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A NONLINEAR TEST MODEL FOR FILTERING SLOW-FAST

SYSTEMS∗

BORIS GERSHGORIN† AND ANDREW MAJDA‡

Abstract. A nonlinear test model for filtering turbulent signals from partial observations of
nonlinear slow-fast systems with multiple time scales is developed here. This model is a nonlinear
stochastic real triad model with one slow mode, two fast modes, and catalytic nonlinear interaction
of the fast modes depending on the slow mode. Despite the nonlinear and non-Gaussian features of
the model, exact solution formulas are developed here for the mean and covariance. These formulas
are utilized to develop a suite of statistically exact extended Kalman filters for the slow-fast system.
Important practical issues such as filter performance with partial observations, which mix the slow
and fast modes, model errors through linear filters for the fast modes, and the role of observation
frequency and observational noise strength are assessed in unambiguous fashion in the test model by
utilizing these exact nonlinear statistics.
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1. Introduction

Many contemporary problems in science and engineering involve large dimen-
sional turbulent nonlinear systems with multiple time scales, i.e., slow-fast systems.
The increasing need for real time predictions, for example, in extended range fore-
casting of weather and climate, drives the development of improved strategies for
data assimilation or filtering [7, 13, 6, 10, 2, 3, 28, 4, 14]. Such filtering algorithms
are based on generalizations of the classical Kalman filter [1, 5]. Filtering combines
partially observed features of the chaotic turbulent multiscale signal together with
a dynamic model to obtain a statistical estimate for the state of the system. The
dynamic models for the coupled atmosphere-ocean system are prototype examples of
slow-fast systems where the slow modes are advective vortical modes and the fast
modes are inertia-gravity waves [29, 9, 21]. Depending on the spatio-temporal scale,
one might need only a statistical estimate of the slow modes, as on synoptic scales in
the atmosphere [7] or both slow and fast modes such as for squall lines on mesoscales
due to the impact of moist convection [17]. In either situation, the noisy partial obser-
vations of quantities such as temperature, pressure, and velocity necessarily mix both
the slow and fast modes [7, 6, 21]. Furthermore, the dynamical models often suffer
from significant model errors due to lack of resolution or inadequate parametrization
of physical processes such as clouds, moisture, boundary layers, and topography.

The goal of the present paper is to develop a simple three dimensional nonlinear
test model with exactly solvable statistics for slow-fast systems in order to provide
unambiguous guidelines for the difficult issues for filtering slow-fast systems from
partial observations, as mentioned in the first paragraph. Here, we also study filter
performance and model errors in this idealized low-dimensional setting for slow-fast
filtering; this study parallels earlier works [11, 26] using low dimensional nonlinear
models of Lorenz [19, 20] or their variants [27] without exact statistical solutions to
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study nonlinear filter performance. However, here we have the additional advantage
that with the exactly solvable statistics for the mean and covariance in the nonlinear
non-Gaussian slow-fast test model, we can utilize a perfect extended Kalman filter
algorithm [1] without additional Monte Carlo errors due to finite ensemble size.

1.1. The nonlinear test model for slow-fast systems. The nonlinear test
model, which we propose here as a prototype for filtering slow-fast systems, is three
dimensional with stochastic equations for the real slow mode, u1, and the complex
fast mode, u2, given by the stochastic triad model,

du1 =(−γ1u1 +f1(t))dt+σ1dW1, (1.1)

du2 =
(

(−γ2 + iω0/ε+ ia0u1)u2 +f2(t)
)

dt+σ2dW2. (1.2)

In equations (1.1) and (1.2), ε is a small parameter that measures the deterministic
time scale ratio between the evolution of the fast and slow waves; the damping coef-
ficients, γ1 and γ2, and white noise forcings represent the turbulent interaction and
energy transfer through nonlinear interaction with other unresolved modes in the triad
model [29, 24, 25]; the parameter a0 measures the nonlinearity in the system, in which
energy is always conserved; the terms f1(t), f2(t) represent deterministic forcing of
the slow and fast modes, respectively. The nonlinear test model in equations (1.1)
and (1.2) is motivated directly by both the mathematical theory of slow-fast geophys-
ical flows [9, 21] and high resolution turbulent simulations in slow-fast geophysical
regimes [30, 31, 32]; all this work suggests that the slow vortical mode dynamics, u1

here, and the nonlinear catalytic interactions of the slow modes with the fast modes,
u2 here, are the most important central nonlinear features of slow-fast interaction for
geophysical systems. The model in equations (1.1) and (1.2) is the simplest one which
retains these nonlinear features.

In the present paper, we set f2(t)≡0 for simplicity, thus we ignore explicit forc-
ing for the fast waves. In section 2, we develop exactly solvable solution formulas
for the nonlinear, non-Gaussian statistical solutions for equations (1.1) and (1.2) by
generalizing and extending the exact solutions for the Kubo oscillator from statistical
physics [18, 23] to non-stationary and cross-correlated dynamics. In section 3, we
set up idealized extended Kalman filter algorithms, which utilize the exact solution
formulas developed in section 2. In section 4, we study filter performance and model
error for the test model in a framework motivated by all the practical issues for filter-
ing slow-fast systems mentioned in the first paragraph. The paper ends with a brief
concluding discussion.

2. Exact solutions and exactly solvable statistics in the nonlinear test

model

2.1. Model. As presented in the introduction, consider a system of one slow
wave represented by a real-valued function u1 and two fast waves represented by a
complex-valued function u2. We model this system via a system of coupled stochastic
differential equations of the form

du1 =(−γ1u1 +f1(t))dt+σ1dW1, (2.1)

du2 =(−γ2 + iω0/ε+ ia0u1)u2dt+σ2dW2, (2.2)

where γ1 and γ2 are the damping coefficients of the slow and fast waves, respectively,
f1(t) is forcing of the slow wave, σ1 and σ2 represent the strength of the noise of
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the slow and fast waves, respectively, ε is a small parameter that characterizes the
time scale difference between the slow and the fast modes, ω0 is typical frequency of
the fast wave in the units of ε, and a0 is a nonlinearity parameter. We choose the
oscillatory forcing f1(t)=Asin(ωt). The system (1.1)–(1.2) is to be solved with the
initial conditions

u1(t0)=u10,

u2(t0)=u20,

where u10 and u20 are correlated Gaussian random variables with known parameters:
〈u10〉, 〈u20〉, Var(u10), Var(u20), Cov(u20,u

∗
20) and Cov(u20,u10). As usual, 〈·〉 is

expectation, Var(·) is variance, and Cov(·,·) is covariance.

2.2. Path-wise solution of the model. It is not difficult to develop path-
wise solutions of the model equations. Such path-wise solutions provide the signals,
which we attempt to filter. First we solve equation (1.1) since it is independent of the
fast wave u2. The slow wave u1 is easily found using an integrating factor

u1(t)=u10e
−γ1(t−t0) +F1(t)+σ1

∫ t

t0

eγ1(s−t)dW1(s), (2.3)

where

F1(t)=

∫ t

t0

f1(s)e
−γ1(t−s)ds

=
A

γ2
1 +ω2

(

e−γ1(t−t0)
(

ωcos(ωt0)−γ1 sin(ωt0)
)

−ωcos(ωt)+γ1 sin(ωt)
)

.

Note that u1(t) is a Gaussian random process, and thus is fully defined by its mean
and variance, which will be computed below.

Now, to solve equation (1.2) we treat u1 as a known function. Using the integrat-
ing factor for the equation with time-dependent frequency, we obtain u2

u2(t)=e−γ2(t−t0)ψ(t0,t)u20 +σ2

∫ t

t0

e−γ2(t−s)ψ(s,t)dW2(s), (2.4)

where we defined new functions

ψ(s,t)=eiJ(s,t),

J(s,t)=

∫ t

s

(

ω0/ε+a0u1(s
′)

)

ds′ =(t−s)ω0/ε+a0

∫ t

s

u1(s
′)ds′

=JD(s,t)+JW (s,t)+b(s,t)u10, (2.5)

where the deterministic part of J(s,t) is

JD(s,t)=(t−s)ω0/ε+
Aa0

γ2
1 +ω2

(

γ1

ω

(

cos(ωs)−cos(ωt)
)

+
(

sin(ωs)−sin(ωt)
)

+
(

e−γ1(s−t0)−e−γ1(t−t0)
)

(

ω

γ1
cos(ωt0)−sin(ωt0)

)

)

,
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the noisy part of J(s,t) is

JW (s,t)=σ1a0

∫ t

s

ds′
∫ s′

t0

eγ1(s
′′−s′)dW1(s

′′),

and the prefactor of u10 is

b(s,t)=
a0

γ1

(

e−γ1(s−t0)−e−γ1(t−t0)
)

.

Note that J(s,t) linearly depends on u1 and, therefore, J(s,t) is also a sum of inde-
pendent Gaussian random fields. We also introduce the following notation for later
use

ψD(s,t)=eiJD(s,t),

ψW (s,t)=eiJW (s,t).

