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ENTROPY METHODS FOR KINETIC MODELS OF TRAFFIC FLOW∗

JEAN DOLBEAULT † AND REINHARD ILLNER ‡

Abstract. In these notes we first introduce logarithmic entropy methods for time-dependent
drift-diffusion equations and then consider a kinetic model of Vlasov-Fokker-Planck type for traffic
flows. In the spatially homogeneous case the model reduces to a special type of nonlinear drift-
diffusion equation which may permit the existence of several stationary states corresponding to the
same density. Then we define general convex entropies and prove a convergence result for large times
to steady states, even if more than one exists in the considered range of parameters, provided that
some entropy estimates are uniformly bounded.
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1. Introduction
First order models seem well suited to describe certain regimes of traffic flows,

in particular single-lane traffic. In comparison, the interest of kinetic approaches is
that they allow a better description of the behaviour of the drivers at the individual
level [4, 6]. It has recently been shown in [4] (see also [5]) that coupled equations
of Fokker-Planck type with a degenerate nonlinear diffusion term and braking/ ac-
celeration forces incorporating non-trivial lane change probabilities can explain the
existence of multiple steady solutions. The model was introduced in [4]; in the spa-
tially homogeneous case, presented in detail in Sections 2 and 3 of this paper, it
reduces to a rather unconventional drift-diffusion equation with at least two unusual
features: 1) the coefficient functions depend on the average speed u = u(t), which
is proportional to the first moment of the solution itself, and 2) the diffusion coeffi-
cient vanishes at v = u, so the problem is degenerately parabolic. The equation is in
particular nonlinear and admits multiple equilibria.

Over the last five years there has been much interest in entropy methods for
parabolic equations [1]. For a very complete and thorough treatise of the power of
entropy dissipation methods, we refer to [2]. Although some of these techniques were
well known in probability theory, it is surprising to see the variety of models which can
be tackled with these methods. The main reason for this success in both linear and
nonlinear settings is likely resident in the gradient flow properties [7] which are natural
for parabolic equations and translate, for example, readily into a general contraction
property [3].

The goal of these notes is to apply entropy methods to nonlinear drift-diffusion
equations with generally more than one stationary solution; the spatially homoge-
neous traffic models are the paradigmatic example for this scenario. Because of the
mentioned complications inherent in these models (degeneracy, nonlocal dependencies
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of the coefficients, implicitly time-dependent coefficients) our main result is weaker
than those in [2]. Our conclusion is that solutions of the equations must either con-
verge to one of the steady states or that a quantity involved in the definition of an
entropy has to diverge. At this point, when convergence occurs, we are unable to
obtain convergence rates; in fact, given that the “local equilibria” themselves vary in
a priori unpredictable way with u(t), we cannot even make a guess about convergence
rates.

We start with considerations on logarithmic entropies for linear diffusions with
time-dependent coefficients. The Fokker-Planck traffic model, which is the homoge-
neous version of the Vlasov-Fokker-Planck model of traffic dynamics introduced in
[4, 5] is then described and the convergence to a stationary solution is established in
the simple, so-called Maxwellian case. A more general family of convex relative en-
tropies, with a time-dependent normalization coefficient, is then introduced in Section
4 and allows us to describe two possible asymptotic regimes for large times: conver-
gence to a stationary solution or large entropy regime. Further considerations on
concentration vs convergence are given in the last part of this paper.

2. Linear diffusions and a logarithmic entropy: the fundamental prob-
lem

Consider a solution f = f(t, v) of the linear diffusion equation

ft = (−B(t, v) f + D(t, v) f ′)′ , (t, v) ∈ IR+ × (0, 1) (2.1)

where ft and f ′ respectively denote the derivatives of f with respect to t and v. We
shall assume that D is nonnegative and such that

C(t, v) = −
∫ v

0

B(t, w)
D(t, w)

dw (2.2)

is well defined for any (t, v) ∈ IR+ × (0, 1), and that (t, v) �→ e−C(t,v) belongs to
L∞(IR+, L1(0, 1)). Let f0 be a nonnegative initial datum for (2.1) and define

ρ =
∫ 1

0

f0(v) dv .

Denote by Ff the flux associated to f :

Ff (t, v) := −B(t, v) f(t, v) + D(t, v) f ′(t, v) .

Under the no-flux boundary conditions

Ff (t, 0) = Ff (t, 1) = 0 ∀ t ≥ 0 ,

the total mass is preserved: ∫ 1

0

f(t, v) dv = ρ ∀ t ≥ 0 .

