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RELIABILITY OF LAYERED NEURAL OSCILLATOR NETWORKS∗

KEVIN K. LIN† , ERIC SHEA-BROWN‡ , AND LAI-SANG YOUNG§

Abstract. We study the reliability of large networks of pulse-coupled oscillators in response
to fluctuating stimuli. Reliability means that a stimulus elicits essentially identical responses upon
repeated presentations. We view the problem on two scales: neuronal reliability, which concerns
the repeatability of spike times of individual oscillators embedded within a network, and pooled-
response reliability, which addresses the repeatability of the total output from the network. We find
that individual embedded oscillators can be reliable or unreliable depending on network conditions,
whereas pooled responses of sufficiently large networks are mostly reliable.
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1. Introduction
Many complex, nonlinear systems are usefully viewed as networks composed of

simpler systems; familiar examples include the electrical power grid, genetic circuitry,
and the nervous system [32]. A basic question about a network’s response to external
forcing is its reliability [29, 35]: if a network is driven multiple times by the same
fluctuating signal, how similar will its responses be across trials? Reliability affects
the predictability of the response and is often desirable in engineered systems. It also
impacts a system’s ability to process or transmit information. While the dynamics
of networks has received much recent attention [8, 21, 11, 22, 16, 36, 3, 6, 4], our
understanding of the reliability of networks remains incomplete.

From a physical perspective, networks receiving external stimuli can be viewed as
driven dynamical systems. For large networks, these dynamical systems have many
degrees of freedom, making a statistical approach desirable. In this paper, we show
that the theory of random dynamical systems provides a useful framework for studying
the reliability of large networks driven by rapidly fluctuating stimuli [1, 5].

The dynamics of networks depend strongly on their constituents, type of coupling,
etc. We focus here on neural oscillator networks. Reliability is of particular interest in
neuroscience, as it impacts the precision of neural codes based on temporal patterns
of spikes [7, 18, 26, 27, 24]. Experimental and theoretical studies have concluded that
reliability is typical for single neurons [7, 18, 34, 28, 20, 39, 23, 25]. However, for
networks of neurons, behavior ranging from reliable to highly unreliable is seen in
theoretical studies [16, 36, 3, 6, 4, 33].

What network mechanisms determine the degree of reliability? Here, we identify
the conditions for reliability in certain idealized models of layered neural oscillator
networks. See figure 1.1. Such layered architectures model a system with an input
stimulus that arrives at one part of a network and is then transmitted elsewhere –
as occurs, e.g., in all sensory processing in neuroscience [31, 9]. Our study combines
qualitative theory with numerical simulations.
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Fig. 1.1. Two-layer network with N =20.

2. Model details
Individual neurons are modeled as phase oscillators or “Theta neurons”; this

is a common model for neurons in intrinsically active, “mean-driven” firing regimes
and also characterizes more general oscillators near saddle-node bifurcations on limit
cycles [38, 10]. We study pulse-coupled networks described by equations of the form

θ̇i =ωi +z(θi)
[

∑

j 6=i

aji g(θj)+ǫiI(t)
]

, (2.1)

i=1,...N , where N ≫1 (see e.g. [38]). The variables θi are the states of the neurons,
i.e. they are angles parametrized by [0,1] with periodic boundary conditions. The
ωi are intrinsic frequencies, and the aji are synaptic coupling strengths, mediated

by a smooth function g≥0 with
∫ 1

0
g(θ) dθ =1 and g(θ)>0 for θ∈ (− 1

20
, 1

20
).1 That

is to say, neuron j “spikes” when θj =0, exciting or inhibiting neuron i depending
on whether aji >0 or aji <0 (aji =0 means neuron i does not receive direct input
from neuron j). The phase response curve is given by z(θ)= 1

2π [1−cos(2πθ)]. The
stimulus is represented by I(t), which we take to be “frozen”, or quenched white noise;
we have found numerically that adding low-frequency components to I(t) does not
substantially change our results.

We now explain how the parameters ωi,aji and ǫi in equation (2.1) are chosen.
In a reliability study of a fixed network, these parameters remain frozen, as does
I(t), and each trial corresponds to a randomly-chosen initial condition in the system
defined by (2.1).

