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GLOBAL EXISTENCE OF SOLUTIONS TO THE EINSTEIN

EQUATIONS WITH COSMOLOGICAL CONSTANT FOR A

PERFECT RELATIVISTIC FLUID ON A BIANCHI TYPE-I

SPACE-TIME∗

NORBERT NOUTCHEGUEME† AND L.R. GADJOU TAMGHE‡

Abstract. Global existence is proved in the case of positive cosmological constant, and asymp-
totic behavior is investigated.
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1. Introduction

Global dynamics of relativistic plasmas remains an open research area in General
Relativity. In the relativistic kinetic theory, a “plasma” is a collection of fast-moving
particles of several species evolving under the action of self-created natural forces.
Such physical situations arise for instance in some media at very high temperature
such as in burning reactors, nebular galaxies, solar winds, etc., where massive par-
ticles of ionized gas evolve with very high velocities under the action of both their
common gravitational field and self-created electromagnetic forces. Physicists are now
convinced that 99% of matter is at the state of plasma.

In this paper, we study the global evolution of an uncharged perfect fluid of pure
radiation type, the background space-time being a Bianchi type-I space-time, which is
a generalization of the Robertson-Walker space-time, considered to be the basic space-
time in cosmology, where homogeneous phenomena such as the one we consider here
are relevant. The evolution is governed by the Einstein equations for the gravitational
field. Our motivation for considering the cosmological constant Λ is twofold: from
the point of view of astrophysics, present measurements based on previous works with
Λ>0 show that data on very distant astronomical objects such as supernovae of type-
Ia can be determined precisely; from a mathematical point of view, previous works
with Λ>0 show that the expansion of the universe is accelerating at late times. For
more details on the cosmological constant, see [2].

The Einstein theory stipulates that the gravitational field ,which in the case we
consider depends on two real-valued functions a and b, of the single variable t, is
determined, through the Einstein equations, by the material content of the space-
time, which in our case is represented by a stress-matter tensor defined by the matter
density ρ. The Einstein equations, coupled to the conservation laws, turn out to be a
differential system to determine a, b , and ρ.

The Einstein theory stipulates that the gravitational field, which in the case
we consider depends on two real-valued functions a and b of a single variable t, is
determined through the Einstein equations coupled to the conservation laws, which
turns out to be a differential system to determine a,b and the matter density ρ.

We show that if Λ<0, there can exist no global solution. We show that if Λ≥0
then by a suitable change of variables and choice of initial data, there exists a global
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496 GLOBAL EXISTENCE OF SOLUTIONS TO THE EINSTEIN EQUATIONS

solution. Moreover, we show, by studying the asymptotic behavior, that the space-
time tends to the vacuum at later times, regardless to the size of the initial data. The
present work differs from [3] in the sense that here we consider the Einstein equations
with the cosmological constant, and we don’t consider the aspect distribution of the
matter.

The paper is organized as follows: In Section 2, we state the Einstein equations
with cosmological constant as in [1], and we establish the differential system in a,b

and ρ. We also give some preliminary results. In Section 3, we prove global existence
and we specify some cases where there cannot exist global solutions. In Section 4, we
investigate the asymptotic behavior in the case of global existence.

2. Equations and preliminary results

Unless otherwise specified, Greek indices α,β,γ..., range from 0 to 3 and Latin
indices i,j,k..., range from 1 to 3. We adopt the Einstein summation convention:

aαbα ≡
∑

α

aαbα.

2.1. The Einstein equations. We consider the Bianchi type-I space-time
(R4,g) and we denote by xα =(x0,xi) the usual coordinates in R

4; g stands for the
metric tensor of signature (−,+,+,+) which can be written:

g =−dt2 +a2(t)(dx1)2 +b2(t)[(dx2)2 +(dx3)2], (2.1)

where a>0 and b>0 are unknown functions of the single variable t=x0. The Einstein
equations for the metric tensor g =(gαβ), can be written, following [1]:

Rαβ −
1

2
gαβR+Λgαβ =8πTαβ , (2.2)

where Rαβ is the Ricci tensor, contracted from the curvature tensor, R=gαβRαβ is the
scalar curvature, contracted of the Ricci tensor, Λ is a constant called the cosmological
constant, and Tαβ is the stress matter tensor, which represents the material content
of space-time.