On the other hand, u2 is not a Gaussian random variable in the case a0 6=0, because the
solution formula involves exponentials of Gaussian random variables. Below, we will
confirm nongaussianity of u2 numerically. Nevertheless, we will be able to compute
the statistics of u2 analytically due to the special structure of the solution.

2.3. Invariant measure and choice of parameters. Here, we obtain the
invariant measure of (1.1)–(1.2) without forcing. We separate (1.1)–(1.2) into two
parts: the deterministic part,

du1 =0, (2.6)

du2 = i(ω0/ε+a0u1)u2dt, (2.7)

and the randomly fluctuating and damped part,

du1 =−γ1u1dt+σ1dW1, (2.8)

du2 =−γ2u2dt+σ2dW2. (2.9)

Now, we can easily find the invariant measure for both systems. The syste (2.6)
and (2.7) has the invariant (Liouville) measure

pdet(u1,u2)=p1(u1)p2(|u2|), (2.10)

for any probabilistic measures p1 and p2. On the other hand, it is well known [8] that
the unique invariant measure for the Langevin equation is Gaussian. Therefore, the
unique invariant measure for 2.8)–(2.9) is a product of Gaussian measures

prand(u1,u2)=

√
2γ1γ2

πσ1σ2
exp

(

−γ1u1
2

σ2
1

− 2γ2|u2|2
σ2

2

)

. (2.11)

Note that prand(u1,u2) satisfies equation (2.10) and, therefore, the invariant measure
for (1.1)–(1.2) without forcing is given by equation (2.11).

From equation (2.11), we conclude that the average energies for the three modes
(which are equal to the corresponding variances) are

Eu1
=

σ2
1

2γ1
,

ERe[u2] =EIm[u2] =
σ2

2

4γ2
. (2.12)
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Now, we can choose parameters of the model in order to control the average energies.
For example, for the energy equipartition case, we choose parameters to satisfy

Eu1
=ERe[u2] =EIm[u2]. (2.13)

which is the same as

σ2
1

γ1
=

σ2
2

2γ2
. (2.14)

The decorrelation time of a mode is proportional to the inverse of the damping coef-
ficient. We will consider two different regimes with strong and weak damping.

For the case of strong damping, we choose all the parameters to be of order 1, i.e.,
γ1 =1, σ1 =1, γ2 =1.5, and σ2 =1. Then, we have Eu1

=0.5 and ERe[u2] =EIm[u2] =
0.5625.

For the case of weak damping, which is the relevant physical regime for slow-fast
systems, we choose the decorrelation time of the slow mode to be much longer than
the oscillation period of the fast mode. The oscillation period of the slow mode is
of the order 1 while the oscillation period of the fast mode is of the order 1/ε. We
also choose the decorrelation time of the fast mode to be of the same order as the
decorrelation time of the slow mode. We take ε=0.1. Then, the oscillation time
of the fast mode is of the order T2 =2π/ε≈0.6. Now we can choose γ1 =0.09 and
γ2 =0.08 such that T2≪1/γ1 and T2≪1/γ2. Suppose the average energy of the first
mode is Eu1

=1. Then, for the energy equipartition case, we have σ1 =
√

γ1 =0.3 and
σ2 =

√
2γ2 =0.4. The remaining parameters are chosen to be the same for both strong

and weak damping: ω0 =1, a0 =1, A=1, and ω =1.

2.4. Numerical test of the analytical path-wise solutions. Here, we
confirm that the numerical solution of equations (1.1) and (1.2) converges to the
analytical solution given by equations (2.3) and (2.4). We use the standard Euler-
Maruyama method for solving equations (1.1) and (1.2) numerically [12]. Since the
diffusion is constant here, the Euler-Maruyama method coincides with the Milstein
method, which gives first order strong convergence. We denote un

j to be a numerical
approximation of uj(tn) for j ={1,2} at time grid point tn =hn, where h is a time
step. Then, the numerical scheme becomes

un+1
1 =un

1 +h(−γ1u
n
1 +f1(tn))+σ1∆Wn

1 , (2.15)

un+1
2 =un

2 +h
(

−γ2 + iω0/ε+ ia0u
n
1

)

un
2 +σ2∆Wn

2 , (2.16)

where ∆Wn
1 are independent real Gaussian random variables with mean 0 and vari-

ance h, and ∆Wn
2 are independent complex Gaussian random variables with mean 0

and variance h/
√

2 of both real and imaginary parts. Note that even though we have
an exact analytical formula for u2, we still need to evaluate the stochastic integral in
equation (2.4). We perform this evaluation numerically and, therefore, the solution
u2 strictly speaking becomes semi-analytical. However, we use a very fine time step of
h=10−3 (which is the same as for the numerical solution) and, therefore, evaluate the
integral in equation (2.4) with high precision. The convergence study of the numerical
solution that we present below confirms this approximation.

In Figure 2.1, we demonstrate both analytical solution (equations (2.3), (2.4))
and numerical approximation (equations (2.15), (2.16)). We note that there is an
excellent correspondence between them. Moreover, we observe that for the case of



616 A NONLINEAR TEST MODEL FOR FILTERING SLOW-FAST SYSTEMS

0 0.5 1 1.5

0.5

1

1.5

2

2.5

u 1

(a)

0 0.5 1 1.5

−1

−0.5

0

0.5

1

R
e[

u 2]

(b)

t

0 5 10 15

−1.5

−1

−0.5

0

0.5

1
(c)

0 5 10 15

−1.5

−1

−0.5

0

0.5

1

(d)

t

Fig. 2.1. The analytical solutions (solid line) are computed via equations (2.3)–(2.4) and the
numerical solutions (asterisks) are computed via equations (2.15)–(2.16). Panels (a) and (b) show
u1 and Re[u2] for the case of strong damping. Panels (c) and (d) show u1 and Re[u2] for the case
of weak damping. The dashed line represents the exponential decay e−γjt with the corresponding γj

for j ={1,2}. Note the different scales of x-axis due to different rates of damping.

strong damping, u2 makes only a few oscillations within its typical decorrelation time
(∼1/γ2), whereas for the case of weak damping, u2 makes many oscillations until it
decorrelates. We have confirmed numerically that the Milstein method that we used
has the first order convergence with further refinement in h. Next, we compute closed
formulas for the mean and covariance of u1 and u2, which are needed in an extended
Kalman filter for the nonlinear system.

2.5. Mean and variance of u1. We start with u1. By taking the average of
equation (2.3), we obtain

〈u1〉= 〈u10〉e−γ1(t−t0)

+
A

γ2
1 +ω2

(

e−γ1(t−t0)
(

ωcos(ωt0)−γ1 sin(ωt0)
)

−ωcos(ωt)+γ1 sin(ωt)
)

,

(2.17)

where we used the fact that the mean of the stochastic integral is always zero [12].
Furthermore, the variance of u1 becomes

Var(u1)= 〈(u1−〈u1〉)2〉=Var(u10)e
−2γ1(t−t0) +

σ2
1

2γ1
(1−e−2γ1(t−t0)). (2.18)
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In order to compute the variance we used the Ito isometry formula [12]
〈

(

∫

g(t)dW (t)
)2

〉

=

∫

g2(t)dt,

for any deterministic g(t).

2.6. Mean and covariance of u2. After averaging equation (2.4), we have

〈u2〉=e−γ2(t−t0)〈ψ(t0,t) u20〉. (2.19)

For simplicity of notation we drop parameters in the functions J(s,t), JD(s,t),
JW (s,t), b(s,t), ψ(s,t), ψD(s,t), ψW (s,t) for s= t0, and denote them as J , JD, JW , b,
ψ, ψD, ψW , respectively. Using the assumption that the noise W1(t) is independent
of the initial conditions u10 and u20, we obtain

〈u2〉=e−γ2(t−t0)ψD〈ψW 〉〈u20 exp(ibu10)〉. (2.20)

The averages in the right hand side of equation (2.20) can be computed via the char-
acteristic function of a Gaussian random variable. For any probability distribution,
we define a characteristic function as

φv(s)= 〈exp(isT v)〉, (2.21)

where s∈C
d and d is the number of dimensions. For a Gaussian distribution, the

characteristic function is known [12] to have the following form:

φv(s)=exp

(

isT 〈v〉− 1

2
sT Σs

)

, (2.22)

where Σ is the covariance matrix. In particular, for 〈ψW 〉 we obtain

〈ψW 〉= 〈eiJW 〉=exp

(

i〈JW 〉− 1

2
Var(JW )

)

=exp

(

−1

2
Var(JW )

)

. (2.23)

Computation of Var(JW ) is straightforward since JW is Gaussian, and the result is

Var(JW )=−σ2
1a

2
0

2γ3
1

(

3−4e−γ1(t−t0) +e−2γ1(t−t0)−2γ1(t− t0)
)

. (2.24)

