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EVALUATION OF SCATTERING OPERATORS FOR

SEMI-INFINITE PERIODIC ARRAYS∗

MATTHIAS EHRHARDT† , JIGUANG SUN‡ , AND CHUNXIONG ZHENG§

Abstract. Periodic arrays are structures consisting of geometrically identical subdomains, usu-
ally named periodic cells. In this paper, by taking the Helmholtz equation as a model, we consider
the definition and evaluation of scattering operators for general semi-infinite periodic arrays. The
well-posedness of the Helmholtz equation is established via the limiting absorption principle. A
method based on the doubling procedure and extrapolation technique is first proposed to compute
the scattering operators of Sommerfeld-to-Sommerfeld type. The advantages of this method are the
robustness and simplicity of implementation. However, it suffers from the heavy computational cost
and the resonance wavenumbers. To overcome these shortcomings, we propose another more effi-
cient method based on a conjecture about the asymptotic behavior of limiting absorption principle
solutions. Numerical evidences suggest that this method presents the same results as the first one.
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1. Introduction

Periodic structure problems arise frequently in many up-to-date application areas
like photonic crystals (PC) [9, 12, 16], semiconductor nanostructures (e.g. quantum
dots and nanocrystals), semiconductor superlattices [1, 23], metamaterials [17], or
Bragg gratings of surface plasmon polariton (SPP) waveguides [6, 18]. One of the
most interesting properties of periodic structures, especially in optical applications
with nano- and micro-technology, is their capability of selecting waves in a range of
frequencies that are allowed to pass or are blocked through the media. Waves in
periodic arrays only exist when their wavenumbers lie inside some allowed continuous
bands separated by forbidden gaps. This fact corresponds mathematically to the
dispersion diagram of suitable differential operator having so–called pass bands and
stop bands. Since the governing wave equation is either of periodic variable coefficients,
or defined on a domain consisting of periodic subregions, theoretical analysis is very
limited, and numerical simulation is a fundamental tool for the design, analysis, and
finally optimization of the periodic arrays.

To simulate wave propagation in periodic arrays, in many cases one needs to solve
some kind of periodic PDEs on very large or even unbounded domains. The periodicity
may appear in the geometry of definition domain or in the equation coefficients. For
example, the determination of defect modes in photonic crystals generally necessitates
solving a PDE eigenvalue problem posed on an unbounded domain with periodic
medium structure [5]. For solving these PDEs numerically, a common practice is to
confine the real computational domain by introducing artificial boundaries to separate
a small neighborhood of the region with physical interest from its exterior domain.
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This treatment is especially beneficial if the exterior domain consists of a large number
of periodic cells.

To make the PDE complete on the confined computational domain, suitable
boundary conditions should be applied at artificial boundaries. For wave-like equa-
tions, the ideal boundary conditions should not only result in well–posed problems,
but also mimic the perfect transportation of waves which leave the computational
domain through the artificial boundaries. Taking the exterior domain as a scatterer,
these boundary conditions can be also considered as some kind of scattering opera-
tors. The evaluation of these scattering operators is thus very crucial for an efficient
simulation of waves in the large or unbounded periodic structures.

For the one-dimensional Schrödinger equation with cosinusoidal potential, Zheng
[25] presented an analytical expression for the scattering operator in the form of
a Dirichlet-to-Neumann map. This expression was then extended to more general
second-order ODE problems by Ehrhardt and Zheng [2] when the coefficient func-
tions are all symmetric. For high-dimensional periodic array problems, in general it is
unreasonable to expect analytical scattering operators of any form. In [10], Joly, Li,
and Fliss considered this issue by taking the periodic Helmholz equation as an exam-
ple. For the damped Helmholtz equation, they proposed a modified Newton’s method
for evaluating the scattering operator. For the undamped equation, they resorted to
the limiting absorption principle (LABP), and defined the scattering operator as the
limit of those for the damped equation when the absorption coefficient goes to zero.
After that, two methods were proposed. One is based on a limiting procedure: first
compute the scattering operator for the damped equation, then send the absorption
parameter to zero. The other is based on the modal expansion. The crucial point is
to identify the traveling Bloch waves which are compatible with the LABP. Under a
strict assumption that any Floquet multiplier with modulus 1 is simple, the authors
of [10] presented an identifying criteria, which was further proved to be equivalent to
the energy criteria [15]. In [4] Fliss and Joly further extended the idea of [10] to solve
bi-periodic structure problems.

Ehrhardt, Han and Zheng [3] also considered the scattering operators for the
damped Helmholz’s equation in semi-infinite periodic arrays. A fast evaluation
method based on the doubling technique [24] was proposed. Compared with the mod-
ified Newton’s method of [10], this method is more stable and easier to understand.
It was also reported that when the wavenumber lies in the stop bands of periodic
arrays, this method could also present the exact scattering operators. Very recently,
Sun and Zheng [20] employed the method of [3] to deal with diffraction gratings with
local defects.