This allows us to define a local equilibrium

g(t, v) = ρ
e−C(t,v)∫ 1

0
e−C(t,w) dw

(2.3)
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which has zero flux:

Fg(t, v) = 0 ∀ (t, v) ∈ IR+ × (0, 1) ,

but which is not in general a stationary solution of (2.1), since gt ≡ 0 is not granted.
We may also replace C(t, v) by C(t, v)+C0(t) for any function C0(t) without changing
the values of g(t, v): the choice of the primitive of −B/D in (2.2) is free. Note that
g is the unique minimizer of the functional

f �→
∫ 1

0

f(log f + C(t, v)) dv

on L1
+(0, 1) under the constraint

∫ 1

0
f dv = ρ. However, the entropy production

d

dt

∫ 1

0

f(log f + C(t, v)) dv

will contain a term
∫ 1

0
fCt dv, and unless we have good control over the sign of Ct

we cannot use the standard methods from [1, 2] to prove results about asymptotic
behaviour. A first attempt to remedy this would be to define the relative entropy
e[t, f ] by

e[t, f ] :=
∫ 1

0

(f log f − g log g + C(t, v)(f − g)) dv −
∫ ∫

(0,1)×(0,t)

Ct(s, v)(f−g)(s, v) dv ds .

A straightforward computation then shows that if f is a solution of (2.1) and if all
above conditions are fulfilled, then

d

dt
e[t, f(t, .)] = −

∫ 1

0

D(t, v) f

∣∣∣∣f ′

f
− g′

g

∣∣∣∣
2

dv .

This is an entropy production term of the desired kind, but the computation is formal
and yields no conclusions, since now we have in general no control on any lower bound
of e[t, f(t, .)], especially when we shall generalize (2.1) to a nonlinear model in which
the coefficients B and D depend on f through the mean velocity.

3. The homogeneous Fokker-Planck model of traffic dynamics
The homogeneous Fokker-Planck model of traffic dynamics as presented in [4]

corresponds to Eq. (2.1) in the case ρ ∈ (0, 1] and where B and D are defined in a
nonlinear way as functions of the average velocity

u(t) =
1
ρ

∫ 1

0

v f(t, v) dv (3.1)

as follows:

B(t, v) =

⎧⎪⎪⎨
⎪⎪⎩

−CB |v − u(t)|2ρ
(

1 −
∣∣∣ v−u(t)
1−u(t)

∣∣∣δ) if v > u(t)

CA |v − u(t)|2(1 − ρ) if v ≤ u(t)

(3.2)

and

D(t, v) = σ m1(ρ)m2(u(t)) |v − u(t)|γ (3.3)
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for some positive constants CA, CB , σ and nonnegative exponents γ and δ. In [4] m2

was chosen as m2(u) = u(1−u), and m1 a function which consists of two linked pieces
of Gaussian distributions such that max(0,1) m1 = m1 (0.3) and m1 (0) = m1 (1) = 0.
In the rest of this paper (except in Section 6), we will assume that γ < 3, so that
C is well defined by (2.2) and uniformly bounded w.r.t. (t, v) ∈ IR+ × (0, 1) as long
as m2(u(t)) is bounded away from 0. For these choices the following result has been
obtained in [4]. We also refer to [5] for further comments on the model.

Proposition 1. [4] Any stationary solution is uniquely determined by ρ and its av-
erage velocity u. The set of stationary solutions is therefore represented by a diagram
(ρ, u[ρ]), which is in general multivalued. For any ρ ∈ (0, 1], there exists at least one
stationary solution. For some parameter choices (for example γ = δ = 1; see [4]),
there exist ρ1, ρ2 ∈ (0, 1) such that there is exactly one solution for ρ ∈ (0, 1)\ (ρ1, ρ2)
and three solutions for ρ ∈ (ρ1, ρ2).

Example. The Maxwellian case. This is a special case for which the technique of
Section 2 works after a further modification. Assume that u, B and D are defined by
(3.1), (3.2) and (3.3) with δ = ∞, CBρ = CA(1 − ρ) := K, m2 ≡ 1 and γ = 1. Then
B = K |u − v|(u − v),

C =
K

2σm1(ρ)
|u − v|2 + C0(t)

and∫ 1

0

Ct(t, v)(f − g) dv = (C0)t

∫ 1

0

(f − g) dv +
K

σm1(ρ)
du

dt
·
∫ 1

0

(v − u(t)) (f − g) dv .

