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EMPIRICAL EVALUATION OF A SUB-LINEAR TIME SPARSE DFT
ALGORITHM*

M.A. IWENT, A. GILBERTY, AND M. STRAUSSS

Abstract. In this paper we empirically evaluate a recently proposed Fast Approximate Discrete
Fourier Transform (FADFT) algorithm, FADFT-2, for the first time. FADFT-2 returns approximate
Fourier representations for frequency-sparse signals and works by random sampling. Its implemen-
tation is benchmarked against two competing methods. The first is the popular exact FFT imple-
mentation FFTW Version 3.1. The second is an implementation of FADFT-2’s ancestor, FADFT-1.
Experiments verify the theoretical runtimes of both FADFT-1 and FADFT-2. In doing so it is shown
that FADFT-2 not only generally outperforms FADFT-1 on all but the sparsest signals, but is also
significantly faster than FFTW 3.1 on large sparse signals. Furthermore, it is demonstrated that
FADFT-2 is indistinguishable from FADFT-1 in terms of noise tolerance despite FADFT-2’s better
execution time.
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1. Introduction

The Discrete Fourier Transform (DFT) for real/complex valued signals is utilized
in myriad applications, as is the Fast Fourier Transform (FFT) [5], a model divide-
and-conquer algorithm used to quickly compute a signal’s DFT. The FFT reduces
the time required to compute a length N signal’s DFT from O(N?) to O(Nlog(N)).
Although an impressive achievement, for huge signals (i.e., N large) the FFT can still
be computationally infeasible. This is especially true when the FFT is repeatedly
utilized as a subroutine by more complex algorithms for large signals.

In some signal processing applications [14, 13] and numerical methods for mul-
tiscale problems [6, 12], only the top few most energetic terms of a very large sig-
nal/solution’s DFT may be of interest. In such applications the FFT, which com-
putes all DFT terms, is computationally wasteful. This was the motivation behind
the development of FADFT-2 [11] and its predecessor FADFT-1 [10]. Given a length
N signal and a user-provided number m, both of the FADFT algorithms output
high fidelity estimates of the signal’s m most energetic DFT terms. Furthermore,
both FADFT algorithms have a runtime which is primarily dependent on m (largely
independent of the signal size N). FADFT-1 and FADFT-2 allow any large frequency-
sparse (e.g., smooth, or C°°) signal’s DFT to be approximated with little dependence
on the signal’s mode distribution and relative frequency sizes.

Related work to FADFT-1/2 includes sparse signal (including Fourier) recon-
struction methods via Basis Pursuit and Orthogonal Matching Pursuit [4, 19]. These
methods, referred to as “compressive sensing” methods, require a small number of
measurements (i.e., O(m polylog N) samples [18]) from an N-length m-frequency
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982 EMPIRICAL EVALUATION OF AAFFT

Algorithm Implementation Output for length N signal Run Time
FFT [5] FFTW 3.1 [9] Full DFT of length N signal O(Nlog(N))
FADFT-1* [20] RA/SFA [20] m most energetic DFT terms | O(m?-polylog(N))
FADFT-1 [10] AAFFT 0.5 m most energetic DFT terms | O(m?-polylog(N))
FADFT-2 [11] AAFFT 0.9 m most energetic DFT terms | O(m-polylog(N))

TABLE 1.1. Algorithms and implementations

sparse signal in order to calculate its DFT with high probability. Hence, compres-
sive sensing is potentially useful in applications such as MRI imaging where sampling
costs are high [16, 17]. However, despite the small number of required samples, cur-
rent compressive sensing DFTs are more computationally expensive than FFTs such
as FFTW 3.1 [9] for all signal sizes and nontrivial sparsity levels. To the best of our
knowledge FADFT-1 and 2 are alone in being competitive with FFT algorithms in
terms of frequency-sparse DFT run times.

A variant of the FADFT-1 algorithm, FADFT-1*, has been implemented and
empirically evaluated [20]. However, no such evaluation has yet been performed for
FADFT-2. In this paper FADFT-2 is empirically evaluated against both FADFT-
1 and FFTW 3.1 [9]. During the course of the evaluation it is demonstrated that
FADFT-2 is faster than FADFT-1 while otherwise maintaining essentially identical
behavior in terms of noise tolerance and approximation error. Furthermore, it’s shown
that both FADFT-1 and 2 can outperform FFTW 3.1 at finding a small number of a
large signal’s top-magnitude DFT terms. See Table 1.1 for descriptions/comparisons
of all the algorithms mentioned in this paper.

The main contributions of this paper are:

1. We introduce the first publicly available implementation of FADFT-2, the
Ann Arbor Fast Fourier Transform (AAFFT) 0.9, as well as AAFFT 0.5, the
first publicly available implementation of FADFT-1.

2. Using AAFFT 0.9 we perform the first empirical evaluation of FADFT-2. The
evaluation demonstrates that FADFT-2 is generally superior to FADFT-1 in
terms of runtime while maintaining similar noise tolerance and approxima-
tion error characteristics. Furthermore, we see that both FADFT algorithms
outperform FFTW 3.1 on large sparse signals.

3. In the course of benchmarking FADFT-2 we perform a more thorough evalu-
ation of the one dimensional FADFT-1 algorithm than previously completed.

