(β2z)− 1] ψ̂0(β2z), (6.18a)

θ̂J−1(z) =−[ĝJ(β2z)− 1] ψ̂J(β2z). (6.18b)
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We multiply equation (6.17a) with θ̄j,n and the complex conjugate of (6.17b) with
−θj,n+1 and sum it up for j = 1, . . . , J − 2. After a lengthy calculation one obtains
the following formula:

‖θn+1‖22,∗−‖θn‖22,∗ =
∆t

4β2
2∆x

Im
[
(θ̄0,n + β2θ̄0,n+1)∆+(θ0,n + β2θ0,n+1)

− (θ̄J−1,n + β2θ̄J−1,n+1)∆−(θJ−1,n + β2θJ−1,n+1)
]

− (1− β−2
2 )‖θn‖22,∗

+
∆t∆x

2βn+2
2

J−2∑

j=1

Im
[
(θ̄j,n+β2θ̄j,n+1)(ψj+1,n+1+ψj+1,n)

]
∆+Vj,n+ 1

2
,

which is the discrete analogue of (6.3). We estimate the last term using Lemma 5.1

∆x

J−2∑

j=1

Im
[
(θ̄j,n + β2θ̄j,n+1)β−n

2 (ψj+1,n+1 + ψj+1,n)
]
∆+Vj,n+ 1

2

≤ ‖θn + β2θn+1‖2,∗β−n
2 ‖ψn+1 + ψn‖2‖∆+Vn+ 1

2
‖∞

≤ ‖θn + β2θn+1‖2,∗(1 + β1)‖ψ0‖2
(

β1

β2

)n

‖∆+Vn+ 1
2
‖∞

≤ ‖θn‖22,∗ + β2
2‖θn+1‖22,∗ +

(1 + β1)2

2
‖ψ0‖22

(
β1

β2

)2n

‖∆+Vn+ 1
2
‖2∞

and we obtain

‖θn+1‖22,∗ − ‖θn‖22,∗ ≤
(
β−2

2 − 1 +
∆t

2β2
2

)
‖θn‖22,∗ +

∆t

2
‖θn+1‖22,∗

+
∆t

4β2
2

(1 + β1)2‖ψ0‖22
(

β1

β2

)2n

‖∆+Vn+ 1
2
‖2∞

+
∆t

4β2
2∆x

Im
[
(θ̄0,n + β2θ̄0,n+1)∆+(θ0,n + β2θ0,n+1)

− (θ̄J−1,n + β2θ̄J−1,n+1)∆−(θJ−1,n + β2θJ−1,n+1)
]
.

Summing for n = 0, . . . , N yields

(
1− ∆t

2

)
‖θN+1‖22,∗ ≤ −

(
1− ∆t

2

) N∑
n=1

‖θn‖22,∗ +
(
1 +

∆t

2

)
β−2

2

N∑
n=0

‖θn‖22,∗

+
(1 + β1)2

4β2
2

‖ψ0‖22 V max
∆+,N

+
∆t

4β2
2∆x

Im
N∑

n=0

[
(θ̄0,n + β2θ̄0,n+1)∆+(θ0,n + β2θ0,n+1)

−(θ̄J−1,n + β2θ̄J−1,n+1)∆−(θJ−1,n + β2θJ−1,n+1)
]
.

(6.19)

It remains to determine the sign of the last term in (6.19). To this end, we rewrite
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the two boundary conditions (6.18):

θ̂0(z) =
[
1− 1

ĝ0(β2z)

]
ψ̂1(β2z) = ˆ̃

h0(z)∆+θ̂0(z), (6.20a)

θ̂J−1(z) = −
[
1− 1

ĝJ(β2z)

]
ψ̂J−1(β2z) = ˆ̃

hJ(z)∆−θ̂J−1(z), (6.20b)

with

ˆ̃
h0(z) =

1− 1
ĝ0(β2z)

−iR β2z−1
β2z+1 + wV−

,
ˆ̃
hJ(z) =

−[
1− 1

ĝJ (β2z)

]

−iR β2z−1
β2z+1 + wV+

. (6.21)

As in Section 5 we define (for N fixed) the two sequences,

un :=

{
∆+(θ0,n + β2θ0,n+1), n = 0, . . . , N,

0, n > N,

vn := un ∗ h̃0,n, n ∈ IN0, h̃0,n = Z−1{ˆ̃h0(z)}.

