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ANALYSIS OF THE HETEROGENEOUS MULTISCALE METHOD
FOR ORDINARY DIFFERENTIAL EQUATIONS∗

WEINAN E †

1. Introduction
This paper is concerned with the analysis of a new class of efficient numerical

methods for systems of ordinary differential equations (ODEs) with disparate time
scales. We will be interested in stiff ODEs of the type that arise in chemical kinetics,
for example:

{
ẋ = −1

ε
(x− f(y))

ẏ = g(x, y)
(1.1)

as well as oscillatory systems of the type that arise in molecular dynamics and celestial
mechanics, a simple example being the system

{
ϕ̇ =

1
ε
ω(I) + f(ϕ, I, ε)

İ = g(ϕ, I, ε)
(1.2)

studied in averaging methods [1]. Here f and g are assumed to be periodic in ϕ and
bounded as ε → 0. In the standard terminology of multiscale analysis, we would call
x and ϕ the fast variables of these systems, y and I the slow variables. But we also
have a particular interest on systems for which the fast and slow variables exist but
cannot be explicitly identified beforehand.

At the present time, there does not exist a unified strategy for dealing with both
problems of type (1.1) and (1.2). There is, however, a large literature on stiff systems
of the type (1.1) and oscillatory systems of the type (1.2) separately. Starting from the
pioneering work of Dahlquist and Gear [5], there has been extensive work on designing
efficient numerical methods for stiff ODEs [7], such as the backward differentiation
formula, implicit Runge-Kutta methods [5], extrapolation methods and Rosenbrock
methods [7, 8, 6]. There is also extensive work on oscillatory systems, some of which
are analytical [1], and some are numerical [9].

We will apply the framework of the heterogeneous multiscale method (HMM) [3],
which is a general methodology for problems with multiscales. In the case of two
scales, a macroscale and a microscale, HMM consists of two components: selection
of a conventional macroscale solver, here a standard ODE solver, and estimating the
effective forces used in the macroscale solver by performing numerical experiments
using the microscale model and processing the data obtained. The procedure can be
iterated if the system has more than two separated scales.

There are a number of related numerical methods for systems with multiple time
scales, in particular for stiff ODEs. Even though the most popular numerical methods
for stiff ODEs stem from implicit methods such as the backward differentiation for-
mula, a number of explicit methods have also been proposed [8, 2, 7]. In the simplest
version, these methods are Runge-Kutta in nature, each stage of which is a forward
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Euler step. For a given order, these methods have a variable number of internal stages
(Euler steps for the simplest method) chosen to satisfy stability conditions. In the
special case when the spectrum of the problem falls into two widely separated clus-
ters on the real axis, such as the case in (1.1), the composite Runge-Kutta method
amounts to perform a number of forward Euler steps with small step sizes followed by
a few forward Euler steps with large step size, as a consequence of the structure of the
optimal stability polynomials. Similar ideas were also proposed more recently in [6].
There are two main differences between HMM and the work in [8, 2, 7, 6]. The first
is that HMM makes explicit use of two solvers: a macroscale solver and a microscale
solver, whereas the work of Lebedev, Gear et al. uses one solver with different time
steps. The other is that HMM uses more sophisticated data processing techniques in
order to extract the macroscale data.

Another interesting example of a multiscale methodology is in the work of Vanden-
Eijnden, which was started back in 1999, on stochastic systems or systems on long
time scales for which the stochastic effects are important [10].

Our analysis of HMM also proceeds along the general principle discussed in [3],
which state that HMM is stable if the macroscale solver is stable, and the error
comes from standard truncation error of the macroscale solver plus the error in the
estimation of the effective forces. The latter depends on the nature of the problem,
the microscale solver, as well as the data processing technique used.

This paper is organized as follows. We first present two different versions of HMM.
Error analysis of HMM is carried out in Section 3 for stiff systems and in Section 4
for oscillatory systems. A general framework is presented in Section 5.

2. Two versions of HMM
We will discuss two different versions of HMM, depending on whether the slow

and fast variables in the system can be explicitly identified.
We first discuss a seamless version of HMM proposed in [4]. Consider the system

of ODEs

Ż = F (Z, ε) (2.1)

As the macroscale solver, we may select a conventional explicit ODE solver such as
a Runge-Kutta scheme or a linear multi-step method. We may also select special
purpose solvers such as the symplectic integrators. For illustration, let us assume
that we will use forward Euler as the macroscale solver. We can then express it as

Zn+1 = Zn + ∆tF̃ (Zn) (2.2)

The time step ∆t resolves the macroscale dynamics of interest, but not the small
scales.