The general expression of the stress matter tensor of a relativistic perfect fluid is,
in the chosen signature of g:

Tαβ =(ρ+p)uαuβ +pgαβ ,

where ρ≥0 and p≥0 are unknown functions of t representing respectively the matter
density and the pressure.

We consider a perfect fluid of pure radiation type, which means that p= ρ
3 . The

matter tensor then can be written as:

Tαβ =
4

3
ρuαuβ +

1

3
ρgαβ , (2.3)

where u=(uα) is a unit vector tangent to the geodesics of g.
In order to simplify, we consider a frame in which the fluid is spatially at rest.

This implies ui =ui =0. Recall that indices are raised and lowered using the usual
rules: V α =gαβVβ ;Vα =gαβV β ,(gαβ) standing for the inverse matrix of (gαβ).

Solving the Einstein equations (2.2) consists of determining, on one hand, the
gravitational field represented by the metric tensor g =(gαβ) defined by the two un-
known functions a>0 and b>0, and, on the other hand, its source represented by the
matter density ρ.
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We deduce from the expression of g given by (2.1) that:










g00 =−1,g11 =a2,g22 =g33 = b2

g00 =−1,g11 = 1
a2 ,g22 =g33 = 1

b2

gαβ =gαβ =0 if α 6=β

(2.4)

the Christoffel symbols of g are given by:

Γλ
αβ =

1

2
gλµ [∂αgµβ +∂βgαµ−∂µgαβ ]. (2.5)

Recall that Γλ
αβ =Γλ

βα. Expression (2.4) of gαβ and gαβ shows that the only non-

vanishing Christoffel symbols are Γi
i0 and Γ0

ii,i=1,2,3. A direct calculation, using
(2.4) and (2.5) gives:

{

Γ1
10 = ȧ

a
,Γ2

20 =Γ3
30 = ḃ

b
,Γ0

11 = ȧa,Γ0
22 =Γ0

33 = ḃb

Γλ
αβ =0 otherwise

(2.6)

where the dot stands for differentiation with respect to t.
The components of the Ricci tensor Rαβ are given by

Rαβ =
(

∂λΓλ
βα−∂βΓλ

λα

)

+
(

Γλ
λσΓσ

αβ −Γλ
βσΓσ

λα

)

. (2.7)

Hence, using (2.4),(2.6),(2.7), T00 =ρ,T11 = 1
3ρa2,T22 =T33 = 1

3ρb2,Tαβ =0,
if α 6=β, the Einstein equations (2.2) give the following system in a,b:

(

ḃ

b

)2

+2
ȧ

a

ḃ

b
−Λ=8πρ (2.8)

2
b̈

b
+

(

ḃ

b

)2

−Λ=−8

3
πρ (2.9)

ä

a
+

b̈

b
+

ȧ

a

ḃ

b
−Λ=−8

3
πρ. (2.10)

2.2. Determination of ρ.

Proposition 2.1.

ρ=ρ(0)

(

a(0)b(0)2

ab2

)

4

3

. (2.11)

Proof. We use the conservation laws ∇αTαβ =0, where ∇α is the usual covariant
derivative in g. Expression (2.3) for Tαβ , where indices are raised by g, then gives,
using the transparency of gαβ :

∇α

(

4

3
ρuαuβ +

1

3
ρgαβ

)

=4∇α

(

ρuαuβ
)

+gαβ∇αρ=0,

4
[

uβ∇α (ρuα)+ρuα∇αuβ
]

+gαβ∇αρ=0. (2.12)

Now, differentiating uβuβ =−1 yields uβ∇αuβ =0. The contracted multiplication
of (2.12) by uβ then gives 4(−∇α (ρuα))+uα∇αρ=0, i.e., using (2.6):

−4[∂α (ρuα)+Γα
αλρuα]+uα∇αρ=−4

(

∂0

(

ρu0
)

+Γi
i0ρu0

)

+u0∂0ρ=0,
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i.e.,

−4∂0

(

ρu0
)

−4

(

ȧ

a
+2

ḃ

b

)

ρu0 +u0∂0ρ=0. (2.13)

But u=(uα) is a unit vector, then uβuβ =−1; since ui =ui =0, we have
(

u0
)2

=

(u0)
2
=1, so u0 is constant and different from 0. Simplifying (2.13) by u0 6=0 gives:

∂0ρ+A(t)ρ=0, (2.14)

where:

A(t)=
4

3

(

ȧ

a
+2

ḃ

b

)

(t). (2.15)

Then, multiply (2.14) by exp
(

∫ t

0
A(s)ds

)

, integrate over [0,t], and use (2.15) to obtain

(2.11).