The remainder of this paper is organized as follows. First, in Section 2, we intro-
duce relevant background material and present a short introduction to both FADFT-1
and FADFT-2. Then, in Section 3, we present an empirical evaluation of our new
FADFT implementations, AAFFT 0.5/0.9. During the course of our Section 3.1
evaluation we investigate how AAFFT’s runtime varies with signal size and degree
of sparsity. Furthermore, we present results on AAFFT’s accuracy-versus-runtime
trade-off. Next, in Section 3.2, we study AAFFT’s noise tolerance and its depen-
dence on signal size, the signal to noise ratio, and the number of signal samples used.
Finally, we conclude with a short discussion in Section 4.

2. Preliminaries
Throughout the remainder of this paper we will be interested in complex-valued
signals (or arrays) of length N. We shall denote such signals by A, where A(j)eC
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is the signal’s j*" complex value for all j€[0,N —1] CN. Hereafter we will refer to
the process of either calculating, measuring, or retrieving from machine memory any
A(j) €C as sampling from A. Given a signal A we define its discrete L?-norm, or
Euclidean norm, to be

We will also refer to ||A[|3 as A’s energy.

For any signal, A, its Discrete Fourier Transform (DFT), denoted ;&, is another
signal of length N defined as follows:

-~ 1 —2miwj
Aw)=—=> e ~ A(j), Ywe[o,N-1].

Furthermore, we may recover A from its DF'T via the Inverse Discrete Fourier Trans-
form (IDFT) as follows:

27

A(w), Vie[o,N—1].

—1 1 Nt
A(j)= A (j)zﬁZ_joe

We will refer to any index, w, of A asa frequency. Furthermore, we will refer to K(w)
as frequency w’s coefficient for each we€[0,N —1]. Parseval’s equality tells us that
|Allz=||All; for any signal. In other words, the DFT preserves Euclidean norm and
energy. Note that any non-zero coefficient frequency will contribute to A’s energy.
Hence, we will also refer to |A(w)|? as frequency w’s energy. If |A(w)] is relatively
large we wil say that w is energetic.

We will also refer to three other common discrete signal quantities besides the
Euclidean norm throughout the remainder of this paper. The first is the L', or taxi-
cab, norm. The L'-norm of a signal A is defined to be

N-1
Al =" |AG)I-
j=0
The second discrete quantity is the L* value of a signal. The L* value of a signal
A is defined to be
[A o =max{|A(5)],7 €[0,N —1]}.

Finally, the third common discrete signal quantity is the signal-to-noise ratio, or SNR,
of a signal. In some situations it is beneficial to view a signal, A, as consisting of
two parts: a meaningful signal, A7 with added noise, G. In these situations, when we
have A=A + G, we define A’s signal-to-noise ratio, or SNR, to be

A
SNR(A) =20-log,, (” ”2> :

IGll2

Both FADFT algorithms produce output of the form (wy,C4),...,(wm,Cyp), where
each (w;,C;)€[0,N —1] x C. We will refer to any such set of m <N tuples

{(w;,C;)€[0,N—1]xC s.t. 1<j<m}
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as a sparse Fourier representation and denote 1t with a supcrscrlpt Note
that if we are given a sparse Fourler representation, R , we may consider R to be a
length-NV signal. We simply view R’ as the N length 81gna1

0 otherwise

for all j € [0, N —1]. Using this idea we may, for example, compute R from R’ via the
IDFT.

We continue with one final definition: An m-term/tuple sparse Fourier represen-
tation is m-optimal for a signal A if it contains the m most energetic frequencies
of A along with their coefficients. More precisely, we’ll say that a sparse Fourier
representation

R ={(w;,C;)€[0,N—1]xC s.t. 1<j<m}
is m-optimal for A if there exists a valid ordering of A’s coefficients by magnitude
|A (k)| = [A(k2)| = = [A(k))| = - = [A(kn)]|

so that (ki A(k;)) € R forallle [1,m]. Note that a signal may have several m-optimal
Fourier representations if its frequency coefficient magnitudes are non-unique. For
example, there are two 1-optimal sparse Fourier representations for the signal

A(j)=2e"N 427 N>2.
However, all m-optimal R’ for any signal A will always have both the same unique
|IR|l2 and ||A —R||2 values.

Given an input signal, A, the purpose of both FADFT-1 and FADFT-2 is to
identify the m most energetic frequencies, wy <---<wy,, from A and approximate
their coefficients. Put another way, the goals of both FADFT-1 and FADFT-2 are
as follows: Given an input signal, A, both FADFT-1 and FADFT-2 are designed to

output an approximate m-optimal sparse Fourier representation for A.

2.1. FADFT-1 algorithm. The main result of [10] is an algorithm, FADFT-
1, with the following properties: Dcnoto an m-optimal Fourier representation of a one

dimensional signal A of length N by Ropt7 and assume that, for some M, we have

1
37 <1 A Rop o< A o< M1

Then, the FADFT-1 algorithm uses time and space m? - poly(log(3),log(N),log(M), 1)

to return a sparse Fourier representation f{S such that
IA-R[3<(1+6) [|A—Rope |13

with probability at least 1—4.