On the one hand,
∫ 1

0
(v − u(t))f dv = 0 by the definition of u(t), and on the other

hand, since g is itself a function of v − u(t), there exists a function

F (u) := log
( ∫ 1

0

exp
{
− K

σ m1(ρ)
|v − u(t)|2

}
dv

)

such that

d

dt
F (u(t)) = F ′(u(t))

du

dt
=

K

σm1(ρ)
du

dt

∫ 1

0

(v − u(t)) g dv ,

Therefore, if we define

e[t, f ] :=
∫ 1

0

(f log f − g log g + C(t, v)(f − g)) dv − F (u(t)) .

and observe that F is bounded for u(t) ∈ [0, 1], e has natural lower bounds, and the
entropy production term is nonpositive by contruction.

For this Maxwellian example the steady states are unique (this is not hard to see
– for a simple argument see [5]). By using a reasoning as in Section 5 below one can
prove that f(t, ·) converges as t → +∞ to this unique stationary solution of (2.1)
which is of the form (2.3) for some unique u = u[ρ].

We sketch the main steps of the proof. Since log g = −C + Constant,∫ 1

0

(
f log f − g log g + C(t, v)(f − g)

)
dv =

∫ 1

0

f log
(

f

g

)
dv

≥
∫ 1

0

f dv log

(∫ 1

0
f dv∫ 1

0
g dv

)
= 0
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by Jensen’s inequality: e[t, f ] is therefore bounded from below and converges to some
limit as t → +∞, which means that

∫ 1

0
D(t, v) f |f ′/f − g′/g|2 dv converges to zero.

This is enough to prove the strong convergence of u(t) to u∞(t) = 1
ρ

∫ 1

0
v f∞(t, v) dv,

where f∞ is the weak L1 limit of f(· + tn, ·)) as tn → +∞ (the limit is uinque). It is
then easy to conclude that f∞ = g is a stationary solution.

This approach generalizes to any equation of type (2.1) such that

B

D
= −k (v − u(t)) ,

for some positive constant k, whatever D is. The specific form of D then plays a crucial
role if one wants to determine the rate of convergence to the stationary solution.

4. Convex entropies
In this section we are going to consider more general entropies than in Section 2,

which apply to (2.1) both in the linear and in the nonlinear case corresponding to the
traffic model described in Sections 2 and 3 respectively. Define the relative entropy
of f with respect to g by

E[ f | g ] =
∫ 1

0

Φ
(f

g

)
g dv , (4.1)

for some convex function Φ. Our “standard” example is Φα(x) = (xα − x)/(α − 1)
for some α > 1. We recover logarithmic entropies by taking Φ(x) = x log x (this
corresponds to a limit case that we shall denote by “α = 1”). Both examples satisfy in
addition Φ(0) = 0. Taking into account the boundary conditions, we can rewrite (2.1)
as follows:⎧⎪⎨

⎪⎩
ft =

[
D(t, v) f

(
f ′

f − g′

g

)]′
=

[
D(t, v) g

(
f
g

)′]′
∀ (t, v) ∈ IR+ × (0, 1)(

f
g

)′
(t, v) = 0 ∀ t ∈ IR+, v = 0, 1

(4.2)

where g = g(t, v) is given by

g(t, v) = κ(t) e−C(t,v) (4.3)

for some κ(t) 	= 0 to be chosen later (and not given by (2.3) any more). With f and
g given by (4.2) and (4.3) respectively,

d

dt
E[ f(t, ·) | g(t, ·) ] =

∫ 1

0

Φ′
(f

g

)
ft dv +

∫ 1

0

[
Φ

(f

g

)
− f

g
Φ′

(f

g

)]
gt dv .

Using (4.2), we can evaluate the first term of the r.h.s. by∫ 1

0

Φ′
(f

g

)
ft dv = −

∫ 1

0

Φ′′
(f

g

)
D(v, t) g

∣∣∣∣(f

g

)′∣∣∣∣
2

dv .

Let Ψ(x) := Φ(x)− xΦ′(x) < 0, for any x > 0 (this is true for our standard examples
and for any strictly convex Φ such that Φ(0) = 0). The second term is∫ 1

0

[
Φ

(f

g

)
− f

g
Φ′

(f

g

)]
gt dv =

∫ 1

0

Ψ
(f

g

)
g

gt

g
dv

=
∫ 1

0

Ψ
(f

g

)
g

( κ̇

κ
− Ct(t, v)

)
dv
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where we used the notation κ̇ = dκ
dt . The right hand side vanishes if we choose⎧⎪⎨

⎪⎩
κ̇ = κ

∫ 1

0
Ψ( f

g ) g Ct(t, v) dv∫ 1

0
Ψ( f

g ) g dv

κ(0) = 1 .