In this paper, we will continue the discussions in [10] and [3], and focus on the case
when the wavenumber is in the pass bands. As in [10], we resort to the LABP to define
the admissible solutions of Helmholz’s equation. An extrapolation method combining
the doubling technique with the limiting procedure is proposed. This method is robust
and easy to implement. However, it suffers from heavy computational cost and the
resonance wavenumbers. Considering these points, we study the asymptotic behavior
of the LABP solutions. A criteria more strict than the energy one [15] to identify the
LABP traveling Bloch waves is conjectured. An asymptotic method based on this
conjecture is then given. In comparison with the extrapolation method, the price to
pay is to solve a generalized eigenvalue problem, but the overall computational cost is
greatly reduced. The numerical tests given at the end of this paper suggest that these
two methods bring the same scattering operators for semi-infinite periodic arrays.
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2. A model problem

We consider a closed waveguide consisting of an infinite number of identical cells;
see figure 2.1. There Cj denotes the j-th periodic cell, and Γj the j-th cell boundary.
The governing wave equation is the Helmholtz equation

∆u+k2n2u=0, (x,y)∈Ω=∪+∞
j=0Cj , (2.1)

where k is the reference wavenumber and n=n(x,y) is the refractive index function.
On each cell boundary Γj we define two Sommerfeld data associated with the wave
function u as

fj(u)=(∂x + ik)u|Γj
, gj(u)=(∂x− ik)u|Γj

, (2.2)

where i is the imaginary unit. To clarify the physical meaning of these two data, let
us return to the one-dimensional constant coefficient Helmholtz equation

uxx +k2u=0.

Two linearly independent solutions are e±ikx. By convention, eikx represents a wave
traveling to the right, and e−ikx to the left. A simple computation leads to

(∂x + ik)eikx =2ikeikx, (∂x− ik)eikx =0,

and

(∂x + ik)e−ikx =0, (∂x− ik)e−ikx =−2ike−ikx.

These expressions imply that the operator ∂x + ik eliminates the left-going wave while
the operator ∂x− ik eliminates the right-going wave. Thus the functions fj and gj in
(2.2) contain some information about the right-going and left-going waves respectively.
They could be further regarded as incoming or outgoing relying on the location of Γj

with respect to (w.r.t.) the concerned part of domain. For example, w.r.t. Cj , fj is
incoming and gj is outgoing, but w.r.t. Cj−1, fj is outgoing and gj is incoming.

The boundary conditions on the top and bottom and interior (if existing) bound-
aries could be either Neumann or Dirichlet, or any combination, but they need to
be consistent with the geometry periodicity. Moreover, these boundary conditions
should guarantee the well-posedness of the Helmholtz Equation (2.1) on the union of
any finite number of periodic cells, if the incoming Sommerfeld data are prescribed
on its left and right boundaries. We remark that these constraints are in fact very
mild thanks to the Holmgren uniqueness Thm. [7, Sec. 5.3]. In this paper, if not

specified explicitly, we assume homogeneous Neumann boundary conditions at the top

and bottom boundaries.
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Fig. 2.1. Schematic view of a semi-infinite periodic array. Cj denotes the j-th periodic cell.
Γj is the left cell boundary of Cj and the right cell boundary of Cj−1 (for j≥1).

To validate our methods which will be presented later on, three different periodic
arrays (PA) will be considered, and we will refer to them as PA-One, PA-Two and
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PA-Three. All of them are composed of periodic cells with size of 1×1. More details
are listed in the following:

• PA-One. Homogeneous waveguide. n=1.

• PA-Two. A hole of size 0.5×0.5 is made in the cell center. A homogeneous
Dirichlet boundary condition is applied at the hole boundary. n=1.

• PA-Three. Inhomogeneous waveguide. n=1+0.5cos(2πx)sin(2πy).

To explore wave properties in a periodic array, it is usually helpful to look at
dispersion diagram of the characteristic equation −∆u=En2u, restricted to a single
periodic cell, say C0. The boundary conditions at the left and right boundaries are
pseudoperiodic, namely,

u|Γ1
=eiθu|Γ0

, ux|Γ1
=eiθux|Γ0

,

where θ belongs to [0,2π). For each θ, there exists a sequence of real eigenvalues E,
usually called energies. All energies w.r.t. θ then compose the dispersion diagram.
The dispersion relation for PA-One, the homogeneous waveguide, can be obtained
analytically as

Ejm = j2π2 +(θ+2πm)2.

This multi-valued function is plotted in figure 2.2. For PA-Two and PA-Three, no
analytical expressions of dispersion relation are available, and a spatial discretization
method has to be employed. We use the eighth-order quadrilateral FEM method with

mesh sizes ∆x=∆y =0.125 for all the numerical tests reported in this paper. The
dispersion diagrams for PA-Two and PA-Three are shown in figures 2.3–2.4. An
obvious observation could be made that unlike the homogeneous waveguide, there
are some bands of energy values in the dispersion diagrams of PA-Two and PA-

Three that could not be reached for any θ. Physically, waves with energy (here k2)
in these bands could not propagate in the medium. In this context, they are usually
referred to as stop bands in the engineering literature. In fact it is exactly this
remarkable property which makes periodic structures very useful, for example, they
could be elaborately designed to act as frequency selecting modules in the microwave
and optical engineering.
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Fig. 2.2. Dispersion diagram of PA-One, a homogeneous waveguide.
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Fig. 2.3. Dispersion diagram of PA-Two. The first two stop bands are (0,23.61±0.01) and
(29.85±0.01,47.10±0.01).
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Fig. 2.4. Dispersion diagram of PA-Three. The first stop band is (11.20±0.01,19.29±0.01).

This paper is aimed at developing efficient numerical methods of evaluating exact
scattering operators for semi–infinite periodic arrays at any real wavenumber k.

3. The limiting absorption principle

The first problem we are facing is to guarantee the well-posedness of the Helmholtz
Equation (2.1), which naturally arises due to the absence of the radiation condition at
infinity. Though well solved in the constant coefficient case for separable geometries
[14], this problem largely remains open for the variable coefficient Helmholtz equation.