Note that for m < N the FADFT-1 algorithm is sub-linear time. Also note that
the € and § parameters allow the user to manage approximation error and failure
probability, respectively. For a pseudo-code outline of FADFT-1/2 see Algorithm 1.

FADFT-1 is a randomized greedy pursuit algorlthm which, in this case, means

that it iteratively produces approximations to an ROpt which get better with high
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Algorithm 1 FADFT-1/2 Algorithm
1: Input: Signal A, Number of most energetic frequencies m, Approximation error e,
Failure Probability §

: Output: An approximate m- optlmal sparse Fourier representation for A

: Set sparse Fourier representation, R’ , to 0.

: Set energetic frequencies, I, to ().

: for all <0 to O(K) do

Tt WN

Find a list, L, of energetic frequencies w with |(K—f{) W) >o0 (%) |A-R|3.
Set I = IUL.

Update R’ by estimating coef.s Ywe I s.t. [(A—R)(w)|*> < O ( \I\im) JA—-A7]3.
: end for .

10: Output top m terms of R .

© %N D

probability as time goes on (i.e., i increases in Algorithm 1). Intuitively, Algorithm 1’s
step 6 will discover frequencies in A —R with large magnitudes relative to || A —R ||3
with high probability (the larger the frequency’s magnitude, the better chance it will
be found). Hence, as long as step 8 continues to estimate frequency coefficients to high
enough precision, important frequencies which haven’t been detected yet will become
increasingly overwhelming in A—R as || A—R||3 shrinks (i.e., as R — an Ropt)
The end result is that it becomes increasingly difficult for the top m frequencies in A
to evade detection as time goes on. If the search continues long enough they will all
be found with high probability.

2.2. FADFT-2 algorithm. The FADFT-2 Algorithm [11] is identical to the
FADFT-1 algorithm with two main exceptions. First, FADFT-2 utilizes a faster
method of coefficient estimation (Algorithm 1’s step 8) than FADFT-1 does. Second,
FADFT-2 also samples from intermediate sparse representations via a faster algo-
rithm than the naive method used by FADFT-1. In order to better understand the
differences between FADFT-1 and FADFT-2, we next compare how both algorithms
perform coefficient estimation. We refer the reader to [10, 11] for more detailed de-
scriptions of each algorithm’s energetic frequency isolation and identification (i.e.,
Algorithm 1’s step 6) methods.

2.2.1. FADFT-1 coefficient estimation. As before, let A be a given input
signal of length V. Furthermore, suppose that we’ve identified an energetic frequency,
Whig, whose value we wish to estimate. Independently choose two uniformly random
integers ¢,l € [0, N — 1], making sure that [ is invertible mod N. We can now estimate
whig's coefficient by computing the following sum:

—2miwpig(cHl-k)

A (whig) = Z e N A(c+1-k) (2.1)

where K <N will be specified later. Here we have E[;&I(wbig)]:;&(wbig) and
Var[;&/(wbig)] is O( lAHz) Hence, if we let K be O(%) we’ll have

~1 o~
|A (whig) — A(wig) > <v | A3

with constant probability by the Markov inequality. If we next approximate A\(wbig)
by taking the median of E:O(log(%)) copies of independent and identically dis-
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tributed A/(wbig)’s, the Chernoff inequality tells us we will achieve precision v || A ||3
with probability >1—4. See [10] for details.

Note that K is proportional to the desired number of most energetic frequencies,
m (FADFT-1 step 8 requires that frequency coefficients are estimated with accuracy

O(|1|+m ‘|A—A;|3). Furthermore, we will need to estimate coefficients for at

least m frequencies. Hence, the time to find an m-term Fourier representation using
this coefficient estimation method as stated will be proportional to m?. Fortunately
there are also O(m - polylog(m))-time methods for calculating m coefficients to within
the same precision.

2.2.2. FADFT-2 coefficient estimation. The main difference between
FADFT-1 and FADFT-2 is that FADFT-2 utilizes Unequally Spaced Fast Fourier
Transform (USFFT) techniques [2, 7, 8, 15] both to sample from sparse representations
and to perform coefficient estimation (i.e., compute Equation 2.1 for m frequencies) in
O(m-polylog(m))-time. In this way FADFT-2 is able to avoid all FADFT-1’s O(m?)-
time Fourier matrix multiplications. A brief explanation of how FADFT-2 utilizes an
USFFT along the lines of [2] to perform coefficient estimation follows. An analogous
method allows FADFT-2 to sample m values from the inverse transform of an m-term
Fourier representation in time proportional to m - polylog(m).

Suppose we want to estimate the coefficients of m frequencies wi,...,w,, in an
input signal A of length N. Independently choose two uniformly random integers
¢,1€[0,N —1], making sure that [ is invertible mod N. In order to estimate the m
frequencies’ coefficients we need to calculate Equation 2.1 for j=1,...,m:

—2miw; (c+l-k) N —2mivje
Ze ¥ (c+l-k):ge . f(wj) for j=1,...,m,

727rzwk

where we let f(w)= Zk G A(c+1-k) and wi=w;-I. Now, let R=8-K and
define 7, to be the integer r €[0,R] that minimizes |w—"2"|. Expanding f in a
Taylor series we see that

J(w;)=f(rao, N/R)+ f'(ro,N/R)- Ay, + " (ro, N/R) - (A2 /2)
where

A, =wj—ry,,— for each j.

