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INCOMPRESSIBLE EULER AND E-MHD AS SCALING LIMITS OF
THE VLASOV-MAXWELL SYSTEM*

YANN BRENIER T, NORBERT MAUSER!, AND MARJOLAINE PUELS$

Abstract. We consider two different asymptotic limits of the Vlasov-Maxwell system describing
a quasineutral plasma with a uniform ionic background. In the first case, as the magnetic field is
preserved in the limiting process, we obtain the so-called electron magnetohydrodynamics equations.
In the second case, we obtain the incompressible Euler equations with no more magnetic field left.

1. Introduction
Let us consider the Vlasov-Maxwell system

O0f+&-Vaof = (E+a(§AB))-Vef =0,
alB+VANE=0 , eV-E=1-p, 1.2)
eayE—VANB=aJ , V-B=0,

—~~
—_
—_
~—

This system (1.1)—(1.3) describes the evolution of the electron phase space density
f(t,x,&) > 0 at time ¢t > 0 and point z € R3, with velocity ¢ € R3, in a uniform
background of non-moving ions with unit density. The fields E' and B are respectively
the electric field and the magnetic field. The density p and the current J are given by

o= [rewgte . 1= [ertagas. (1.4)

FE and B are coupled to the electron density through the Maxwell equations and act
on electrons via the Lorentz force. Notice that we do not consider here the relativistic
Vlasov-Maxwell system for which the impulse variable £ and the velocity variable are
not proportional. (This means that the speed of light must be infinite at leading
order in any reasonable scaling.) After non-dimensionalization, parameters a and ¢
can be chosen independently of each other, according to the desired scaling. Indeed,
in physical units

To €0

a=,/— e=—,

€0 roc2
where 7 is the classical electron radius (ro = 2.82 x 107%m), g¢ is the vacuum
dielectric constant and c is the speed of light.
We will concentrate on the so-called quasi-neutral regime when € is a small parameter.
Taking the first two moments of (1.1), we obtain the following system,

Op+V-J=0 (1.5)
c'9tJ+V~(/£®§fdf)JrEerOzJ/\B:O (1.6)
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438 EULER AND E-MHD AS LIMITS OF VLASOV-MAXWELL

REMARK 1.1. Here the notation V - ([ £ ® & fd€) corresponds to

3
S0, /&gjfdg, i—123.
j=1

Starting from this system, we may consider two different quasi-neutral scalings.

Scaling 1: a<<1,e << 1

This scaling corresponds to a nonrelativistic limit, where the magnetic field van-
ishes, coupled with a quasi-neutral limit (the electron density instantaneously adjusts
itself to the unit background density). Formally, it is easy to guess the limit of
(1.5),(1.6), (1.2),(1.3) when €, a — 0, provided that the distribution function tends
to be monokinetic, i.e.

J(t, x)
p(t, x)

which means that the electronic temperature is close to zero and implies

/5®5fd5~@

This limit is the Euler equation of incompressible fluids

ft,,8) ~ p(t, 2)0(§ —

);

OJ+V-(JRJ)+E =0, (1.7)
v-J=0 p=1, 8)
VAE=0 |, B=0.

Scaling 2: a=1,e << 1
Now, the magnetic field does not disappear any longer in the limit equations, the
so-called electron magnetohydrodynamics equations [KCY]:

OJ+V-(J®J)+E+JANB=0, (1.10)
J=-VAB , p=1, (1.11)
#B+VAE=0, V-B=0. (1.12)

As above, provided that the distribution function tends to be monokinetic, the formal
limit is obvious.

In the present paper, we provide a rigorous derivation of these formal limits by us-
ing the modulated energy method designed in [Br| for the quasi-neutral limit of the
Vlasov-Poisson system. This method has been used in a quantum context in [Pul],
[Pu2] based on the concept of dissipative solutions due to P.-L. Lions [Li]. This
method can be seen as a variant of both the relative entropy method [Da], [Ya] and
the Hamiltonian energy method by E. Grenier [Gr].

The key idea is to estimate a modulation of the energy by the solution of the
formal limit equation. Typically, we replace (twice) the kinetic energy [ |¢|? fd¢ by
Jl€- v|? fd€¢ where v is a smooth solution to the limit equations.