Now using Plancherel’s Theorem for Z–transforms we can show that

Im
N∑

n=0

[
(θ̄0,n + β2θ̄0,n+1)∆+(θ0,n + β2θ0,n+1)

]

= Im
N∑

n=0

v̄nun = −Im
∞∑

n=0

vnūn = − 1
2π

∫ 2π

0

|û(eiϕ)|2 Imˆ̃
h0(eiϕ) dϕ

is negative since

Im ˆ̃
h0(eiϕ) = Im

i

2

1− 1
ĝ0(β2eiϕ)

y1(β2eiϕ)
=

Re
{

ȳ1(β2e
iϕ)

[
1− 1

ĝ0(β2eiϕ)

]}

2|y1(β2eiϕ)|2 ≥ 0

due to the assumption (6.14). An analogous estimate holds for the right boundary
term.

Finally (6.19) yields for ∆t < 2

‖θN+1‖22,∗ ≤ ‖θ0‖22,∗+
(1 + β1)2

2β2
2

‖ψ0‖22
2−∆t

V max
∆+,N

+
(2 + ∆t

2−∆t
β−2

2 −1
) N∑

n=0

‖θn‖22,∗. (6.22)

With the discrete Gronwall-type estimate [35, Lemma 1.4.2] for the function ‖θN+1‖22,∗
we obtain:

‖θN+1‖22,∗ ≤
(2 + ∆t

2−∆t
β−2

2

)N+1
[
‖θ0‖22,∗ +

(1 + β1)2

2β2
2

‖ψ0‖22
2−∆t

V max
∆+,N

]
(6.23)

provided that (2 + ∆t)/(2−∆t) ≥ β2
2 . This yields the estimate (6.16).

By combining Lemma 5.1 and Proposition 6.2 and using the discrete Sobolev–
inequality

|ψj,n|2 ≤ C(X)
{‖ψn‖22 + (∆x)−2‖∆+ψn‖22,∗

}
, j = 1, . . . , J − 1, (6.24)
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we now obtain an a-priori pointwise estimate for the discrete solution:

|ψj,n|2 ≤ C(X)
{

β2n
1 ‖ψ0‖22 + c2n(∆x)−2

[
‖∆+ψ0‖22 +

(1 + β1)2

2β2
2

‖ψ0‖22
2−∆t

V max
∆+,n−1

]}

(6.25)
for j = 1, . . . , J − 1, n ∈ IN. Note that this is a discrete analogue of (6.7).

Example 6.4. (exact DTBC) We consider the exact DTBC of Example 5.3.
The Z–transformed boundary kernel

ĝTBC
0 (z) = ˆ̀

0(z) = 1− iy1(z) +
√
−y1(z)

(
y1(z) + 2i

)

(with the branch of the square root chosen such that |ˆ̀0(z)| ≥ 1) satisfies the condition
(6.14) for all β2 ≥ 1. To verify this, one has to check that

Re
{

ȳ1

[
iy1 +

√
−y1

(
y1 + 2i

)]}
= Re

{
ȳ1

√
−y1(z)

(
y1 + 2i

)} ≥ 0 (6.26)

holds for all y1 = y1(z) with Re y1 ≥ 0 (cf. Figure 5.3): For β2 = 1 (i.e. Re y1 = 0)
this is easily done analytically, and for β2 > 1 one can do it numerically. Note that
(6.26) is the analogue of (6.8) for the exact DTBC.

Error estimate of discrete solution. Now let µj,n be the solution of (5.10)
with the exact TBC kernels ĝTBC

0 = ˆ̀
0, ĝTBC

J = ˆ̀
J (cf. (1.10)) and let ψj,n solve the

Crank–Nicolson scheme (5.10) with other transformed kernels ĝ0, ĝJ satisfying (5.15)
for some β1 ≥ 1. Then the discrete error κj,n := µj,n − ψj,n solves





−iR(κj,n+1 − κj,n)= ∆2 (κj,n+1 + κj,n)− wVj,n+ 1
2

(κj,n+1 + κj,n) ,

j = 1, . . . , J − 1,

κj,0 = 0, j = 0, . . . , J,

∆+κ̂0(z) = [ĝTBC
0 (z)− 1] κ̂0(z) + [ĝTBC

0 (z)− ĝ0(z)]ψ̂0(z),
∆−κ̂J (z) = −[ĝTBC

J (z)− 1] κ̂J(z)− [ĝTBC
J (z)− ĝJ(z)]ψ̂J(z),

(6.27)

and the following estimate can be proved:

Theorem 6.2. Let the assumptions of Proposition 6.2 be fulfilled and assume ∆t <
2. Then the following error estimate holds for all β ≥ 1, β 6= β1, β 6= c =
max

(
β2,

√
(2 + ∆t)/(2−∆t)

)

‖κn‖22 ≤
gmax
0,J

2
·∆t(1 + β)2

{
β2n − β2n

1

β2 − β2
1

‖ψ0‖22 +
β2n − c2n

β2 − c2
X‖∆+ψ0‖22

+X
(1 + β1)2

2β2
2

‖ψ0‖22
2−∆t

β2(n−1)
n−1∑

k=0

( c

β

)2k

V max
∆+,k−1

}
,

(6.28)

with

gmax
0,J :=

1
∆x

(∥∥∥∥
1

ĝ0 (βeiϕ)
− 1

ĝTBC
0 (βeiϕ)

∥∥∥∥
L∞(0,2π)

+
∥∥∥∥

1
ĝJ(βeiϕ)

− 1
ĝTBC

J (βeiϕ)

∥∥∥∥
L∞(0,2π)

)
.
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For β = β1 or β = c we obtain the estimate by obvious limits.

Proof. The new discrete variable ηj,n := κj,nβ−n, β ≥ 1, satisfies the two equa-
tions

−iR(ηj,n+1 − ηj,n) =∆2 (ηj,n+1 + ηj,n)− wVj,n+ 1
2

(ηj,n+1 + ηj,n)

+ (β−1 − 1)(∆2 − wVj,n+ 1
2
− iR)ηj,n,

(6.29a)

−iR(ηj,n+1 − ηj,n) =∆2 (ηj,n+1 + ηj,n)− wVj,n+ 1
2

(ηj,n+1 + ηj,n)

+ (β − 1)(∆2 − wVj,n+ 1
2

+ iR)ηj,n+1,
(6.29b)

for j = 1, . . . , J − 1 and the two boundary conditions

∆+η̂0(z) =[ĝTBC
0 (βz)− 1] η̂0(z) + [ĝTBC

0 (βz)− ĝ0(βz)] ψ̂0(βz), (6.30a)

∆−η̂J(z) =−[ĝTBC
J (βz)− 1] η̂J(z)− [ĝTBC

J (βz)− ĝJ(βz)] ψ̂J (βz). (6.30b)

We multiply equation (6.29a) with η̄j,n, the complex conjugate of (6.29b) with ηj,n+1

and sum it up for j = 1, . . . , J − 1. This gives finally

−iR

J−1∑

j=1

|ηj,n+1|2−|ηj,n|2 =
J−1∑

j=1

η̄j,n∆2(ηj,n+1+ηj,n)−
J−1∑

j=1

ηj,n+1∆2(η̄j,n+1+η̄j,n)

+ (β−1−1)
J−1∑

j=1

η̄j,n∆2ηj,n − (β−1)
J−1∑

j=1

ηj,n+1∆2η̄j,n+1

− (β−1−1)iR
J−1∑

j=1

|ηj,n|2 + (β−1)iR
J−1∑

j=1

|ηj,n+1|2

+ w

J−1∑

j=1

Vj,n+ 1
2
(β|ηj,n+1|2 − β−1|ηj,n|2).

After a lengthy calculation one obtains the following expression for the discrete L2–
norm of the error:

‖ηN+1‖22 =
1− β2

β2

N∑
n=1

‖ηn‖22

+
∆t

4β2∆x
Im

N∑
n=0

[(
η̄0,n + βη̄0,n+1

)
∆+

(
η0,n + βη0,n+1

)

− (
η̄J,n + βη̄J,n+1

)
∆−(

ηJ,n + βηJ,n+1

)]
.

(6.31)

Since β ≥ 1 it only remains to estimate the boundary terms in (6.31). To this
end, we rewrite the two boundary conditions (6.30):

∆−η̂1(z) = ˆ̃
h0(z) η̂1(z) + ˆ̃

k0(z) ψ̂1(βz), (6.32a)

∆+η̂J−1(z) = −ˆ̃
hJ(z) η̂J−1(z)− ˆ̃

kJ(z) ψ̂J−1(βz). (6.32b)

with

ˆ̃
hj(z) = 1− 1

ĝTBC
j (βz)

,
ˆ̃
kj(z) =

1
ĝj (βz)

− 1
ĝTBC

j (βz)
, j = 0, J. (6.33)
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Again we define (for N fixed) the three sequences,

un :=

{
η1,n+βη1,n+1, n = 0, . . . , N,

0, n > N,
wn :=

{
ψ1,n+βψ1,n+1, n = 0, . . . , N,

0, n > N,

and

vn := un ∗ h̃0,n + k̃0,n ∗ wn, n ∈ IN0,

where

h̃0,n = Z−1{ˆ̃h0(z)}, k̃0,n = Z−1{ˆ̃k0(z)}.