To estimate the effective forces on the macroscale, here the F̃ (Zn), we choose a
microscale solver for (2.1) using a time step δt that resolves the small scale. Again
a number of choices can be made. In the simplest case we may simply pick forward
Euler and we can formulate the microscale solver at the macroscale time step n as
follows

Zn,m+1 = Zn,m + δt F (Zn,m, ε),m = 0, 1, . . . ,M − 1
Zn,0 suitably chosen. (2.3)

We may even choose different microscale solvers at different n. Having {Zn,m}M−1
m=0 ,
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we can estimate F̃ (Zn) according to

F̃ (Zn) =
1
M

M−1∑
m=0

Km,MF (Zn,m, ε) (2.4)

where the weights {Km,M} should satisfy the constraint

1
M

M−1∑
m=0

Km,M = 1 (2.5)

The specific choice of {Km,M} will affect the overall accuracy of HMM. M should
be chosen such that the right hand side of (2.4) has converged to a (quasi)stationary
value with desired accuracy. (2.4) is called an F -estimator [3]. Extensive numerical
results using this methodology can be found in [4].

For some systems such as (1.1) or (1.2), we can identify explicitly the slow and
fast variables in the system. In this case, we can make use of such information and
formulate an alternative version of HMM. For (1.1), this can be done as follows. Since
y is the slow variable, we pick a macroscale scheme for y, e.g. forward Euler

yn+1 = yn + ∆tg̃(yn)

To estimate g̃(yn), we proceed as before and select a conventional ODE solver as the
microscale solver with some initial data xn,0. In the case of forward Euler, we have

xn,m+1 = xn,m − δt

ε
(xn,m − f(yn))

m = 0, 1, · · · ,M−1. Notice that we have constrained the slow variable yn to be fixed.
We then use

g̃(yn) =
1
M

M−1∑
m=0

Km,Mg(xn,m, yn)

As we will see below, better accuracy can be obtained by constraining the slow variable
for the microscale solver.

The method for (1.2) is similar. In that case, the slow variable is I which is kept
fixed in the microscale solver.

Extensions to higher order macro- and micro-solvers are straightforward.
For the analysis of these methods, we proceed along the lines of a general principle

discussed in [3]. In particular, we have as a consequence of Theorem 5.5 in [3]:

Theorem 2.1. HMM is stable if the macroscale solver is stable. Moreover for any
given constant T there exists a constant C such that

|En| ≤ C((∆t)k + e(HMM))

if n∆t ≤ T , where En is the error between the HMM solution and the slow compo-
nent of the exact solution (a precise definition is given below), k is the order of the
macroscale solver, e(HMM) is the error in the estimation of the macroscale data.

The key to the analysis is to estimate e(HMM), which depends on a number of
important components of HMM, in particular the filter K.
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3. Error estimates for dissipative systems
For clarity, we will consider the example of (1.1). Other dissipative systems with

exponential convergence to the slow manifold can be reduced to essential systems of
the form (1.1) in a neighborhood of the slow manifold. We will further assume that
f and g are smooth and bounded. We will also assume that {Zn,0} is bounded.

In the limit as ε → 0, one expects that x will be close to f(y), and hence the
dynamics of the slow variable y is given by

ẏ = g(f(y), y) = G(y) (3.1)

In fact it can be easily shown that if we denote by y0 the solution of (3.1), and (xε, yε)
the solution of (1.1), such that yε(0) = y0(0). Then

|yε(t)− y0(t)| ≤ C1exp
(
− t

ε

)
+ C2ε.