Next, we compute 〈u20 exp(ibu10)〉. Here, it is convenient to use the triad real-valued
representation of (u1(t),u2(t)),

x=u1, (2.25)

y =Re[u2], (2.26)

z = Im[u2]. (2.27)

Then we just need to find 〈y0 exp(ibx0)〉 and 〈z0 exp(ibx0)〉, and afterwards combine
them using u20 =y0 + iz0 (where the zero subscript refers to the initial values at t= t0)
to obtain the second average in the right hand side of equation (2.19). Consider a
three-dimensional vector v=(x0,y0,z0) and the corresponding characteristic function
given by equation (2.22). By its definition, the characteristic function is a Fourier
transform of the corresponding probability density function (pdf)

φv(s)=
1

(2π)3

∫

exp(isT v)g(v)dv. (2.28)
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Next, we use the basic property of Fourier transform, i.e., multiplication by a variable
in physical space (e.g., y0) corresponds to differentiation over the dual variable (e.g.,
s2). We have

∂φv(s)

∂s2
=

1

(2π)3

∫

iy0 exp(isT v)g(v)dv= i〈y0 exp(isT v)〉. (2.29)

Therefore, we obtain

〈y0 exp(ibx0)〉=−i
∂φv(s)

∂s2

∣

∣

∣

∣

∣

s=(b,0,0)T

. (2.30)

Similarly, we find

〈z0 exp(ibx0)〉=−i
∂φv(s)

∂s3

∣

∣

∣

∣

∣

s=(b,0,0)T

.

Using the particular form of a Gaussian pdf for v, we find that

∂φv(s)

∂s2
=

(

i〈y0〉−Var(y0)s2−Cov(x0,y0)s1−Cov(y0,z0)s3

)

φv(s),

∂φv(s)

∂s3
=

(

i〈z0〉−Var(z0)s3−Cov(x0,z0)s1−Cov(y0,z0)s2

)

φv(s).

After evaluating the partial derivatives at s=(b,0,0)T , we obtain

〈y0 exp(ibx0)〉=
(

〈y0〉+ iCov(x0,y0)b
)

exp

(

ib〈x0〉−
1

2
Var(x0)b

2

)

, (2.31)

〈z0 exp(ibx0)〉=
(

〈z0〉+ iCov(x0,z0)b
)

exp

(

ib〈x0〉−
1

2
Var(x0)b

2

)

. (2.32)

Combining equations (2.31) and (2.32) yields

〈u20 exp(ibu10)〉=
(

〈u20〉+ iCov(u20,u10)b
)

exp

(

ib〈u10〉−
1

2
b2Var(u10)

)

. (2.33)

Therefore, we have found all the components of the right hand side of equation (2.20)
using the initial data. In a similar manner, we find the variance of u2, cross-covariance
of u2 with u∗

2 and of u2 with u1. We have

Var(u2)=e−2γ2(t−t0)
(

Var(u20)+ |〈u20〉|2−|〈u20ψ〉|2)
)

+
σ2

2

2γ2

(

1−e−2γ2(t−t0)
)

,

(2.34)

where

|〈u20ψ〉|2 =e−Var(JW )−b2Var(u10)|〈u20〉+ ibCov(u20,u10)|2. (2.35)

In Appendix A, we obtain the cross-covariances in a way similar to computing equation
(2.33):

Cov(u2,u1)=ψD〈ψW 〉e−(γ1+γ2)(t−t0)
(

〈u10u20 exp(ibu10)〉−〈u10〉〈u20 exp(ibu10)〉
)

+
i

2
ψD〈ψW 〉e−γ2(t−t0)

1

a0

∂

∂t

(

Var(JW (t0,t))
)

〈u20 exp(ibu10)〉, (2.36)

Cov(u2,u
∗
2)=exp(−2γ2(t− t0)+2iJD −2σ2

JW
)〈u2

20 exp(i2bu10)〉−〈u2〉2, (2.37)
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where 〈u10u20 exp(ibu10)〉 and 〈u2
20 exp(i2bu10)〉 are given by equations (A.8)

and (A.9).

2.7. Testing the analytical formulas via Monte Carlo simulations. It
is very instructive to provide a visual comparison of the analytical formulas for the
various statistics of u1 and u2 that we derived above with the numerically averaged
values using Monte Carlo simulations. We used an ensemble of M =104 members in
Monte Carlo averaging. As an object of study, let us choose the mean of u2.
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Fig. 2.2. The solid line corresponds to 〈u2〉, computed via equation (2.20). The circles corre-
spond to Monte Carlo averaging of an ensemble of solutions u2, each computed via equation (2.4).
Note the different scales of x-axis due to different rates of damping.

In Figure 2.2, the solid line represents Re[〈u2〉] that we computed via equation
(2.20). The circles, on the other hand, were obtained using Monte Carlo averaging of
an ensemble of trajectories that were computed via equation (2.4). The upper and
lower panels correspond to the case of strong and weak damping, correspondingly.
The plots for Im[〈u2〉] is not displayed here because they are similar to the plots of
Re[〈u2〉]. We observe excellent agreement between the analytically obtained mean of
u2 and the result of the averaging using Monte Carlo simulation. Next, in Figure
2.3 we demonstrate time evolution of cross-covariance between u2 and u∗

2. Here, we
also have very good agreement between the analytical prediction and Monte Carlo
averaging.

Next, we present the comparison of the analytical formula with the results of
Monte Carlo averaging for the correlator 〈u2u1〉 shown in Figure 2.4. Note that here
we again have excellent agreement.
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Fig. 2.3. The solid line corresponds to Cov(u2,u∗
2), computed via equation (2.37). The circles

correspond to Monte Carlo averaging of an ensemble of solutions u2, each computed via equation
(2.4). Note the different scales of x-axis due to different rates of damping.

2.8. Nongaussianity of u2. Here, we present the evidence of nongaussianity
of the fast wave u2 with the periodic forcing f1(t)=Asin(ωt). Due to the nonlinear
structure of the governing equation (1.2), it is natural to expect that u2 is not Gaus-
sian. However, as we will see below, depending on the regime of the system we can
observe both strongly nongaussian and almost Gaussian statistics of u2. Note that, as
we discussed earlier, the invariant measure of our system is always Gaussian. There-
fore, nongaussianity can only appear in the transient. In order to detect the deviation
from Gaussian statistics, we measure skewness and kurtosis excess. The skewness
and kurtosis are defined as the third and the fourth normalized central moments,
correspondingly. For a random variable ξ, the skewness is

skewness=

〈

(

ξ−〈ξ〉
)3

〉

Var(ξ)3/2
, (2.38)

and kurtosis is

kurtosis=

〈

(

ξ−〈ξ〉
)4

〉

Var(ξ)2
. (2.39)
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Fig. 2.4. The solid line corresponds to 〈u2u1〉, computed via equations (2.36), (2.17)
and (2.20). The circles correspond to Monte Carlo averaging of an ensemble of solutions u1, each
computed via equation (2.3), and u2, each computed via equation (2.4). Note the different scales of
x-axis due to different rates of damping.

For Gaussian ξ, we obtain skewness=0 and kurtosis=3. In general, the skewness and
the kurtosis excess, which is equal to

kurtosis excess=kurtosis−3, (2.40)

measure the nongaussian properties of a given random variable.
In Figures 2.5 and 2.6, we demonstrate the time evolution of the skewness and

kurtosis excess, respectively, for both the weakly damped and the strongly damped
cases. Note that in the strongly damped case (Figures 2.5 and 2.6 upper panels), both
skewness and kurtosis excess have values close the Gaussian ones. In the strongly
damped case, the transient time is short and the statistics of the system do not
deviate much from their Gaussian values. On the other hand, in the weakly damped
regime (Figures 2.5 and 2.6 lower panels) we observe strong nongaussianity in both
skewness and kurtosis excess. In section 2.3, we have shown that invariant measure
for the system (1.1) and (1.2) with f1(t)≡0 is Gaussian and Figures 2.5 and 2.6
confirm that statistics converge to their Gaussian values after the decorrelation time
even for oscillatory f1(t). We note that a sufficiently large ensemble should be used
in Monte Carlo simulations for higher moments in order to obtain a precise result. In
our simulation, we used the ensemble of M =104 members, which is large enough to
get an accurate qualitative picture.

Finally, we end this section with some comments. In principle, analytic expres-
sions for the higher order moments can be computed in a similar fashion as for the



622 A NONLINEAR TEST MODEL FOR FILTERING SLOW-FAST SYSTEMS

second order statistics; however, the explicit formulas become extremely lengthy. Also,
the perceptive reader will note that we could use non-Gaussian initial data in the ex-
act solution for the mean and covariance provided that we know the characteristic
function of this random variable explicitly.
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Fig. 2.5. Skewness evolution for the strongly damped (upper panel) and the weakly damped
(lower panel) cases. The weakly damped system is more nongaussian than strongly damped. Note
the different scales of x-axis due to different rates of damping.

