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DISPERSION AND UNIFORM L1-STABILITY ESTIMATES OF THE

VLASOV-POISSON SYSTEM IN A HALF SPACE∗

MYEONGJU CHAE† , SEUNG-YEAL HA‡ , AND HYUNG JU HWANG§

Abstract. We study explicit dispersion and uniform L1-stability estimates to the Vlasov-Poisson
system for a collisionless plasma in a half space, when the initial data is sufficiently small and decays
fast enough in phase space. This extends the previous results on the dispersion and stability estimates
for the whole space case.
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1. Introduction

In this paper, we are interested in the dispersive dynamics of a collisionless plasma
consisting of several species of charged particles under the effect of an electromagnetic
field confined in the half space Ω :={x=(x1,... ,xd) :x1≥0}. The dynamics of charged
particles can be understood by the Vlasov-Maxwell system at the kinetic level. How-
ever when the speed of light is taken to be infinity and a magnetic field is ignored,
we can use the Vlasov-Poisson (V-P) system with a self-consistent electrostatic field
for the dynamic description of a collisionless plasma. Since the number of charged
particles does not play any essential role in the analysis, we assume the plasma con-
sists of only one species with mass m and charge q. Let f =f(x,v,t) be a one-particle
phase space density of one species plasma particles in phase space (x,v)∈Ω×R

d at
time t∈R+. In this case, the V-P system with a self-consistent electric field E =∇xϕ
and normalized mass and charge reads

∂tf +v ·∇xf +∇xϕ ·∇vf =0, (x,v)∈Ω×R
d, t>0,

∆xϕ=d(d−2)α(d)ρ, ρ :=

∫

Rd

fdv, (1.1)

subject to initial and boundary conditions on the kinetic density and the electric
potential:

f(x,v,0)=f0(x,v), (x,v)∈Ω×R
d, (1.2a)

f(x,v,t)=f(x,v−2(v ·νx)νx,t), x∈∂Ω, v ·νx <0, (1.2b)

ϕ(0,x̄,t)=0, x̄∈R
d−1, lim

|x|→∞
|ϕ(x,t)|=0, t>0, (1.2c)

where α(d) is the volume of the unit ball in R
d and νx =(−1,0,... ,0)∈R

d is the
outward normal vector at x∈∂Ω.
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The Cauchy problem for the V-P system (1.1) is now well established. For exam-
ple, we refer to [1, 2, 3, 10, 18, 19, 24, 25, 26, 28, 29, 30, 31, 32] for the global existence
theory for smooth, weak, and renormalized solutions, [4, 5] for stability theory, and
[9, 27] for a detailed survey of kinetic theory. In contrast, the initial and boundary
value problem(IBVP) for the V-P system has not been much studied in previous lit-
erature, although it is much more complicated and interesting. So far, the existence
theory of smooth solutions for IBVP to the V-P system can be categorized into two
cases (half space and bounded convex domain problems) depending on the geometry
of the physical domain under consideration. For the half space problem with a flat
boundary [11, 12], it is well known that singularities in the distribution function can be
formed from the boundary unless the electric field has a correct sign. In [11, 12], Guo
first constructed global smooth solutions to the system (1.1) together with (1.2a) –
(1.2b) and a Neumann condition for the electric field. Recently Hwang and Velazquez
[21] successfully extended Guo’s result [11, 12] to the case of a Dirichlet boundary
condition (1.2c), where a new method had to be introduced to deal with the issues
of the boundary value problem. On the other hand, in the case of a bounded convex
domain, Hwang [20] establishes the global existence of smooth solutions for absorbing
boundary conditions and for reflected boundary conditions with a symmetry assump-
tion. Recently, the restriction of the symmetry assumption for the reflected boundary
condition was completely removed in [22].

The purpose of this paper is twofold. First, we derive explicit dispersion estimates
for small and smooth solutions in the context of IBVP setting, which correspond to the
counterpart of the Bardos-Degond dispersion estimates [2] for whole space problem.
Secondly, we again extend Chae-Ha’s uniform L1-stability estimate in [5] for the
Bardos-Degond smooth solutions to the IBVP setting.

The rest of this paper is organized as follows. In section 2, we discuss the main as-
sumptions for initial and boundary conditions, and present the main results regarding
dispersion and stability estimates of the V-P system. In section 3, we provide basic a
priori dispersion estimates which will be needed to establish the global existence of a
smooth solution with a desirable decay property in dimension d≥3. Finally section 4
is devoted to the uniform L1-stability estimate of small and decaying smooth solutions
in high dimensions d≥4 as a direct application of dispersion estimates.

Notation. In this paper, C represents a generic constant which may depend on
the initial data, but is independent of time t. We also employ simplified notations for
global norms: for 1≤p, q≤∞, g =g(x,t),h=h(x,v,t),

||g(t)||Lp
x
:=

(

∫

Ω

|g(x,t)|pdx
)

1
p

, ||h(t)||Lp
x(Lq

v) :=
(

∫

Ω

||h(x,·,t)||p
Lq(Rd

v)
dx

)
1
p

.

2. Description of main results

In this section, we discuss the main assumptions used for the initial and boundary
conditions and summarize the main results on the dispersion estimates and uniform
stability for small and smooth solutions.

2.1. Main assumptions. Since we are interested in classical C1-solutions, the
initial data should be sufficiently smooth and compatible with boundary conditions
so that we can guarantee the non-existence of singularity in the phase space Ω×R

d

at time t=0. We now consider “well-prepared” initial data satisfying the following
four conditions below, which are minimal conditions from the intersection of Bardos-
Degond’s framework [2] and Hwang-Velazquez’s framework [21]:
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• C1 (Smoothness):

f0∈ (C2∩C1,µ)(Ω×R
d) for some µ∈ (0,1).

• C2 (Compact support, smallness and decay):

supp(x,v)(f0) is bounded and

∑

0≤i+j≤2

sup
(x,v)

(1+ |x|2)
µ1
2 (1+ |v|2)

µ2
2 |∇i

x∇j
vf0(x,v)|≤η,

where µ1 >d+1, µ2 >d+2 and 0<η≪1.

• C3 (Compatibility condition):

f0 (0,x̄,v1, v̄)=f0 (0,x̄,−v1, v̄) , and

v1∂x1
f0 (0,x̄,v1, v̄)+v1∂x1

f0 (0,x̄,−v1, v̄)+2E1∂v1
f0 (0,x̄,v1, v̄)=0.