The Vlasov-Maxwell system is known to admit global strong solutions at least for
smooth initial data depending only on two space coordinates, with a perpendicular
magnetic field (see [GISc| for details and [DiLi] for global weak solutions). To keep
the proofs as simple as possible, we state our results in the case of spatially periodic
solutions on the unit cube. All spatial integrals will be implicitly performed on the
unit cube.
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2. Convergence to the electron-Magnetohydrodynamics (e-MHD)

2.1. Result. In this section, we consider the Vlasov-Maxwell system (1.1),
(1.2), (1.3), (1.4), where oo > 0 is a fixed constant of order one and ¢ is a small param-
eter. (This means that the magnetic field will not vanish in the limiting process.) The
system that we consider for the limit ¢ — 0, is the so-called e-MHD system [KCY]

ov+(w-Viv+e+avAb=0
(2.1)
with adib+VAe=0, av=V Aband V-b=0.

Introducing w = V A (v — aA) where A is the magnetic potential such that
VAA=band V- A =0, and using the identity

2
(v-V)v= (V/\v)/\erV%,
we can write e-MHD in a different way :

dw~+v-Vw=w-Vov, with —Av+av =V Aw.

In particular, as the initial data depend only on the two first coordinates z1, x2, then
w is aligned with the third coordinate and can be seen as a scalar field satisfying

dw~+v-Vw=0, with — Av+ v =" Vw = (—O1wa, aw1, 0),

Therefore, the existence results are the same as for the incompressible Euler equations
(see [Li], for instance). In particular, we have global strong solutions for smooth initial
conditions depending only on two space coordinates. Let us now state our first main
result

THEOREM 2.1. Let us fir T >0, « >0 and C > 0. Let (f,B, E) and (v,b,e) be two
smooth solutions of respectively the VM system and the e-MHD system on the time
interval [0, T]. Assume their initial values to satisfy

/f(O,:c,{)dacdf 1, (2.2)

[ 10.2,9)l¢Pazde < c. (2.3

. / B(0,2)2dz < C/Z, (2.4)

/ 1B(0,) — b(0,2)[2dz < CVE, (2.5)

[ 1€ v0.0P1(0.2.¢)dade < CE. (2.6)
Then

sup / €~ u(t, )P (1,2, €)deda + / |B(t,x) — b(t, 2)dz) < C'V/e,

0<t<T

where C' depends only on T, C' and (v,b,e).



440 EULER AND E-MHD AS LIMITS OF VLASOV-MAXWELL

2.2. Moment equations and modulated energy. We deduce from the
Vlasov system the following equations for the moments p and J :

Op+V-J=0 (2.7)
and

8tJ+V~(/§®§fd§)—|—,oE+aJ/\B:0

and the conserved energy is

elE(t,x)|* + |B(t,2)[”
2

dz.

1
1= [l st odein+ |
Following [Br], we define a 'modulated energy’ H, ;(t) by

e|E(t,z)|? + |B(t,z) — b(t, x)|?

5 dx

1
Hoolt) = [ 16~ vltn)Pf o, dsia +
where v and b are arbitrarily chosen smooth divergence free vector fields depending
ont>0and x € R3/Z3.

PROPOSITION 2.2. Let (f, B, E) be a smooth solution to the VM system and v,b,e
three smooth vector fields, b and v being divergence free, then the modulated energy
H,y satisfies

3
=0 = [ 3 oyl [ (€06 )i e+ (BB )+ B ldotnr

ij=1
(2.8)
where

9:€/E~(e+ow/\(b—B))dx

n= —E/E- (e + V(e -v) + ady(v Ab) — adww A B)dz,

and

r:—/(e—E—avAB)-(vT/\l)+v)dm

VAe

—/(B—b)~(6tb+ )dm—/((@t—i—v-V)v—&—e—&—av/\b) (] = pv)da.
Theorem 2.1 follows easily from Proposition 2.2. Indeed, we first assume (v, b, €)
to be solution to the e-MHD equation. As a consequence, r vanishes in the right-hand
side of (2.8). Next, it follows from the assumptions of Theorem 2.1 that n(t) and 6(¢)
are uniformly bounded by C;+/€, for t € [0,T] where C; depends only on T', C' and
(v,b,e). Thus, we get from (2.8),
d

75 (Hup —0) < 2X\Hy 1 < 2\(Hop — 0) + 20+ < 2M(Hop — 0+ CaVE),
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where

3
A= sup Z 3jvi(t,x) €7§j

o 2 o
and Cy depends only on T, C and (v, b, e). Thus
Hyp(t) — 0(t) + Cav/e < exp(2At)(H, 5(0) — 6(0) + Cav/e).

From the assumptions of Theorem 2.1, we know that H, ;(0) < 1.5C'y/¢ and conclude
that

H’U,b(t) S Cl\ﬁ

where C’ depends only on T, C' and (v,b,e) and the result of Theorem 2.1 easily
follows.