To incorporate some of the heterogeneity that occurs biologically, we assume
some variability in the ωi and the aji. Specifically, the ωi are drawn randomly and
independently from the uniform distribution on the interval [1− 1

2
ρ,1+ 1

2
ρ], so that

they have mean 1 and can vary up to ρ between neurons. (The aji are discussed
below.) Simulations indicate that for ρ in the range 5−30%, the exact value of ρ has
little impact on the overall trends reported below; we set ρ=20% in what follows.

We study the two network structures introduced above:
Single-layer networks. We set ǫi ≡ ǫ for all i, so that all neurons receive the same input
I(t) at the same amplitude ǫ. For the cases shown here, we assume a 20% connectivity
with mean synaptic strength a, i.e., each neuron receives input from κ=0.2 N other

1Specifically, we set g(θ)∝ (1−400 ·θ2)3 for |θ|≤ 1
20

.
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neurons (chosen randomly in simulations); results remain largely unchanged for κ/N
in the range 10−30%, characterizing sparse networks. The nonzero aji are drawn
independently and uniformly from [0.9a,1.1a]; as is the case for the ωi, the results are
not sensitive to the specific level of heterogeneity. The two main network parameters
are thus ǫ and a.

Two-layer networks. We add a second, randomly connected layer downstream of the
first. That is, neurons in the network form two layers, each containing N

2
neurons. For

all neurons i in Layer 1, we set ǫi ≡ ǫ. We set ǫi ≡0 for Layer 2. Each neuron receives
connections from κ=0.2 N other neurons, with κ

2
from its own layer and κ

2
from the

other layer. Intra-layer connections within Layer 1 (respectively Layer 2) have mean
strength a1 (respectively a2). For inter-layer connections, Layer 1→2 connections
have mean strength aff , while Layer 2→1 connections have mean strength afb. (Here,
“ff” and “fb” refer to “feedforward” and “feedback”.) Specific, heterogeneous coupling
constants are randomly chosen to lie within 1±0.1 of their mean values, as before.
The main system parameters here are ǫ, a1, a2, aff , and afb.

3. Neuronal reliability

This refers to the repeatability of spike times from trial to trial for individual

neurons within a network when the same stimulus I(t) is presented over multiple
trials. Figure 3.1 shows raster plots for two arbitrarily chosen neurons drawn from two
different networks. The top panel shows repeatable spike times; this is our definition
of neuronal reliability. The bottom shows unreliability: spike times persistently differ
from trial to trial. The latter cannot happen for single Theta neurons in isolation, as
they are always reliable [34, 28].
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Fig. 3.1. Raster plots of single oscillators drawn randomly from two different networks.
Spike times are recorded for 20 trials. We set ǫ=2.5 and N =100 in both numerical simulations.
Top: Single-layer model, A=1; λmax =−0.57. Bottom: Two-layer, Aff =2.8,Afb =2.5,A1 =A2 =1;
λmax =0.53.

(A) Mathematical dichotomy. Neuronal reliability is closely related to stabil-
ity properties of the dynamical system defined by equation (2.1) [34, 28, 20, 39, 23,
25, 16, 36, 3, 6, 4]. Recall that Lyapunov exponents measure the rates of divergence of
nearby orbits. These numbers make sense for deterministic as well as random dynam-
ical systems. For the latter, under mild assumptions they are independent of initial
condition or realization of Brownian path (see [1, 5]). Let λmax denote the largest
Lyapunov exponent of (2.1). The following are known mathematical facts [13, 14]. If
λmax <0, then regardless of the state of the network at the onset of the stimulus, all
trajectories coalesce into a small region of phase space; this scenario, referred to as a
random sink, corresponds to entrainment to the stimulus. Conversely, if λmax >0, the
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trajectories organize themselves around a complicated object called a random strange

attractor. This means that at any given time, the network may be in many differ-
ent states depending on its initial condition. In this paper, we equate λmax <0 with

neuronal reliability and λmax >0 with neuronal unreliability.

Our challenge here is to understand network reliability in terms of the system
parameters introduced above. Measuring reliability using a single quantity, λmax, has
the advantage that large parts of the landscape can be seen at a glance, as in figure
3.2.2

(B) Highly different responses of single- and multi-layer networks.
Without going into details, one sees readily from figure 3.2 that λmax is largely positive
for the two-layer system (right), whereas λmax tends to be negative for the single-layer
(left).