Both versions of HMM can be expressed in abstract form as

yn+1 = yn + ∆tg̃(yn)

We now estimate En = yn − y0(tn), where tn = n∆t, for n∆t ≤ T . We have

En+1 − En

∆t
= g̃(yn)−G(y0(tn)) + O(∆t)

= G(yn)−G(y0(tn)) + g̃(yn)−G(yn) + O(∆t)
= G′(y0(tn) + θEn)En + g̃(yn)−G(yn) + O(∆t)

If we let L = max |G′(y)|, then we get

|En| ≤ eLt(C∆t + max
n∆t≤T

|g̃(yn)−G(yn)|).

where C = maxt≤T |y′′0 (t)|. Here the first term on the right hand side is the standard
truncation error at the macroscale. The second term |g̃(yn) − G(yn)| is the error in
the F -estimator. To estimate this error, we first have to specify the weights {Km,M}.
For the dissipative case, the simplest working choice is

Km,M = 0, for m = 0, 1, . . . , M − 1.

KM,M = M

In other words

g̃(yn) = g(xn,M , yn,M )

Let us first consider the case when we constrain the slow variable during microscale
evolution. In this case, since

xn,m+1 = xn,m − δt

ε
(xn,m − f(yn))

if we let en,m = xn,m − f(yn), then

en,m+1 =
(

1− δt

ε

)
en,m
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Hence

en,M =
(

1− δt

ε

)M

en,0

Therefore

|g̃(yn)−G(yn)| = |g(xn,M , yn)− g(f(yn), yn)|

≤ C

∣∣∣∣1−
δt

ε

∣∣∣∣
M

|en,0|

≤ C

∣∣∣∣1−
δt

ε

∣∣∣∣
M

Hence we obtain

|En| ≤ C

(
∆t +

∣∣∣∣1−
δt

ε

∣∣∣∣
M

)

For the seamless version, we have

xn,m+1 = xn,m − δt

ε
(xn,m − f(yn,m))

yn,m+1 = yn,m + δtg(xn,m, yn,m)

From this, we get

en,m+1 =
(

1− δt

ε

)
en,m − δt

ε
(f(yn)− f(yn,m))

Thus

|en,M | ≤
∣∣∣∣1−

δt

ε

∣∣∣∣
M

|en,0|+ δt

ε

M−1∑
m=0

∣∣∣∣1−
δt

ε

∣∣∣∣
M−m

|f(yn)− f(yn,m)|

Since

|yn − yn,m| ≤ Cmδt

M−1∑
m=0

∣∣∣∣1−
δt

ε

∣∣∣∣
M−m

m ≤ M
ε

δt

we have

|en,M | ≤ C

(∣∣∣∣1−
δt

ε

∣∣∣∣
M

+ Mδt

)

|g̃(yn)−G(yn)| ≤ C

(∣∣∣∣1−
δt

ε

∣∣∣∣
M

+ Mδt

)

and

|En| ≤ C

(
∆t +

∣∣∣∣1−
δt

ε

∣∣∣∣
M

+ Mδt

)
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In other words, we have

|e(HMM)| ≤ C(

(∣∣∣∣1−
δt

ε

∣∣∣∣
M

+ Mδt

)

Unlike the previous case for which the slow variables were explicitly constrained
for the microscale solver, the modeling error as a function of M first decreases and
then slowly increases due to the term Mδt caused by the slow drift of the slow variable
y in the microscale solver. It is easy to see that the optimal choice for M is given by

Mδt = ε log
1
ε

In this case, one has

|En| ≤ C

(
∆t + ε log

1
ε

)

In the general case when other schemes are used as the macro and micro solvers,
we can follow the same analysis. We then obtain the following result.

Theorem 3.1. Assume that the macroscale solver is k-th order accurate and stable,
i.e. for linear multi-step methods the root condition is satisified. Let A(λδt) be the
amplification factor of the microscale solver for the ODE ẏ = −λy. Then there exists
a constant C, independent of ∆t, ε, δt and M , such that

|En| ≤ C

(
∆tk +

∣∣∣∣A
(

δt

ε

)∣∣∣∣
M

+ Mδt

)

for the seamless HMM, and

|En| ≤ C

(
∆tk +

∣∣∣∣A
(

δt

ε

)∣∣∣∣
M

)

for HMM when the slow variable is constrained for the microscale solver.