Using Plancherel’s Theorem for Z–transforms we can now show that

∆t Im
N∑

n=0

(
η̄0,n + βη̄0,n+1

)
∆+

(
η0,n + βη0,n+1

)

= ∆t Im
N∑

n=0

(
η̄1,n + βη̄1,n+1

)
∆−(

η1,n + βη1,n+1

)
= ∆t Im

∞∑
n=0

ūnvn

=
∆t

2π

∫ 2π

0

|û(eiϕ)|2 Imˆ̃
h0(eiϕ) + Im

{ˆ̃
k0(eiϕ)ŵ(βeiϕ) ¯̂u(eiϕ)

}
dϕ

≤ (1 + β)2
∥∥∥ˆ̃
k0(eiϕ)

∥∥∥
L∞(0,2π)

‖β−nψ1‖`2(0,N)‖η1‖`2(0,N),

(6.34)

since Imˆ̃
h0(eiϕ) ≤ 0 for all β ≥ 1. An analogous estimate holds for the right boundary

term. The discrete L2–norm in (6.34) is defined by ‖ηj‖`2(0,N) = ∆t
∑N

n=0 |ηj,n|2. For
estimating the boundary term ‖η1‖`2(0,N) we use (6.25):

|η1,n|2 = β−2n |µ1,n − ψ1,n|2

≤ 2
{(β1

β

)2n

‖ψ0‖22 +
( c

β

)2n

X
[
‖∆+ψ0‖22 +

(1 + β1)2

2β2
2

‖ψ0‖22
2−∆t

V max
∆+,n−1

]}

(6.35)

n = 0, . . . , N + 1. Summing for n = 0, . . . , N yields

‖η1‖2`2(0,N) ≤ 2∆t





1− (
β1
β

)2(N+1)

1− β2
1

β2

‖ψ0‖22 +
1− (

c
β

)2(N+1)

1− c2

β2

X‖∆+ψ0‖22

+X
(1 + β1)2

2β2
2

‖ψ0‖22
2−∆t

N∑
n=0

( c

β

)2n

V max
∆+,n−1

} (6.36)

and an analogous estimate holds for ‖β−nψ1‖`2(0,N), i.e. we obtain (6.28).

Remark 8. Instead of the discrete Sobolev–inequality (6.25) one could also use the
following trivial L2–estimates in (6.36):

|η1,n| ≤ 1√
∆x

‖ηn‖2, |ψ1,n| ≤ 1√
∆x

‖ψn‖2.
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This would imply

‖β−nψ1‖`2(0,N)‖η1‖`2(0,N) ≤ 2
∆t

∆x
‖ψ0‖22

N∑
n=0

β−2n(1 + β2n
1 ),

i.e.

‖ηN+1‖22 ≤
(1 + β)2

2β2

∆t

∆x
gmax
0,J ‖ψ0‖22

N∑
n=0

β−2n(1 + β2n
1 ). (6.37)

This yields finally the error estimate

‖κn‖22 ≤ gmax
0,J

‖ψ0‖22
2∆x

·∆t(1 + β)2
[
β2n − 1
β2 − 1

+
β2nβ2n

1

β2 − β2
1

]
. (6.38)

This estimate can be applied if we assume that ∆x = const (which corresponds to
Case 2 of Section 5, cf. Theorem 5.1). The advantage of (6.38) is that the condition
(6.14) is not necessary.

Note that gmax
0,J is the discrete analogue of fmax

0,X from (6.10). With the standard
connection between Laplace– and Z–transforms we have:

ĝTBC
0 (es∆t)− 1

∆x
→ f̂TBC

0 (s), ∆x, ∆t → 0,

s = α + iξ fixed.

Example 6.5. (“cut-off” DTBC) We consider the simplified DTBC of Exam-
ple 5.4 where the convolution coefficients sj,n are cut off for n ≥ N . In Figure 6.1 we
verify for N = 10 that the corresponding transformed convolution kernel (cf. (5.25))
satisfies the condition for the h1–a-priori estimate (6.14a) only for β2 ≥ 1.24.