Single-layer networks. We find that it is fruitful to view λmax as a function of
the quantity A=κa, which has the following interpretation. Focus on an arbitrary
neuron, say neuron i. In the limit N →∞, one would expect each of its κ presynaptic
neighbors to spike once per unit time (ω≈1) with average strength a. A mean-field
argument suggests that the average impact of one kick on the phase of neuron i is
az̄, where z̄ is the average value of z(θi) at the arrival times of incoming spikes. That
is, when N ≫1, we expect neurons to be pushed (forwards if A>0 and backwards
if A<0) by Az̄ of a cycle per unit time. (This assumes that the mean spike rate is
≈〈ωi〉=1, as is the case here.) If the dynamics were to approach a meaningful limit
as N →∞, it is necessary to stabilize the total synaptic input received by a typical
neuron. So A=κa is a natural scaling parameter.
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Fig. 3.2. Lyapunov exponents λmax. Left: Single-layer, N =100, ǫ=1.5 (top curve), 2.5
(bottom curve). Right: Two-layer, N =100, Aff =2.8,A1 = |A2|=1 (with sign(A2)= sign(Afb)),
ǫ=2.5. Three realizations of network graphs are used in each case with their plots superimposed.

Figure 3.2 (left) shows the basic relationship between λmax, A, and ǫ (the stimulus
amplitude). Plots for 1.5<ǫ<2.5 interpolate between the two curves in a straightfor-
ward way. When A=0, i.e., when the oscillators are uncoupled, we have λmax <0 as
expected. When A 6=0, λmax can be positive or negative. Notice that (i) it increases
with |A| for fixed ǫ (the sign of A matters little), and (ii) it decreases with ǫ for fixed
A. Item (ii) is due to the entraining effects of the stimulus; (i) suggests that the
couplings here are intrinsically destabilizing.

We find that single-layer networks remain reliable even for large coupling

strengths. For example, figure 3.2 (left) shows that λmax can be negative even for

2We compute λmax by solving the variational equation for the SDE (2.1) using the Euler scheme.
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Fig. 3.3. Phase distributions of neurons at the instant they receive an incoming spike. Left:
Single-layer, A=1.8; all spikes. Right: Two-layer, Aff =2.8, Afb =0.8, A1 =A2 =1; for inter-layer
spikes only – right peak for phases of Layer 1 neurons, left peak for Layer 2.

|A|≈2, despite the fact that if we (somewhat naively) neglect correlations between

neurons, then z̄≈
∫ 1

0
z(θ) dθ = 1

2π and each spike would shift the receiving neuron’s
phase by ≈1/3 of a cycle. Why is the network so reliable? This can be explained by
the entraining effects of the stimulus, which causes all neurons to spike at roughly the
same time (see figure 3.3, left). Because z(θ)=z′(θ)=0 when θ =0, near-synchrony
means that z(θ) is typically quite small when a spike arrives, so that the effective

total coupling strength Az̄ is considerably smaller than A
2π , due to the strong cor-

relation between neurons. (Greater heterogeneity leads to less synchrony and, as a
result, less reliability. We have found numerically, however, that reliability is very
robust: e.g., for A=1 and ǫ=2.5, single-layer networks remain reliable at ρ=60%,
with λmax≈−0.2.)

We also find that the value of λmax depends strongly on A and ǫ but only weakly
on the specific connection graph and the exact values of N , κ, and a. Figure 3.2 (left)
shows that different (random) realizations of networks with the same (N,κ,a) produce
very similar values of λmax. Further simulations have shown that λmax does not vary
appreciably for combinations of (κ,a) giving the same A, and the overall dependence
of λmax on A and ǫ remains the same over a broad range of N (40≤N ≤1000). See
[15] for details. The reliability profile seen here is thus characteristic of single-layer
networks for a broad range of parameters.

Two-layer networks. We again express λmax in terms of A1, A2, Aff , and Afb,
defined to be κ

2
=0.1 N times a1, a2, aff , and afb, respectively. The interpretations are

as before, e.g., Aff is the total synaptic input per unit time received by each neuron
in Layer 2 from Layer 1.

