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UNIFORM BOUNDS AND WEAK SOLUTIONS TO AN OPEN
SCHRÖDINGER-POISSON SYSTEM∗

OLIVIER PINAUD†

Abstract. This paper is concerned with the derivation of uniform bounds with respect to the
scaled Planck constant ε for solutions to the open transient Schrdinger-Poisson system introduced
by Ben Abdallah et al in [Math.Meth.Mod. in App. Sci., 15, 667-688, 2005]. The uniform estimates
stem from a careful analysis of the non-local in time transparent boundary conditions which allow
to restrict the original problem posed on an unbounded domain to a bounded domain of interest.
These bounds can be used to obtain the semi-classical limit of the system. The paper also gives an
existence and uniqueness result for weak solutions while they were previously defined in a strong
sense.
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1. Introduction
The modeling of semiconductors at the quantum level has become a very active

area of research during the past decades. Indeed, the design of high-performance
components requires the development of simulation tools that help engineers in finding
the best configurations. This in turn demands a compromise between the accuracy
of the models and the computational cost, and thus to derive models as close to
the physics as possible with a relatively cheap cost of resolution. The particular
geometry and physics of semiconductors allow for a wide variety of models, see for
instance [8]. A semiconductor can roughly be decomposed into two zones: an access
zone, through which the particles reach the active zone, where basically all the main
physical effects take place. Whereas the access zone is generally not the most relevant
part of the component, it has usually the largest dimensions (say some hundreds of
nanometers long) and thus much computational time might be spent there. On the
other hand, the active zone, which could be roughly a few tens of nanometers long,
represents the essential part of the semiconductor and needs to be carefully treated.
Indeed, the operation of the device is basically induced by the potential profile in the
active region which presents some sharp variations—on the order of the De Broglie
wavelength of the electrons—so that the dynamics requires a quantum description,
more expensive than a kinetic one. It has then led to different strategies to lower the
computational time spent in the access zones. One possible strategy is to prescribe
adequate transparent boundary conditions at the interfaces access zone-active zone,
so as to limit the resolution to the active zone; another strategy is to model the
two zones differently —with a relatively cheap treatment of the access zone—and to
couple them at the interfaces. The first strategy has already received great interest
since it is related to many wave propagation problems in unbounded domains for
which the aim is to restrict the resolution to a bounded zone of interest. Indeed,
the Schrdinger equation governing the dynamics of the electrons can also be seen
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as a paraxial approximation of the Helmholtz equation (see [30] for one of the first
derivations) so that some existing results apply. There is very abundant literature
about the subject: one could cite the pioneering work of [16], [3] for more recent
advances, [4] in the context of semiconductors and [5] for numerical considerations,
and for instance [2, 30] for applications to underwater acoustics. Note that the concept
of open systems at the quantum level cannot be straightforwardly defined as it is at
the kinetic level where it suffices to prescribe the distribution function for incoming
velocities. This requires the introduction of conjuguate operators which dissociate
ingoing from outgoing particles as was done elegantly in a very general framework
in [24]. The second strategy is also an active area of research. Typically, the active
region is treated as fully quantum, with possibly some subband decomposition, see
[27], while the access zone only requires a kinetic description. The two descriptions
are then connected via adequate interface conditions, as was done in [14, 9].

The description chosen in this paper is fully quantum, namely both in the access
and active zones, and so falls into the first type of model. The dynamics of the
electrons is then given by the Schrdinger equation everywhere in the semiconductor
and it is assumed that their energy distribution is known. Since the electrons are
charged particles, they self-interact. The non-linear effects are taken into account at
the Hartree level through a potential solution to the Poisson equation, giving rise to
the so-called Schrdinger-Poisson system. This system can be seen as a mean-field
approximation of a system of many interacting particles through a Coulomb potential
[7]. There is an extensive literature about the subject; see for instance [19] for a general
mathematical analysis, and [23, 24] in the context of an open quantum system. In
[12] a quantum transport model is introduced, and explicit boundary conditions at
the interfaces access zone - active region are derived and will be recalled further in
the paper. The wavefunctions are solution to the Schrdinger equation

i~
∂ψλ

∂t
=H(t)ψλ,

where ~ is the Planck constant, λ is a given quantum number and the Hamiltonian is
defined by

H(t)=− ~2

2me
∆+Ve(t,x)+Vs(t,x). (1.1)

me is the effective mass of the electron in the semiconductor (assumed constant for
simplicity), Ve is an exterior potential, while Vs is the self-consistent potential solution
to the Poisson equation