There are at least three methods of possibly deriving a unique solution of the
Helmholtz equation in unbounded domains: asymptotic radiation condition, limiting
absorption principle and limiting amplitude principle [22]. In this paper we resort to
the limiting absorption principle (LABP). To understand this principle, let us first
consider the following damped Helmholtz equation

∆uǫ +(k2 + iǫ)n2uǫ =0 (3.1)



352 SCATTERING OPERATORS FOR SEMI-INFINITE PERIODIC ARRAYS

with the boundary condition

f0(u
ǫ)≡ (∂x + ik)uǫ|Γ0

=f0(u),

where ǫ>0 and f0(u)∈L2(Γ0) (take f0(u) as a unity). By the classical variational
arguments, there exists a unique solution uǫ ∈H1(Ω) and a bounded linear scattering

operator Aǫ
inf , which maps the Sommerfeld data f0(u

ǫ) to another Sommerfeld data
g0(u

ǫ), namely,

g0(u
ǫ)=Aǫ

inff0(u
ǫ).

The LABP is said to hold at k >0 if and only if for any f0(u)∈L2(Γ0), the solution
uǫ ∈H1(Ω) of the damped Helmholtz Equation (3.1) converges to a unique solution
u∈H1

loc(Ω) of the Helmholtz Equation (2.1) as ǫ goes to zero, and the outgoing
Sommerfeld data g0(u

ǫ) also converge to the unique function g0(u). The function u
is then regarded as an LABP solution. The scattering operator of (2.1), denoted by
Ainf , is then defined as the limit of Aǫ

inf , and it maps the Sommerfeld data f0(u) to
the Sommerfeld data g0(u), i.e.,

g0(u)=Ainff0(u).

3.1. Homogeneous waveguide problem. Let us consider PA-One to
obtain some insights on whether the LABP holds for our considered problem. In this
case the separation of variables is available. Put

uǫ =
+∞
∑

n=0

uǫ,n cos(nπy), f0(u)=
+∞
∑

n=0

f0(u
n)cos(nπy), g0(u

ǫ)=
+∞
∑

n=0

g0(u
ǫ,n)cos(nπy),

then (3.1) is transformed into a sequence of ODE problems:

uǫ,n
xx +(k2 + iǫ−n2π2)uǫ,n

xx =0, f0(u
ǫ,n)=f0(u

n), ∀n=0,1,... .

The bounded solutions are

uǫ,n =
f0(u

n)

i
√

k2 + iǫ−n2π2 + ik
ei

√
k2+iǫ−n2π2x.

Thus

g0(u
ǫ,n)=

i
√

k2 + iǫ−n2π2− ik

i
√

k2 + iǫ−n2π2 + ik
f0(u

n)

and

g0(u
n)

def
= lim

ǫ→0
g0(u

ǫ,n)=
i
√

k2−n2π2− ik

i
√

k2−n2π2 + ik
f0(u

n). (3.2)

Besides, it is straightforward to verify that

g0(u
ǫ,n)=g0(u

n)+















2
√

iǫf0(u
n)

k
+O(ǫ), k =nπ,

ikǫf0(u
n)

(
√

k2−n2π2 +k)2
√

k2−n2π2
+O(ǫ2), k 6=nπ.

(3.3)
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The expression (3.3) states that the convergence rate of g0(u
ǫ) to

g0(u)=

+∞
∑

n=0

g0(u
n)cos(nπy)

is of first order w.r.t. ǫ if k is not equal to any nπ with n≥0, and if k happens to
equal some n0π, which implies the resonance of the n0-th mode in the y-direction, the
convergence rate would degenerate to half order. But whatever the case is, the LABP
holds at any k >0. Here, resonance means the existence of stationary wave solution
which does not transport energy in the x-direction. In the dispersion diagrams, the
square of resonance wavenumbers corresponds to those energies whose associated local
dispersion curve has a zero slope. Obviously, k is resonant if k2 is an endpoint of any
stop band. For example, k =

√
23.61±0.01,

√
47.10±0.01 is resonant for PA-Two, and

k =
√

11.20±0.01,
√

19.29±0.01 for PA-Three.
Based on the above analysis, we conjecture that, under some mild conditions on

the geometry and the refractive index function, the LABP holds at every k >0 for the

general semi-infinite periodic arrays. Though we could not prove the conjecture in a
rigorous mathematical way, its validity is supported by the numerical evidences which
will be reported at the end of this section.

3.2. Scattering operator for the damped Helmholtz equation. The
LABP itself suggests a method of deriving the exact StS scattering operator on the
left boundary Γ0: first compute the scattering operator Aǫ

inf of the problem (3.1) for
a given ǫ, and then send ǫ to zero. In this subsection, we consider how to efficiently
evaluate the scattering operator for the damped Helmholtz equation.

In [3] the authors proposed a fast evaluation method for the scattering operator
of the damped Helmholtz Equation (3.1). The basic idea is as follows. For any N >0,
the damped Helmholtz Equation (3.1) is well-posed on the domain ∪N−1

j=0 Cj , with the
incoming Sommerfeld data f ǫ

0 and gǫ
N prescribed at the boundaries Γ0 and ΓN . Thus

there are four linear scattering operators Aǫ
N , Bǫ

N , Cǫ
N and Dǫ

N satisfying the so-called
scattering relations

gǫ
0 =Aǫ

Nf ǫ
0 +Bǫ

Ngǫ
N , f ǫ

N =Cǫ
Nf ǫ

0 +Dǫ
Ngǫ

N . (3.4)

Since gǫ
N goes to zero exponentially fast as N goes to infinity, it is reasonable to expect

that Aǫ
N converges and the limit is just the exact StS scattering operator Aǫ

inf . To
make this paper self-contained, we explain in Appendix A the fast doubling technique
for deriving these scattering operators. This scheme needs only O(log2N) operations.