(4.4)

Note that C depends on u(t) and therefore on f , even in the standard cases Φα(x) =
(xα − x)/(α − 1) or Φ(x) = x log x (α = 1). In the limit case α = 1, g is not directly
involved in the definition of κ:

κ̇ =
κ

ρ

∫ 1

0

f(t, v)Ct(t, v) dv ,

since Ψ(x) = −x is linear and it is clear that κ is globally defined and positive if Ct

is (locally in t) bounded. For the other cases, we use the following result.

Lemma 4.1. Consider a solution of (2.1). Assume that f and C are smooth and
globally defined in t. If Φ is convex, superlinear at +∞ and such that Ψ(x) = Φ(x)−
xΦ′(x) has no zero for x > 0, then κ is bounded away from zero. If moreover Ct is,
locally in t, bounded, then (4.4) has a global positive solution.

Proof. While κ is positive and well defined, we have by Jensen’s inequality

κ(t)
∫ 1

0

e−C dv Φ

(
ρ

κ(t)
∫ 1

0
e−C dv

)
≤ E[ f(t, ·) | g(t, ·) ] ≤ E[ f(0, ·) | g(0, ·) ] . (4.5)

Because of the superlinearity of Φ, this is possible if and only if κ(t) is bounded away
from zero. On the other hand, with Ct locally bounded in t,

d

dt

(
log κ

)
≤ ‖Ct(t, ·)‖L∞(0,1) ,

which proves that κ is locally bounded in t. �

Forthechoiceofκ corresponding to (4.4), E[ f(t, ·) | g(t, ·) ] is bounded from below
by Jensen’s inequality (4.5) as long as κ is finite, and nonincreasing :

d

dt
E[ f(t, ·) | g(t, ·) ] = −

∫ 1

0

Φ′′
(f

g

)
D(v, t) g

∣∣∣∣(f

g

)′∣∣∣∣
2

dv =: −I[ f(t, ·) | g(t, ·) ] .

For the convenience of the reader we give the explicit form of the entropy and the
entropy production terms in the standard cases.

Lemma 4.2. Let f be a smooth function on (0, 1).
(i) if Φα(x) = (xα − x)/(α − 1) for some α > 1, then E[ f | g ] = Eα[ f | g ] is given

by

Eα[ f | g ] =
1

α − 1

∫ 1

0

(fαg1−α−f) dv =
κ1−α

α − 1

∫ 1

0

fα e(α−1)C(t,v) dv− ρ

α − 1
,

(4.6)
(ii) if Φ(x) = x log x, then

E[ f | g ] =
∫ 1

0

f log
(f

g

)
dv =

∫ 1

0

f (log f + C(t, v) − log κ) dv , (4.7)
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and in both cases,

I[ f | g ] = α

∫ 1

0

D fα−2g3−α

∣∣∣∣(f

g

)′∣∣∣∣
2

dv

= α

∫ 1

0

D fαg1−α

∣∣∣∣f ′

f
− g′

g

∣∣∣∣
2

dv

=
4
α

∫ 1

0

D g1−α
∣∣∣(fα/2)′+

α

2
C ′fα/2

∣∣∣2 dv .

We summarize our observations as

Proposition 2. Assume that Φ is convex, superlinear at +∞ and that Ψ(x) :=
Φ(x)− xΦ′(x) has no zero. Assume that Ct is bounded in L∞((0, T )× (0, 1)) for any
T > 0, and consider a smooth solution f of (4.2), with E, g, and κ defined by (4.1),
(4.3) and (4.4). Then

E[ f(t, ·) | g(t, ·) ] +
∫ t

0

∫ 1

0

Φ′′
(f

g

)
D(v, s) g

∣∣∣∣(f

g

)′∣∣∣∣
2

dv ds = E[ f(0, ·) | g(0, ·) ] .

As a consequence, with E[ f(0, ·) | g(0, ·) ] =: E0,
(i) if Φα(x) = (xα − x)/(α − 1) for some α > 1, then

4
α

∫ t

0

∫ 1

0

D g1−α
∣∣∣(fα/2)′+

α

2
C ′fα/2

∣∣∣2 dv ds+

(
κ(t)

)1−α

α−1

∫ 1

0

fαe(α−1)Cdv=E0+
ρ

α−1
,

(ii) if Φ(x) = x log x (case α = 1), then

4
∫ t

0

∫ 1

0

D

∣∣∣∣(√
f

)′
−1

2

√
f

g′

g

∣∣∣∣
2

dv ds+
∫ 1

0

f(t, v) log
(

f(t, v)
κ(t) e−C(t,v)

)
dv=E0 .