J

Calculating the derivatives and setting ay, = A(c+1-k) for k€[0,K —1] (0 otherwise),
we get that

«— : —omiA,, (" ,
(wj) = <Zake—2-mrwjk/3> + T“"J . (Zakke—wawjk/R) +

k=0 k=0

N A A
2 (N - ) : <Z apk?e 2T WR) +
k=0

Each sum in the expression above may be calculated for all r,,, simultaneously in
time O(Klog(K)) via the FFT. And, since \ il |- K <%, we only need O(log(2))
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such sums to get 4v| A3 precision. The upshot is that we only need time
0] (m~polylog(m)log(%)) in order to estimate the coefficients of wy through w,.

It is important to note that in Equation 2.1 A is sampled along an arithmetic
progression. The k' sample is at location c+1-k. It is exactly sampling A in this
fashion that allows USFFT techniques to be utilized. To the best of our knowledge
all known USFFT methods require either frequencies or sample positions to be repre-
sented as an arithmetic progression. Depending on the user’s ability to dictate what
samples are used, this may or may not be a weakness of FADFT-2.

2.2.3. FADFT-2 result.  The main result of [11] is that FADFT-2 has the
following properties: Denote an m-optimal Fourier representation of a one dimensional
signal A of length N by R, and assume that, for some M, we have

1
37 <I A~ Rops 2= A < M.

Then, the FADFT-2 algorithm uses time and space m~poly(log(%),log(N),log(M) )

Te
to return a Fourier representation R’ such that

IA-RIZ< (1+€)[| A —Ropt |13

with probability at least 1—0. When working to double (i.e., 64-bit) precision it
should be safe to assume

M ~max(10%, || A ||2).

In other words, even if A is an exact superposition (e.g., a sinusoid), machine noise
(i.e., roundoff errors) will generally limit the accuracy of our m-optimal Fourier rep-

resentation Rzpt.

Note that this result indicates FADFT-2 is essentially linear in m as opposed
to FADFT-1 which is quadratic. Second, it is important to note that FADFT-2 is
designed to quickly output a high fidelity approximation to FADFT-1’s output for
any given input signal without having to utilize any extra information (e.g., signal
samples). Hence, if given good parameter settings and a frequency-sparse input signal,
both versions of FADFT should yield approximately the same output.

3. FADFT implementation and evaluation

Both FADFT-1 and FADFT-2 were implemented in C++ utilizing the Standard
Template Library (for readability). Hereafter these implementations will be referred
to as different versions of the Ann Arbor Fast Fourier Transform (AAFFT). Version
0.5 of AAFFT is the straightforward implementation of the FADFT-1 algorithm with
quadratic time in m, the desired number of largest Fourier terms. Version 0.9 of
AAFFT is an implementation of FADFT-2. All AAFFT source code and documen-
tation is available at [1].

Calculating the optimal m-term Fourier representation for a length-N signal may
be done naively by computing the entire DFT and then reporting its largest m Fourier
terms. This naive approach requires time O(Nlog(N)) using an FFT implementation.
Given the absence of other fast competitors, below we benchmark AAFFT 0.5 and
AAFFT 0.9 against this naive approach with FFTW Version 3.1 [9] serving as the
FFT implementation. All experiments were carried out on a dual 3.6 GHz processor
multi-threaded Dell desktop with 3G of memory. Below FFTW will always refer to
FFTW Version 3.1 using an FFTW_ESTIMATE In_Place_Transform_Data plan. In
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order to help us remain as unbiased as possible we don’t include any sorting or non-
zero coefficient search time in FFTW’s reported run times below. All reported signal
sizes are powers of 2.

It is important to note that both AAFFT implementations rely on 20 different
user-provided parameter settings that influence approximation error, runtime, the
number of signal samples utilized, memory usage, etc.. For the sake of readability
we only mention individual parameters in subsequent sections when absolutely nec-
essary. Instead, we will report observable consequences of various parameter settings
(e.g., runtime, approximation error, etc.) without providing detailed descriptions of
what parameter settings produced them. For a detailed discussion of all AAFFT pa-
rameters, along with example parameter settings used for various experiments below,
we invite the reader to go to http://www-personal.umich.edu/~markiwen /respub.htm
and download AAFFT.tgz (compressed tar file). Besides the AAFFT source code,
AAFFT.tgz contains a file called README.pdf which contains detailed parameter
information.

3.1. Empirical evaluation: run time and accuracy.

Run Time: In Figure 3.1 we report how AAFFT’s run time changes with
input signal size. The 10 reported signal sizes for each implementation are
217 218 226 The run time reported at each signal size for each implementation
is the average of 1000 test signal DFT times. It is important to remember that
AAFFT is randomized and approximate, so the run time depends on how much
error the user is willing to tolerate. Parameters for both AAFFT implementations
were chosen so that the average L' (taxi-cab) error between AAFFT and FFTW’s
returned representations was between 1075 and 107 at each signal size.