Take PA-Two as an example. In Fig.3.1 we plot the relative errors of the scat-
tering operators Aǫ

N compared to the reference operator Aǫ
ref , which is obtained by

using the doubling technique 20 times, i.e., Aǫ
ref =Aǫ

N0
with N0 =220. Since the

eighth-order quadrilateral FEM is used with ∆x=∆y =0.125, there are 65 unknowns
getting involved at each cell boundary, and thus in the discrete level the scattering
operators are approximated by matrices of rank 65×65. We could see that the dou-
bling technique really leads to an efficient algorithm. Also notice that when k2 lies
in the stop bands, for example k2 =23,31, AN itself converges as N goes to infinity.
This implies that when k2 is in the stop bands, we could derive the StS scattering

operator directly without considering the limiting procedure.

3.3. Extrapolation technique. Now we explain how to send ǫ to zero for
the scattering operator Aǫ

inf to derive Ainf . In terms of the expression (3.3), if k is
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not a resonance wavenumber, the exact StS scattering operator Ainf is expected to
have an asymptotic expansion w.r.t. ǫ like

Aǫ
inf =Ainf +ǫA(1)

inf +ǫ2A(2)
inf + ··· . (3.5)

Thus in most cases, the convergence rate of the LABP is of first order. This is
verified by the numerical evidences shown in figure 3.2. The convergence rate could
be improved by the standard extrapolation technique, see [19] or Appendix B. In
figure 3.3 we plot the errors of a reference scattering operator and the StS scattering
operators computed by using extrapolation once. The reference solution is obtained
by using extrapolation twice and setting a small damping parameter ǫ0 =0.00125.
One could see that the accuracy is greatly improved, and second order convergence
rate can be clearly observed. We should also notice that if k is close to a resonance
wavenumber, for example k2 =23.61,47.1, the asymptotic convergence rate could only
manifest well for sufficiently small damping parameters.

10
−4

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

ε

||A
in

f
ε

−
A

re
f|| ∞

/||
A

re
f|| ∞

Slope=1

k2=25
k2=50
k2=23.61
k2=47.1

Fig. 3.2. Relative errors of the scattering operators Aǫ
inf . The reference scattering operator

Aref is equal to A
ǫ0
inf with ǫ0 =10−7. PA-Two.



M. EHRHARDT, J. SUN AND C. ZHENG 355

10
−4

10
−3

10
−2

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

ε

||A
in

f,1
ε

−
A

re
f,2

|| ∞
/||

A
re

f,2
|| ∞

Slope=2

k2=25
k2=50
k2=23.61
k2=47.1

Fig. 3.3. Relative errors of the scattering operator Aǫ
inf,1 =−Aǫ

inf +2A
ǫ/2

inf . The reference

operator Aref,2 is obtained by using extrapolation technique twice with ǫ0 =0.00125, i.e., Aref,2 =

A
ǫ0
inf,2 =A

ǫ0
inf /3−2A

ǫ0/2

inf +8A
ǫ0/4

inf /3. PA-Two.

4. Asymptotic behavior of an LABP solution

The last section shows that if k is not a resonance wavenumber, the extrapolation
technique could present very accurate scattering operators for the semi-infinite peri-
odic arrays. This technique needs to evaluate the scattering operators for a sequence
of ǫ, which turns out to be costly. Besides, though the chance of k being a resonance
wavenumber is rare, if k is close to a resonance wavenumber, the extrapolation method
could not present very accurate result. Considering these two points, in this section
we intend to develop a new method without resorting to the limiting procedure from
the damped Helmholtz Equation (3.1) to the undamped one (2.1).

Recall in the last section that when k2 lies in the stop bands, the exact scattering
operator could be efficiently computed by the doubling technique without performing
the limiting procedure. This is possible because the solution decays exponentially
at infinity. When k2 lies in the pass bands, in general an LABP solution cannot
be expected to decay. Our basic idea is to separate those non-decaying waves and
decaying waves and handle them by different means.

4.1. Floquet multipliers and Bloch wave solutions. First let us introduce
some notions. Suppose u and v are two solutions of the Helmholtz Equation (2.1).
Define the co-related energy flux of u and v as

E(u,v)=−2ik
[

(ux,v)Γj
−(u,vx)Γj

]

=(f(u),f(v))Γj
−(g(u),g(v))Γj

.

The energy flux of u is defined as E(u,u), which is also equal to

E(u,u)=4k Im

∫

Γj

uxūdy.

Note that the co-related energy flux does not rely on the choice of Γj , and E(·,·)
defines a sesquilinear form.

A nontrivial solution u of the Helmholtz Equation (2.1) is regarded as a Bloch

wave solution associated with the Floquet multiplier α∈C, if u satisfies two sequence
of conditions

u|Γi+1
=αu|Γi

, ux|Γi+1
=αux|Γi

, ∀i=0,1,··· . (4.1)
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We denote by F the set of all Floquet multipliers. A Bloch wave solution is regarded as
evanescent, traveling, or anti-evanescent if the associated Floquet multiplier α satisfies
|α|<1, |α|=1, or |α|>1. If |α|=1, we regard α as a unitary Floquet multiplier.
The set of all unitary Floquet multipliers is denoted by UF. Note that the Floquet
multiplier cannot be zero due to the Holmgren uniqueness theorem. For any α∈F, all
associated Bloch wave solutions together with zero function form a linear space Eα,
which will be referred to as an α-eigenspace. Here we list some properties of Floquet
multiplies and associated Bloch wave solutions (see [10, 11]):

1. If α∈F, then 1/α∈F as well.

2. UF is a finite set. For any α∈UF, Nα =dimEα <+∞.

3. Given two Floquet multipliers αj and αk, and two Bloch wave solutions ϕj ∈
Eαj

and ϕk ∈Eαk
, if αjα

∗
k 6=1, then E(ϕj ,ϕk)=0. Here the superscript (·)∗

stands for the conjugate operator.