Here E1 is the first component of the electric field E.

• C4 (Vacuum condition near the singular set):
∃ positive constants C1,C2 independent of t such that

f0 (x,v)=0, for
1

2
v2
1 +C2ηx1≤2C1η.

Remark 2.1.

1. The conditions C1 and C2 are introduced to guarantee the existence of classical
solutions with dispersion estimates.

2. The compatibility conditions C3 can easily be derived from the specular reflec-
tion condition (1.2b), which can be rewritten as follows.

f(0,x̄;v1, v̄;t)=f(0,x̄;−v1, v̄;t). (2.1)

We set t=0 to get the first compatibility condition. On the other hand, we differen-
tiate (2.1) with respect to t to see

∂tf(0,x̄;v1, v̄;t)=∂tf(0,x̄;−v1, v̄;t).

Then we use equation (1.1) and set t=0 to get the second compatibility condition.

3. In [12] the existence of a unique classical solution f to (1.1)with f ∈C1,µ′

for
some 0<µ′ <µ has been established under the correct sign for the Neumann data.
The vacuum condition C4 is stronger than the flatness assumption employed in [12],
which is

C4′ : There exist δ0 >0 small such that f0 = constant for x1 +v2
1 ≤ δ0.

This vacuum condition C4 will be crucially used to guarantee the existence of a uniform
lower bound for vi

1 in the back-time m-cycle {(xi,vi,ti)}0≤i≤m (see Lemma 3.3), which
again leads to the control of the number of bounces at the boundary for large time
(Lemma 3.5).
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2.2. Discussion of main results. In this part, we discuss the main results
presented in this paper. The dispersion estimate for the V-P system (1.1) – (1.2a)
was first noticed by Bardos and Degond in [2], and was employed effectively for the
construction of global smooth small amplitude solutions in three physical dimensions.
Recently Bardos-Degond’s dispersion estimates were employed in the study of the
uniform L1-stability estimate in higher dimensions [6], and was further refined in [23].

In this paper, we extend Bardos-Degond’s dispersion estimates [2] for the whole
space problem to the case of a half space. Thus this allows some physical situations
([8, 17] and references therein) possessing physical boundaries such as plasma sheaths,
electron guns, and diodes. However, this extension requires careful treatment of
difficulties coming from repeated bounces of charged particles off the boundary along
their back-time trajectories (see Definition 3.1). Bounces at the boundary destroy
some of fine structures of particle trajectories due to the jumps of normal velocities
at the boundary, and hence it is necessary to refine the trajectory analysis due to
the complex bounces in order to obtain time-decay estimates (see Lemma 3.1 and
Lemma 3.2 for details). This issue of the repeated bounces and the corresponding
difficulty were already raised in the problem of the global-in-time construction of
classical solutions to the Vlasov equation in a half space with general initial data, and
careful analysis along particle paths was carried out in the context of global existence
[11, 12, 20, 21, 22]. In [12] the flatness condition C4′ near the singular set is made to
deal with the issue by showing that trajectories stay away from the boundary. In our
case, we show that trajectories are away from the boundary uniformly in time due to
the time-decay of the electric field and its derivatives in Lemma 3.3. We replace the
flatness condition C4′ with the stronger vacuum condition C4 near the singular set to
establish the dispersion estimates.

Notice that the direction of the electric field at the boundary plays an important
role; even in the linear problem with a given field, smooth solutions are not guaranteed
unless the field directs outwards at the boundary, which is the case in the plasma
physics. More precisely, under the incorrect sign of the field, singularities of particles
moving tangentially at the boundary may enter inside of the domain along the particle
paths, which result in the singularities of the solution. It means that we are forced
to restrict ourselves to the plasma physics case with one kind of species to establish
dispersion estimates in a half space. This is a noticeable difference compared to the
full space problem [2], where the dispersion estimates hold for the gravitational case
as well as long as the initial data is sufficiently small.

The dispersion estimates for the macroscopic variables ρ and E are determined by
bootstrapping arguments, i.e., assuming that the electric field and its spatial deriva-
tives decay at certain geometric rates, we show that the V-P system is dominated
by the pure transport equation, which yields the dispersion estimates, and hence a
self-consistent electric field also satisfies the desired decay estimate even in a half
space to close the loop in the bootstrapping arguments. We next briefly explain how
the pure transport equation yields the desired dispersion estimate. Consider the pure
transport equation:

∂tf +v ·∇xf =0, (x,v)∈Ω×R
d, t∈R+,

f(x,v,0)=f0(x,v). (2.2)

In this case, the kinetic density f can be represented explicitly in terms of the initial
datum f0 by tracking the backward particle trajectory issued from (x,v,t) (see Figure
1). We denote x̄ and v̄ by the projection points of x and v onto ∂Ω=

{

x∈R
d : x1 =0

}

,
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Fig. 2.1. Schematic diagram for the first component of backward particle trajectories issued
from (x,v) at time t: (a) v1 <

x1
t

, and (b) v1≥
x1
t

.

and we assume that f0 (x,v) is bounded by some integrable function ζ = ζ (x):

sup
v∈Rd

|f0 (x,v)|≤ ζ (x),

∫

Ω

ζ (x)dx<∞.

Then by a change of variables, we have

ρ(x,t)=

∫

Rd−1

(

∫ ∞

−∞

f(x,v,t)dv1

)

dv̄

=

∫

Rd−1

∫

x1
t

−∞

f0 (x− tv,v)dv1dv̄

+

∫

Rd−1

∫ ∞

x1
t

f0 (tv1−x1,x̄− tv̄,−v1v̄)dv1dv̄

≤Ct−d

∫

Ω

ζ (x)dx

≤Ct−d, t≫1.

This time-decay of ρ also implies the time-decay of electric potential and fields (see
Lemma 3.5). We next turn to the discussion of uniform L1-stability of the Vlasov-
Poisson system. Unlike the Boltzmann equation, the nonlinear functional approach
in [13, 14] incorporating the collision potential D(f) cannot be applied directly to
the L1-stability estimates of (1.1), (1.2a)–(1.2c). Hence we instead derive a Gronwall
type estimate (see section 4):

||f(t)− f̄(t)||L1 ≤||f0− f̄0||L1 +C

∫ t

0

(1+s)−(d−2)||f(s)− f̄(s)||L1ds.