4. Error estimates for the oscillatory case
As before we will discuss a simple yet canonical example, namely (1.2). The

dynamics for the slow variable I obeys the equation

İ =
1
2π

∫ 2π

0

g(ϕ, I)dϕ = G(I) (4.1)

See for example [1].
We will restrict ourselves to the situation when the weights {Km,M} are given by

Km,M = K0

(
1− m

M

)
(4.2)

for m = 0, 1, . . . , M , where K0 is a kernel that satisfies certain conditions to be
specified below. We will also assume that ω(I) never vanishes:

ω(I) ≥ ω0 > 0 (4.3)
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First we consider the case when the slow variable is constrained for the micro-
solver. In this case,

g̃(In) =
1
M

M∑
m=1

K0

(
1− m

M

)
g(ϕn,m, In) (4.4)

Denote by ϕ̃(t) the solution of the problem

˙̃ϕ =
1
ε
ω(In) + f(ϕ̃, In, ε) (4.5)

ϕ̃(tn) = ϕn,0

on the time interval [tn, tn+1] and let ϕ̃m = ϕ̃(tn + mδt). Then

g̃(In)−G(In) =
1
M

M∑
m=1

K0

(
1− m

M

)
(g(ϕn,m, In)− g(ϕ̃m, In))

+
1
M

M∑
m=1

K0

(
1− m

M

)
g(ϕ̃m, In)

− 1
Mδt

∫ Mδt

0

K0

(
1− τ

Mδt

)
g(ϕ̃(tn + τ), In)dτ

+
1

Mδt

∫ Mδt

0

K0

(
1− τ

Mδt

)
g(ϕ̃(tn + τ), In)dτ −G(In)

= I1 + I2 + I3

(4.6)

To estimate I1, let us assume that

1
M

M∑
m=1

|Km,M | ≤ C0

Since

|ϕ̃m − ϕn,m| ≤ C
δt

ε

hence

|I1| ≤ C
δt

ε

I2 is the error due to quadrature

|I2| ≤ C
δt

ε

where the term C
ε comes from max |dϕ̃

dt |. I3 is the error due to filtering. We write

I3 =
1

Mδt

∫ Mδt

0

K0

(
1− τ

Mδt

) (
g(ϕ̃(tn + τ), In)− g

(
ϕn,0 +

ω(In)
ε

τ, In

))
dτ

+
1

Mδt

∫ Mδt

0

K0

(
1− τ

Mδt

)
g

(
ϕn,0 +

ω(In)
ε

τ, In

)
dτ −G(In)

= I3,1 + I3,2
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|I3,1| ≤ C max
τ≤Mδt

∣∣∣∣ϕ̃(tn + τ)−
(

ϕn,0 +
ω(In)

ε
τ

)∣∣∣∣ ≤ C Mδt

To estimate I3,2, consider the following canonical problem: Estimate

I =
1
T

∫ T

0

K0

(
1− τ

T

)
g0

(
ω0

τ

ε

)
dτ − 1

2π

∫ 2π

0

g0(ϕ)dϕ

where g0 is a periodic function with period 2π. Without loss of generality, assume∫ 2π

0
g0(ϕ)dϕ = 0. Let g1(s) =

∫ s

0
g0(s′)ds′. Then |g1(s)| ≤ Const.

∫ T
ε

0

g(ω0s)K0

(
1− εs

T

)
ds

=
1
ω0

K0

(
1− εs

T

)
g1(ω0s)

∣∣∣
T
ε

0
+

1
ω0

ε

T

∫ T
ε

0

K ′
0

(
1− εs

T

)
g1(ω0s)ds

Assuming

K0(0) = K0(1) = 0,

∫ 1

0

|K ′
0(τ)|dτ ≤ Const.

then

|I| ≤
( ε

T

)2 1
ω0

∫ T
ε

0

∣∣∣K ′
0

(
1− εs

T

)∣∣∣ ds

≤ C

ω0

ε

T

To get higher order estimates, let g2(s) =
∫ s

0
g1(s′)ds′. Then g2(s) = C0s+ g̃2(s),

where g̃2(s) is periodic. Thus

I =
1
ω2

0

( ε

T

)2

K ′
0

(
1− εs

T

)
g2(ω0s)

∣∣∣
T
ε

0

+
1
ω2

0

( ε

T

)3
∫ T

ε

0

K ′′
0

(
1− εs

T

)
g2(ω0s)ds

Assuming further that

K ′
0(0) = K ′

0(1) = 0,

∫ 1

0

|K ′′
0 (s)|ds ≤ Const.

then, we obtain

I =
1
ω2

0

( ε

T

)3
∫ T

ε

0

K ′′
0

(
1− εs

T

)
(C0s + g̃2(s))ds

Notice that
∫ T

ε

0

K ′′
0

(
1− εs

T

)
s ds = 0
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therefore

|I| ≤ C

ω2
0

( ε

T

)2

.