The results of Lemma 4.1 and Proposition 2 apply in particular to the nonlinear
model of Section 3, provided that u(t) stays away from the limit values u = 0 and
u = 1. Note that the mass conservation implies that if u converges to one of these
limit values, then f must approach the Dirac δ function supported at this value, i.e.,
f forms concentrations. The choice of m2 specified earlier allows this possibility. The
assumptions on C made in the Proposition include the implicit assumption that u
does not approach 0 or 1.

The main difficulty to obtain information on the large time behaviour is to replace
local estimates by global ones (see Remark 5).

5. Large time behaviour
Assuming that there exists a global smooth solution of (2.1) in the nonlinear case

where u, B and D are given by (3.1), (3.2) and (3.3), we are going to describe two
possible asymptotic regimes.

5.1. Convergence to a stationary solution. In this paragraph, we assume
that

lim sup
t→+∞

κ(t) < +∞ .
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For simplicity, we will consider only entropies corresponding to the ”standard case”
of Section 4. However, there is a further restriction, namely α ≤ 2, in order to control
the mean velocity. The next theorem is our main result.

Theorem 3. Assume that Φα(x) = (xα−x)/(α−1) with α ∈ (1, 2] and Φ(x) = x log x
in the limit case α = 1. Consider a smooth global in time solution f of (2.1) with
u, B and D depending nonlinearly on f according to (3.1), (3.2) and (3.3), for some
smooth function m2. Let ρ =

∫ 1

0
f(t, v) dv ∈ (0, 1]. Assume that E[ f | g ] is well

defined and C1 in t, with E, g, and κ defined by (4.1), (4.3) and (4.4). Assume
furthermore that γ < 3 and that lim supt→∞ κ(t) < ∞. If there exists an ε ∈ (0, 1

2 )
such that

ε < u(t) =
1
ρ

∫ 1

0

v f(t, v) dv < 1 − ε ∀ t > 0 ,

then, as t → +∞, f(t, ·) converges a.e. to a stationary solution f∞ of (2.1) where∫ 1

0
f∞ dv = ρ, u∞ := 1

ρ

∫ 1

0
v f∞(t, v) dv = u[ρ], with the notations of Proposition 1.

Remark 4. If the assumption on u was not satisfied, there would exist a t0 ∈ (0,+∞]
such that limt→t0 u(t) = 0 or 1. This would be possible only if concentration occurs,
i.e., if f(t, ·) → ρ δv=0 or ρ δv=1 as t → t0, where δv=0 and δv=1 are Dirac δ functions
centered at v = 0 and v = 1 respectively. The purpose of Theorem 3 is to study the
case where no concentration occurs and to characterize the large time limit in this
situation.

Proof. As γ < 3 and as u(t) stays bounded away from 0 and 1, there is a constant
R > 0 such that for any (t, v) ∈ IR+ × (0, 1), C(t, v) ∈ [−R, R]. Because of Lemma
4.1, there is a κ0 > 0 such that inft>0 κ(t) > κ0. This proves that g is bounded from
above and from below by two positive constants.

Remark 5. Unfortunately we have no information whether or not κ(t) will always
stay bounded from above; hence the extra assumption that lim supt→∞ κ(t) < ∞. The
asymptotic behaviour of κ is related to the behaviour of Ct, over which we have not been
able to obtain sufficient control. If lim supt→∞ κ(t) = ∞ then the decrease of E[f |g]
is consistent with the formation of concentrations in f(t, ·) (see the next subsection).
Whether such concentrations actually arise is a question which we cannot answer at
the present time. The assumptions made in the theorem exclude them.

Consider an increasing unbounded sequence (tn)n∈IN. At each step, one may
extract subsequences, which we shall again denote by (tn)n∈IN. Let

fn(t, v) = f(t + tn, v) ∀ (t, v) ∈ (0, 1)2 .