−∆Vs =

∫
|ψλ|2dµ,

for some measure µ. In [12], the model is shown to have a unique strong solution
(ψλ,Vs) (in the sense that the Schrdinger equation is verified almost everywhere in
time and space) provided the data are regular enough. A possible way to confirm that
the introduced transparent boundary conditions correctly describe the physics of the
device is to take the semi-classical limit of the above system, by letting the scaled
Planck constant ε (ε :=~ := ~√

me
in the sequel) go to zero. This limit is performed by

means of Wigner transforms [32] which relate the quantum dynamics to the classical
dynamics. It is thus expected that in the limit, the boundary conditions simply reduce
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to standard inflow boundary conditions, as was done in [11] for a one-dimensional
stationary model. The Wigner transform is defined by, for any ϕ∈L2(Rd),

W ε(x,k)=
1

(2π)d

∫

Rd

eix·kϕ
(
x− ε

2
y
)
ϕ∗
(
x+

ε

2
y
)
dy,

where ϕ∗ denotes the complex conjugate of ϕ and d the dimension. If ϕ satisfies the
time-dependent Schrdinger equation with potential V (t,x), then its Wigner transform
W ε is solution to the Wigner equation, namely

∂W ε

∂t
+k ·∇xW

ε +K ∗kW
ε =0,

K(t,x,k)=
i

(2π)d

∫

Rd

e−ik·yε−1
(
V
(
t,x+

ε

2
y
)
−V

(
t,x− ε

2
y
))
dy.

Wigner transforms have found applications in many high-frequency asymptotic prob-
lems; see for instance [28] for a formal analysis of hyperbolic equations with random
coefficients, [6, 17] for a semi-classical limit of random Schrdinger equations, [21, 22]
for Schrdinger-Poisson systems and [13] for the Helmholtz equation. Passing formally
to the limit in the above equation leads to the Vlasov equation,

∂W

∂t
+k ·∇xW −∇xV ·∇kW =0,

where W is the limit of W ε in some sense. The Vlasov equation then has to be supple-
mented at the interfaces with inflow boundary conditions of the type W (t,x,k)=f(k)
for entering wave vectors k, which will be the classical analogue of the quantum trans-
parent boundary conditions. Passing rigorously to the limit requires some uniform
in ε bounds for the wave functions, which in turn provide estimates for the Wigner
transform in some appropriate spaces, see [18, 21]. The purpose of the present paper
is then to address the question of uniform bounds for the open Schrdinger-Poisson
system introduced in [12]. While in standard Schrdinger equations with L2 initial
conditions those estimates are straightforward, it is not the case when considering
open systems with transparent boundary conditions. The reference [12] gives some
regularity results and estimates, without specifying the dependence on ε. This work
thus provides uniform bounds in L2

loc, which stem from a careful analysis of the non-
local in time boundary conditions imposed on the interfaces active zone - access zone.
The semi-classical limit and the obtention of the inflow boundary conditions from
the quantum transparent boundary conditions will be performed independently in a
further work [26]. In addition to these estimates, we construct as well weak solutions
to the open Schrdinger-Poisson model of [12], where the solutions were only defined
in a strong sense. Those solutions verify the Schrdinger equation in a variational form
which could be suitable for numerical simulations, since it naturally incorporates the
transparent boundary conditions in the formulation.

The paper is organized as follows: in Section 2, we recall the transport model of
[12]; in Section 3, we present the weak formulation and the main result, namely the
uniform bounds; in Section 4, the proof of the theorem is given and finally one can
find in Appendix A and B some technical results.

2. Presentation of the problem
We recall in this section the transport model introduced in [12] in a time-

dependent picture and in [10] in a stationary one. It consists of a Schrdinger-Poisson
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system posed on an unbounded domain, with non-vanishing conditions at infinity
modeling the electron injection in the structure. This system is then reduced to a
problem posed on a bounded domain with suitable inhomogeneous transparent bound-
ary conditions taking into account the injected particles.

2.1. Geometry. The unbounded domain is denoted by Ω and its dimension
by d. It is assumed in the sequel that d=2 or d=3. The domain Ω is then split
into two zones, a bounded active zone denoted by Ω0 and an unbounded access zone,
consisting of n wave guides Ωj , j=1,... ,n, see Figure 2.1. The interfaces between
Ω0 and each Ωj are supposed to be flat and are denoted by Γj . The waveguides Ωj

have a cylinder-like structure and can thus be written as the cartesian product ΓjR
+.

They are equipped with a local set of coordinates (ξj ,ηj)∈ΓjR
+. Here, ηj is basically

the variable associated with the direction of propagation in the lead j. The outer
boundaries of the Γj ’s are denoted by Γj,0. The remaining part of the boundary of
Ω0 is denoted by Γ0 so that ∂Ω0 =Γ0

⋃(∪n
j=1Γj

)
. We also introduce (µj)j=1,...,n, a

Γ0

Γ0

Γ0

Γj,0

Γj,0

Ω0

Γj

Ωj

ηj

ξj

Fig. 2.1. The domain Ω

partition of unity of Ω, i.e. some C∞(Ω) functions which satisfy




0≤µj ≤1,

n∑

j=1

µj =1 on Ω,

µj =1 on Ωj j=1,... ,n,
µj =0 on Ωk for k 6=0, k 6= j.