As a discrete analogue of Example 6.2 we shall now illustrate the error estimate
of Theorem 6.2: In (6.28) the error between the two solutions is bounded by

∥∥∥∥∥
1

ˆ̀(N)
j (βeiϕ)

− 1
ˆ̀
j(βeiϕ)

∥∥∥∥∥
L∞(0,2π)

, j = 0, J, (6.39)

the difference between the exact ({`j,n}) and the “cut-off” convolution kernels ({`(N)
j,n }).

In the following table we show, how this difference (6.39) decreases as N , the
number of retained convolution coefficients, grows. Theorem 6.2 hence implies con-
vergence (as N → ∞) of the corresponding discrete Schrödinger solutions for the
scheme (5.10). The parameters are again ∆x = 1/160, ∆t = 2 · 10−5, V ≡ 0, and
β = 1.25.

N = 5 10 20 30 40
error ‖1/ˆ̀(N)

0 − 1/ˆ̀
0‖∞ 1.7346 0.97592 0.04391 0.004559 0.00048768

Example 6.6. (approximated DTBC) We shall now compare the above error
estimate (6.28), (6.39) to the situation in the approximated DTBC with the sum-
of-exponentials-ansatz (3.1) (with ν = 2). In the following table we show, how the
difference (6.39) decreases as L grows. Note that the numerical effort for evaluation
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Fig. 6.1. h1–condition (6.14a) for simplified discrete transparent boundary conditions with cut–
off after N = 10 convolution coefficients, ∆x = 1/160, ∆t = 2 · 10−5, V ≡ 0. The h1–condition
(6.14a) is satisfied for β2 ≥ 1.24.

the DTBC is the same in both cases when 2L = N (compared to Example 6.5). On
the other hand, the error bounds are much smaller for the sum-of-exponentials-ansatz.
Hence, the corresponding solution is much more accurate (cf. Example 7.1, below).

L = 3 15 10 15 20

error ‖1/
ˆ̀̃
0 − 1/ˆ̀

0‖∞ 0.0029642 0.00018247 1.2808e-07 6.4439e-11 2.962e-14

7. Numerical examples
In this section we shall present two examples to compare the numerical results

of using our new approach of the approximated DTBC with the sum-of-exponentials-
ansatz (3.1) (with ν = 2) with the solution using the exact DTBC (1.17).

Example 7.1. As a first example we consider the Schrödinger equation (1.1) in
one space dimension on 0 ≤ x ≤ 1 with V ≡ 0, and initial data ψI(x) = exp(i100x−
30(x − 0.5)2). The time evolution of the approximate solution |ψa(x, t)| using the
approximated DTBC with convolution coefficients {s̃n} and L = 10, L = 20 is shown,
respectively, in Figure 7.1 and Figure 7.2 (observe the viewing angle).

While one can observe some reflected wave when using the approximated DTBC
with L = 10, there are no reflections visible when using the approximated DTBC with



546 DISCRETE TRANSPARENT BOUNDARY CONDITIONS

Fig. 7.1. Time evolution of |ψa(x, t)|: The approximate convolution coefficients consisting of
L = 10 discrete exponentials give rise to a reflected wave.

L = 20.
Next we investigate the long–time stability behaviour of the approximated DTBC

with the sum-of-exponentials ansatz. The reference solution ψref with ∆x = 1/160,
∆t = 2 · 10−5 is obtained by using exact DTBCs (1.17) at the end points x = 0 and
x = 1. We vary the parameter L = 20, 30, 40, 50 in (3.1) to find the corresponding
approximate DTBCs, and show the error of the approximate solution ψa measured in
||ψa(t) − ψref (t)||L2/||ψI ||L2 . The result up to time step n = 15000 is shown in the
Figure 7.3(a). Larger values of L clearly yield more accurate coefficients and hence a
more accurate solution ψa.

In Figure 7.3(b) we show the analogous result for the “cut-off” DTBC, where we
retained N = 20, 30, 40, 50 exact convolution coefficients. While the numerical effort
is the same for both approaches with 2L = N , our sum-of-exponentials DTBC yields
an error that is 3-4 orders of magnitude smaller.