Here we used the simplified notation for L1-norm:

||f(t)− f̄(t)||L1 := ||f(·,·,t)− f̄(·,·,t)||L1(Ω×Rd).

Since
∫ t

0

(1+s)−(d−2) <C for d≥4,
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the standard Gronwall’s Lemma yields the uniform L1-stability for physical space
dimensions d≥4. We next summarize the main results of this paper.

Theorem 2.1. Suppose the main hypotheses C1 - C4 with d≥3 hold. Let (f,φ) be
the smooth solution to (1.1), (1.2a) – (1.2c) with initial data f0. Then f satisfies the
following dispersion estimates:

(i) ‖ρ(t)‖L∞

x
+‖∇xρ(t)‖L∞

x
+

∥

∥∇2
xρ(t)

∥

∥

L∞

x

≤ Cη

(1+ t)
d
.

(ii) ‖ρ(t)‖L1
x
+‖∇xρ(t)‖L1

x
≤Cη.

(iii) ‖∇vf (t)‖L∞

x (L1
v)≤

Cη

(1+ t)
d−1

, ‖∇vf (t)‖L1
x(L1

v)≤Cη (1+ t) .

Theorem 2.2. Suppose the main hypotheses C1−C4 with d≥4 hold. Let f and f̄
be smooth solutions to (1.1), (1.2a) – (1.2c) with initial data f0 and f̄0 respectively.
Then smooth solutions are uniformly L1-stable with respect to initial data:

||f(t)− f̄(t)||L1 ≤G||f0− f̄0||L1 ,

where G is a positive constant independent of time t.

Remark 2.2. The uniform stability estimates of (1.1) in three dimensions d=3 is
still an interesting open problem. However for the regularized systems of the V-P
system such as the Vlasov-Yukawa and the Vlasov-Poisson-Fokkeer-Planck systems,
the above uniform L1-stability estimates hold for the physically interesting dimension
d=3 (see [15, 16]).

3. Dispersion estimates in a half space

In this section, we study the dynamic behavior of particle trajectories near the
singular set, and provide the dispersion property for small decaying solutions to the
V-P system in a half space Ω. Throughout this section we always assume the electric
field E is a C1 in space and continuous in time, namely E∈C1,0

x,t (Ω×R+). For such
a given force field E, we consider the linear Vlasov equation in a half space with the
specular reflection boundary condition;

∂tf +v ·∇xf +E ·∇vf =0, (x,v)∈Ω×R
d, t∈R+,

f(x,v,0)=f0(x,v)≥0, (x,v)∈Ω×R
d,

f(x,v,0)=f(x,v−2(v ·νx)νx,t), x∈∂Ω, v ·νx <0.

(3.1)

3.1. Generalized particle trajectories. Define the generalized particle
trajectory as a piecewise smooth solution satisfying the following ODE system: For a
given phase-space position (x,v)∈Ω×R

d at time t,

Ẋ(s;t,x,v)=V (s;t,x,v), X (t;t,x,v)=x, s∈ [0,t),

V̇ (s;t,x,v)=E (X (s;t,x,v) ,s) , V (t;t,x,v)=v, (3.2)

with the specular reflection condition imposed on the boundary of Ω. Here Ẋ and V̇
represent dX

ds and dV
ds respectively. This can be formulated as follows.

Case 1 (X (s;t,x,v) stays in Ω for all s∈ [0,t)): In this case, the generalized particle
trajectory is simply the solution of the ODE system:

Ẋ (s;t,x,v)=V (s;t,x,v) , X (t;t,x,v)=x,

V̇ (s;t,x,v)=E (X (s;t,x,v) ,s) , V (t;t,x,v)=v.
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time

0 0(x ,  v ,  0)

(x , v , t ) 1 1 1

x = 0

(x , v , t ) 22 2

(x , v , t ) 333

(x , v , t ) 4 44 = (x, v, t)

*
(x , v , t ) 1 1 1

*
(x , v , t ) 22 2

*
(x , v , t ) 333

Fig. 3.1. Schematic diagram with l=4.

Case 2 (X (s;t,x,v) hits the boundary of Ω for some s∈ [0,t)). Suppose s= τ is the
last hitting time to ∂Ω before s= t, i.e.,

X1 (s;t,x,v)→0, as s→ τ+,

where s→ τ+ means that s approaches τ from the right. Then

lim
s→τ+

V1 (s;t,x,v)≥0.

Define the generalized particle trajectory for s∈ (τ,t) as the solution of the following
ODE system:

Ẋ (s;t,x,v)=V (s;t,x,v) , X1 (τ ;t,x,v)=0,

V̇ (s;t,x,v)=E (X (s;t,x,v) ,s) , lim
s→τ+

V1 (s;t,x,v)=− lim
s→τ−

V1 (s;t,x,v) .

For the time interval s∈ (0,τ), we repeat the above procedure between successive
hitting time intervals. Below, we review the concept “back-time cycles” which consist
of the points where the particles hit the boundary (see figure 3.1). Below we denote
by v∗ the specularly reflected velocity of v, i.e.,

v∗ :=v−2(v ·νx)νx.

Definition 3.1. [12] Given a C1-field E, we call a ”back-time l-cycle connecting
(x,v,t) and (x0,v0,0)” by the trajectories in Ω̄×R

d×R+ which connect

(x,v,t)=(xl,vl,tl) with (xl−1,vl−1,tl−1), (xl−1,vl−1
∗ ,tl−1) with (xl−2,vl−2,tl−1),... ,

(xi,vi
∗,t

i) with (xi−1,vi−1,ti−1),... , (x1,v1
∗,t

1) with (x0,v0,0),
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where ti >ti−1, xi ∈∂Ω for 1≤ i≤ l−1, vi ·νx ≥0, 1≤ i≤ l and t0 =0.

Remark 3.1. In the following, for the simplicity of notation, we use the simplified
notation

X(s) :=X(s;t,x,v), V (s) :=V (s;t,x,v) and E(s) :=E(X(s;t,x,v),s).

Note that if {
(

xi,vi,ti
)

}0≤i≤m is the back-time m-cycle with t0 =0 and (xm,vm,tm)=
(x,v,t) , then we have

v1
1 =v0

1 +

∫ t1

0

E1 (τ)dτ,

vk+1
1 =−vk

1 +

∫ tk+1

tk

E1 (τ)dτ, 1≤k≤m.