2.3. The Cauchy problem. The system (2.8)–(2.9)–(2.10) is a system of
second order non-linear differential equations in a and b. Also consider the expression
(2.11) for ρ. We suppose that a0 >0,b0 >0, ȧ0∈R, where ḃ0∈R and ρ0≥0, are given
real numbers, and we look for solutions a,b,ρ of the Einstein equations satisfying:

a(0)=a0;b(0)= b0; ȧ(0)= ȧ0; ḃ(0)= ḃ0;ρ(0)=ρ0. (2.16)

Our aim is to prove the global existence of solutions on [0,+∞[ of the above Cauchy
problem; i.e., we are looking for global solutions satisfying the initial conditions (2.16).
The values prescribed at t=0 will be called initial data. (2.11) shows that the matter
density ρ will be determined by:

ρ=ρ0

(

a0b
2
0

ab2

)

4

3

, (2.17)

which shows that ρ is known once a and b are known.
It is well-known that the Einstein equation (2.8), called the Hamiltonian con-

straint, is satisfied over the entire domain of the solutions a,b,ρ if and only if (2.8) is
satisfied for t=0, i.e., if the initial data a0,b0, ȧ0, ḃ0,ρ0 satisfy the initial constraint

(

ḃ0

b0

)2

+2
ȧ0

a0

ḃ0

b0
−Λ=8πρ0. (2.18)

Remark 2.2. (2.9) and (2.10) are called the evolution equations, and in what follows,
we suppose that the initial data satisfy (2.18). We will then use the Hamiltonian
constraint (2.8) as a property of the solutions.

3. Global existence of solutions

3.1. Change of variables and preliminary properties. In order to have a
differential system of first order, we set:

u=
ȧ

a
; v =

ḃ

b
. (3.1)
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Then u̇= ä
a
−u2; v̇ = b̈

b
−v2. Hence, the evolution equations (2.9), (2.10) can be written

in terms of u and v:

2v̇+3v2−Λ=−8

3
πρ, (3.2)

u̇+ v̇+u2 +v2 +uv−Λ=−8

3
πρ. (3.3)

We look for solutions (u,v) for (3.2)–(3.3) satisfying at t=0, and following the change
of variables (3.1):

u(0)=u0; v(0)=v0; with : u0 =
ȧ0

a0
;v0 =

ḃ0

b0
. (3.4)

Notice that the system (2.9)–(2.10) in (a,b) and the system (3.2)–(3.3) in (u,v) are
equivalent in the sense that (2.9)–(2.10) imply (3.2)–(3.3), and, conversely, the knowl-

edge of u= ȧ
a

and v = ḃ
b

gives a,b by direct integration.
We will need the Hamiltonian constraint (2.8) which in terms of u and v is

v2 +2uv−Λ=8πρ. (3.5)

Now we eliminate ρ from the above equations.
First multiply (3.2) by 3, add the result to (3.5) and deduce v̇; next, subtracting

(3.2) from (3.3) and using the value of v̇ given by the previous operation yields the
system:

u̇=
1

3
v2−u2− 4

3
uv+

2

3
Λ, (3.6)

v̇ =−5

3
v2− 1

3
uv+

2

3
Λ. (3.7)

We will study system (3.6)–(3.7) in (u,v) with the initial data (3.4). We first establish
some properties.

Subtracting (3.2) from (3.3) gives:

(u̇− v̇)+(u−v)(u+2v)=0.