4. If u is an LABP solution, then u satisfies the energy criteria, say, the energy
flux of u is nonnegative.

There are two different methods for computing the Floquet multipliers and asso-
ciated Bloch wave solutions. The first method utilizes the scattering relations (3.4)
for N =1 and ǫ=0, namely,

g0 =A1f0 +B1g1, f1 =C1f0 +D1g1. (4.2)

In terms of (4.1) we have

g1 =αg0, f1 =αf0.

Substituting the above expressions into (4.2) gives
(

−A1 I
−C1 0

)(

f0

g0

)

=α

(

0 B1

−I D1

)(

f0

g0

)

. (4.3)

This means that the Floquet multiplier α is a generalized eigenvalue of the above
eigenvalue problem. The associated generalized eigenvector (f0,g0)

⊤ is composed of
two Sommerfeld data related to some α-Bloch wave solutions ϕ. On C0, ϕ satisfies
the Helmholtz Equation (2.1) together with boundary conditions

f0(u)=f0, g1(u)=αg0.

The second method resorts to a quadratic eigenvalue problem. Put

α=eσL, u=eσxϕ, Im σ∈
[

−π

L
,
π

L

)

,

where L is the period, then α is a Floquet multiplier of the Helmholtz Equation (2.1)
if and only if σ solves the quadratic eigenvalue problem

(∆+k2n2)ϕ+2σ∂xϕ+σ2ϕ=0,

where ϕ is an eigenfunction which is L-periodic in the x-direction.
The most remarkable advantage of the first method lies in the fact that it involves

much fewer degrees of freedom in the discrete level, since the Sommerfeld data is only
defined on the cell boundary. This is indeed the main reason we adopt the first
method in the following numerical tests. But the second method has its own merits.
The eigenvalues of the quadratic eigenvalue problem come in pairs (σ,−σ). This
property can be maintained in the discrete level by a suitable projection method [21].
Comparatively, it is not obvious how to achieve this for the first method. This issue
is now under investigation.
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4.2. Asymptotic behavior of an LABP solution. An LABP solution u
cannot include the anti-evanescent Bloch waves, thus asymptotically u contains only
traveling Bloch waves. It is known that not every traveling Bloch wave is an LABP
solution. We need to pick out those traveling Bloch waves which are compatible with
the LABP. It is already known that any LABP solution of (2.1) must satisfy the
energy criteria, but this criteria is not sufficient to identify an LABP solution. To
clarify this point, let us consider the homogeneous waveguide problem.

Suppose k =π. Then the traveling Bloch wave space is

Span{e−iπx,eiπx,cos(πy)}.

If the x-period L is set as a non-integer positive number, then we get three unitary
Floquet multipliers: e−iπL associated with Span{e−iπx}, eiπL with Span{eiπx} and,
1 with Span{cos(πy)}. Since

E(e−iπx,e−iπx)=4π Im

∫ 1

0

(−iπe−iπx)eiπxdy
∣

∣

∣

x=0
=−4π2,

E(eiπx,eiπx)=4π Im

∫ 1

0

(iπeiπx)e−iπxdy
∣

∣

∣

x=0
=4π2,

E(cos(πy),cos(πy))=4π Im

∫ 1

0

(0)eiπxdy
∣

∣

∣

x=0
=0,

we come to the correct conclusion that according to the energy criteria, eiπx and
cos(πy) are LABP solutions, while e−iπx is not.

The above reasoning ceases to work if we take the period L as an integer. For
example, take L=1. In this case there are two unitary Floquet multipliers 1 and −1,
namely,

α1 =−1←→Eα1
=Span{e−iπx, eiπx},

α2 = 1←→Eα2
=Span{cos(πy)}.

Eα2
represents a resonance wave space, and two-dimensional space Eα1

contains both
the left-going and right-going traveling Bloch waves. Then how to classify these two
kind of waves? One might say that the energy criteria still works, since obviously the
Bloch wave eiπx is right-going, and e−iπx is left-going. But the question lies in the
fact that Eα1

may have a different basis representation, for example,

Eα1
=Span{e−iπx +2eiπx, e−iπx +3eiπx}=Span{eiπx +2e−iπx, eiπx +3e−iπx}.

For the first representation, both basis wave functions have positive energy fluxes, and
for the second, both have negative energy fluxes. Using the energy criteria naively
would yield contradictory conclusions. The lesson thus given to us is that if the

eigenspace is multi-dimensional, generally we could not identify an LABP traveling

wave solution by merely checking its energy flux.
The above problem becomes more severe if we take L=2. In this case there is

only one unitary Floquet multiplier

α=1←→Eα =Span{e−iπx, eiπx,cos(πy)}.

It is not difficult to find different basis representations for Eα, which have completely
different signs of energy flux. On a conclusion, if α is a unitary Floquet multiplier
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and its associated eigenspace Eα is multi-dimensional, we have to resort to a more
complete criteria to identify LABP Bloch wave solutions. We should remark here that
for a three-dimensional waveguide problem, the chance to have multi-dimensional Eα

is absolutely not rare, though it seems true for two-dimensional waveguide problems.
Suppose α∈UF, and {ϕj}Nα

j=1 constitute a set of basis functions of Eα, orthonor-

mal w.r.t. the n2-weighted inner product (·,·)n2 defined as

(ϕj ,ϕk)n2 =

∫

C0

n2ϕjϕ̄kdy.

We define the Nα×Nα energy flux matrix M =(mjk) as

mjk =E(ϕj ,ϕk), ∀j,k =1,2,··· ,Nα.