Recall that Green’s function [7] for Laplace’s equation in the half space Ω is given
by

G(x,y)=
1

d(d−2)α(d)

[

1

|x−y|d−2
− 1

|x−y∗|d−2

]

,

where y∗ =(−y1,y2,...,yd) is the reflection point of y with respect to ∂Ω. Then the
electric potential and fields, which are solutions to the Poisson equation in (1.1) and
(1.2c) are given by the following representations:

φ(x,t)=d(d−2)α(d)

∫

Ω

G(x,y)ρ(y,t)dy and

E(x,t)=−d(d−2)α(d)

∫

Ω

∇xG(x,y)ρ(y,t)dy. (3.3)

Below, we show that if the electric field and its spatial derivatives decay fast enough,
the particle trajectories stay bounded away from a singular set for all time. For this
purpose, we consider a forward particle trajectory (X̂,V̂ ) issued from (x,v) at time
t=0:

X̂(s) :=X(s;0,x,v), V̂ (s) :=V (s;0,x,v) and Ê(s) :=E(X(s;0,x,v),s), s>0,

and introduce a quantity Γ which can detect the singular set at the boundary:

Γ(s) :=
1

2
V̂ 2

1 (s)−E1

(

0,
¯̂
X (s) ,s

)

X̂1 (s) . (3.4)

Lemma 3.2. Consider equation (3.1) for d≥3 with the well-prepared initial data f0.
Suppose the force field E satisfies

‖E (t)‖L∞

x
≤ η

(1+ t)
d−1

and ‖∇xE (t)‖L∞

x
≤ η

(1+ t)
λ

for λ>2.

Then we have the following two estimates:

1. The v-support is uniformly bounded in time, i.e., there exists a positive con-
stant C which may depend on the size of x and v-supports of f0 and η such
that

∣

∣

∣
V̂ (t)

∣

∣

∣
≤C.
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2. There exists a positive constant C1 satisfying

|Γ(t)−Γ(0)|≤C1η.

Proof.
(i) For given (x,v)∈Ω×R

d, we use the time-decay of E and compact support
condition C2 in section 2 to get

∣

∣

∣
V̂ (t)

∣

∣

∣
≤|v|+

∫ t

0

||Ê (τ) ||L∞

x
dτ

≤C +η

∫ t

0

dτ

(1+τ)
d−1

≤C.

(ii) (Step 1): We first claim

||∂tE(t)||L∞

x
≤ Cη

(1+ t)λ
, λ>2. (3.5)

The proof of claim: We use the continuity equation resulting from (1.1)

∂tρ(x,t)+∇x ·j (x,t)=0, j (x,t) :=

∫

RN

vf (x,v,t)dv,

and the representation formula (3.3) for E(x,t) to see that

∂tE (x,t)=d(d−2)α(d)

∫

Ω

∇yG(x,y)∂tρ(y,t)dy

=−d(d−2)α(d)

∫

Ω

∇yG(x,y)∇y ·j (y,t)dy

=d(d−2)α(d)
[

∫

Ω

[∇y ·∇yG(x,y)]j (y,t)dy

−
∫

∂Ω

∇yG(x,y)

(
∫

Rd

νy ·vf (y,v,t)dv

)

dSy

]

=d(d−2)α(d)

∫

Ω

[

∇y ·∇yG(x,y)
]

j (y,t)dy, (3.6)

where νy is the outward normal vector at y∈∂Ω, and dSy is the surface volume
element on ∂Ω, while we used the specular reflection condition for f to take care of
the boundary contribution. For y∈∂Ω,

∫

Rd

νy ·vf (y,v,t)dv

=−
∫

Rd−1

(

∫ ∞

−∞

v1f(y,v,t)dv1

)

dv̄

=−
∫

Rd−1

(

∫ ∞

0

v1f(y,v,t)dv1 +

∫ 0

−∞

v1f(y,v,t)dv1

)

dv̄

=−
∫

Rd−1

(

∫ ∞

0

v1f(y,v1, v̄,t)dv1 +

∫ 0

−∞

v1f(y,−v1, v̄,t)dv1

)

dv̄

=0.

Here we used a change of variable −v1↔ ṽ1 and the specular reflection condition:

f(y,v1, v̄,t)=f(y,−v1, v̄,t).



198 THE VLASOV-POISSON SYSTEM IN A HALF SPACE

We use (3.3) and decay in L∞ for ∇xE to deduce that

‖∂tE (t)‖L∞

x
≤C

∥

∥

∥

∥

∫

Ω

∇y ·∇yG(·,y)j (y,t)dy

∥

∥

∥

∥

L∞

x

≤C ‖∇xE(t)‖L∞

x

≤ Cη

(1+ t)λ
.

This completes the proof of the claim.

(Step 2): Note that the uniform boundedness of V (t) implies that for s∈ [0,t] ,

∣

∣

∣
X̂ (s)

∣

∣

∣
≤C (1+s) , (3.7)

where C depends only on the x- and v-support of f0 and η. We now return to
estimating the time change of the quantity Γ(s) . We differentiate the functional (3.4)
in time to yield

d

ds
Γ(s)= V̂1 (s)Ê1

(

X̂ (s),s
)

−
[

∂tÊ1

(

0,
¯̂
X (s) ,s

)

+∂x̄E
(

0,
¯̂
X (s) ,s

)

· ¯̂V
]

X̂1 (s)

−Ê1

(

0,
¯̂
X (s) ,s

)

V̂1 (s).

We use the result of (i) and (3.5) – (3.7) to obtain

∣

∣

∣

∣

d

ds
Γ(s)

∣

∣

∣

∣

≤Cη

[

1

(1+s)
d−1

+
1

(1+s)
λ−1

]

.

Note that the right hand side of the above inequality is integrable in time for d≥
3,λ>2.

A singularity may be formed in the C1 norm as in [12] and thus we need to control
particle trajectories starting from the support of the first derivatives of f0. This is
made possible in the repulsive case of the field together with the flatness assumption
C4′. We present a similar estimate given in [12] on the control of the trajectories away
from the singularities. Due to the time decay of the electric field and its derivatives,
we have the uniform-in-time control of the trajectories here. Note that in the plasma
physics case with one sign of charge, we apply the maximum principle to the Poisson
equation appearing in (3.1) to get

E1

(

0,
¯̂
X (s) ,s

)

<0.