Solving this as an ordinary differential equation (ODE) in (u−v) gives:

u−v =(u0−v0)exp

(

−
∫ t

0

(u+2v)(s)ds

)

, (3.8)

which shows that u−v has the constant sign of u0−v0. Next, evaluating Λ in (3.5)
gives 2

3Λ= 2
3

(

v2 +2uv−8πρ
)

, which, substituted in (3.6) and (3.7) gives, using ρ≥0,
the inequalities

u̇≤−(u−v)(u+v), (3.9)

v̇≤v (u−v). (3.10)

Next, we prove:

Lemma 3.1. Let (u,v) be a solution of (3.4)–(3.6)–(3.7) such that u(t0)=0 for some
t0≥0. Suppose Λ≥0, and, in the case Λ=0, suppose in addition that u0 6=v0. Then
u is increasing in a neighborhood of t0, and u≥0 if u0 >0.
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Proof. Evaluating (3.6) at t0 gives, since u(t0)=0: u̇(t0)= 1
3v2(t0)+ 2

3Λ; then,
if Λ>0, we have u̇(t0)≥ 2

3Λ>0; if Λ=0; then u̇(t0)= 1
3v2(t0); by hypothesis, we

suppose in this case that u0 6=v0; (3.8) then implies v2(t0) 6=u2(t0)=0. So we have,
in all cases that u̇(t0)>0. Now the solution u is of class C1, i.e. u̇ is continuous.
The continuity of u̇ at t= t0 implies that ∃δ >0 such that |t− t0|<δ⇒|u̇(t)− u̇(t0)|<
u̇(t0)

2 ; hence, |t− t0|<δ⇒ u̇(t)>
u̇(t0)

2 >0, which implies u̇>0 over the neighborhood
Iδ =]t0−δ,t0 +δ[ of t0. Hence, u is increasing over Iδ.

Let t0≥0 be any point such that u(t0)=0. By 1), there exists δ >0 such that
(t0≤ t<t0 +δ)⇒ (u(t)≥u(t0)=0). We then conclude that, if u(0)=u0 >0, then u

remains positive.

We end this section by recalling the following well-known result:

Lemma 3.2. Let x and y be 2 real-valued differentiable functions of t satisfying:











ẋ≤−αx2

ẏ =−αy2

x(t0)=y(t0),

where α>0 is a constant and t0 a given value of t. Then:

x(t)≤y(t) for t≥ t0.

Remark 3.3. The initial constraint (2.18) may also be written as

(

ȧ0

a0
+

ḃ0

b0

)2

=Λ+8πρ0 +

(

ȧ0

a0

)2

which implies, since the left hand side is positive:

Λ∈ [−8πρ0−
(

ȧ0

a0

)2

,+∞[. (3.11)

By the classical theory on first order differential systems, the Cauchy problem for
the system (3.6)-(3.7) in (u,v) has a unique local solution (u,v). The problem we
want to solve here is to prove whether or not this solution is global, i.e., defined over
the whole interval [0,+∞[. We suppose ρ0 >0 in what follows. Expression (2.17) of
ρ then implies ρ>0, since a0 >0, b0 >0, a>0, b>0.

3.2. Global existence of solutions. We first prove:

Proposition 3.4. If Λ∈ [−8πρ0−
(

ȧ0

a0

)2

,0[, then there can exist no global solutions

to the Einstein equations.

If Λ≥0,v0 <0 and u0 >0, then there can exist no global solutions to the Einstein
equations.

Proof. Recall that the lower bound of Λ is provided by (3.11). Suppose that there
exists a global solution (a,b), a>0, b>0 on [0,+∞[ to the Einstein equations. The
evolution equations (2.9),(2.10) show that a and b are of class C2. Then the change of
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variables (3.1) shows that u and v are of class C1 on [0,+∞[. Now (3.2) gives, since
ρ≥0, v̇≤− 3

2v2 +Λ, and this implies, since Λ<0, that

v̇≤−3

2
v2, (3.12)

v̇ ≤Λ. (3.13)

Integrating (3.13) over [0,t],t≥0 gives: v(t)≤v0 +Λt, which implies that

v(t)→−∞ when t→+∞.

So there exists t0 such that v(t0)<0. Now let w be a function satisfying

ẇ =−3

2
w2, (3.14)

w(t0)=v(t0)<0. (3.15)

Applying Lemma 3.2 with α= 3
2 to (3.12)–(3.14)–(3.15) gives:

v(t)≤w(t), t≥ t0. (3.16)

Equation (3.14) also shows that ẇ≤0; so w is decreasing and hence

w(t)≤w(t0)<0, t≥ t0.