Example 7.2. The second example considers the time evolution of a wave func-
tion in a potential well of finite depth: We solve the 1D–Schrödinger equation (1.1)
on [0, 2] with zero potential in the interior (V (x) ≡ 0 for 0 < x < 2) and V (x) ≡ 4500
outside the computational domain. Figure 7.4 shows the time evolution of a right
travelling Gaussian beam [ψI(x) = exp(i100x − 30(x − 1)2)] using the rather coarse
space discretization ∆x = 1/160, the time step ∆t = 2 · 10−5, and the exact DTBC
(1.17). We observe in Figure 7.4 that the main part of the wave is reflected at the
boundaries. The value of the potential is chosen such that at time t = 0.08, i.e. after
4000 time steps 75% of the mass (‖ψ(., t)‖22) has left the domain.

While the discrete TBCs (1.17) yield the exact numerical solution to the discrete
whole–space problem (up to round–off errors), the approximated DTBC induces small
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Fig. 7.2. Time evolution of |ψa(x, t)|: The approximate convolution coefficients consisting of
L = 20 discrete exponentials make reflections already invisible.

errors. Figure 7.5 shows the error of the approximate solution ψa defined by eL(x, t) :=
(ψa(x, t)− ψref (x, t))/||ψI ||L2 .

Figure 7.6 shows the time decay of the discrete `2-norm ‖ψ(., t)‖2 and the tem-
poral evolution of the error ‖eL(., t)‖2 when using an approximated DTBC with
L = 20, 30, 40. Additionally, we calculated for L = 20 the coefficients {bl, ql} for
the “normalized parameters” ∆x = 1, ∆t = 1, V = 0 (cf. Appendix A) and then
used the Transformation rule 3.1 to calculate the coefficients {b∗l , q∗l } for the desired
parameters (cf. Example 3.1). The result is better than calculating the convolution
coefficients “directly” (compare the error-curves “L = 20 (trafo)” and “L = 20 ”).
One observes that the error increases with time. This is not surprising since each
reflection at the boundaries induces an additional error.

Evaluating the convolution appearing in exact DTBCs is quite expensive for long-
time calculations. Therefore we shall now illustrate the difference in the computational
effort for both approaches in Figure 7.7:

The computational effort for the exact DTBCs is quadratic in time, since the
evaluation of the boundary convolutions dominates for large times. On the other hand,
the effort for the approximated DTBC only increases linearly. For L = 10, 20, 30 the
lines are indistinguishable since the evaluation of the sum-of-exponential convolutions
has a negligible effort compared to solving the PDE in the interior domain.
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Fig. 7.3. Error of the approximate solution ψa(t) with (a) approximate convolution coefficients
consisting of L = 20, 30, 40, 50 discrete exponentials; (b) “cut-off” DTBC: The convolution coeffi-
cients are cut off for n ≥ N with N = 20, 30, 40, 50. The error-peak between t = 0.01 and t = 0.02
corresponds to the first reflected wave, which is clearly visible in Figure 7.1.
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Fig. 7.4. Time evolution of |ψ(x, t)| in a potential well. The Gaussian beam is almost perfectly
reflected by the walls of height V = 4500.

Fig. 7.5. Time evolution within the potential well (V = 4500) of the error |eL(x, t)| due to an
approximated DTBC with L = 20. As expected, the error accumulates with each reflection of the
main wave.
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Appendix A. In the following table we list the coefficients {ql, bl} of the exponential-
sums-BC having the convolution kernel (3.1) for the cases L = 5, and L = 10 with
the “normalized parameters” ν = 2, ∆x = ∆t = 1, and V = 0:

ql bl

1.0613253 + 0.83506991e-1*I -0.46123493e-1 - 0.35384269e-1*I
0.83506991e-1 + 1.0613253*I 0.57634691e-1 + 0.75937784e-2*I

L=5 1.1653982 + 0.41107342*I -0.95195640e-1 - 0.20683503*I
0.41107342 + 1.1653982*I 0.21356793 - 0.78940966e-1*I
0.95734921 + 0.95734921*I 0.13684972 - 0.33038444*I
1.0204790 + 0.20818849e-1*I -0.81657939e-2 - 0.36037147e-2*I
0.20818849e-1 + 1.0204790*I 0.83222994e-2 + 0.32258771e-2*I
1.0793585 + 0.91985074e-1*I -0.31636868e-1 - 0.19266238e-1*I
0.91985074e-1 + 1.0793585*I 0.35993931e-1 + 0.87473565e-2*I
1.1613828 + 0.24003468*I -0.61222441e-1 - 0.61543495e-1*I