3. Filtering algorithms for the test model

3.1. Extended Kalman filter. Here, we briefly introduce the extended
Kalman filter algorithm for the test model (1.1) and (1.2). Suppose that at time
tm =m∆t, where m≥0 is a time step index and ∆t is the observation time step, the
truth signal is denoted as um, which is a realization of (u1,u2) computed via equations
(2.3) and (2.4). However, we assume that um is unknown and instead we are given
some linear transformation of um distorted by some Gaussian noise

vm =Gum +σ0
m, (3.1)

where vm is called the observation, G is a rectangular matrix of the size q×3 with
the number of observations q ={1,2,3}, u=(x,y,z)T ≡ (u1,Re[u2],Im[u2])

T and σ0
m

is the observation noise. The observation noise is assumed to be unbiased (mean-zero)
with covariance matrix R0 of the size q×q. The goal of filtering is to find the filtered
signal uf , which is as close as possible to the original truth signal u. The information
that can be used in filtering is limited to
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Fig. 2.6. Kurtosis excess evolution for the strongly damped (upper panel) and the weakly damped
(lower panel) cases. The weakly damped system is more nongaussian than strongly damped. Note
the different scales of x-axis due to different rates of damping.

• the model for dynamical evolution of um,

• the matrix G,

• and the mean and covariance of the Gaussian noise σ0
m.

In the case when the evolution of um is described by a linear equation, the best
approximation to the truth signal in the least squares sense is given via the Kalman
filter algorithm [1, 5]. The Kalman filter consists of two steps: (i) forecasting using
the dynamics and (ii) correction using observations. If we assume Gaussian initial
conditions, then due to linear dynamics the solution stays linear for all times and
can be fully described by the mean and covariance matrix. Denote the mean and
covariance of the filtered signal at time tm as 〈u〉m|m and Γm|m, respectively. Then
the forecasting step gives us the following, so called prior, values of the mean and
covariance at the next time step tm+1

〈u〉m|m →〈u〉m+1|m,

Γm|m →Γm+1|m. (3.2)

Note that 〈u〉m+1|m and Γm+1|m depend solely on the prior information up to time tm.
In order to utilize the observations vm+1 at time tm+1, the least squares correction
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method is used, which yields the posterior values of mean and covariance

〈u〉m+1|m+1 = 〈u〉m+1|m +Km+1(〈v〉m+1−G〈u〉m+1|m),

Γm+1|m+1 =(I3−Km+1G)Γm+1|m,

Km+1 =Γm+1|mGT (GΓm+1|mGT +R0)−1, (3.3)

where Km+1 is a Kalman gain matrix of the size 3×q and I3 is the identity 3×3
matrix. The posterior distribution is the Gaussian distribution with the mean and
covariance given in equation (3.3). We note that Kalman gain tells us how much
weight the filter puts on the observations vs prior forecast.

In the more general case, when the dynamics is given by nonlinear equations, the
procedure described in equations (3.2) and (3.3) is called Extended Kalman Filter
(EKF). Due to nonlinearity, the gaussianity of the signal can be lost and this filter
may not be optimal anymore. One of the purposes of this paper is to investigate the
skill of the EKF using our test model. The advantage of studying the test model (1.1)
and (1.2) is in the fact that exact analytical formulas can be used for the mean and
covariance (see section 2) in order to make the prior forecast (3.2).

In the EKF, we use exact evolution equations for the mean and, therefore, in
the simulation we use the mean value of the observation 〈v〉m in the first equation
of (3.3). The effect of the observation noise size is accounted for in computing the
Kalman gain matrix Km+1.

3.2. Structure of observations. In a typical slow-fast system such as the
shallow water equations, observation of pressure, temperature, and velocity automat-
ically mixes the fast and slow components and can corrupt the filtering of the slow
component. Below, we introduce prototype observations with these features. We
will consider three different types of observations with the corresponding observation
matrices G and covariances R0

• 1 observation

G=
(

1 1√
2

1√
2

)

,

v1 =x+
1√
2
(y+z)+σ0

1 ,

R0 =2r0,

• 2 observations

G=

(

1 1√
2

1√
2

1 1√
2
− 1√

2

)

,

{

v1 =x+ 1√
2
(y+z)+σ0

1 ,

v2 =x+ 1√
2
(y−z)+σ0

2 ,

R0 =

(

2r0 0
0 2r0

)

,
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• 3 observations

G=





1 1√
2

1√
2

1 1√
2
− 1√

2

1 0 0



 ,











v1 =x+ 1√
2
(y+z)+σ0

1 ,

v2 =x+ 1√
2
(y−z)+σ0

2 ,

v3 =x+σ0
3 ,

R0 =





2r0 0 0
0 2r0 0
0 0 r0



 .

Here, we assumed that the observation noise components σ0
1 , σ0

2 , and σ0
3 are indepen-

dent mean-zero Gaussian with variances 2r0, 2r0, and r0, respectively.

3.3. Generating the truth signal. We generate the truth signal using the
following procedure. We consider any random initial data as discussed in section 2
and obtain a realization of the trajectory (u1,u2) using the exact solutions given by
equations (2.3) and (2.4). Note that u1 can be easily computed since its random part
is Gaussian with known statistics. However, u2 is not Gaussian and its random part
depends on the evolution of u1. Therefore, even if we need the true trajectory only
at discrete times with a time step ∆t, we still need to compute u1 with a much finer
resolution with time step h. This fine trajectory of u1 is then used to compute u2.

3.4. Linear filter with model error. Now, suppose that the prior forecast
um+1|m is made using the linearized version of the analytical equations that we ob-
tained in section 2. We set a0 =0 in equation (1.2) and thus we introduce model error.
In this case, the linearization is made at the climatological mean state. As we have
seen from the invariant measure, in the long run the correlation between the slow wave
u1 and fast wave u2 vanishes and so does the effect of nonlinear coupling through a0.
On the other hand, for shorter observation time steps ∆t, the nongaussianity as an
effect of nonlinearity can be sufficiently strong (see section 2.8), and the model error
can be rather large. The advantage of using a linear model as an approximation of
the true dynamics is for practical application. In real physical problems, the true dy-
namics of the model are often unknown and ensemble approximations to the Kalman
filter are very expensive for a large dimensional system. Thus, the performance of
the linear filter in the nonlinear test model for the slow-fast system is interesting for
several reasons [15, 16]. Note that the truth signal is always produced via the non-
linear version of equations (1.1) and (1.2) with a0 6=0. Therefore, if we use the linear
approximation to the original system, we may not obtain the optimal filtered signal
due to model error. Below, we will compare the error in filtering the test problem
using the perfect model assumption (forecast via first two moments for the nonlinear
equation) and the linear dynamics equations with model error. In our test model,
linearization only affects the fast mode u2. Substituting a0 =0 into equation (2.20)
yields the following linear Equ.

〈u2〉=exp
(

(−γ2 + iω0/ε)∆t
)

〈u20〉. (3.4)

Therefore, the forecast is made according to

〈u〉m+1|m =B〈u〉m|m +C, (3.5)
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where

B =





e−γ1∆t 0 0
0 e−γ2∆tcos(α) −e−γ2∆t sin(α)
0 e−γ2∆t sin(α) e−γ2∆tcos(α)



 , (3.6)

with

α=∆tω0/ε,

and

C =





F1(t)
0
0



 . (3.7)

equation (3.5) is used as a prior forecast for the mean. Similarly by substituting
a0 =0 into equations (2.34), (2.36), and (2.37) we obtain the prior covariance of the
linearized model.

3.4.1. Observability. Another advantage of using linearized equations is that
it then becomes possible to strictly address the issue of observability [1, 5]. Let us
study the observability of the system for the case of observation type 1. In this case,
the observability matrix is defined by

O=





G
GB
GB2





=









1 1/
√

2 1/
√

2

e−γ1∆t e−γ2∆t

√
2

(

cos(α)+sin(α)
)

e−γ2∆t

√
2

(

cos(α)−sin(α)
)

e−2γ1∆t e−2γ2∆t

√
2

(

cos(2α)+sin(2α)
)

e−2γ2∆t

√
2

(

cos(2α)−sin(2α)
)









, (3.8)

This is a 3×3 matrix and in order for the system (3.5) to be fully observable, matrix
O should have rank 3. It is easy to conclude from equation (3.8) that whenever we
have sin(α)=0 or equivalently

∆t=2πlε/ω0, (3.9)

for any integer l, the two last columns become equal and, therefore, matrix O becomes
singular. This results in losing observability. Let us find the determinant of O

det(O)=−e−γ2∆t sin(α)
(

[

e−γ2∆t−e−γ1∆tcos(α)
]2

+e−2γ1∆t
[

1−cos2(α)
]

)

.

(3.10)

Therefore, in equation (3.9) we have all the values ∆t for which observability is lost.
However, practically we still can lack observability even if the matrix O has rank 3,
but is close to being singular, which means that det(O) is close to zero.