Proceeding with this argument inductively, we obtain the following.

Lemma 4.1. Assume that K0 satisfies

Kα
0 (0) = Kα

0 (1) = 0

for α = 0, 1, . . . , q − 1, and

q∑
α=0

∫ 1

0

|Kα
0 (s)|ds ≤ Const.

for α = 0, 1, . . . , q, then

|I| ≤ C

ωq
0

( ε

T

)q

Consequently, we obtain

|I3,2| ≤ C

ωq
0

( ε

Mδt

)q

Summarizing, we obtain

|En| ≤ C

(
∆t +

δt

ε
+ Mδt +

1
ωq

0

( ε

Mδt

)q
)

.

In this result, the term Mδt comes from I3,1 since we compared ϕ̃(t) with ϕn,0 +
ω0
ε t. This term can be avoided if we estimate I3 directly.

Lemma 4.2. Solutions of

ϕτ =
1
ε
ω(In) + f(ϕ, In)

can be expressed in the form

ϕ(τ) =
(

1
ε
ω(In) + aε

)
τ + ϕ̃(τ)

where aε is bounded as ε → 0, ϕ̃ is periodic with period 2π
1
ε ω(In)+aε

= Iε = O(ε).
Consequently g(ϕ(tn + τ), In) is periodic with period Iε.
Define

g0 =
1
Iε

∫ Iε

0

g(ϕ(tn + τ), In)dτ

g1(τ) =
∫ τ

0

(g(ϕ(tn + τ1), In)− g0)dτ1
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g2(τ) =
∫ τ

0

g1(τ1)dτ1

. Then we have

|g1(τ)| ≤ Cε

g2(τ) = C1τ + g̃2(τ)

where g̃2 is periodic and

|g̃2(τ)| ≤ Cε2

This result follows from a simple rescaling argument using the fact that Iε = O(ε).
Let T = Mδt, then

I =
1
T

∫ T

0

K0

(
1− τ

T

)
g(ϕ(tn + τ), In)dτ − g0

=
1
T

K0

(
1− τ

T

)
g1(τ)

∣∣∣
T

0
+

1
T 2

∫ T

0

K ′
0

(
1− τ

T

)
g1(τ)dτ

Hence

|I| ≤ ε

T 2

∫ T

0

∣∣∣K ′
0

(
1− τ

T

)∣∣∣ dτ ≤ C
ε

T

To get better estimates, we can proceed in the same way and write

I =
1

T 2
K ′

0

(
1− τ

T

)
g2(τ)

∣∣∣
T

0
+

1
T 3

∫ T

0

K ′′
0

(
1− τ

T

)
g2(τ)dτ

=
1

T 3

∫ T

0

K ′′
0

(
1− τ

T

)
g̃2(τ)dτ

Hence

|I| ≤ C
ε2

T 2

if
∫ 1

0
|K ′(τ)|dτ is finite. In this way, we obtain:

Lemma 4.3. Assume that K0 satisfies condition Kq, then

|I| ≤ Cq

( ε

T

)q

When high order microscale solvers are used and/or high order quadrature rules
are used in defining the filter, we have instead

|I1| ≤ C

(
δt

ε

)l

|I2| ≤ C

(
δt

ε

)p
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where l is the order of the micro-solver and p is the order of the quadrature rule.
In summary, we obtain

Theorem 4.4. Under the same assumption as before, we have

|En| ≤ C

(
(∆t)k +

(
δt

ε

)r

+
( ε

Mδt

)q
)

where r = min(l, p).
As we expected, the size of δt should be chosen to resolve the small time scale

ε, and M should be large enough so that Mδt is larger than ε in order to sample
adequately the dynamics at the small scale.

The seamless version can be analyzed in the same way.