Figure 3.2 (right) shows λmax as a function of Afb with Aff =2.8, A1 =A2 =±1 (we
give A1 and A2 the same signs as Aff and Afb, respectively, as each neuron is usually
either excitatory or inhibitory), and ǫ=2.5. At Afb =0, the system is definitively
reliable. As |Afb| increases, however, we find that the two-layer network loses its

reliability almost immediately, even before |Afb|≈
1

10
Aff ; this instability occurs in two-

layer networks with any appreciable feedback for a wide range of Aff and ǫ. This very
surprising fact is also partially explained by the phase distributions of Layer 1 and
Layer 2 neurons at the instants when they receive inputs from the other layer (see
figure 3.3, right). The distributions are more spread out than in the single-layer case;
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moreover, their peaks are centered away from θ =0, leading to a value of z̄ more
than double that of the single-layer case. This shift and broadening of the phase
distribution can be predicted from reduced two-neuron models, based on the fact
that neurons are largely synchronized within a given layer [15]. Thus at the same
numerical values, Aff and Afb in the two-layer model are far more destabilizing than
A in the single-layer. See also [2, 17, 37].

We expect the ideas above, i.e., the tendency to synchronize within each layer,
the dominant effects of inter-layer interactions, and the extreme sensitivity of network
reliability to feedback from downstream layers, to extend to multi-layer systems.

4. Reliability of pooled responses
Finally, we ask: how is the reliability of individual oscillators reflected in the

bulk output of a network? A function representing this total synaptic output (cf.
[19, 30, 12])

S(t)=
∑

Ti<t

f(t−Ti) ; f(t)= τ−1e−t/τ ,

where f is a postsynaptic current and τ ≈ 1

15
; for neurons with natural frequency ≈10

Hz, this value of τ corresponds to ≈7 ms. Pooled-response reliability describes how
repeatable S(t) is in response to I(t). Clearly, neuronal reliability implies pooled-
response reliability. On the other hand, one would expect individual neurons to be
more volatile than the network as a whole.
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Fig. 4.1. The bulk synaptic output function S(t); one trial each for the two sets of parameters
in figure 3.1.

Two time courses for S(t) are shown in figure 4.1. The first is for a reliable single-
layer system; tall, well-defined spikes are generated when the system is in partial
synchrony. The second is for an unreliable, 2-layer model. Here the floor of S(t)
is strictly positive, i.e., some neurons in the system are spiking at nearly all times,
consistent with the broader phase distributions in figure 3.3 (right).

For each t, we measure the repeatability of S(t) by its time-dependent, cross-trials
variance V (t). This information can be distilled further to give a single number V̄ by
time averaging V (t); note that V̄ =0 when λmax <0 and V̄ >0 when λmax >0. Our
main finding is that V̄ /N2, which measures the variability of S(t) across different
trials (appropriately scaled as N increases), is a decreasing function of N ; see figure
4.2 (left). Thus, it is apparent that due to averaging effects, the total synaptic outputs
of sufficiently large networks tend to be reliable, even as individual neurons behave
unreliably. We note that because of the highly correlated dynamics of the neurons,
this averaging phenomenon is beyond the reach of known ergodic theorems.
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Fig. 4.2. Mean cross-trial variances V̄ . Left: V̄ /N2 as function of N for Aff =2.8,Afb =2.5.
Right: V̄ as function of Afb. The setup is identical to that in figure 3.2 (right); N =100.

Next, we fix N . As parameters are varied, we find strong correlation between
λmax and V̄ ; compare Figs. 3.2 (right) and 4.2 (right). This confirms that the two
different ways of measuring unreliability we have proposed are in good qualitative
agreement.

Conclusion. We have carried out a systematic study of stimulus-response re-
liability for layered networks of neural oscillators, and have identified simple but
prototypical ways in which this reliability depends on network structure and parame-
ters. Our findings, all of which are new in the present context and are consistent with
results of earlier studies of different models, are of a very basic nature and thus are
likely to shed light on situations beyond those considered here.

(1) On the neuronal level, single-layer networks remain reliable for high connection

strengths, due to a tendency to synchronize. For networks with downstream layers,

by contrast, recurrent connections are strongly destabilizing. In general, individual
neurons can behave reliably or unreliably as a result of the competition between
entrainment to the stimulus or upstream layer and the perturbative effects of inter-
layer interactions.

(2) Pooled responses of large enough networks are mostly reliable even when individual
neurons within it are not. In a fixed-size network, they have similar reliability prop-
erties as individual neurons but with lower volatility. As the network size increases,
the volatility of pooled responses decreases.
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