The analysis of observability of the linearized model will also be useful for the
nonlinear regime because linear dynamics still plays an important role in the sys-
tem evolution in the nonlinear regime. In the nonlinear case, we also might expect
deteriorating filter performance around the values of ∆t described by equation (3.9).
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4. Filter performance

4.1. Details of numerical simulation of filtering. We turn to the dis-
cussion of the results of the numerical simulation of EKF on our test model (1.1)
and (1.2). Here, we describe the parameters that were used in the numerical simula-
tions. The procedure of generating the truth signal was given in section 2. In order
to test the filter performance, we compare the truth signal um with the filtered mean
〈u〉m|m. We also estimate the role of prior forecasts and observations by studying the
prior mean 〈u〉m|m−1. In order to measure how well the filter reproduces the truth sig-
nal (we refer to this property as filter skill), we use root mean square error (RMSE)
and cross correlation (XC) between the truth signal and posterior (and sometimes
between truth and prior) signals. RMSE is defined via

RMSE(z−w)=

√

√

√

√

1

N

N
∑

j=1

|zj −wj |2, (4.1)

where z and w are the complex vectors to be compared and N is the length of each
vector. Looking ahead at Figures 4.1-4.4, where we show individual trajectories that
are being filtered, the typical amplitude of u is below 2 in magnitude so the RMSE
roughly is twice as big as the normalized percentage error in the study below. For
real vectors x and y, the XC is defined by

XC(x,y)=

∑N
j=1xjyj

√

∑N
j=1x2

j

∑N
j=1y2

j

. (4.2)

For the complex valued vectors z and w, the cross correlation is computed via

XC(z,w)=
1

2

(

XC(Re[z],Re[w])+XC(Im[z],Im[w])
)

. (4.3)

Note that if two signals are close to each other, the RMSE of their difference is then
close to zero and their XC is close to one. On the other hand, for two different signals
the RMSE diverges from zero and in principle is unbounded and XC approaches zero.

In all the simulations we use N =104 data filtering cycles with the given observa-
tion time step ∆t. The type of observation, observation variance r0, and observation
time step ∆t will be varied and specified in each particular situation. Here, we will
only discuss the weak damping case since it has more physical importance for filtering
slow-fast systems.

4.2. Examples of filtering individual trajectories. Here, we demonstrate
how the EKF works on individual trajectories. We chose two values of the observation
time step: ∆t=0.13 and ∆t=1.43. The first one is considerably smaller than the
typical oscillation period T2 =2πω0/ε≈0.63 of the fast mode u2 and the second one
is larger than T2. We also chose two values of the observation variance r0 =0.1 and
r0 =2.0. The first value of r0 is chosen to be smaller than the average energy of each
mode E =1 and the second value is chosen to be larger than E =1. Therefore, we
have four pairs (∆t,r0) for which we have studied the performance of the EKF. We
have used observations of type 1 in this numerical experiment so that slow and fast
modes are mixed in the single observation.

The four panels in Figure 4.1 correspond to the four pairs of parameters (∆t,r0).
In each panel in Figure 4.1, we demonstrate a segment of the truth trajectory u1
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r0
∖

∆t 0.13 1.43

0.1 0.988 (0.982) 0.936 (0.888)
2.0 0.951 (0.945) 0.855 (0.823)

Table 4.1. EKF performance on u1: cross correlations XCp (between truth and posterior) and
XCf (in the parenthesis, between truth and prior). The segments of the corresponding trajectories
are shown in Figure 4.1.

together with the prior forecast and the posterior signal. In Table 4.1, we also show the
cross correlation XCf between the truth signal and prior forecast and cross correlation
XCp between the truth signal and posterior signal. Table 4.1 is made for the same
set of parameters as Figure 4.1, and the cross correlations were measured along the
trajectories of n=104 observation time steps ∆t. Note that for all four cases we have
XCf <XCp, which means that the correction step of the EKF improves the forecast
using observations. Comparing the columns of Table 4.1, we observe that the skill of
the EKF decreases significantly when we increase ∆t. On the other hand, comparing
the rows of Table 4.1, we also observe that the skill of the EKF decreases significantly
when we increase r0.
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Fig. 4.1. The truth signal u1 is shown with the solid line, the prior forecast is shown with
pluses connected with a dotted line, and the posterior signal is shown with circles. The values of
∆t and r0 are shown on top of each panel. The corresponding cross correlations XCf and XCp are
given in Table 4.1. Note the different time scales for different ∆t.

Figure 4.2 shows the evolution of u2 together with the prior forecast and posterior
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Fig. 4.2. The truth signal u2 is shown with the solid line, the prior forecast is shown with
pluses connected with a dotted line, and the posterior signal is shown with circles. The values of
∆t and r0 are shown on top of each panel. The corresponding cross correlations XCf and XCp are
given in Table 4.2. Note the different time scales for different ∆t.

r0
∖

∆t 0.13 1.43

0.1 0.967 (0.955) 0.740 (0.544)
2.0 0.911 (0.897) 0.622 (0.357)

Table 4.2. EKF performance on u2: cross correlations XCp (between truth and posterior) and
XCf (in the parenthesis, between truth and prior). The segments of the corresponding trajectories
are shown in Figure 4.2.

signal.

Table 4.2 shows the cross correlations XCp and XCf that correspond to the tra-
jectories of u2 (shown partially in Figure 4.2). Here, we also note the decrease in the
skill of the EKF if larger ∆t or r0 are used. However, we should point out that if
the time step ∆t becomes significantly larger than the oscillation time T2 (in our case
∆t=1.43 and T2≈0.63) we observe very poor filter skill in u2 but not in u1, which
is still filtered quite well (compare XCp =0.855 for u1 in Table 4.1, with XCp =0.622
for u2 in Table 4.2 for ∆t=1.43 and r0 =2.0).

In Secs. 4.5 and 4.6, we present a thorough study of how the EKF performance
depends on the observation time step ∆t, observation variance r0, type of observations,
and the model that is used for the forecast.
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r0
∖

∆t 0.13 1.43

0.1 0.988 (0.985) 0.936 (0.921)
2.0 0.951 (0.950) 0.855 (0.856)

Table 4.3. EKF performance on u1: cross correlations XCp (between truth and posterior
without model error, i.e., a0 =1) and XCme (in the parenthesis, between truth and posterior with
model error, i.e., a0 =0). The segments of the corresponding trajectories are shown in Figure 4.3.

r0
∖

∆t 0.13 1.43

0.1 0.967 (0.864) 0.740 (0.543)
2.0 0.911 (0.618) 0.622 (0.436)

Table 4.4. EKF performance on u2: cross correlations XCp (between truth and posterior
without model error, i.e., a0 =1) and XCme (in the parenthesis, between truth and posterior with
model error, i.e., a0 =0). The segments of the corresponding trajectories are shown in Figure 4.4.

4.3. Filtering with model error. Here, we discuss how the filter perfor-
mance changes if we use the linearized model with a0 =0 as a prior forecast instead
of the exact nonlinear model with a0 6=0. In Figures 4.3 and 4.4, we show segments of
the trajectories of the truth signal together with two filtered signals, where one was
obtained using the exact model, and another one — using the linearized model. Here,
we had the same set of parameters that we used for generating Figures 4.1 and 4.2.
Similarly, we constructed Tables 4.3 and 4.4 with the values of the cross-correlation
XCp already discussed above and cross correlation XCme between the truth signal
and the posterior signal obtained via the linearized model, i.e., with model error.

We note that although by setting a0 =0 we seem to make u1 and u2 decoupled,
they still stay coupled through the mixed observations of type 1 or 2. Observations
of type 3 make mode u1 independent from mode u2 throughout the filtering process
with model error, i.e., with a0 =0. By comparing the filtered signals with the truth
trajectories, we conclude that model error is quite small in the filtering of u1 (Ta-
ble 4.3) regardless of the size of r0 or ∆t. Observations of type 1 were used here.
On the other hand, using the linearized model for the prior forecast drastically af-
fects the performance of filtering u2 — from Table 4.4, we conclude that XCp >XCme

for u2. Below, we will study how model error depends on the type of observations,
observation variance, and observation time step.

4.4. Filtering the linear model and the test of observability. In
Figure 4.5, we present the results of the numerical filtering of the linearized problem
with a0 =0. In this simulation, the truth signal was also computed via the linearized
version of equations (2.3) and (2.4), i.e., with a0 =0. Therefore, the Kalman filter
produces the optimal filtered signal and there is no model error in this simulation. In
Figure 4.5(a), we show the dependency of the RMSE on the observation time step ∆t.
In Figure 4.5(b), we demonstrate the corresponding dependency of det(O)−1 on ∆t.
We note the strong correlation between the two plots. The peaks that were predicted
by observability analysis (Figure 4.5(b)) are observed at the same locations on the
plot of RMSE of u1 (Figure 4.5(a)). Here, we have taken very small observation
variance r0 =0.002. Thus, we ensure that the filter tends to trust the observations
and, therefore, observability becomes crucial. We note that for the fully observable
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Fig. 4.3. The truth signal u1 is shown with the solid line, the posterior signal computed via
nonlinear forecast is shown with bold dashed line, and the posterior signal computed via linear forecast
is shown with the thin dashed line (note that in panel (d) the two dashed lines almost coincide).
The corresponding values of ∆t and r0 are shown on top of each panel. The corresponding cross
correlations XCp and XCme are given in Table 4.3. Note the different time scales for different ∆t.

case, i.e., with observations of type 3, there are no peaks at all. In that case, the
observation matrix G always has rank 3, regardless of ∆t. However, for observations
of types 1 and 2 we clearly see lack of observability around the values of ∆t predicted
by equation (3.9).