2.3. Proof of Proposition 2.2. N.B. To perform the calculations required
by the proof, we use notations with indices 4, j,k € {1,2,3}, implicit summation
on repeated indices and abridged notations with comma for partial derivatives. For
instance, v, + v; jv; stands for dyv + (v - V)v. Consistently, we use the signature
symbol €;;, = +1, —1 to denote the wedge product and the curl operator. With these
notations, the equations satisfied by (p, J, E, B) are

P = —=Jjj (2.9)

—Jit = (/ &&;fd€),; + acijiJ;iBi + pEi, (2.10)
aB;; = —€pEr;, B =0, (2.11)

aJ; =caF;; — €jBrj, p=1—¢cE;;. (2.12)

Let us notice that we can write equation (2.10) in a different way, using equations
(2.11) and (2.12), namely :

—Jip = (/ &&fdE) j — €iji€jpgBepBr + a€iji B B + Ei(1 — eEj ;)
= (/ &&;fd€) ; + BBy — BpB; i, + €ceiji(EjBy) + + e Ej By + Ei(1 — €Ej ;)

= (/ §i&jfd€) j + Bj(Bj,i — Bij) + eacijiu(E;Bi) ¢ + e€ijierpg By Eqp + Ei(1 — eEj 5)
(using (2.11). Thus,

_Ji,t = (/ &5jfd£>’j+Bj(Bj,i_Bi,j)+8a€ijk(EjBk),t+€Ej(Ej’i—Ei’j)-FEi(l—EEj,j).
(2.13)
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The modulated energy is defined by

oo =5 [ [le=oirae+ [1B-0p+ [mp) (2.14)

1=ty =3[ [lerac+ [182+ [<ip2)

is conserved and therefore does not depend on t. Thus

We have

where the energy

dHy
d;% =Q1+ Q2+ Q3+ Ly + Ly + L, (2.15)
where
Q1= _/'UiJi,ta Q2 = /P,tvivi/27 Q3 = —/Bi,tbz‘a (2.16)

L1 = _/Jivi,h L2 = /pl)ﬂ)i,t, L3 = — /(B - b)zbz,t (217)

From equation (2.13), we deduce

Q1= /vi(/fifjfdf),j +/’Uz‘Bj(Bj,i - B ;) +Ea/6ijkvi(EjBk)’t
+€/UiEj(Ej,i - El}j) +/UiEi(1 _ EEj,j)
B 2
B /vi(/gigjfdg)’j - /Ui((%)” — B;Bi;) +€a/€ijkvi(EjBk),t

se [t - ) + [ um

Thus, after integrating by part and using that v;; = B;; = 0,

d
Q1= /vi,j(—/fiﬁjfdf-i-BjBi +cEE;) +/'UiEi + 10 + @90’

where

9() :EOé/Eijk’UiEjBk, No = —Ea/eijkvi,tEjBk.
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Next, from equation (2.9),

QQ = /p,tvivi/2: f/ijjvivi/Q:/ijivi,j
Q3 = */Bk,tbk :/ijiidbk :/Eifijkﬂ~
(% «

d
RQ=Q1+Q2+Qs= /vi,j(_ /fifjfdf + B;Bj + ¢E; Ej) +/ijivi,j +io+ 50

and, from (2.11),

So

‘|‘7“0

where
ro = /Ei(eijk% +v;).
(Notice that ro = 0 as (b, v, e) satisfies the e-MHD system.) We also have
Ly = _/(B —b)ibi = /(B - b)i% + 71,
where
== /(B = b)i(bi + %).

(Notice that r; = 0 as (b, v, ) satisfies the e-MHD system.) Thus

B—b),
L3:_/ek€ijk7( - )i +7

= —/ek(Jk —eEps —vg) + 11412,
(because of equation (2.12)), where
€ zbl i
ry = —/ek(vk 4 hiiTT
a
(Notice that ro = 0 if (b, v, €) is solution to the e-MHD system.) So

d
L3 = _/ek(Jk_PUk)—/ek(p_ g + %€/Ekek —E/Ekek,t+7“1 + 7y

4

dtel +7r1+r2

:_/ek(Jk_PUk)+771+772+
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(using p =1 —¢F; ;) where

m = —5/(ekvk),iE¢,

N2 = —8/Ek€k,t
91 = E/Ekek.