Lemma 3.3. Consider equation (3.1) for d≥3 with the well-prepared initial data f0.
Suppose the force field E satisfies

‖E (t)‖L∞

x
≤ η

(1+ t)
d−1

and ‖∇xE (t)‖L∞

x
≤ η

(1+ t)
λ

for λ>2,

E1(0,x̄,0)≤−C2η, for (0,x̄)∈ x-support of f0.

Let
{

(xi,vi,ti
)

}0≤i≤m be the back-time m-cycle with t0 =0 satisfying

(xm,vm,tm)=(x,v,t) ,
1

2

(

v0
1

)2
+C2ηx0

1≥2C1η.
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Then there exists a uniform lower bound of |vi
1| for 1≤ i≤m−1:

|vi
1|≥

√

2C1η,

where C1 is a positive constant appearing in Lemma 3.1.

Proof. Note that although the definition for Γ in (3.4) was defined for the forward
particle trajectory (X̂,V̂ ), the functional Γ can be defined for the backward particle
trajectory (X,V ) in the same way.

We use xi
1 =0, the assumption on E1(0,x̄,0) and the definition of Γ in (3.4) to

see that

Γ(ti)=
1

2
(vi

1)
2−E1(0,x̄(ti),ti)xi

1(t
i)=

1

2
(vi

1)
2, and (3.8)

Γ(0)=
1

2
(v0

1)2−E1(0,x̄
0,0)x0

1≥
1

2
(v0

1)2 +C2ηx0
1≥2C1η. (3.9)

On the other hand, it follows from Lemma 3.1 that

|Γ(ti)−Γ(0)|≤C1η. (3.10)

Hence we combine the estimates (3.8), (3.9), and (3.10) to conclude that

Γ(ti)=
1

2
(vi

1)
2≥C1η.

3.2. Dispersion estimates. In this part, we present several dispersion esti-
mates. We first present a series of Lemmas.

Lemma 3.4. Consider equation (3.1) for d≥3 with the well-prepared initial data f0.
Suppose that for 0<η≪1,λ>2,

‖E (t)‖L∞ ≤ η

(1+ t)
d−1

, ‖∇xE (t)‖L∞ +
∥

∥∇2
xE (t)

∥

∥

L∞
≤ η

(1+ t)
λ
, (3.11)

and let (X(s),V (s))=X(s;t,x,v), V (s;t,x,v) be the generalized trajectories passing
through (x,v) at time t. Then there exists a constant C =C (η) satisfying

∣

∣

∣

∣

∂X

∂x

∣

∣

∣

∣

+

∣

∣

∣

∣

∂V

∂x

∣

∣

∣

∣

+

∣

∣

∣

∣

∂2X

∂x2

∣

∣

∣

∣

+

∣

∣

∣

∣

∂2V

∂x2

∣

∣

∣

∣

+
1

t

∣

∣

∣

∣

∂X

∂v

∣

∣

∣

∣

+
1

t

∣

∣

∣

∣

∂V

∂v

∣

∣

∣

∣

≤C.

Here derivatives of (X,V ) are considered piecewise sense, and |A| denotes any
matrix norm for a matrix A.

Proof. Let (x,v,t) be given in Ω×R
d×R+.

Case 1: (x,v,t) and (xb,vb,tb), xb
1 =0,vb

1 >0 are connected through a trajectory.
In this case, we have

vb =v+

∫ tb

t

E (X (τ) ,τ)dτ,

xb =x−v
(

t− tb
)

+

∫ tb

t

∫ s

t

E (X (τ) ,τ)dτds. (3.12)
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We differentiate the second equation of (3.12) to yield

∂vj
xb

i =−δij

(

t− tb
)

+vi∂vj
tb +

∫ tb

t

∫ s

t

∂xEi ·∂vj
X (τ)dτds, i=1,... ,d.

For i=1, we use ∂vj
xb

1 =0, j =1,... ,d to find

∂vj
tb =

1

vb
1

[

δ1j

(

t− tb
)

−
∫ tb

t

∫ s

t

∂xE1 ·∂vj
X (τ)dτds

]

for vb
1 >0.

Thus Lemma 3.2 for the estimate vb
1 and (3.11) yield

∣

∣∂vj
xb

i

∣

∣≤C
(

t− tb
)

+η

∫ t

tb

∫ t

s

|∂vX (τ)|
(1+τ)

λ
dτds,

i.e., we have

|∂vX|≤C
(

t− tb
)

+η

∫ t

tb

∫ t

s

|∂vX (τ)|
(1+τ)

λ
dτds.

Since λ>2, the Gronwall inequality yields

∣

∣∂vxb
∣

∣≤C
(

t− tb
)

. (3.13)

In a similar manner, we obtain

∣

∣∂vv
b
∣

∣≤C +C
(

t− tb
)

,
∣

∣∂vtb
∣

∣≤C
(

t− tb
)

,
∣

∣∂xxb
∣

∣≤C,
∣

∣∂xvb
∣

∣≤C,
∣

∣∂xtb
∣

∣≤C. (3.14)

Case 2: Let wk ={
(

xk,vk,tk
)

}0≤k≤m be the back-time m-cycle of (x,v,t) , where t0 =
0,tm = t and xk

1 =0 for 1≤k≤m−1.
It follows from the chain rule that

∂vX (0;t,x,v)=
∂x0

∂x1

∂x1

∂x2
...

∂xm−2

∂xm−1

∂xm−1

∂v
.

By (3.13), we have

∂xm−1

∂v
≤C

(

t− tm−1
)

.

Using (3.12), we have

∂xk+1
j

xk
i = δij +vk

i ∂xk+1
j

tk +

∫ tk

tk+1

∫ s

tk+1

∂xEi ·∂xj
X (τ)dτds,

∂xk+1
j

tk =− 1

vk
1

[

δ1j +

∫ tk

tk+1

∫ s

tk+1

∂xEi ·∂xj
X(τ)dτds

]

.

We use (3.11) and the above equation to obtain

∣

∣∂xk+1xk
∣

∣≤1+
Cη

(1+ tk)
λ−2

,
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where we used xk
1 =0 for 1≤k≤m−1. Let α=λ−3>0, then we have

∣

∣

∣

∣

∂x0

∂x1

∣

∣

∣

∣

∣

∣

∣

∣

∂x1

∂x2

∣

∣

∣

∣

...