It is easy to verify that M is a Hermitian matrix, which implies the existence of a
unitary matrix U , such that

U⊤MŪ =Λ=diag(λ1,λ2,... ,λNα
),

where λj are real eigenvalues of M ordered by

λ1≥λ2≥···≥λm1
>0=λm1+1 = ···=λm2

=0>λm2+1≥···≥λNα
.

Then we could introduce a new set of basis functions {ψj}Nα

j=1 as

(ψ1,... ,ψNα
)=(ϕ1,... ,ϕNα

)U,

which will be referred to as a canonical set of basis functions of Eα. The eigenfunction
space Eα is then separated into three parts, i.e.,

Eα =Rα⊕Sα⊕Lα,

with

Rα =Span{ψ1,··· ,ψm1
}, Sα =Span{ψm1+1,··· ,ψm2

}, Lα =Span{ψm2+1,··· ,ψNα
}.

Proposition 4.1. For any α∈Eα, {λj}Nα

j=1 are invariant quantities, and Rα, Sα

and Lα are invariant subspaces of Eα. Besides, for any ϕ1∈Rα, ϕ2∈Sα, ϕ3∈Lα, we

have

E(ϕ1,ϕ1)>0, E(ϕ2,ϕ2)=0, E(ϕ3,ϕ3)<0, E(ϕm,ϕn)=0, ∀m 6=n.

For the homogeneous waveguide problem, it is straightforward to verify that Rα is
the admissible LABP Bloch wave space with positive energy flux. Sα is the resonance
wave space, which is also compatible with the LABP. Note that if Sα is excluded
from the LABP solution space, the Helmholtz Equation (2.1) would lose solvability
for some Sommerfeld data f0, thus well-posedness is destroyed. Based on these facts,
for a general semi-infinite periodic array, we make the following conjecture.

Conjecture 4.2. Suppose α1,··· ,αM are all unitary Floquet multipliers, and

{ϕαj

1 ,··· ,ϕαj

Mαj
} constitute a set of basis functions of Rαj

⊕Sαj
. Then asymptotically,

any LABP solution u lies in the space

Span{ϕαj

k |j =1,··· ,M,k =1,··· ,Mαj
}. (4.4)

The above conjecture thus gives a complete criteria for identifying an LABP
solution. Though we are unable to prove it at this time, its validity will be shown by
the numerical tests given in Sec. 5.
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4.3. Asymptotic method of evaluating the scattering operators. Based
on Conjecture 4.2, we know when N is large, asymptotically,

fN (u)≈
M
∑

j=1

Mαj
∑

k=1

tjkf0(ϕ
αj

k ), gN (u)≈
M
∑

j=1

Mαj
∑

k=1

tjkg0(ϕ
αj

k ).

Or in an abbreviated vector form,

fN (u)≈FT, gN (u)≈GT, (4.5)

where

F =(F1,··· ,FM ), G=(G1,··· ,GM ), T =(T1,··· ,TM )⊤

with

Fj =(f0(ϕ
αj

1 ),··· ,f0(ϕ
αj

Mαj
)), Gj =(g0(ϕ

αj

1 ),··· ,g0(ϕ
αj

Mαj
)), Tj =(t

αj

1 ,··· ,tαj

Mαj
). (4.6)

Recall the scattering relations

g0(u)=ANf0(u)+BNgN (u), fN (u)=CNf0(u)+DNgN (u).

Using (4.5) T could be derived by the least square method as

T ≈ (F −DNG)−1CNf0(u).

Here, (·)−1
denotes the pseudo-inverse operator. We then have

g0(u)=ANf0(u)+BNgN (u)≈ (AN +BNG(F −DNG)−1CN )f0(u),

which means that by putting

ÃN =AN +BNG(F −DNG)−1CN ,

the limit of ÃN would give the exact StS scattering operator Ainf on the left boundary
Γ0.

The key point to implement the above algorithm is to derive a canonical set of
basis functions for all unitary Floquet multipliers. More explicitly, we need to compute
the functions Fj and Gj defined in (4.6) whose columns span the Sommerfeld datum
space of all LABP solution of Eα. This can be achieved within several steps:

1. Solve the generalized eigenvalue problem (4.3) to obtain all (may be same)
unitary Floquet multipliers {αj}M

j=1 and their associated generalized eigen-

vector (f j
0 ,gj

0)
⊤.

2. If αj is simple, i.e., Nαj
=1, compute the energy flux of the Bloch wave

solution ϕj associated with the Sommerfeld data (f j
0 ,gj

0) by

E(ϕj ,ϕj)=(f j
0 ,f j

0 )Γ0
−(gj

0,g
j
0)Γ0

.

If E(ϕj ,ϕj)≥0, then ϕj is an admissible LABP traveling Bloch wave. Thus
Fj =(f j

0 ), Gj =(gj
0). Otherwise, Fj =Gj =∅. Note that in this case we do not

need to compute ϕj explicitly.

3. If αj is multiple, i.e., Nαj
>1, derive a set of basis functions {ϕαj

1 ,··· ,ϕαj

Mαj
} of

the admissible LABP Bloch wave space Rαj
⊕Sαj

with the method explained

in subsection 4.2. Then set Fj =(F 1
j ,··· ,FMαj

j ) and Gj =(G1
j ,··· ,G

Mαj

j ) with

F k
j =f0(ϕ

αj

k ), Gk
j =g0(ϕ

αj

k ), ∀k =1,··· ,Mαj
.
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4.4. Why not modal expansion? In the first step of the algorithm for
computing the functions Fj and Gj defined in (4.6), we need to compute all unitary
Floquet multipliers. So far an efficient algorithm for arriving at this is still under
investigation. In the numerical tests of next section, we simply employ the traditional
QZ-algorithm [13] to compute all Floquet multipliers and their associated eigenfunc-
tions. Then a natural question is why not develop a modal expansion method like the
following:

1. Compute all Floquet multipliers αj and associated eigenvectors (f j
0 ,gj

0)
⊤ by

solving the generalized eigenvalue problem (4.3);

2. For any unitary Floquet multiplier αj , use the algorithm in the last subsection
to derive Fj and Gj ;

3. For any Floquet multiplier αj with |αj |<1, set Fj =(f j
0 ), Gj =(gj

0);

4. Suppose F =(··· ,Fj ,···) spans the space L2(Γ0). Set G=(··· ,Gj ,···). The
scattering operator is then given as

Ainf =GF−1 :f0−→g0.