The test signals were randomly generated 60-frequency exact superpositions.
Hence, m was fixed to 60 for all the AAFFT runs used to create Figure 3.1. The mag-
nitude of each non-zero frequency was 1 so that all frequencies were of the same impor-
tance. This is the most difficult type of sparse signal for AAFFT since the energetic
frequency isolation and identification portion of the FADFT algorithm works best at
finding single frequencies larger than all others. For each of the 1000 test superposi-
tions we generated 60 integers wy,...,weo € [0, N —1] and 60 phases p,...,pgo € [0,27]
uniformly at random. We then set the test signal, A, to be

27

60
1 . wiw
A(z)ZWE e i N Yz e[0,N —1].
Jj=1

In Figure 3.1 below we graph the maximum, minimum, and mean run times for
FFTW 3.1, AAFFT 0.5, and AAFFT 0.9 over the 1000 test signals at each signal size.
At each data point the top and bottom of the point’s vertical line gives the associated
implementation’s maximum and minimum run times, respectively. The data point
itself is located at the associated implementation’s mean run time. Note in Figure
3.1 below that both AAFFT 0.9 and AAFFT 0.5 have relatively constant run times
despite being randomized.

Recall, AAFFT 0.9’s theoretical run time is m-poly(log(}),log(NN),log(M),1),
where m is the number of desired output representation terms, 1—4 is the prob-
ability of achieving multiplicative error bound ¢, M is a bound for the signal’s
energy, and N is the signal size. Similarly, AAFFT 0.5’s theoretical run time is
m?-poly(log(%),log(N),log(M),1). Figure 3.1’s run times were generated from sparse
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60 Frequency Exact Superposition DFT Run Time

10 : .
o FFTW 3.1

-e-AAFFT 0.5
—=AAFFT 0.9
10' | - |
o
o}
< =a=
...... =
8100*1 ------ R e L [ B - - --- T8 |
=
5 o=
=1
o ﬁ
T — -+
107 - |
107 T ‘ ‘ ‘

Signal Size

Fic. 3.1. AAFFT run time Vs. signal size

exact 60 superpositions with all terms magnitude 1 so that m and M remained fixed
for all experiments. Furthermore, requiring that the average L! (taxi-cab) error be-
tween AAFFT and FFTW’s returned representations be between 107° and 10~7 at
each signal size kept § and e fairly stable. Hence, we expect the run times of AAFFT
0.5 and AAFFT 0.9 to increase with signal size like polylog(N). Our expectation does
appear to be realized in Figure 3.1, where we see the run times of both AAFFT 0.9
and AAFFT 0.5 gently increase with N. Note that AAFFT 0.9 is faster than AAFFT
0.5 for all signal sizes when m = 60. Figure 3.1 also contains a graph of FFTW 3.1’s
run times, which appear to increase something like the expected O(NlogN). Note
that for signal sizes >22%(i.e.,1,048,576) AAFFT 0.9 is faster at recovering an exact
60 frequency superposition than FFTW 3.1. Similarly, AAFFT 0.5 begins to beat
FFTW 3.1 at signal sizes > 223(1'.6.,8,388,608).

In the group of tests used to produce Figure 3.2 below we held the signal size
N constant at 22?2 =4,194,304 and varied m. As before, at each reported number
of superposition frequencies we graph the maximum, minimum, and mean run times
for FFTW 3.1, AAFFT 0.5, and AAFFT 0.9 over the 1000 tests. Each test run
was performed on a randomly-generated test m-superposition similar to above. For
a fixed m we create each test signal by generating m integers wy,...,w, €[0,N —1]
and m random phases p1,...,p;, €[0,27]. We then set the the test signal, A, to be

2

A(z)= 5o 25 €™ e~ " Vae[0,4194303]. Again, as above, we required that
the average L' (taxi-cab) error between AAFFT and FFTW’s returned representa-
tions was between 10~° and 107 at each superposition size m. The end result is that
we expect little dependence on M, N, e, and § in our AAFFT runtime results.

As expected, AAFFT 0.5 displays quadratic run time in m while AAFFT 0.9’s
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Exact Superposition DFT Run Times at Signal Size 2?2

- FFTW 3.1

o AAFFT 0.5 T
711--- AAFFT 0.5 Least Squares Parabola 7
= AAFFT 0.9
6 —AAFFT 0.9 Least Squares Line , i
S
’-\57 //// -
@2 o
o 4r < b
E
[ 5
S8 ]
oL - i
1 i
or i
1 1 1 1 1

1 1 1 1
100 120 140 160 180

0 20 40 60 0
Number of Superposition Frequencies

Fic. 3.2. AAFFT run time vs. superposition size

run time looks linear. Also, not surprisingly, FFTW 3.1’s run time is essentially
constant. Note that AAFFT 0.9 can recover superpositions with < 135 frequencies
more quickly than FFTW at signal size 222. Meanwhile, AAFFT 0.5 is only capable
of computing < 45-sparse signals more quickly then FFTW. Also notice that AAFFT
0.9 is competitive with AAFFT 0.5 for all values of m. AAFFT 0.5 is, on average,
slightly faster than AAFFT 0.9 for small frequency (e.g., m=1) superpositions. This
is due to AAFFT 0.5’ naive O(m?)-time coefficient estimation and sparse Fourier
representation sampling methods having a smaller constant runtime factor than the
USFFT techniques that AAFFT 0.9 employs. However, for all m>15, AAFFT 0.9’s
O(m-polylog(m))-time USFFT techniques outperform AAFFT 0.5’s straightforward
(I)DFT methods. Hence, AAFFT 0.9 is generally faster than AAFFT 0.5 for all
values of m > 15.