The sequence (fn)n∈IN is bounded in L∞((0, 1; dt), L1(0, 1; dv)); by Proposition2,
(E[ fn | gn ])n∈IN, with gn = g(·+tn, ·), is also bounded in L∞(0, 1; dt), so that (fn)n∈IN

(resp. (fn log fn)n∈IN) is bounded in L∞((0, 1; dt), L1 ∩ Lα(0, 1; dv)) if α ∈ (1, 2]
(resp. in L∞((0, 1; dt), L1(0, 1; dv)) if α = 1). Thus (fn)n∈IN is weakly relatively
compact in L1 ∩ Lα((0, 1)2) for any α ∈ [1, 2]. Denote by f∞, the weak limit
of (fn)n∈IN, up to the extraction of a subsequence. Notice that f∞ is possibly t-
dependent. Let un := 1

ρ

∫ 1

0
v fn dv. At least * weakly in L∞(0, 1; dt), un converges to

u∞ := 1
ρ

∫ 1

0
v f∞ dv. According to Lemma 4.1 and Proposition 2,

lim
n→∞

∫ 1

0

∫ 1

0

Dn(t, v)
∣∣∣∣(fα/2

n

)′
− α

2
fα/2

n

g′n
gn

∣∣∣∣
2

dv dt = 0 ,
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where Dn(t, v) = D(t+tn, v) = σm1(ρ)m2(un(t))|v−un(t)|γ depends on fn through un.
Note that by developing the square, since

∫ 1

0

∫ 1

0

Dn(t, v)
∣∣∣∣fα/2

n

g′n
gn

∣∣∣∣
2

dv dt

is bounded by the entropy itself,

∫ 1

0

∫ 1

0

Dn(t, v)
∣∣∣∣(fα/2

n

)′∣∣∣∣
2

dv dt

is also uniformly bounded. If we multiply (2.1) by v and integrate with respect to v,
we get

ρ
dun

dt
=

∫ 1

0

v ∂tfn(t, v) dv =
∫ 1

0

B(t + tn, v) fn(t, v) dv −
∫ 1

0

Dn(t, v) f ′
n(t, v) dv .

The first term of the right hand side is clearly bounded in L∞(0, 1; dt). As for the
second one, we can bound it in L2(0, 1; dt) using the Cauchy-Schwarz inequality:

∫ 1

0

Dn f ′
n dv =

2
α

∫ 1

0

√
Dn

(
fα/2

n

)′
·
√

Dn f1−α/2
n dv

≤ 2
α

[∫ 1

0

Dn

∣∣∣∣(fα/2
n

)′∣∣∣∣
2

dv ·
∫ 1

0

Dnf2−α
n dv

]1/2

.

For α = 2,
∫ 1

0
Dnf2−α

n dv is bounded by a constant, and for any α ∈ [1, 2), by Hölder’s
inequality

∫ 1

0

Dnf2−α
n dv ≤

(∫ 1

0

Dnfn dv

)2−α (∫ 1

0

Dn dv

)α−1

is also bounded by

ρ2−α‖Dn‖L∞((0,1)2) ≤ σ ρ2−α m1(ρ) ‖m2‖L∞(0,1) .

By these estimates, dun/dt is bounded uniformly in n in L2(0, 1; dt). Applying Arzela-
Ascoli’s lemma, we obtain the uniform convergence of un to u∞, up to the extraction
of a subsequence. With D∞(t, v) = σm1(ρ)m2(u∞(t))|v − u∞(t)|γ , this means that
(fα/2

n )n∈IN actually weakly converges in L∞((0, 1; dt),H1(0, 1; D∞(t, v) dv)).
Up to the extraction of a subsequence, we may assume that (fα/2

n )n∈IN strongly
converges in L2((0, 1; dt) (0, 1;D∞(t, v)dv)), and a.e., to f∞.

Using again Proposition 2, we get

lim
n→∞

∫ 1

0

∫ 1

0

Dn(t, v) g1−α
n

∣∣∣∣ (
fα/2

n

)′
+

α

2
C ′(t + tn, v) fα/2

n

∣∣∣∣
2

dv dt = 0 ,

where C ′(t + tn, v) now strongly converges to a function C ′
∞(t, v) which depends on

t through u∞. Passing to the limit, we obtain(
fα/2
∞

)′
+

α

2
C ′

∞(t, v) fα/2
∞ = 0 (5.1)
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so that at least in the sense of distributions, one has:

f∞(t, v) = ρ
e−C∞(t,v)∫ 1

0
e−C∞(t,w) dw

∀ (t, v) ∈ (0, 1)2 a.e.

To complete the proof, it remains to check that such a steady solution does not depend
on t and is unique, (i.e., independent of the initial sequence (tn)n∈IN). Because of the
uniform convergence of un to u∞, f∞ is a solution of (2.1). With the notations of
Section 2 and because of (5.1),

∂tf∞ = (Ff∞)′ = 0 .