It follows, using definition (2.17), that
d
L=Li+Lo+Ls =~ [ (vke+ex)(Jp—pon) + i+ + 201+ 11472
Thus
d
L= [ vi;(v;Ji = pvjui) + Lo +m +n2 + ittt
where
rg = — /(Uz’,t + Ujvi,j + €; + aﬁi]’k’l)jbk>(J7; — p’()l)

(which vanishes if (b, v, e) is a solution to the e-MHD system), and

L4 = /aeijkvjbk(Ji - p’l]l)

= /aeijkvjkai ZEa/GiijjbkEiﬂg —/eijkvjbkeiquq@

(because of (2.12))

d
= —0 L
73 + a2 + Ls
where
N3 = —EOL/Eijk('Ujbk),tE’ia
0y = EO[/GiijjbkEia
Ly =— /vjbk(Bk,j — Bjr)-
We have

L5 = /Ujbk’jBk —/’l}j’kkaj
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(since both v and b are divergence free)

= — /Uj,k(kaj + B]J)j) + /Uj(bk,j — bj’k)Bk
= —/Uj,k(kaj +Bkbj) + /eijkeiquq,pUjBk

= — /’Uj’k(kaj + Bkbj) + 714,
where
T4 = /Eijk(qquq,p + OL’UZ')’U]‘Bk

(and vanishes if (b, v, €) is solution to the e-MHD system). So

d
Ly=mn3+ ﬁeg — /Uj’k(kaj + Bkbj) + 7y

and

L = /vi,j(iji — pvjvi — biBJ — Blb])

d
+m+n2+n3+£(91+02)+r1+r2+r3+7~4

It follows, using definition (2.16), that

d
L+Q=Q +no+m+mn+n3+ —(0p+61+02)+r0+711 472+ 73+ 74,

dt

where
Q= / vij (B —b);(B — b); + BB, - / (& — i) (& — ;) fd).

So, we have finally obtained

d

%(Hbﬂ]—a) :Ql+7]+7’,

where

445

n=no+m-+n+n= —E/Gijkoévi,tEjBk - E/Ei(ei,t + (ervr),i + aeijr(vibi), ),

0= 90 + 91 + 02 = €a/ﬁiij¢E]‘Bk, +E/El(61 + aeijkvjbk)
and

b .
r=rot+ritrytry g = /Ei(ﬁijk% + v;) _/(B_b)i(bi,t +

Eijkek,j)
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€ ’ibi,'
—/ek(?}k + 7]6]& j) - /('Ui,t +vv; 5 +e; + ozeijkvjbk)(Ji — p’l}i)

+/6ijk(€iquq,p + aw;)v; By,

b
= — /(61 —F; — Gipanqu)(eijk Cé] + Ui)

€iikCh i
- /(B = )i(bi,e + %) - /(vi,t +0jvi 5 + ei + aeirvibe) (Ji — pui).
This completes the proof of Proposition 2.2.

3. Convergence to the Euler equation

3.1. Result. In this section, we consider the Vlasov-Maxwell system (1.1),
(1.2), (1.3), (1.4), with a different scaling where both o and & go to zero. The limit
system is now the usual Euler equations for incompressible fluids

v+ (v-Viv+e=0
(3.1)
with VAe=0, and V-v = 0.
Let us recall that, by introducing w = V A v, we get the standard vorticity
formulation of the Euler equations, namely :
dw~+v-Vw=w- Vv, with —Av=V Aw.
Let us now state our second main result
THEOREM 3.1. Let us fit T > 0 and C > 0. Let (f, B, E) and (v,e) be two smooth
solutions of respectively the VM system and the Euler system on the time interval
[0,T]. For each t € [0,T], assume v to have zero mean and introduce B such that
VAB=wv, V-8=0.

Assume the initial values to satisfy

/f(o,x,g)da:dg —1, (3.2)

[ 10.2,9)l¢Pasds < . (3.3)

g/ IE(0,2)Pdz < (a+ VE)C, (3.4)

/ |B(0,z) — aB(0,2)|*dz < (a + V&)C, (3.5)
[ 6= 000 0,29tz < (@ + VE)C. (3.6)

Then
sup ( / €~ o(t, )Pt 2, €)deda + / IB(t,2) - af(t,z) *dx) < (a + VO,

0<t<T

where C' depends only on T, C' and (v,e).
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3.2. Proof of Theorem 3.1. We use again Proposition 2.2, but with a
different choice for (v,b,e). We assume (v, e) to be the smooth solution of the Euler
equation considered in the assumptions of Theorem 3.1, and define

b(t,z) = af(t,x), VAG=v, V- -0=0.

This implies that

926/E-(6+0¢U/\(046—B))

17:76/E'(3t6+V(e~v)+a25‘t(v/\ﬂ)fozatv/\B),
and
r:—/(B—aﬁ)~a8tﬁ—/a21)/\ﬁ~(J—pv).

(using that VA = v and (v, e) is a solution to the Euler equations which in particular
implies V A e = 0). Thus, 7, § and r are uniformly bounded by (« + /€)C” for some
constant C” depending only on T, (b,v) and the total energy H. Then, the proof of
Theorem 3.1 immediately follows as in the previous section for Theorem 2.1.
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