Approximation Error: When using AAFFT for numerical analysis applications
one may desire greater average accuracy than the 5 or 6 digits per term guaranteed
above. Hence, we next present some results concerning AAFFT’s accuracy versus
run time trade-offs. As before, every Figure 3.3 data point results from 1000 runs on
randomly generated 60-superpositions whose frequencies each have magnitude 1 with
random phase. Furthermore, the signal sizes, N, are once again fixed to 222 for every
trial run.

Recall that AAFFT 0.9 frequency coefficient estimation (as well as representation
sampling) is carried out by using truncated Taylor series with T terms in order to
calculate multiple frequencies’ coefficient estimates at once (see Section 2.2.2). Also re-
call that for each identified frequency, wyig, the median of E such coeflicient estimates
becomes wyig’s coefficient update for each round of the program (see Section 2.2.1).
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Fic. 3.3. AAFFT error vs. parameters

In general, the larger T and E are the more accurate and reliable the final frequency
coeflicient estimates should be. Note that AAFFT 0.5 works in the same way except
that Taylor series are not used. Thus, AAFFT 0.5 does not depend on T

In Figure 3.3 we investigated the effect of varying E and T on AAFFT 0.5/0.9’s
accuracy. All other parameters were held fixed. To create Figure 3.3 we varied FE
for AAFFT 0.5 and three different T-valued AAFFT 0.9 variants (with 7' = 5, 10,
and 15). The mean, mean + 1 standard deviation, and maximum L° approximation
error values over each of five 1000 run trials (with E =1, 3, 5, 7, and 9) were graphed
for all 4 AAFFT versions. In order to give a better idea of AAFFT’s approximation
error versus run time trade offs, the L>° values were graphed against their associated
trial’s maximum run time for each data point.

As expected, the runtime (and, generally, accuracy) of all 4 AAFFT variants in-
creased monotonically with E. Hence, for each of the 4 curves in Figure 3.3 the upper-
left-most data point corresponds to =1, the second-most-upper-left data point to
E =3, etc. Also as expected, we can see that both AAFFT 0.9’s accuracy and runtime
tend to increase with T'. The 5 Taylor term variant of AAFFT 0.9 is only accurate to
about 107° despite the number of medians used. On the other hand, the 10-Taylor-
term AAFFT 0.9 variant is comparable in accuracy to both AAFFT 0.5 and the
15-Taylor-term AAFFT 0.9 variant for each E value. Furthermore, we can see that
AAFFT 0.9 with 10 Taylor terms appears to be faster than both AAFFT 0.5 and
AAFFT 0.9 with 15 Taylor terms.

Both AAFFT 0.5/0.9 and FFTW 3.1 utilize double precision (i.e., 64-bit) arith-
metic/variables. Hence, for Figure 3.3’s experiments FFTW 3.1 always reported fre-
quency coefficients that were accurate to within 107'°. Looking at Figure 3.3 above
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it appears as if AAFFT 0.5/0.9’s average worst-case frequency coeflicient estimates
are only accurate to within about 10~ at best. However, we expect to get better ac-
curacy by increasing AAFFT’s K parameter (see Section 2.2.1’s Equation 2.1) which
was fixed at 128 during these experiments [1]. For example, in the extreme case
where K is increased to N, we can expect that AAFFT 0.5/0.9 will calculate each
energetic frequency’s coefficient to within about 107'2 or better. More generally, as
K is increased toward N we expect AAFFT’s accuracy (and run time) to increase
also. However, testing the limits of AAFFT’s accuracy is left as future work.

3.2. Empirical evaluation: noise tolerance and sampling complexity.

Noise Tolerance: Our next series of experiments report on the noise tolerance
of both the AAFFT 0.9 and AAFFT 0.5 implementations. In order to determine
each implementation’s level of noise tolerance we will work with signals consisting of
a single non-zero coefficient frequency buried in complex Gaussian noise. Given such
signals we will try to determine how the noise level influences AAFFT’s ability to
recover the hidden frequency. In essence, we wish to investigate AAFFT’s utility as
a denoising tool.

Below we work exclusively with signals consisting of a single non-zero frequency

signal, A, in Gaussian noise. Let N be our signal size. Then,

~ 2riwz

A(z)=Ce*™P.e" " VYze[0,N-1],

where C'€ R is chosen to control the signal to noise ratio, p is a uniformly random
phase in [0,27], and w is a uniformly random frequency in [0, N —1]. As above, we
generate a new A for every AAFFT trial run.

Furthermore, in all subsequent experiments each trial run’s Gaussian noise is
(re)generated each run by adding standard (i.e., mean 0, variance 1) normally dis-
tributed values independently to both the real and imaginary components of every
element of the complex hidden signal A. All normally distributed values are generated
by the Polar Box-Muller method [3]. For the remainder of this paper we’ll denote the
noise added to A(z) by G(x) Yz € [0, N —1]. Hence, every trial run’s input signal, A,

is of the form A=A +G. The signal to noise ratio, or SNR, of A is 20- logq (”é”i )

Furthermore, for fixed A, note that
min{k:e[O,N—l] s.t. |K(k)|:\|fxuw}

is A’s single nonzero frequency with high probability (depending on the SNR).