4.5. Filter performance as a function of observation time step. Next,
we study how performance of the EKF depends on the observation time step ∆t under
various conditions such as type of observations, observation variance, and the model
used in the prior forecast. As we studied above, for the linear model (a0 =0) the
dependence of the EKF performance on ∆t is strongly correlated with observability
properties of the EKF. Here, we will see how that result is reflected in filtering the
nonlinear model.

In Figure 4.6, we show the RMSE of the filtered solution of u1 compared with
the truth signal of u1. We have chosen three fixed values of observation variance:
r0 =0.002, r0 =0.256, r0 =2.048 (panels (a), (b), and (c) in Figure 4.6). For each r0,
we consider all three types of observations. Moreover, for each type of observation,
we used two models for the prior forecast: the perfect model with a0 =1 (the same
a0 that was used for creating the truth signal), and the linearized model with a0 =0
(with model error). As a result of this simulation, we draw the following conclusions:

1. The RMSE of u1 approaches some finite value as ∆t increases and r0 is fixed.
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Fig. 4.4. The truth signal u2 is shown with the solid line, the posterior signal computed via
nonlinear forecast is shown with the bold dashed line, and the posterior signal computed via linear
forecast is shown with the thin dashed line (note that in panel (d) the two dashed lines almost
coincide). The corresponding values of ∆t and r0 are shown on top of each panel. The corresponding
cross correlations XCp and XCme are given in Table 4.4. Note the different time scales for different
∆t.

2. For observations of types 1 and 2, the EKF performance becomes very poor
around the values of ∆t, where the linearized system has lack of observability,
whereas observations of type 3 make the EKF always fully observable.

3. A larger number of observations leads to better EKF performance regardless
of r0.

4. For observations of type 3, the RMSE is almost negligible for small r0 and
monotonically increases for larger r0.

5. The model error is much larger with smaller r0 and it becomes almost negli-
gible for larger r0 as ∆t increases.

6. For larger r0, the peaks that correspond to poor filter performance are less
sharp than for smaller r0, which is explained by the fact that observability is
less important with a larger observation error than with a smaller one since
greater weight is given to the dynamics.

We now study the dependence of the EKF performance on mode u2, which is shown
in Figure 4.7. We make the following observations after examining Figure 4.7:

1. The RMSE of u2 approaches some finite value as ∆t increases and r0 is fixed.
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Fig. 4.5. (a) The RMSE of u1 for three types of observations and observation variance r0 =
0.002 as a function of ∆t, (b) det(O)−1 as a function of ∆t (note the logarithmic scale of the
y-axis). Weak damping was used.

2. The RMSE of u2 is smaller when the number of observations is larger.

3. Observations of type 1 and 2 show lack of observability at the values of ∆t
predicted by observability analysis (equation (3.9)).

4. Observations of type 1 and 2 have an extra peak at ∆t≈T2/2, which also
corresponds to lack of observability at this time step (see a small peak at
∆t≈T2/2 in Figure 4.5(b)). This peak was absent in the corresponding plot
for u1.

5. For all ∆t, the difference among the types of observations becomes smaller
as r0 increases.

6. For all ∆t, the model error becomes smaller as r0 increases.

4.6. Filter performance as a function of observation variance. In this
Section, we study how the filter performance depends on r0 for the fixed observation
type and ∆t. In Figure 4.8, we demonstrate the RMSE of filtering u1 as a function
of r0 for three different values of ∆t. Let us point out the conclusions that we draw
from Figure 4.8:

1. The RMSE is a monotonically growing function of r0.

2. A larger number of observations lead to better EKF performance regardless
of ∆t.

3. In the limit r0→0, the RMSE of filtering with observations of types 1 and 2
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Fig. 4.6. The RMSE of u1 as a function of ∆t. Observations of type 1 (solid line), type 2
(dashed line), and type 3 (dashed-dotted line) with the nonlinear model (bold line) and the linearized
model with model error (ME, thin line) were used in the simulation. A fixed r0 (shown on top of
the corresponding panel) was used in each simulation.

converges to some finite positive value, which means that even if the obser-
vation error is negligible, the filter still does not reproduce the truth signal
because the observations of type 1 and 2 only carry partial information about
the truth signal.

4. Observations of type 3 lead to a vanishing error as r0→0.

5. As r0 grows, the difference in the RMSE for different observation types de-
creases. This is explained by the fact that EKF chooses to trust the dynamics
more when the observation error variance is large and, hence, the influence
of the observations on the filtered signal diminishes.

6. The RMSE for filtering with model error (a0 =0) increases as r0→0 for ∆t=
0.63 and observations of types 1 and 2 (thin solid and dashed lines in Figure
4.8(b)). For other values of ∆t (for which the corresponding linear system
is observable), the RMSE of filtering with model error is a monotonically
decreasing function of r0.

7. For observations of types 1 and 2, model error due to linearization (differ-
ence between the thick and thin solid (observations of type 1) and dashed
(observations of type 2) curves) is increasing as r0→0. This indicates that
the model error increases as r0 approaches 0. We will have a more thorough
study of the model error in section 4.7.
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Fig. 4.7. The RMSE of u2 as a function of ∆t. Observations of type 1 (solid line), type 2
(dashed line), and type 3 (dashed-dotted line) with the nonlinear model (bold line) and the linearized
model with model error (ME, thin line) were used in the simulation. A fixed r0 (shown on top of
the corresponding panel) was used in each simulation.

8. The model error is very small with observations of type 3 (thick and thin
dashed-dotted lines in Figure 4.8 almost coincide.)

Next, we note that the RMSE of u2 as a function of r0, shown in Figure 4.9,
behaves similarly to the RMSE of u1. However, the error in filtering the fast mode u2

is larger because the faster mode has more irregular time dynamics, which is harder to
capture from the observations with finite step ∆t. Moreover, the linearization (a0 =0)
introduces a larger model error in the dynamics of u2, since for u2 the dynamical
equation explicitly depends on a0, unlike for u1, where the dependence on a0 only
implicitly comes from observations.

4.7. Statistics of mean model error and individual realizations. Mean
model error statistics are a standard part of offline testing for Kalman filter perfor-
mance in linear models [1]. How useful are mean model error statistics as a qualitative
guideline for filter performance in nonlinear slow-fast systems? The exact solution for-
mulas for statistics in the test model allow us to address these issues here. Let us
now study the mean model error due to linearization. In section 3.4, we estimated
model error by following individual trajectories for a given observation type and the
set of parameters ∆t and r0, and then by measuring averaged model error along these
trajectories.

Now, we consider averaging over all possible ensembles of the random signal tra-
jectories as well as the random noise in observations. This way, we will obtain a fully
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Fig. 4.8. The RMSE of u1 as a function of r0. Observations of type 1 (solid line), type 2
(dashed line), and type 3 (dashed-dotted line) with the nonlinear model (bold line) and the linearized
model with model error (ME, thin line) were used in the simulation. A fixed ∆t (shown on top of
the corresponding panel) was used in each simulation.

deterministic system for estimating mean model error. The solution of this system
requires much less computational work than resolving a long individual trajectory and
then filtering it. As a result of the mean model error analysis, we expect to obtain
some indications of the model error along the individual trajectories.

Next, we describe the algorithm of measuring the mean model error. Note that
since we have the exact analytical formulas for the time evolution of the mean 〈u〉 of
the model in a nonlinear regime (a0 6=0), we can compute it, and, therefore, obtain the
truth signal for the mean. Moreover, we use the same formulas for 〈u〉 together with
the formulas for the evolution of the covariance but in the linearized form (a0 =0) to
produce a prior forecast.

ūm|m
a0=0−−−→ ūm+1|m, (4.4)

where we use the notation ū instead of 〈u〉 to distinguish between the filtering of
the mean signal and filtering of the individual random trajectories. The posterior
forecast in the mean model error estimation is made via the following reasoning. The
observations vm =Gum have mean zero, therefore after averaging over all possible
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Fig. 4.9. The RMSE of u2 as a function of ∆t. Observations of type 1 (solid line), type 2
(dashed line), and type 3 (dashed-dotted line) with the nonlinear model (bold line) and the linearized
model with model error (ME, thin line) were used in the simulation. A fixed ∆t (shown on top of
the corresponding panel) was used in each simulation.

trajectories we have v̄m =Gūm. The correction step of the filter becomes

ūm+1|m+1 = ūm+1|m +Km+1G(ūm+1− ūm+1|m), (4.5)

Γm+1|m+1 =(I3−Km+1G)Γm+1|m, (4.6)

Km+1 =Γm+1|mGT (GΓm+1|mGT +R0)−1. (4.7)

Note that the so-called off-line statistics Γ and K are computed by the same formulas
as for the individual trajectories, and only the update of the mean is different. It is
necessary to stress here that even though the Kalman filter algorithm for computing
the mean model error seems to be the same as for computing the filtered signal
of individual trajectories, in the mean model error analysis we do averaging prior to
filtering while previously, in the filtering the individual trajectories, we first performed
filtering and then did averaging.