5. A general setting
Consider

Ż = F (Z, ε) (5.1)

such that there exists differmorphisms h:
(

x

y

)
= h(Z) (5.2)

where y is the slow variable, x is the fast variable in the sense that the ODE (5.1)
transforms to

ẋ =
1
ε
f(x, y, ε)

ẏ = g(x, y, ε)

where f and g are bounded as ε → 0. Our main assumption is that for each fixed y,
the dynamics of

ẋ =
1
ε
f(x, y, ε)

has a unique invariant measure µε
y(dx). The effective equation for y is then

ẏ = G(y) =
∫

g(x, y, 0)µ0
y(dx)

Example 1:

f(x, y, ε) = −x + f(y) (5.3)

then

µ0
y(dx) = δ(x− f(y))

Example 2:

ϕ̇ =
1
ε
ω(I) + f(ϕ, I) (5.4)
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ϕ is on the circle. Then as ε → 0,

µε
I(dϕ) → Lebesgue measure on the circle.

We will assume that µε
y(dx) behaves continuously as ε and y changes

For the micro solver, we will assume that it also has an invariant measure µδt,ε
y (dx)

if the slow variable y is constrained to be fixed.
The two versions of HMM can be formulated in the same way as before. If we

know explicitly what the slow variables are, we can use that information in formulating
HMM. Otherwise, we can use the seamless version.

Assume that the macroscale solver is stable and k-th order accurate. Then

|En| ≤ C(∆tk + e(δt, ε,M))

where e(δt, ε, M) is the error in the F -estimator.

e(δt, ε,M) = max
n∆t≤T

|g̃(yn)−G(yn)|

g̃(yn)−G(yn) =
1
M

M−1∑
m=0

Km,Mg(xn,m, yn, ε)−
∫

g(x, yn, 0)µδt,ε
yn (dx)

+
∫

g(x, yn, ε)(µδt,ε
yn (dx)− µ0

yn(dx))

+
∫

(g(x, yn, ε)− g(x, yn, 0))µ0
yn(dx)

=I1 + I2 + I3

I1 is controlled by how fast {xn,m} converges to the invariant measure µδt,ε
yn (dx)

and also the filtering. I2 is controlled by the difference between µδt,ε
yn (dx) and µ0

yn(dx).
At the present time, there is no general theory on estimating I1 and I2. From a

numerical point of view, the microscale solver should be chosen to minimize I1 and
I2, namely that its solutions should converge rapidly to the local equilibrium.

6. Summary
In this paper we analyzed the heterogeneous multiscale method for ordinary dif-

ferential equations with multiple time scales. The analysis is an application of the
general principle discussed in [3], which states that HMM is stable if the macroscale
solver is stable and the total error is a sum of the standard truncation error of the
macroscale solver and the error in the F -estimator. Our analysis gives a fairly detailed
understanding of how the error in the F -estimator depends on various components
of HMM, such as the microscale solver and the filter, as well as the nature of the
microscale problem.

There is still much room for improvement of the results. In our analysis we
compared the HMM solution with the slow variable of the original problem in the
limit as ε → 0. It is of interest in future work to compare directly with the slow
variable at finite but small ε. Another point to be noted is that we did take into
account the moment condition for the averaging kernel. To be specific, let us assume
that the microscale data has the form

fε(t) = f0(t) + f1

(
t

ε

)
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where f1(τ) is periodic in τ with period 1. The slow component of {fε(t)} is

F (t) = f0(t) +
∫ 1

0

f1(τ)dτ

The macroscale data of interest is F0 = F (0). Assume that Our F -estimator has the
form

F̃0 =
1
T

∫ T

0

K0

(
1− τ

T

)
fε(τ)dτ

Then one has

Lemma 6.1. Assume that K0 satisfies the following conditions
1. (A1). Moment condition

∫ 1

0

K0(τ)dτ = 1
∫ 1

0

(1− τ)αK0(τ)dτ = 0

for α = 1, 2, . . . `− 1
2. (A2). Regularity condition

K
(α)
0 (0) = K

(α)
0 (1) = 0

for α = 0, 1, . . . , q − 1 and
∫ 1

0

|K(α)
0 (τ)|ατ < +∞

for α = 0, 1, . . . , q. Then

|F0 − F̃0| ≤ C
(
T ` +

( ε

T

)q)

This lemma can be proved by combining the arguments in Section 6 of [3] and
Section 4 above. Using the moment condition, we should be able to improve the term
Mδt in e(HMM) to (Mδt)l+1 for the seamless version of HMM. But this remains to
be done.
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