L=10 0.24003468 + 1.1613828*I 0.86808626e-1 - 0.22701935e-3*I
1.2133719 + 0.49825873*I -0.60889615e-1 - 0.14138908*I
0.49825873 + 1.2133719*I 0.14303264 - 0.56921716e-1*I
1.1272018 + 0.84466563*I 0.22117261e-1 - 0.20911201*I
0.84466563 + 1.1272018*I 0.13222525 - 0.16350378*I

The coefficients b∗l , q
∗
l for other parameters ∆x∗, ∆t∗, V∗ can then be obtained from

the explicit formulas in the Transformation rule 3.1. A Java-Applet for calculating
b?
l , q?

l is available on the authors’ homepages:
www.math.uni-muenster.de/u/arnold/dtbc.html,
www.math.tu-berlin.de/˜ehrhardt/

Appendix B. Here we present the Maple code that was used to calculate the
coefficients ql, bl in the approximation (3.1) including the explicit formulae in Trans-
formation rule 3.1. These codes can also be downloaded from the authors’ homepages.
We note that the Padé approximation must be performed with high precision (2L− 1
digits mantissa length) to avoid a ‘nearly breakdown’ by ill conditioned steps in the
Lanczos algorithm (cf. [14]). If such problems still occur or if one root of the denomi-
nator is smaller than 1 in absolute value, the orders of the numerator and denominator
polynomials are successively reduced (‘cycle A’).

> restart;
> nu:=2; # initial index of approximation, cf. (3.1)
> L:=20; # number of terms in the sum of exponentials
> nc:=2*L-1; # number of convolution coefficients
> filename:="coe_L20V0";
> filenametrafo:="coetrafo_L20V4500";

1. Parameters:.

Parameters of the scheme:
> hp:=1; # scaled Planck constant
> Vr:=0.0; # potential in exterior domain x>=X
> dx:=1.0; dt:=1.0;
> nco:=nc+nu; Digits1:=nco; Digits:=Digits1;
> rr:=4*dx^2/(dt*hp); # ’R’ cf. (1.8)
> sig:=2*dx^2*Vr/hp^2; # parameters (1.17)
> fij:=arctan(2*rr*(sig+2)/(rr^2-4*sig-sig^2));
> efi:=exp(-I*fij);
> alj:=I/2*root[4]((rr^2+sig^2)*(rr^2+(sig+4)^2))*exp(I*fij/2);
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2. Numerical inverse Z-transformation of the given analytical kernel (hat s).

The function ’hat s’, see (1.11), (1.13), is considered outside the unit circle.

> lcoe:=proc(n,mm)
> # ’n’ is No. of Fourier coef.
> # ’mm’ is the number of grid intervals
> local ss, x, x1, x2, i, hat_s, shift;
> shift:=evalf(1.0); ss:=0;
> for i from 1 to mm do
> x:=2*Pi*I*i/mm; x1:=exp(x+shift);
> # calculation hat_s, cf. (1.11)&(1.13)
> hat_s:=evalf((x1+1)/x1*subs(x2=rr/2*(x1-1)/(x1+1)+
> I*dx^2*Vr,1-I*x2-I*sqrt(x2*(2*I+x2))));
> ss:=ss+evalf(exp(n*x))*hat_s
> od;
> ss/mm*evalf(exp(n*shift)) end; # cf. (2.2)

Calculation of the convolution coefficients:

> mm:=nco+1:
> Digits:=Digits1: a1:=lcoe(nco,mm);
> # Checking the accuracy (last coefficient)
> Digits:=2*Digits1: a2:=lcoe(nco,2*mm):
> Digits:=Digits1: abs(a1-a2);
> mm:=nco+1:

> # Convolution coefficients:
> for i from 0 to nco do
> coefc[i]:=lcoe(i,mm); # cf. (2.2)
> od;
> coefr[0]:=coefc[0]; coefr[1]:=coefc[1];
> # Extraction of the real part from s n, n>1, cf. (1.18)
> for i from 2 to nco do
> coefr[i]:=coefc[i]/exp(-I*i*fij)/alj;
> coef[i]:=Re(coefr[i]);
> od;

3. Approximation.

Calculation of the polynomial ’sp’. Only the coefficients starting with n=nu are used
here; i.e. coef[0], coef[1],. . . , coef[nu-1] are not considered.