In Figure 4.10, we demonstrate the time evolution of the mean (panels (a) and
(b)) and the covariance (panels (c)-(f)) of (ū1,ū2) and their corresponding filtered
values. Observations of type 1 were used. From Figure 4.10(a), we see that the error
in filtering ū1 is very small. On the other hand, the error in filtering ū2 is rather large
within the decorrelation time (∼1/γ1≈1/γ2) until both the truth signal ū2,m and the
filtered signal ū2,m|m converge to zero. The mean model error is characterized by the
measure of the difference between ūm and ūm|m, e.g., the cross covariance between
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Fig. 4.10. Mean model error. The solid line shows the truth values and the circles show the
filtered values. r0 =2.048, ∆t=2, and observations of type 1 were used.

the two of them. The various components of the truth covariance and posterior
covariance reach constant values within the decorrelation time. The difference between
the corresponding components of the truth and posterior covariance can be another
characteristic of the mean model error.

Next, we study what information about the mean model error is relevant to esti-
mating the model error in filtering individual trajectories, and what information can
be misleading. In Figure 4.11, we show the dependence of mean model error of the
slow mode u1 on the observation time step ∆t for three fixed values observation vari-
ance r0. As a measure of the mean model error, we have chosen the cross-correlation
XCM

1 between ū1,m and ū1,m|m along the typical decorrelation time (chosen to be
τ =30 from studying Figure 4.10, as it appears to be the typical relaxation time). On
the other hand, in Figure 4.12, we demonstrate the cross correlation XC1 between
the two signals 〈u1,m|m〉 filtered from the same individual trajectory: one computed
via the nonlinear dynamics (a0 6=0) and the other one computed via the linearized
dynamics (a0 =0). Moreover, in Figures 4.11 and 4.14, we show similar dependencies
of XCM

2 and XC2 on ∆t for the fast mode u2. It is very instructive to compare Figure
4.11 with Figure 4.12 and Figure 4.13 with Fig 4.14.

Below, we present the ideas about the model error that we can predict from the
mean model error analysis, i.e., the similarities between XCM

1 and XC1 and between
XCM

2 and XC2:

1. The model error is large at the values of ∆t that were predicted by observ-
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ability analysis.

2. The model error of filtering with observations of type 3 is much less that with
observations of type 1 and 2.

3. For larger r0, model error is less dependent on the type of observations.

4. Disregarding local oscillations, the model error for u2 first increases as ∆t
increases and then decreases. This does not mean that the filter skill improves
as ∆t increases, it just means that model error due to linearization becomes
less important.

5. For larger r0, observations of types 2 and 3 give almost same model error,
while observations of type 1 lead to larger model error.

Now, we point out the properties of the model error along individual trajectories
that are not predicted by the mean model error analysis

1. For smaller r0, observations of type 2 have larger model error than observa-
tions of type 1.

2. The measure of the model error is not predicted well quantitatively, although
the qualitative behavior is similar.

3. The dependence on ∆t appears to be quite smooth (especially for observations
of types 2 and 3), while the mean model error analysis predicts it to be more
oscillatory.
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Fig. 4.11. Mean model error of u1. Observations of type 1 (solid line), type 2 (dashed line),
and type 3 (dashed-dotted line) are shown.

What is particularly striking here is the strong correlation of the mean model
error for the fast mode u2, from Figure 4.13, with observations of types 1 and 2 (the
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Fig. 4.12. Model error of u1. Observations of type 1 (solid line), type 2 (dashed line), and type
3 (dashed-dotted line) are shown.

two larger observational noises) with the non-Gaussianity in the truth signal displayed
in Figures 2.5 and 2.6. With larger observational noise, the Kalman filter trusts the
Gaussian dynamics of the linearized model significantly, so there are larger mean
model errors on the faster mode, even with three observations here.

Next, we study if the dependence of the mean model error on r0 can provide any
guidelines about the model error of the individual trajectories. We compare Figure
4.15 with Figure 4.16 for u1 and Figure 4.17 with Figure 4.18 for u2. Here, we outline
the properties of the model error that follow from the mean model error analysis.

1. The model error of u1 decreases as r0 increases except for very small r0 and
observations of type 3, where the model error vanishes as r0→0.

2. Observations of type 3 have the smallest model error in u1.

3. The model error of u2 grows as r0 increases (note opposite behavior for u1).

4. The model error becomes independent of the observation type as both ∆t
and r0 increase.

On the other hand, we note that there are a few facts about the model error that are
not reflected in mean model error analysis

1. For small ∆t=0.13, observations of type 1 show better filtering skill than
observations of type 2 for r0 greater than some value (compare the solid and
dashed lines in Figure 4.16(a)) (r0 >0.7.)

2. For bigger ∆t=0.63, observations of type 1 show better filtering skill than
observations of type 2 for r0 smaller than some value (compare the solid and
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Fig. 4.13. Mean model error of u2. Observations of type 1 (solid line), type 2 (dashed line),
and type 3 (dashed-dotted line) are shown.

dashed lines in Figure 4.16(b)) (r0 <0.8)

3. The mean model error analysis only provides qualitative estimates about the
model error.

5. Concluding discussion

In the introduction, we motivated the need to develop a simple nonlinear test
model for filtering slow-fast systems and introduced a nonlinear three dimensional
real stochastic triad model as the simplest prototype model for slow-fast systems.
In section 2, we established analytic non-Gaussian nonlinear statistical properties of
the model including exact formulas for the propagating mean and covariance. An
exact nonlinear extended Kalman filter (EKF) for the slow-fast system and a linear
Kalman filter with a non-trivial model error on the fast dynamics through linearization
at the climitological mean state were introduced in section 3. Various aspects of
filter performance for these two filters were discussed in section 4. While there were
detailed summaries in section 4, it is useful to summarize several features of the filter
performance.

First, the partial observations of type 1 and 2 were designed to mix both slow
and fast modes as occurs in many practical applications. The theoretical analysis of
observability in section 3.4.1 lead us to predict deteriorating filter skill in the vicinity of
the non-observable times for observations of type 1 and 2 predicted by equation (3.9);
this prediction is confirmed for both the linear and nonlinear filters in Figures 4.5-
4.7 for small and moderate observational noise. On the other hand, for observation
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Fig. 4.14. Model error of u2. Observations of type 1 (solid line), type 2 (dashed line), and type
3 (dashed-dotted line) are shown.

time steps ∆t, which are away from the non-observable ones and either shorter or
longer than the fast oscillation period, as reported in section 4.2, the nonlinear EKF
always has significant skill on the slow mode u1 for observations of type 1, which mix
the slow and fast modes, and retains non-trivial skill for the fast modes (Tables 4.1
and 4.2); on the other hand, the linear filter with model error retains the significant
filter skill of the nonlinear model for the slow mode (Table 4.3) but the filter skill for
the fast mode deteriorates significantly (Table 4.4). The slow mode in the nonlinear
test model has an exact linear slow manifold [27] and the filter skill with model error
on the slow mode reflects this fact; nevertheless, these results here suggest interesting
possibilities for filtering slow-fast systems by linear systems with model error [15, 16]
when only estimates of the slow dynamics are required in an application. Finally,
in section 4.7, we compared the exact nonlinear analysis for filtering skill through
offline (super)ensemble mean model error in the test model with the actual filter
performance for individual realizations discussed throughout the paper, since such
offline tests can provide important guidelines for filter performance [1, 22, 4, 14]. It is
established in section 4.7 that the offline mean model error analysis for the nonlinear
test model provides very good qualitative guidelines for the actual filter performance
on individual signals with some discrepancies discussed in detail there.

In future work, the authors plan to utilize the nonlinear test model with non-
trivial forcing of the fast waves, f2(t) 6=0 in equation (1.2), to develop filters with
significant skill for both the slow mode and the slow envelope of the fast modes.
As noted earlier in the introduction, this is an important problem for filter skill in
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Fig. 4.15. Mean model error of u1. Observations of type 1 ( solid line), type 2 (dashed line),
and type 3 (dashed-dotted line) are shown.

contemporary meteorology where on mesoscales, slow and fast modes are coupled
nonlinearly through moist convection [17].
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Appendix A. Computation of cross-covariances. In this Appendix, we
compute the cross-covariances Cov(u2,u

∗
2) and Cov(u2,u1). For Cov(u2,u

∗
2) we find

Cov(u2,u
∗
2)=

〈

(u2−〈u2〉)(u2−〈u2〉)
〉

= 〈u2
2〉−〈u2〉2 =e−2γ2(t−t0)〈ψ2u2

20〉−〈u2〉2,

where

〈ψ2u2
20〉=ψ2

D〈ψ2
W 〉〈u2

20 exp(i2bu10)〉. (A.1)
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Fig. 4.16. Model error of u1. Observations of type 1 ( solid line), type 2 (dashed line), and
type 3 (dashed-dotted line) are shown.