∣

∣

∣

∣

∂xm−2

∂xm−1

∣

∣

∣

∣

≤Πm−2
k=0

{

1+
Cη

(1+ tk)
α+1

}

≤ (1+z)Πk=m−2
k=1 (1+akz)

=(1+z)(1+A1z+A2z
2 + ...+Am−2z

m−2),

where

z :=Cη, ak :=
1

(1+ tk)
α+1 .

We make the following basic observations:

A1 =
m−2
∑

k=1

1

(1+ tk)
α+1 ≤

∫ t

0

(1+s)
−α−1

ds≤ 1

α
,

A2 =
∑

k<l

1

(1+ tk)
α+1

1

(1+ tl)
α+1 ≤

(

m−2
∑

k=1

1

(1+ tk)
α+1

)2

=A2
1≤

1

α2
,

.

.

.

Am−2≤Am−2
1 ≤ 1

αm−2
.

Thus we obtain
∣

∣

∣

∣

∂x0

∂x1

∣

∣

∣

∣

∣

∣

∣

∣

∂x1

∂x2

∣

∣

∣

∣

...

∣

∣

∣

∣

∂xm−2

∂xm−1

∣

∣

∣

∣

≤ (1+z)
[

1+
z

α
+ ...+

( z

α

)m−2]

≤C,

if η is small enough such that

z

α
=

Cη

λ−3
<1.

Therefore we have

|∂vX (0;t,x,v) |≤C
(

t− tm−1
)

≤Ct.

The other estimates can be obtained similarly.

Lemma 3.5. Suppose the force field E satisfies

‖E (t)‖L∞

x
≤ η

(1+ t)
d−1

, d≥3,

and let (x,v,t) be emanated from the point (x0,v0,0), which is in the singular set, i.e.,

1

2
(v0

1)2 +C2ηx0
1≤2C1η.
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Then there is at most one bounce in the time-interval
[

t
2 ,t

]

if t is large enough.

Proof. Suppose a particle trajectory issued from (x0,v0) hits ∂Ω at
(

xj ,vj ,tj
)

and
(

xj+1,vj+1,tj+1
)

successively with t
2 ≤ tj <tj+1≤ t. Then we have

0=−vj
1

(

tj+1− tj
)

+

∫ tj+1

tj

∫ tj+1

τ

E1 (s)dsdτ.

Then the time spent for the bounce is bounded from below by

∆t= tj+1− tj ≥
2
∣

∣

∣
vj
1

∣

∣

∣

supt/2≤s≤t‖E (s)‖L∞

≥ 2
√

2C1η
(

1+ t
2

)d−1

η
>

t

2
, t≫1.

This gives a contradiction. Hence there is at most one bounce between t
2 and t for

t≫1.

Proposition 3.6. Consider equation (3.1). Suppose that main hypotheses C1−C4
in section 2 hold, and the force field E satisfies

‖E (t)‖L∞ ≤ η

(1+ t)
d−1

, ‖∇xE (t)‖L∞ +
∥

∥∇2
xE (t)

∥

∥

L∞
≤ η

(1+ t)
λ
, d≥3, λ>2.

(3.15)

Then we have the following a priori estimates

(i) ‖ρ(t)‖L∞

x (Ω) +‖∇xρ(t)‖L∞

x (Ω) +
∥

∥∇2
xρ(t)

∥

∥

L∞

x (Ω)
≤ Cη

(1+ t)
d
.

(ii) ‖ρ(t)‖L1
x(Ω) +‖∇xρ(t)‖L1

x(Ω)≤Cη.

(iii) ‖∇vf (t)‖L∞

x (L1
v)≤

Cη

(1+ t)
d−1

, ‖∇vf (t)‖L1
x(L1

v)≤Cη (1+ t) .

Proof. We only consider the time-decay estimates of ρ. The other estimates can
be treated similarly. We set t∗≫1, and we separate the estimate for ρ into two steps
(small time and large time).
Case 1 (t∈ [0,t∗)): Note that

|V (0;t,x,v)|≥ |v|−
∫ t

0

‖E (τ)‖L∞ dτ ≥|v|− η

d−2
, |v|≫1,

where we used

∫ t

0

||E(τ)||L∞

x
dτ ≤ η

d−2
.

We now use

f(x,v,t)=f0(X(0;t,x,v),V (0;t,x,v))

to see that

|ρ(x,t)|=
∫

Rd

f(x,v,t)dv
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≤Cη

∫

Rd

dv

(1+ |V (0;t,x,v)|2)µ2
2

≤Cη
[

|{v : |v|≤ η

d−2
}|+

∫

|v|≥ η
d−2

(

1+(|v|−η/(d−2))
2
)−µ2/2

dv
]

.

Thus, for small η and for 0≤ t≤ t∗, we have

‖ρ(t)‖L∞ ≤ Cη

(1+ t)
d
.

Case 2 (t≥ t∗): If the possible bounce occurs at time less than 3t
4 along the trajectory,

then we split the time interval [0,t] into the two parts, namely
[

0, 3t
4

]

and
[

3t
4 ,t

]

. We
set

X ′ :=X

(

3t

4
;t,x,v

)

, V ′ :=V

(

3t

4
;t,x,v

)

,

X :=X (0;t,x,v) , V :=V (0;t,x,v) .

Then we have no bounces over
[

3t
4 ,t

]

and we have, as in [2],

∣

∣

∣

∣

det

(

∂X ′

∂v

)∣

∣

∣

∣

≥ 1

2

(

t

4

)d

,

and by Lemma 3.4 forward in time,
∣

∣

∣

∣

det

(

∂X ′

∂X

)∣

∣

∣

∣

≤C.

Thus we obtain

ρ(x,t)=

∫

1
2 (V1)2+C2ηX1+≥2C1η

f0(X(0;t,x,v),V (0;t,x,v))dv

≤Cη

∫

1
2 (V1)2+C2ηX1≥2C1η

dv

(1+ |X|2)
µ1
2

≤Cη

∫

1
2 (V1)2+C2ηX1≥2C1η

1

(1+ |X|2)
µ1
2

∣

∣

∣

∣

det

(

∂X ′

∂X

)∣

∣

∣

∣

∣

∣

∣

∣

det

(

∂X ′

∂v

)∣

∣

∣

∣

−1

dX

≤ Cη

td

≤ Cη

(1+ t)
d
.