> for i from 0 to nco-nu do
> ac[i]:=coef[i+nu]:
> od:
> with(powseries):
> powcreate(e(n4)=ac[n4]):
> s1:=tpsform(e, x, nco-nu+1):
> sp:=sort(convert(s1,polynom));

Calculation of a rational function approximating the polynomial ’sp’. This is the
usual Padé algorithm. The parameter ’npow’ defines the orders of the numerator
and denominator. Important: We have to check that the roots of the denominator
are larger than 1 in absolute value. The value of ’npow’ influences this property:
Cycle A automatically chooses smaller and smaller values of ’npow’ (L-1, L-2,. . . ) to
guarantee that all roots have an absolute value larger than 1.
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> nge1:=1; dnpow:=0; npow:=L;
> for ige1 from 1 by 1 while nge1 > 0 do
> # cycle A
> Digits:=8*nco; npow:=npow-dnpow;
> with(numapprox): sr1:=pade(sp,x,[npow-1,npow]);
> Digits:=Digits1: sr:=evalf(normal(sr1)):
> pk:=sort(numer(sr)):
> qk:=sort(denom(sr)):
> roots1:=fsolve(qk,x,complex):
> nrofroots:= 0:
> for r in roots1 do
> nrofroots:=nrofroots+1;
> od:

> nrofroots;
> nge1:=0:
> for i from 1 to nrofroots do
> if (evalf(abs(roots1[i]))<1) then nge1:=nge1+1 fi:
> dnpow:=nge1:
> appendto(terminal);
> od;
> lprint(nge1);
> # ---> number of roots with abs < 1
> appendto(terminal);
> od:

> # printing of roots
> for i from 1 to nrofroots do
> lprint(evalf(abs(roots1[i])));
> appendto(terminal);
> od;

Writing of the result:

> for i from 1 to nrofroots do
> Digits:=Digits1:
> # Coming back to complex q l (factor exp(I*fij))
> q[i]:=roots1[i]*exp(I*fij);
> # Coming back to complex b l (factor alj/exp(I*(nu-1)*fij))
> be[i]:=-subs(x=roots1[i],pk)/subs(x=roots1[i],diff(qk,x))
> *(alj/exp(I*(nu-1)*fij))*q[i]^(nu-1):

> qRef:=Re(q[i]): qImf:=Im(q[i]):
> bRef:=Re(be[i]): bImf:=Im(be[i]):
> Digits:=14:
> appendto(filename):
> lprint(evalf(qRef),evalf(qImf),evalf(bRef),evalf(bImf)):
> appendto(terminal):
> od:

Checking of our representation:

Digits:=Digits1:
L:=nrofroots:
ap:=proc(n)
local ss, i; ss:=0;
for i from 1 to L do

ss:=ss+be[i]*q[i]^(-n) # cf. (3.1)
od;
ss end;

First nco coefficients:
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appendto(terminal);
for i from nu to nc+nu do apc[i]:= ap(i): od:
for i from nu to nc+nu do i:

coefc[i]; eps:=abs(apc[i]-coefc[i]);
od;

4. Transformation to other grid parameters, see Transformation 3.1.

First nco new convolution coefficients (starting with n=nu):
> Vrs:=4500; dxs:=1/160; dts:=0.00002;
a:=2*dx^2/dt+2*dxs^2/dts+I*(dx^2*Vr-dxs^2*Vrs); # (3.15)
b:=2*dx^2/dt-2*dxs^2/dts-I*(dx^2*Vr-dxs^2*Vrs); # (3.16)
> for i from 1 to L do
> qs[i]:=(q[i]*conjugate(a)-conjugate(b))/
> (a-q[i]*b): # (3.13)
> od;
> for i from 1 to L do
> bes[i]:=be[i]*q[i]*((a*conjugate(a)-b*conjugate(b))/
> ((a-q[i]*b)*(q[i]*conjugate(a)-conjugate(b))))*
> (1+qs[i])/(1+q[i]): # (3.14)
> qsRef:=Re(qs[i]): qsImf:=Im(qs[i]):
> bsRef:=Re(bes[i]): bsImf:=Im(bes[i]):
> Digits:=14:
> appendto(filenametrafo):
> lprint(evalf(qsRef),evalf(qsImf),evalf(bsRef),evalf(bsImf)):
> appendto(terminal):
> od;
> L:=nrofroots; # (3.1)
> aps:=proc(n)
> local ss, i; ss:=0;
> for i from 1 to L do
> ss:=ss+bes[i]*qs[i]^(-n)
> od;
> ss end;
> appendto(terminal);
> for n from nu to nc+nu do apcs[n]:= aps(n): od:
> for n from nu to nc+nu do coefs[n]:= apcs[n]; od;
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