The uniqueness is once more a consequence of Proposition 2. Assume that we
can find two sequences (t1n)n∈IN and (t2n)n∈IN with t1n < t2n for which the limiting
distribution functions are two functions f1

∞ and f2
∞. Up to extraction of subsequences,

we would find

lim
n→∞

∫ t2n+1

t1n

∫ 1

0

D(v, t) g1−α

∣∣∣∣ (
fα/2

)′
+

α

2
C ′(t, v) fα/2

∣∣∣∣
2

dv dt = 0 ,

with limn→∞(t2n − t1n) = +∞. Then (f(· + t1n, ·))n∈IN would converge for the same
reasons as above to both f1

∞ and f2
∞, which are therefore equal. �

5.2. Observations concerning the large entropy regime. As before, we
let Φα(x) = (xα − x)/(α − 1) for α > 1 and Φ(x) = x log x for α = 1. We first
note an important difference between the entropies Eα[f |g] and E[f |g] (α = 1). It
is transparent from the representation (4.6) that Eα[ f | g ] ≥ − ρ

α−1 , which is a fixed
lower bound. On the other hand, the term −ρ log κ(t) in (4.7) shows that E[ f | g ]
has no automatic lower bound. In what follows, f is assumed to be a global smooth
solution of (4.2) and g is a local equilibrium given by (4.3).

Theorem 6. Let α > 1 and suppose that there exists a d > 0 such that

Eα[ f | g ] +
ρ

α − 1
≥ d . (5.2)

Then, if lim supt→+∞ κ(t) = +∞, there is a sequence (tn)n∈IN with limn→+∞ tn =
+∞ and limn→+∞ κ(tn) = +∞ such that as n → +∞,∫ 1

0

(
f(tn, v)

)α

e(α−1)C(tn,v) dv ∼ d
(
κ(tn)

)α−1

.

Proof. In view of (4.6), this is immediate because by Proposition 2

Eα[ f0 | g0 ] ≥ Eα[ f | g ] ≥ d − ρ

α − 1
.

�

If there is no d > 0 such that (5.2) holds, we cannot draw any conclusion whether
or not concentration in f will occur. By Jensen’s inequality we can prove a lower
bound ∫ 1

0

fα e(α−1)C dv ≥ ρα

(∫ 1

0

e−C dv

)1−α
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but this inequality yields no information about concentrations. In the case α = 1
there is no lower bound for E[ f | g ] if κ(t) → ∞. Jensen’s inequality yields

E[ f | g ] ≥
(∫ 1

0

f dv

)
log

(∫ 1

0
f dv∫ 1

0
g dv

)
= ρ log ρ − ρ log

(∫ 1

0

e−C dv

)
− ρ log κ(t)

but again this yields no information about concentrations.

Remark 7. If concentrations occur in Lα (α > 1) then they have to occur in any Lp

norm, p > α. In the case α = 1, if concentrations do occur such that
∫ 1

0
f log f dv →

∞, then also
∫ 1

0
fp dv → ∞. In fact for any measurable set A, by differentiating the

logarithm of Hölder’s inequality

log
(∫

A

fq dv

)
≤ p − q

p − 1
log

(∫
A

f dv

)
+

q − 1
p − 1

log
(∫

A

fp dv

)
, 1 < q < p ,

at q = 1, we find

log
(∫

A

fq dv

)
≤ p − q

p − 1
log

(∫
A

f dv

)
+

q − 1
p − 1

log
(∫

A

fp dv

)
, 1 < q < p

(this inequality can also be proved by using the convexity of − log and Jensen’s inequal-
ity). It is an open question to understand if such a regime, where κ is unbounded,
exists. The growth of

∫ 1

0
Φ

(
f e(α−1)C

)
e−C dv means that some concentration phe-

nomenon is occuring at least in the norm measured by the entropy. Note that as far
as we know, there is no Maximum Principle available for a solution of (2.1), even
measured by some Lp norm (see Section 5 below). For a better understanding of the
concentration, one should further study the entropy production term

κ1−α

∫ 1

0

D(v, t) e(α−1)C

∣∣∣∣(fα/2
)′

+
α

2
C ′ fα/2

∣∣∣∣
2

dv .

It has to be noted that neither the standard logarithmic Sobolev inequality nor convex
Sobolev inequalities (α ∈ (1, 2], see [1]) do apply since the usual condition for the
entropy - entropy production method is not satisfied.