For a fixed m, increasing A’s SNR will tend to increase | A—Rops [|3. Hence,
looking back at Sections 2.1/2.2.3, we will have weaker accuracy guarantees for the
m-term Fourier representations returned by AAFFT 0.5/0.9 as SNR increases. If the
accuracy guarantees become weak enough we won’t even be able to expect AAFFT
to correctly discover which A frequencies are most energetic. Thus, increasing A’s
SNR generally requires us to both increase m and/or decrease € in order to properly
determine, and then estimate the coefficients of, A’s most energetic DFT modes.
Therefore, the higherAthe SNR, the more samples and run time AAFFT will need in

order to recover our A frequency with high probability.

Figure 3.4 investigates the probability of AAFFT 0.9 and 0.5 successfully recov-
ering an input signal A’s smallest DFT frequency of largest coefficient magnitude.
Each Figure 3.4 graph was generated using 200 three-dimensional (i.e., # AAFFT
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F1c. 3.4. Probability of hidden signal recovery for AAFFT 0.5 (top) and AAFFT 0.9 (bottom)

sample points x average A SNR, x success probability) data points. Each data point
was generated via 1000 AAFFT trial runs. The signal size, N, of all data points’ trial
signals was fixed at 222.

Every Figure 3.4 data point had its 1000 runs’ input signals’ (i.e., A’s) SNR values
controlled through the use of a uniform magnitude value, C, over its 1000 randomly
generated single-frequency As. Though new Gaussian noise was generated with every
run, each data point’s 1000 input signal SNRs were tightly grouped around the mean
SNR (standard deviation from each of the 200 data point’s reported mean SNRs was
<0.0025). Each data point plots the mean SNR value of its 1000 associated runs
against each Figure 3.4 plot’s vertical axis.

Note that the sub-linear run times of AAFFT 0.9 and AAFFT 0.5 necessitate that
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Frequency Recovery From Noisy Signal of Size 222
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Fic. 3.5. AAFFT 0.9’s probability of hidden signal recovery from signals with noise

neither method can read the entire input signal A. During Figure 3.4’s experiments
the number of samples used by both AAFFT 0.9 and 0.5 depended deterministically
on a subset of parameter settings common to both implementations. For each of
the 200 data points making up Figure 3.4 a uniform set of parameters were used
across each point’s 1000 trial runs. The number of signal samples resulting from each
data point’s parameters (listed as a percentage of N) is plotted against Figure 3.4’s
horizontal axis.

Each Figure 3.4 plot’s color/shade at any (percent sampled x, average SNR y)
pair indicates the probability of AAFFT 0.9/0.5 successfully determining the smallest
frequency, k, so that \K(lﬂ)|:||1/3;||OO for a trial signal A with SNR y if AAFFT
0.9/0.5 is only allowed to use % samples from A. For each data point the probability
of success was calculated from its 1000 trial runs by counting the number of times
AAFFT 0.9/0.5 returned the same minimum largest-magnitude frequency as FFTW
3.1, divided by 1000. Figure 3.4’s color bars indicate how the gray-scale values in
each graph correspond to success probabilities. Lighter values indicate high success
probabilities while darker values indicated lower success probabilities.

Looking at Figure 3.4 we can see that there is no significant difference between the
performance of AAFFT 0.5 and 0.9 on noisy signals. This is unsurprising given that
AAFFT 0.9 was, in essence, designed to quickly return a high fidelity approximation
to AAFFT 0.5’s output for any given input signal without using additional samples.
Thus, we’ll concentrate on AAFFT 0.9’s noise tolerance results for the remainder of
this section.

Figure 3.4’s AAFFT 0.9 graph (bottom graph) behaves as expected. If we fix any
SNR value we can see that increasing the number of samples that AAFFT 0.9 uses
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Fic. 3.6. Signal size vs. probability of hidden signal recovery for AAFFT 0.9

allows an increase in success probability. In effect, the shading lightens from left to
right along any SNR line. Similarly, if we fix the number of AAFFT 0.9 samples and
increase the SNR the shading lightens (i.e., success probability increases). In general,
Figure 3.4 indicates that AAFFT tolerates small amounts of noise (SNR > —15) well
as long as it is allowed to use >42,000 samples (>1% of 222).

In order to more clearly see AAFFT 0.9’s noise tolerance results for lower SNR
values, we present Figure 3.5. Figure 3.5 shows four fixed SNR success probability
curves from Figure 3.4’s AAFFT 0.9 graph. Again, as expected, Figure 3.5 demon-
strates that AAFFT 0.9 is more tolerant of smaller levels of noise than larger levels
(i.e., larger-SNR~value curves are higher than smaller-SNR-value curves). Further-
more, each SNR curve increases with increasing AAFFT sample usage. Looking at
the —17 SNR curve, it appears as if AAFFT 0.9 will always successfully locate the
smallest high energy frequency when it is allowed to use > 100,000 samples.