Despite many theoretical issues which are still mysterious to us, for example, the
independence of {Fj} and the completeness of {Fj} in L2(Γ0), two computationally
relevant issues prevent us from considering the modal expansion method. First, in
general {Fj} are not orthogonal in any sense. Second, as suggested by our numerical
tests, the computation of Sommerfeld data associated with Floquet multiplier of small
modulus is inaccurate and ill-conditioned. These two factors imply that the evaluation
of the inverse operator F−1 thus Ainf would be very costly and badly ill-conditioned
when the number of degrees of freedom on each cell boundary is large.

5. Numerical tests

In this section we will report some numerical tests. First we consider PA-One.
In this case the analytical scattering operator is available. For the n-th mode in the
y-direction, the exact StS mapping is given as in (3.2). The computed scattering
operator, no matter which method is employed, is diagonalizable. In Table 5.1 we list
the errors of scattering operators for different y-modes computed with the asymptotic
method.

We see that generally the asymptotic method presents very accurate results,
though a little bit worse but still satisfactory at the resonance wavenumber. For
example, when k =π, the first y-mode (n=1) is resonant. The error of computed
scattering operator is of order 10−6, while others are at least of order 10−9. In
Table 5.2 we list the errors of scattering operators computed by the extrapolation
method. Two times of extrapolation have been performed with ǫ0 =0.00125, namely,

the computed scattering operator is Aǫ0
inf/3−2Aǫ0/2

inf +8Aǫ0/4
inf /3, where each Aǫ

inf is
computed using the doubling technique sufficiently many times. We see that except
at the resonance wavenumbers, the extrapolation method presents results nearly of
the same quality as those derived by the asymptotic method. When resonance occurs,
the asymptotic method is superior to the extrapolation method.

For periodic arrays PA-Two and PA-Three, no analytical expression is avail-
able on the exact scattering operators. We compare the scattering operators computed
with two proposed methods, and list the relative errors in Table 5.3. Since the eighth-
order FEM is used for the spatial discretization with mesh sizes ∆x=∆y =0.125,
in the discrete level there are 65 degrees of freedom at each cell boundary and the
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scattering operators are approximated by 65×65 matrices. The errors are evaluated
with infinity norms. From Table 5.3 we could conclude that in principle these two
methods bring the same results, which suggests that our asymptotic method is com-
patible with the limiting absorption principle. We could also observe that when k is
away from the resonance wavenumber, these two methods present results nearly of
same quality. But their difference becomes large when k turns close to the resonance
wavenumber. Considering the results for the homogeneous waveguide problem, we
believe that this happens since in this case the extrapolation method presents much
worse results compared with the asymptotic method.

n=0 n=1 n=2 n=3 n=4
k =π 1.50×10−9 7.58×10−6 2.13×10−12 5.44×10−13 2.28×10−13

k = 5π
4 4.60×10−9 1.78×10−9 3.52×10−12 8.74×10−13 3.24×10−13

k =
√

2π 7.02×10−12 1.07×10−9 1.31×10−11 2.80×10−12 1.00×10−12

k =
√

3π 5.91×10−13 9.44×10−13 3.23×10−12 5.40×10−13 2.10×10−13

Table 5.1. Errors of scattering operators for different y-modes of homogeneous waveguide.
The scattering operators are computed by the asymptotic method.

n=0 n=1 n=2 n=3 n=4
k =π 5.03×10−9 5.68×10−3 2.26×10−12 7.51×10−13 2.39×10−13

k = 5π
4 3.53×10−12 7.30×10−12 3.43×10−12 8.22×10−13 2.74×10−13

k =
√

2π 6.91×10−12 1.52×10−8 1.26×10−11 2.99×10−12 1.06×10−12

k =
√

3π 1.07×10−12 1.49×10−12 3.40×10−12 5.82×10−13 2.37×10−13

Table 5.2. Errors of scattering operators for different y-modes of homogeneous waveguide.
The scattering operators are computed by extrapolating Aǫ

inf twice with ǫ0 =0.00125, namely, the

computed scattering operators are A
ǫ0
inf /3−2A

ǫ0/2

inf +8A
ǫ0/4

inf /3.

PA-Two k2 =25 k2 =50 k2 =23.61 k2 =47.1
Relative errors 1.31×10−12 3.26×10−12 3.89×10−8 6.76×10−5

PA-Three k2 =5 k2 =25 k2 =11.20 k2 =19.29
Relative errors 9.58×10−13 9.26×10−13 7.16×10−9 6.23×10−10

Table 5.3. Relative errors between the scattering operators computed by the extrapolation
method and the asymptotic method. The scattering operators by extrapolation method are A

ǫ0
inf /3−

2A
ǫ0/2

inf +8A
ǫ0/4

inf /3 with ǫ0 =0.00125.