If the bounce occurs at time t′∈ [ 3t
4 ,t] along the trajectory, then there are no bounces

over [ t
2 , 3t

4 ] by Lemma 3.4, so we split [0,t] into the three parts,
[

0, t
2

]

,
[

t
2 , 3t

4

]

,
[

3t
4 ,t

]

.
We set

X ′′ :=X

(

3t

4
;t,x,v

)

,V ′′ :=V

(

3t

4
;t,x,v

)

,

X ′ :=X

(

t

2
;t,x,v

)

,V ′ :=V

(

t

2
;t,x,v

)

,
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X :=X (0;t,x,v) , V :=V (0;t,x,v) .

Then we have

∣

∣

∣

∣

det

(

∂X ′

∂V ′′

)∣

∣

∣

∣

≥ 1

2

(

t

4

)d

,

∣

∣

∣

∣

det

(

∂v

∂V ′′

)∣

∣

∣

∣

≤C,

∣

∣

∣

∣

det

(

∂X ′

∂X

)∣

∣

∣

∣

≤C.

Thus we obtain

|ρ(x,t)|≤Cη

∫

1
2 (V1)2+C2ηX1≥2C1η

dv

(1+ |X|2)µ1/2

≤Cη

∫

1
2 (V1)2+C2ηX1≥2C1η

1

(1+ |X|2)µ1/2

∣

∣

∣

∣

det

(

∂X ′

∂X

)∣

∣

∣

∣

∣

∣

∣

∣

det

(

∂X ′

∂V ′′

)∣

∣

∣

∣

−1

×
∣

∣

∣

∣

det

(

∂v

∂V ′′

)
∣

∣

∣

∣

dX

≤ Cη

td
.

In a similar manner, we can deduce the other estimates in the lemma.

Remark 3.2. Recently the more refined time-decay estimates for ∇k
xρ was obtained

in [23] in the framework of Bardos-Degond [2]:

||∇k
xρ(t)||L∞

x
≤ C

(1+ t)k+3
k≥0, t≥0.

In order to close the argument on the existence part, we give the following lemmas:

Lemma 3.7. [6] Let ρ=ρ(x) be a smooth function in L1(Ω)∩W 1,∞(Ω), and we set

N (ρ)(x) :=

∫

Ω

ρ(y)dy

|x−y|d−2
.

Then we have the following estimates (analogous to Lemma 1 in [2]:)

(i) ‖N (ρ)‖L∞

x
≤C (d)‖ρ‖

2
d

L1
x
‖ρ‖

d−2
d

L∞

x
,

(ii) ‖∇xN (ρ)‖L∞

x
≤C (d)‖ρ‖

1
d

L1
x
‖ρ‖

d−1
d

L∞

x
,

(iii)
∥

∥∇2
xN (ρ)

∥

∥

L∞

x

≤C (d,κ)‖ρ‖
κ

κ+d

L1
x

‖ρ‖
d(1−κ)

κ+d

L∞

x
‖∇xρ‖

dκ
κ+d

L∞

x
,

where 0<κ<1.

As a Corollary of Lemma 3.5, we have decay estimates on E.

Corollary 3.8. Suppose ρ satisfies the a priori estimates in Proposition 3.1. Then
we have the following decay estimates for E through the formula (3.3):

||E(t)||L∞

x
≤ Cη

(1+ t)d−1
, ‖∇xE (t)‖L∞

x
+

∥

∥∇2
xE (t)

∥

∥

L∞

x

≤ Cη

(1+ t)
d
.
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Proof. Recall that

E(x,t)=(d−2)

∫

Ω

[

− xi−yi

|x−y|d +
xi−y∗

i

|x−y∗|d
]

ρ(y,t)dy.

(i) We first consider the L∞
x -estimates E(x,t). We apply the result of Lemma 3.7 to

see that

||E(t)||L∞

x
≤C||∇x(ρ)(t)||L∞

x

≤C ‖ρ(t)‖
1
d

L1
x
‖ρ(t)‖

d−1
d

L∞

x

≤ Cη

(1+ t)d−1
.

(ii) For the estimate of ∇xE, we use Lemma 3.7 to find

||∇xE(t)||L∞

x
≤C||∇2

x(ρ)(t)||L∞

x

≤C ‖ρ(t)‖
κ

ε+d

L1
x

‖ρ(t)‖
d(1−κ)

κ+d

L∞

x
‖∇xρ(t)‖

dκ
κ+d

L∞

x

≤ Cη

(1+ t)d
.

The term ||∇2
xE(t)||L∞

x
can be treated similarly.

Remark 3.3. Proposition 3.1 and Corollary 3.1 give the consistency of the ansatz
for decay rate of E.

We provide the proof of Theorem 2.1. We proceed exactly as in [12], only adding
the fact that the dispersion estimate in Proposition 3.1 is synchronized well in every
iterating step.

Proof of Theorem 2.1.

Proof. Let f0 be a suitable smooth extension of f0 to Ω̄×R
3 satisfying the

corresponding compatibility condition specified in [12] (equation (5.4)) and also the
dispersion estimates in Proposition 3.1. We define the iteration sequences as follows.

∂tf
n+1 +v ·∇xfn+1 +∇φn ·∇vfn+1 =0

fn+1(x,v,0)=f0(x,v)≥0,

∆φn =d(d−2)α(d)ρn, with

fn+1(0,x̄;v1, v̄,t)=fn+1(0,x̄;−v1, v̄,t), φn(0,x̄,t)=0.

Then according to Lemmas 3.1 – 3.5 in the previous section, the following estimates
hold for every iterating step:

‖ρn (t)‖L∞

x
+‖∇xρn (t)‖L∞

x
+

∥

∥∇2
xρn (t)

∥

∥

L∞

x

≤ Cη

(1+ t)d
,

‖ρn (t)‖L1
x
+‖∇xρn (t)‖L1

x
≤Cη,

and so does for the solution (f,φ). For the details, we refer to [2].

4. Uniform L1-stability estimate

In this section, we study the uniform L1-stability of C1-solutions to (1.1), (1.2a)
– (1.2c). For the case of full-space problem, the uniform L1-stability has been ob-
tained in [6] by deriving a Grownall type estimate for the L1-distance employing the
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dispersion estimates. Although the proof in our presentation is similar to that of the
Cauchy problem, we present its proof for self-containedness. As in [6], We first need
to estimate the following functional:

K[f ](x,t) := max
1≤i≤d

∫

Ω

||∂vi
f(y,t)||L1

v

|x−y|d−1
dy.