Next, for Cov(u2,u1) we obtain

Cov(u2,u1)=
〈

(u2−〈u2〉)(u1−〈u1〉)
〉

=
〈(

e−γ2(t−t0)[ψ(t0,t)u20−〈ψ(t0,t)u20〉]

+σ2

∫ t

t0

e−γ2(t−s)ψ(s,t)dW2(s)
)(

[u10−〈u10〉]e−γ1(t−t0) +σ1

∫ t

t0

e−γ1(t−s)dW1(s)
)〉

=e−(γ1+γ2)(t−t0)[〈u10u20ψ(t0,t)〉−〈u10〉〈u20ψ(t0,t)〉]

+σ1e
−γ2(t−t0)

〈

∫ t

t0

e−γ1(t−s)dW1(s)u20ψ(t0,t)
〉

In order to compute the last term, we note that

∂

∂t

〈

exp(iJW (t0,t))
〉

=σ1a0
∂

∂t

〈

exp
(

i

∫ t

t0

ds

∫ s

t0

e−γ1(s−s′)dW1(s
′)

)〉

= iσ1a0

〈

exp(iJW (t0,t))

∫ t

t0

e−γ1(t−s′)dW1(s
′)

〉

.

On the other hand, we obtain

∂

∂t

〈

exp(iJW (t0,t))
〉

=−1

2
exp

(1

2
Var(JW (t0,t))

) ∂

∂t

(

Var(JW (t0,t))
)

.
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Fig. 4.17. Mean model error of u2. Observations of type 1 ( solid line), type 2 (dashed line),
and type 3 (dashed-dotted line) are shown.

Finally, we obtain

Cov(u2,u1)=ψD〈ψW 〉e−(γ1+γ2)(t−t0)
(

〈u10u20 exp(ibu10)〉−〈u10〉〈u20 exp(ibu10)〉
)

+
i

2
ψD〈ψW 〉e−γ2(t−t0)

1

a0

∂

∂t

(

Var(JW (t0,t))
)

〈u20 exp(ibu10)〉. (A.2)

Note that 〈u20 exp(ibu10)〉 is given by equation (2.33). In order to find aver-
ages 〈u2

20 exp(i2bu10)〉 and 〈u10u20 exp(ibu10)〉, we use the real representation given
by equations (2.25)–(2.27), which reduces the problem to computing the real-
valued averages 〈x0y0exp(ibx0)〉, 〈x0z0 exp(ibx0)〉, 〈y2

0 exp(i2bx0)〉, 〈z2
0 exp(i2bx0)〉,

〈y0z0exp(i2bx0)〉. Using the definition of the characteristic function (2.21), we find
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Fig. 4.18. Model error of u2. Observations of type 1 ( solid line), type 2 (dashed line), and
type 3 (dashed-dotted line) are shown.

〈x0y0 exp(ibx0)〉=−∂2φv(s)

∂s1∂s2

∣

∣

∣

∣

∣

s=(b,0,0)T

,

〈x0z0 exp(ibx0)〉=−∂2φv(s)

∂s1∂s3

∣

∣

∣

∣

∣

s=(b,0,0)T

,

〈y2
0 exp(i2bx0)〉=−∂2φv(s)

∂s2
2

∣

∣

∣

∣

∣

s=(2b,0,0)T

,

〈z2
0 exp(i2bx0)〉=−∂2φv(s)

∂s2
3

∣

∣

∣

∣

∣

s=(2b,0,0)T

,

〈y0z0exp(i2bx0)〉=−∂2φv(s)

∂s2∂s3

∣

∣

∣

∣

∣

s=(2b,0,0)T

.

For a Gaussian vector v=(x0,y0,z0)
T and any complex vector s=(s1,s2,s3)

T , we
have a characteristic function in the form

φv(s)=

∫

exp(isT v)g〈v〉,Σ(v)dv, (A.3)



BORIS GERSHGORIN AND ANDREW MAJDA 647

where mean is given by

〈v〉=(〈x0〉,〈y0〉,〈z0〉)T , (A.4)

and covariance matrix is given by

Σ=





Var(x0) Cov(x0,y0) Cov(x0,z0)
Cov(x0,y0) Var(y0) Cov(y0,z0)
Cov(x0,z0) Cov(y0,z0) Var(z0)



 .

If we expand the inner products, we obtain

φv(s)=exp

(

i(s1〈x0〉+s2〈y0〉+s3〈z0〉)−
1

2

(

Var(x0)s
2
1 +Var(y0)s

2
2 +Var(z0)s

2
3

)

)

×exp
(

−Cov(x0,y0)s1s2−Cov(x0,z0)s1s3−Cov(y0,z0)s2s3

)

. (A.5)

After evaluating the partial derivatives of the characteristic function at the prescribed
points, we find the following equations
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∂2φv(s)

∂s1∂s2
=−Cov(x0,y0)φv(s)+

(

i〈x0〉−Var(x0)s1−Cov(x0,y0)s2−Cov(x0,z0)s3

)

×
(

i〈y0〉−Var(y0)s2−Cov(x0,y0)s1−Cov(y0,z0)s3

)

φv(s),

∂2φv(s)

∂s1∂s3
=−Cov(x0,z0)φv(s)+

(

i〈x0〉−Var(x0)s1−Cov(x0,y0)s2−Cov(x0,z0)s3

)

×
(

i〈z0〉−Var(z0)s3−Cov(x0,z0)s1−Cov(y0,z0)s2

)

φv(s),

∂2φv(s)

∂s2
2

=

(

−Var(y0)+
(

i〈y0〉−Var(y0)s2−Cov(x0,y0)s1−Cov(y0,z0)s3

)2
)

φv(s),

∂2φv(s)

∂s2
3

=

(

−Var(z0)+
(

i〈z0〉−Var(z0)s3−Cov(x0,z0)s1−Cov(y0,z0)s2

)2
)

φv(s),

∂2φv(s)

∂s2∂s3
=−Cov(y0,z0)φv(s)+

(

i〈y0〉−Var(y0)s2−Cov(x0,y0)s1−Cov(y0,z0)s3

)

×
(

i〈z0〉−Var(z0)s3−Cov(x0,z0)s1−Cov(y0,z0)s2

)

φv(s),

Finally, we obtain the following averages

〈x0y0exp(ibx0)〉=
(

Cov(x0,y0)−
(

i〈x0〉−Var(x0)b
)(

i〈y0〉−Cov(x0,y0)b
)

)

×exp

(

ib〈x0〉−
1

2
Var(x0)b

2

)

,

〈x0z0 exp(ibx0)〉=
(

Cov(x0,z0)−
(

i〈x0〉−Var(x0)b
)(

i〈z0〉−Cov(x0,z0)b
)

)

×exp

(

ib〈x0〉−
1

2
Var(x0)b

2

)

,

〈y2
0 exp(i2bx0)〉=

(

Var(y0)−
(

i〈y0〉−Cov(x0,y0)2b
)2

)

×exp
(

i2b〈x0〉−2Var(x0)b
2
)

,

〈z2
0 exp(i2bx0)〉=

(

Var(z0)−
(

i〈z0〉−Cov(x0,z0)2b
)2

)

×exp
(

i2b〈x0〉−2Var(x0)b
2
)

,

〈y0z0 exp(i2bx0)〉=
(

Cov(y0,z0)−
(

i〈y0〉−Cov(x0,y0)2b
)(

i〈z0〉−Cov(x0,z0)2b
)

)

×exp
(

i2b〈x0〉−2Var(x0)b
2
)

,

Next, we use the following properties of the covariances

Cov(u2,u
∗
2)=Var(y)−Var(z)+2iCov(y,z), (A.6)

Cov(u2,u1)=Cov(x,y)+ iCov(x,z), (A.7)
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to obtain

〈u10u20 exp(ibu10)〉

=

(

〈u10〉〈u20〉+Cov(u20,u10)+ ib
(

〈u10〉Cov(u20,u10)+〈u20〉Var(u10)
)

−b2Var(u10)Cov(u20,u10)

)

exp

(

ib〈u10〉−
1

2
b2Var(u10)

)

, (A.8)

〈u2
20 exp(i2bu10)〉

=
(

Cov(u20,u
∗
20)+〈u20〉2 +4bi〈u20〉Cov(u20,u10)−4b2Cov(u20,u10)

2
)

×exp
(

i2b〈u10〉−2b2Var(u10)
)

. (A.9)
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