6. Further observations
We conclude with some calculations which shed additional light on the properties

of solutions of (2.1), (3.1), (3.2), (3.3). First consider Eqn. (2.1) without boundary
conditions, i.e., v ∈ IR, and assume that f vanishes sufficiently fast at ±∞ (this is,
of course, inconsistent with traffic dynamics, where negative speeds are excluded and
there are natural upper speed limits). Let f be a solution of (2.1) and compute

d

dt

∫
(v − u)2f(t, v) dv = −2

du

dt

∫
(v − u)f(t, v) dv +

∫
(v − u)2 ∂tf(t, v) dv .

The first term on the right is zero by definition of u = u(t). For the second term we
use the equation and emphasize the dependence of B and D on v − u(t) as specified,
for example, in (3.2), (3.3). After an integration by parts∫

(v−u)2∂tf(t, v) dv = 2
∫

B(v−u) · (v−u)f dv−2
∫

D(v−u) · (v−u) ∂vf dv . (6.1)
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Note that for B as defined by (3.2) we have B(v − u(t)) · (v − u(t)) ≤ 0 with equality
only if v = u(t). Therefore, if D ≡ 0, we have d

dt

∫
(v − u(t))2f(t, v) dv ≤ 0, with

equality only if f(t, v) = ρ δu(t)(v). This is consistent with the (modeling) idea that
in the absence of diffusion all the drivers will brake or accelerate towards the observed
average speed. In the limit t → ∞, u(t) is expected to converge towards a limit speed
u∞ which will in general depend on f0. The calculation leading to (6.1) remains the
same if we include (zero flux) boundary conditions. Let us now consider D 	= 0 and
v ∈ IR, i.e., we ignore the boundary conditions. If we formally integrate by parts in
the last term in (6.1) we obtain

2
∫ [

D′(v − u(t)) · (v − u(t)) + D(v − u(t))
]
f(t, v) dv

(plus boundary contributions if v ∈ [0, 1]). Suppose for the moment that f is con-
centrated in a small neighborhood of u. Then, what happens to

∫
(v−u(t))2f(t, v) dv

depends on the behaviour (the sign!) of

G(x) := B(x) · x + D′(x) · x + D(x) (6.2)

with x = v − u(t). As an example inspired by (3.2), (3.3), consider D(x) = |x|γ with
γ ∈ (0, +∞) and B(x) = −c x |x|. This is actually a special case of the traffic flow
model with δ = +∞, c = CBρ = CA(1 − ρ), m2 ≡ 1, σm1(ρ) = 1. The expression
(6.2) becomes

−c |x|2 (|x| − β |x|γ−2) (6.3)

where β = (1 + γ)/c. Whether or not f will form concentrations at u(t) depends
on the sign of (6.3) near x = 0. If G(x) > 0 for x ≈ 0, which is the case if γ < 3,
then diffusion dominates and no concentrations occur. If G(x) < 0 for x ≈ 0 then
concentrations are a possibility.

We conclude with a remark on whether or not f can be expected to stay bounded
(if f remains bounded, so will κ(t), and the hypotheses of Theorem 3 will apply).
Assume that, at time t, f assumes its maximum at v0 (not on the boundary). By
elementary calculations,

∂tf |v=v0 + B′(v0 − u(t))f |v=v0 = D(v0 − u(t)) ∂2
vf |v=v0 ≤ 0 .

Hence, if v0 	= u(t), the maximum of f may grow, but its growth is controlled by
B′(v0 − u(t)) and damped by D(v0 − u(t)). Indefinite growth is of course consistent
with the formation of concentrations. We conjecture that the solutions will actually
stay bounded for all time unless concentrations form.

7. Conclusion
We proved the global stability of the steady solutions of a nonlinear model of traffic

flow with respect to the dynamics, assuming that a quantity related to the entropy
(and most probably to the absence of concentrations) stays bounded. However, in
contrast to the linear case [3], this does not discard the possibility of several steady
states and the asymptotic state is clearly selected by the initial conditions. Stop-
and-go regimes, which are observed in traffic flow experiments, are therefore not
predicted by the spatially homogeneous model corresponding to (3.1), (3.2) and (3.3),
at least in the asymptotic regime. However, the multivalued fundamental diagrams
in combination with density fluctuations (which are, of course, excluded a fortiori in
the spatially homogeneous case) should produce stop-and-go phenomena for the full
Vlasov-Fokker-Planck equation.
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