So w does not vanish on ]−∞,t0]. Separating (3.14) and integrating over [t0,t],t≥ t0,
gives:

w(t)=
2
3

2
3

1
v(t0)

+(t− t0)
. (3.17)

But (3.17) shows that

w(t)→−∞ when t→< t∗, where t∗ = t0−
2

3v(t0)
>t0

since v(t0)<0. And (3.16) implies that v(t)→−∞ when t→< t∗. But this doesn’t
make sense since v, being of class C1 over [0+∞[, is continuous on [0+∞[, and so
should remain bounded on every line segment such as [t0,t

∗]. We conclude that there
cannot exist global solutions in the case Λ<0.

Also suppose that there exists a global solution a>0, b>0 to the Einstein equa-
tions and consider (3.1). The Hamiltonian constraint (3.5) written as

v(v+2u)=8πρ+Λ

implies, since ρ>0,Λ≥0, that v(v+2u)>0. This implies that v cannot vanish. We
then conclude, since v is continuous that

(v(0)=v0 <0)⇒ (v <0) .

Now we have v0 <0<u0, so u0 6=v0, and by Lemma 3.1, conculsion 2); (u0 >0)⇒
(u≥0) The inequality (3.10) then implies:

v̇≤v (u−v)=vu−v2≤−v2
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so that we have:
{

v̇≤−v2

v <0.

We then proceed as in 1), applying Lemma 3.3 with α=1 to conclude that there can
exist no global solution in this case.

Theorem 3.5. Suppose Λ≥0. Then, if v0 >0, there exists a global solution to the
Einstein equations.

Proof. We know that there exists a local solution (u,v) to the system (3.4)–(3.6)-
(3.7). By the theory of first order differential systems, to show that this solution is
global, it will be enough to prove that any solution of the Cauchy problem (3.4)–
(3.6)-(3.7) remains uniformly bounded.

Suppose u0 <v0. Then, by 3.8, u<v. As we saw before, since ρ>0 and Λ≥0, we
deduce from (3.5) that v (v+2u)>0. This implies that v and v+2u do not vanish,
and have the same sign. Since v is continuous and doesn’t vanish:

(v(0)=v0 >0)⇒ (v >0) . (3.18)

But v and v+2u have the same sign, so:

v+2u>0. (3.19)

Now, since v >0 and u<v, the inequality (3.10) implies v̇ <0, so v is decreasing and
v≤v0. We then conclude, using (3.19), that:

−v0

2
<u<v≤v0,

which shows that the solution (u,v) remains bounded.
Suppose u0≥v0. Then, by 3.8, u≥v. Since v0 >0, (3.18) implies

0<v≤u. (3.20)

(3.20) shows that v >0 and u>0, hence u+v >0, and since u−v≥0, the inequality
(3.9) implies u̇≤0. So u is decreasing, which implies that u≤u0. We then have finally:

0<v≤u≤u0,

which shows that the solution (u,v) remains uniformly bounded. This completes the
proof of Theorem 3.5.

4. Asymptotic behavior

We prove:

Theorem 4.1. Suppose Λ≥0 and 0<u0≤v0. Then the space-time
(

R
4,gαβ ,Tαβ

)

,

which exists globally, tends to the vacuum at late times.

Proof. We have to prove that

Tαβ(t)−→0 when t→+∞.
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Case Λ>0

The Hamiltonian constraint (2.8), written
(

ȧ
a
+ ḃ

b

)2

=8πρ+Λ+
(

ȧ
a

)2
, implies, since

ρ>0, that

(

ȧ

a
+

ḃ

b

)2

≥Λ>0. (4.1)

Now, since Λ 6=0 and 0<u0≤v0, (3.8) and Lemma 3.1, conculsion 2), imply that

0≤u≤v, so we have that u= ȧ
a
≥0 and v = ḃ

b
≥0 and (4.1) gives

ȧ

a
+

ḃ

b
≥
√

Λ (4.2)

since ȧ
a
≥0, ḃ

b
≥0, (4.2) also implies for α,β constant:

α
ȧ

a
+β

ḃ

b
≥
√

Λ, α≥1 β≥1. (4.3)

Integrating (4.3) over [0,t],t≥0 gives:

aα(t)bβ(t)≥aα
0 b

β
0 exp

(√
Λt

)

,

which shows an exponential growth in the case Λ>0, and implies:

aα(t)bβ(t)→+∞ when t→+∞; with α≥1 β≥1. (4.4)

Hence, expression (2.17) of ρ shows, taking α= 4
3 , β = 8

3 , that:

ρ(t)=ρ0

(

a0b
2
0

)
4

3

(

a− 4

3 b−
8

3

)

(t)→0 when t→+∞.