Lemma 4.1. Suppose the main hypotheses C1−C4 in section 2 hold, and let f be a
smooth C1-solution of (1.1), (1.2a) – (1.2c) with smooth initial data f0. Then we
have

||K[f ](t)||L∞

x
≤ C

(1+ t)d−2
.

Proof. Let 1≤ i≤d and recall Lemma 3.6:

||∂vi
f(t)||L∞

x (L1
v)≤

C

(1+ t)d−1
and ||∂vi

f(t)||L1
x(L1

v)≤C(1+ t). (4.1)

Let r be a positive constant to be determined later, and for x∈Ω we set

Ar(x) :=Ω∩{y∈R
d : |y−x|≤ r} and Br(x) :=Ω−Ar(x).

Note that

∫

Ω

||∂vi
f(y,t)||L1

v

|x−y|d−1
dy =

∫

Ar(x)

||∂vi
f(y,t)||L1

v

|x−y|d−1
dy+

∫

Br(x)

||∂vi
f(y,t)||L1

v

|x−y|d−1
dy

≤C(d)r||∂vi
f(t)||L∞

x (L1
v) +

||∂vi
f(t)||L1

x(L1
v)

rd−1
, (4.2)

where C(d) is a positive constant depending only on d. In order to minimize the right
hand side of (4.2), we choose r such that

C(d)r||∂vi
f(t)||L∞

x (L1
v) =

||∂vi
f(t)||L1

x(L1
v)

rd−1
,

i.e.,

r=
( ||∂vi

f(t)||L1
x(L1

v)

||∂vi
f(t)||L∞

x (L1
v)C(d)

)
1
d

.

Hence for such r, we use (4.1) and (4.2) to see that

K[f ](x,t)≤2 max
1≤i≤d

C(d)
d−1

d ||∂vi
f(t)||1−

1
d

L∞

x (L1
v)||∂vi

f(t)||
1
d

L1
x(L1

v)

≤O(1)(1+ t)−(d−2).

We take a supremum over x to get the desired result.

Remark 4.1. Note that ||K[f ](t)||L∞

x
is integrable in t for d≥4.

Based on the above estimate, we obtain the uniform L1-stability estimate.
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The proof of Theorem 2.2. Let f and f̄ be smooth C1-solutions of (1.1), (1.2a)
– (1.2c) corresponding to initial data f0 and f̄0 respectively:

∂tf +v ·∇xf +E(f) ·∇vf =0, (4.3)

∂tf̄ +v ·∇xf̄ +E(f̄) ·∇v f̄ =0. (4.4)

We subtract (4.4) from (4.3) to see that

∂t(f − f̄)+v ·∇x(f − f̄)+E(f) ·∇v(f − f̄)=(E(f̄)−E(f)) ·∇v f̄ . (4.5)

Let (x,v,t)∈Ω×R
d×R+ be fixed, and let (X(s),V (s)) be the trajectories of particles

for f passing through the point (x,v) at time t, i.e.,

X(t)=x and V (t)=v.

We integrate (4.5) along the trajectory (X(s),V (s)) to obtain

(f − f̄)(x,v,t)=(f0− f̄0)(X(0),V (0))

+

∫ t

0

(E(f̄)−E(f))(X(s),s) ·∇v f̄(X(s),V (s),s)ds.
(4.6)

Note that Green’s function for a half space and the Dirichlet boundary condition on
electric potential yield

E(f)(x,t)=

∫

Ω

∇x

[

1

|x−y|d−2
− 1

|x−y∗|d−2

]

ρ(y,t)dy

=−(d−2)

∫

Ω

[

xi−yi

|x−y|d − xi−y∗
i

|x−y∗|d
]

ρ(y,t)dy.

Here y∗ =(−y1,y2,... ,yd) denotes the reflection point of y∈Ω with respect to the
{x1 =0} plane. We use |x−y|≤ |x−y∗| to estimate

∣

∣

∣

xi−yi

|x−y|d − xi−y∗
i

|x−y∗|d
∣

∣

∣
≤ 1

|x−y|d−1
+

1

|x−y∗|d−1
≤ 2

|x−y|d−1
.

We now take an absolute value for (4.6), and integrate it over the phase space to see
that

||f(t)− f̄(t)||L1

≤||f0− f̄0||L1 +

∫ t

0

∫∫

Ω×Rd

|(E(f̄)−E(f))(X(s),s)||∇v f̄(X(s),V (s),s)|dvdxds

≤||f0− f̄0||L1 +C

∫ t

0

∫

Ω

|ρ(y,s)− ρ̄(y,s)|

×
[

∫

Ω

dX(s)

|X(s)−y|d−1

(

∫

Rd

|∇v f̄(X(s),V (s),t)dV (s)
)]

dyds

≤||f0− f̄0||L1 +C

∫ t

0

∫∫

Ω×Rd

K[f ](y,s)
(

|f(y,v∗,s)− f̄(y,v∗,s)|
)

dv∗dyds

= ||f0− f̄0||L1 +C

∫ t

0

||K[f ](s)||L∞

x
||f(s)− f̄(s)||L1ds,

(4.7)
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where the Liouville principle dxdv =dX(s)dV (s) was employed to obtain

∫∫

Ω×Rd

1

|X(s)−y|d−1
|∇v f̄(X(s),V (s),t)|dX(s)dV (s)

=

∫∫

Ω×Rd

1

|x−y|d−1
|∇v f̄(x,v,t)|dvdx.

We now use Lemma 4.1 and (4.7) to see

||f(t)− f̄(t)||L1 ≤||f0− f̄0||L1 +C

∫ t

0

||K[f ](s)||L∞

x
||f(s)− f̄(s)||L1ds

≤||f0− f̄0||L1 +C

∫ t

0

(1+s)−(d−2)||f(s)− f̄(s)||L1ds.

Hence Gronwall’s Lemma yields

||f(t)− f̄(t)||L1 ≤||f0− f̄0||L1 exp
(

C

∫ t

0

(1+s)−(d−2)ds
)

=G||f0− f̄0||L1 ,

where

G :=exp
(

C

∫ ∞

0

(1+s)−(d−2)ds
)

<∞ for d≥4.

This completes the proof.
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