Figure 3.6 investigates how signal size influences success probability. Every data
point in Figure 3.6 is generated by 1000 trial runs on randomly generated input
signals A. The 1000 signals used for each data point vary in size from 2'7 through
226 All sizes are powers of two. Otherwise each trial signal A is created just as
before (i.e., consists of a randomly generated single frequency signal, A, with added
Gaussian noise, G). The standard complex Gaussian noise is regenerated for each
trial run via the Polar Box-Muller method. For every Figure 3.6 data point the
magnitude of A is chosen so that the mean SNR of all the data point’s trial signals is
tightly grouped around —17 (SNR standard deviations for all data points are < 0.013).
Probabilities of successfully calculating the minimum frequency of maximum energy
are also calculated just as before.
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Fic. 3.7. Signal samples for sparse superposition recovery via AAFFT 0.9

Figure 3.6 presents the variation of success probability with signal size for AAFFT
0.9 with three different numbers of sample cutoffs. Again, the number of samples was
determined by AAFFT’s parameter settings. The data points to use for each cutoff
curve were selected as follows: For each signal size, 6 data points were created, each
using a different number of samples < 105,000. The data point for the y-sample cutoff
curve at signal size x is the x-size data point using < y samples with the highest success
probability.

Looking at Figure 3.6, we can see that the achievable success probability appears
to vary little with signal size. Each cutoff curve is essentially constant. Also, we
see the expected increase of success probability with the number of allowed samples.
Based on these results it seems safe to conclude that ~ 10° samples should be sufficient
to achieve near perfect hidden frequency identification for any signal with SNR > —17
that is storable in current computer memory.

Sparse Recovery: In our final experiment we investigated the number of signal
positions we must read in order to recover all the frequencies of a sparse superposition.
Figure 3.7 contains the results. As before, a sparse superposition was created for each
individual trial run by selecting m frequencies uniformly at random from [0,N) and
then giving each selected frequency a magnitude 1 coefficient with uniformly random
phase. Also, as before, each Figure 3.7 data point is the result of 1000 such trial
runs. The probability of successful superposition frequency recovery was calculated
by counting the number of trial runs for which AAFFT 0.9’s L error was < %,
divided by 1000. However, for each Figure 3.7 data point, AAFFT 0.9’s mean L
error was <0.02 (i.e., better than 1).

We know from Section 2.2.3 that AAFFT 0.9’s runtime should (given a fixed
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signal size N, failure probability §, and desired accuracy €) scale linearly in the input
signal’s sparsity level m. Therefore, assuming good parameter settings, the worst case
number of samples AAFFT 0.9 requires to recover a signal must also scale linearly
in the sparsity level. Looking at Figure 3.7 we can see that the number of samples
required to recover a sparse superposition with high probability does indeed appear
to scale linearly with superposition sparsity level (the number of non-zero coefficient
frequencies m). Figure 3.7 also indicates that, with high probability, AAFFT 0.9 can
approximate the DFT of any roughly 6000-term superposition of length N = 222 using
less than half of the superposition’s samples.

To date, L'-minimization-based sparse Fourier methods [4] have not been shown
to allow exact reconstruction of an m-term/N-length superposition’s DFT with high
uniform probability unless at least O(mlog4 N) signal samples are used [18]. Hence,
we can see that the number of samples that AAFFT 0.9 requires to approximate
a superposition’s Fourier transform with high probability is at worst a polylog(N)
multiple of the number of samples required to calculate (to machine precision) a
superposition’s Fourier transform with high uniform probability via L'-minimization.
This is a potentially promising result given that L'-minimization based methods have
higher theoretical run time complexity than AAFFT 0.9.

4. Conclusion

In this paper we empirically demonstrated that FADFT-2 [11] retains all the
advantages of FADFT-1 [10, 20] while also being more computationally efficient. To
accomplish this task a C++ implementation, AAFFT 0.9, of FADFT-2 was compared
against a C++ implementation, AAFFT 0.5, of FADFT-1. Both implementations
were bench-marked against FFTW 3.1 [9].

In Section 3.1 the runtime and approximation error of AAFFT 0.9 and 0.5 were
compared for sparse superpositions (i.e., signals with a small number of non-zero
frequencies). Section 3.1’s comparisons demonstrated that AAFFT 0.9 is generally
faster than AAFFT 0.5 while retaining similar accuracy. Furthermore, it was demon-
strated that both AAFFT 0.9 and AAFFT 0.5 outperform FFTW 3.1 for large sparse
superpositions.

In Section 3.2 we saw that AAFFT 0.9 and AAFFT 0.5 are essentially indistin-
guishable in terms of noise tolerance. Furthermore, we saw that AAFFT 0.9’s noise
tolerance is relatively independent of signal size. Based on Section 3.2’s results we may
safely conclude that both AAFFT 0.9 and 0.5 are highly tolerant to small amounts of
noise (e.g., SNR > —10) as long as AAFFT 0.9/0.5 may use a few tens of thousands
of samples from signals of size ~10°. Finally, we saw that AAFFT 0.9 is capable of
approximating the output of higher time complexity L'-minimization methods using,
at worst, polylog(N) times L!'-minimization’s required number of samples. As future
work we plan to perform a more careful empirical comparison between AAFFT and
L'-minimization based sparse Fourier methods in order to more accurately determine
their runtime/sampling complexity tradeoffs.
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