Then T00 =ρ→0 when t→+∞. For the common value of T22 and T33, taking
α=4, β =2 in (4.4):

T22 =
1

3
ρb2(t)=

1

3
ρ0

(

a0b
2
0

)
4

3 b2a− 4

3 b−
8

3 (t)=
ρ0

3

(

a0b
2
0

)
4

3 a− 4

3 b−
2

3 (t)

=
1

3
ρ0

(

a0b
2
0

)
4

3
(

a4b2
)− 1

3 →0 when t→+∞. (4.5)

Finally, since (u0≤v0)⇒ (u≤v), we have ȧ
a
≤ ḃ

b
; integrating over [0,t], t≥0, yields:

a(t)≤ a0

b0
b(t). Proceeding, as in (4.5):

T11 =
1

3
a2ρ≤ 1

3

(

a0

b0

)2

b2ρ(t)−→0 when t→+∞.

Hence, in the case Λ>0,

Tαβ(t)→0 when t→+∞.

Case Λ=0
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First deduce from (3.6)–(3.7) with Λ=0 that we have (2u̇+ v̇)+(2u+v)(u+v)=0
which, solved as first order ODE in 2u+v, gives:

2u+v =(2u0 +v0)exp

(

−
∫ t

0

(u+v)(s)ds.

)

(4.6)

The global solution (u,v) of (3.4)–(3.6)–(3.7) gives, integrating (3.1):

a(t)=a0 exp

(
∫ t

0

u(s)ds

)

; b(t)= b0 exp

(
∫ t

0

v(s)ds

)

. (4.7)

We know that (0<u0≤v0)⇒ (0≤u≤v), so that (4.7) gives:

ab2(t)=a0b
2
0exp

∫ t

0

(u+2v)(s)ds; a≥a0 >0; b≥ b0 >0. (4.8)

Now, taking the derivative of
(

ab2
)

and using v≥0, we have:

(

ab2
)·

=(u+2v)ab2 =[
1

2
(2u+v)+

3

2
v]ab2≥ 1

2
(2u+v)ab2.

which gives, using (4.6),(4.8), and v≥0:

(

ab2
)·≥ 1

2
(2u0 +v0)a0b

2
0exp

(
∫ t

0

v(s)ds

)

≥ 1

2
(2u0 +v0)a0b

2
0 :=k0 >0.

Then, integrating over [0,t] yields ab2(t)≥k0t+a0b
2
0 which shows a slow growth in

the case Λ=0 and implies that

ab2(t)→+∞ when t→+∞. (4.9)

Now we have, using expression (2.17) for ρ and (4.9) that

T00 =ρ(t)=ρ0

(

a0b
2
0

)
4

3
(

ab2
)− 4

3 (t)→0 when t→+∞.

Next we also have, using (2.17) and (4.8), which gives 1
a
≤ 1

a0
, that

T22 =T33 =
1

3
ρb2(t)=

1

3
ρ0

(

a0b
2
0

)
4

3 b2
(

ab2
)− 4

3 =
1

3a
ρ0

(

a0b
2
0

)
4

3
(

ab2
)(

ab2
)− 4

3 (t),

T22 =T33 =
1

3
ρb2(t)≤ ρ0

3a0

(

a0b
2
0

)
4

3
(

ab2
)− 1

3 (t)→0 when t→+∞. (4.10)

Finally, since (u≤v)⇒
(

a
a0

≤ b
b0

)

, and proceeding as for (4.10),

T11 =
1

3
a2ρ(t)≤ 1

3

(

a0

b0

)2

ρb2(t)−→0 when t→+∞.

We then conclude that we also have, in the case Λ=0, that

Tαβ(t)→0 when t→+∞.

This completes the proof of Theorem 4.1.
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