Conclusion. In this paper we have considered scattering operators of
Sommerfeld-to-Sommerfeld type for periodic Helmholtz equations in semi-infinite pe-
riodic arrays. Since no radiation condition could be specified explicitly at infinity, the
Helmholtz equation is not complete. To solve this problem we employ the limiting
absorption principle. We have proposed two different methods, extrapolation method
and asymptotic method, to evaluate scattering operators. The extrapolation method
is based on the doubling technique and the limiting procedure, while the asymptotic
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method is based on a conjecture for the asymptotic behavior of LABP solutions. The
equivalence of these two methods has been supported by the numerical tests, though
its rigorous proof is not available at this time. Numerical tests have also shown that
when the wavenumber becomes resonant, the asymptotic method could present better
results than the extrapolation method.

We expect the asymptotic method could be extended to more complicated wave-
like equations, such as Maxwell’s equations and elastic wave equations on periodic
arrays. Besides, we have left the relevant theoretical problems largely open in this
paper. These issues are now under investigation.

Appendix A. On the vertical boundary segments Γi we define two Sommerfeld

data as

fi =(∂x + ik)u|Γi
, gi =(∂x− ik)u|Γi

. (A.1)

For any given boundary data fi and gi+k, i≥0, k≥1, the Helmholtz Equation (2.1)
is uniquely solvable on ∪i+k−1

l=i Cl, cf. [3, Lem. A]. Due to the assumption on the
boundary conditions, there exists four linear operators Ak, Bk, Ck and Dk satisfying

gi =Akfi +Bkgi+k, fi+k =Ckfi +Dkgi+k. (A.2)

From the numerical point of view, these operators can be derived by an appropriate
spatial discretization in the domain ∪j−1

k=0Ck. But if k is large, a vast number of
unknowns would get involved, which leads to a high computational effort. As revealed
in [3], these operators can be obtained very efficiently with a smart doubling technique.

The essential idea of this doubling procedure is based on the following recursive
relations. Suppose for k∈{m,n}, the operators Ak, Bk, Ck and Dk have already been
obtained. By (A.2) we have

gi =Am(Cnfi−n +Dngi)+Bmgi+m,

fi =Cnfi−n +Dn(Amfi +Bmgi+m).

It is easy to prove that I−AmDn and I−DnAm (I denotes the identity operator)
are invertible, cf. [3, Lem. B]. Thus,

gi =A∗
n,mfi−n +B∗

n,mgi+m, fi =C∗
n,mfi−n +D∗

n,mgi+m, (A.3)

where

A∗
n,m =(I−AmDn)−1AmCn, B∗

n,m =(I−AmDn)−1Bm,

C∗
n,m =(I−DnAm)−1Cn, D∗

n,m =(I−DnAm)−1DnBm.

Substituting expressions (A.3) into (A.2) gives

gi−n =Anfi−n +Bn(A∗
n,mfi−n +B∗

n,mgi+m),

fi+m =Cm(C∗
n,mfi−n +D∗

n,mgi+m)+Dmgi+m,

which imply that

Am+n =An +BnA∗
n,m, Bm+n =BnB∗

n,m,

Cm+n =CmC∗
n,m, Dm+n =Dm +CmD∗

n,m.
(A.4)

Hence, for any fixed cell number N , the operators AN , BN , CN , and DN can be
obtained by the following steps:
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1. Derive A1, B1, C1, and D1 by the cell analysis. If N =1, it is done;

2. Write N into binary form (jL ···j0)2, with L=[log2N ] and jL =1;

3. Use the relations (A.4) L times by setting m=n=2k−1 to get A2k , B2k , C2k ,
and D2k for k =1,... ,L;

4. For l=L−1,... ,0, if jl 6=0, then use (A.4) by setting m=(jL ···jl+10···0)2
and n=2l to obtain A(jL···jl0···0)2 , B(jL···jl0···0)2 , C(jL···jl0···0)2 and
D(jL···jl0···0)2 .

The above procedure uses (A.4) at most 2[log2N ] times, and only J times if N =2J .

Appendix B. Suppose T (ǫ) converges to a required quantity τ0 as ǫ goes to
zero, and for each fixed ǫ>0, T (ǫ) can be computed with a prescribed algorithm, but
CANNOT for ǫ=0. Furthermore, suppose T (ǫ) admits an asymptotic expansion in
powers of ǫ as

T (ǫ)= τ0 +τ1ǫ
γ1 +τ2ǫ

γ2 + ···+τmǫγm +ǫγm+1αm+1(ǫ),

with

0<γ1 <γ2 < ···<γm+1.

Here the exponents γi need not to be integers. The coefficients τi are independent of
ǫ, and the function αm+1(ǫ) is bounded as ǫ→0.

As shown by the above expansion, T (ǫ) is only a γ1-th order approximation of τ0.
If we set

T1(ǫ)=
2γ1T (ǫ/2)−T (ǫ)

2γ1 −1
,

then

T1(ǫ)= τ0 +τ ′
2ǫ

γ2 + ···+τ ′
mǫγm +ǫγm+1α′

m+1(ǫ),

where

τ ′
i =

2γ1−γi −1

2γ1 −1
τi, ∀i=2,··· ,m, α′

m+1(ǫ)=
2γ1−γm+1αm+1(ǫ/2)−αm+1(ǫ)

2γ1 −1
.

This means that T1(ǫ) is a better approximation of τ0 with higher convergence rate
γ2. This simple technique of improving algorithm accuracy is called extrapolation,
and it can be used successively for many times.

For the asymptotic expansion (3.5), γi = i. The first extrapolation is

Aǫ
inf,1 =−Aǫ

inf +2Aǫ/2
inf ,

which is a second-order approximation of Ainf , and the second extrapolation is

Aǫ
inf,2 =

22Aǫ/2
inf,1−Aǫ

inf,1

22−1
=Aǫ

inf/3−2Aǫ/2
inf +8Aǫ/4

inf/3,

which is a third-order approximation of Ainf .
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