2.2. Initial conditions. To model the electron injection, the initial condi-
tions are supposed to be non-zero in the leads and to be scattering states of a given
Hamiltonian H0 defined by

H0 =−ε
2

2
∆+V 0,
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where V 0 is an exterior potential which is assumed to depend only on the transversal
coordinate in the leads Ωj , i.e.

V 0∈L∞(Ω); V 0
∣∣
Ωj

=V 0(ξj).

The fact that V 0 does not depend on ηj is necessary to be able to construct rather
simple—though not obvious—boundary conditions on the interfaces Γj , j 6=0. When
V 0 is linear in ηj , the analysis is more involved and the resulting boundary conditions
are more complex, see for instance [15]. Moreover, V 0 does not belong to any Lp(Ω),
p<∞, since it supposedly does not vanish when ηj →∞. We then define the transver-

sal Hamiltonian H0
j =− ε2

2 ∆ξj
+V 0(ξj), equipped with Dirichlet boundary conditions

on Γj,0. It admits a compact resolvent and this leads to the following definition:

Definition 2.1. The transversal eigenmodes and the eigenvalues of the guide j are
defined by





H0
jχ

0,j
m =Ej

mχ
0,j
m , m∈N∗, j=1,... ,n,

χ0,j
m ∈H1

0 (Γj),

∫

Γj

χ0,j
m χ0,j

m′ dσj = δm,m′ ,
(2.1)

where σj is the surface measure on Γj. Notice that we do not write explicitly the
dependence of χ0,j

m and Ej
m on ε for notational simplicity. For any fixed j and ε,

the sequence (Ej
m)m tends to +∞ as m tends to +∞. For two functions f and g in

L2(Γj), we define

〈f, g〉j :=

∫

Γj

f(ξj)g(ξj)dσj , f j
m :=

∫

Γj

f(ξj)χ
j
m(ξj)dσj .

Remark 2.1. Let ϕ be an L2(Γj) function. The relation ϕ 7→


∑

m≥1

(
Ej

m

)α |ϕj
m|2



1/2

defines a norm equivalent to the Hα(Γj) norm.

We suppose without loss of generality that Ej
m ≥0, ∀m≥1 and ∀j≥1. It suffices

in the sequel to multiply the time-dependent Schrdinger equation by the phase factor
ei t

ε minj,m Ej
m to recover the general case where Vj is negative and bounded from below.

The electrons are injected in the leads in given quantum states. These states
follow a prescribed statistics denoted by µ. µ is a non-negative measure on the state
space Λ, and a pure state is denoted by λ. The wave functions are thus indexed by
λ. Consider the following hypotheses for a family of functions ψ0

λ ∈H1
loc(Ω):

(H-1) For a.e. λ∈Λ, there exists a constant E(λ) such that

H0ψ0
λ =E(λ)ψ0

λ on Ωj , ψ0
λ =0 on Γj,0R+, j 6=0.

ß(H-2) For any bounded set K⊂Ω, there exists CK >0 finite such that
∫

Λ

‖ψ0
λ‖2

H1(K)dµ(λ)≤CK .

In practice, the electrons are injected in the guide j0, on the transverval mode m0

and with a non-vanishing longitudinal momentum p. This implies that λ={p,m0,j0},
Λ=R∗

+N∗{1,...,n}, E(λ)= 1
2p

2 +Ej0
m0

and

dµ(λ)=Φ(p,m0,j0)dpδ(m0)δ(j0),
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where δ denotes the Dirac measure and the positive function
Φ∈L1(R∗

+,ℓ
1(N∗{1,... ,n})) denotes the statistics of the injected electrons, typically

Fermi-Dirac statistics. This is equivalent to writing, for any ϕ∈L1(Λ,dµ),

∫

Λ

ϕ(λ)dµ(λ)=
n∑

j0=1

∞∑

m0=1

∫

R+

ϕ(p,m0,j0)Φ(p,m0,j0)dp.

The energy 1
2p

2 represents the longitudinal kinetic energy of the electrons, while Ej0
m0

is the transversal energy in the lead j0. We add the following hypotheses on the
measure µ,

∫

Λ

(1+p5)dµ<+∞, (2.2)

and a local in λ version of (H-2):
(H-3) for any bounded set K⊂Ω, there exists C ′

K >0 finite and independent of
λ such that

Φ(λ)‖ψ0
λ‖2

H1(K)≤C ′
K .

A family ψ0
λ ∈H1

loc(Ω) indexed by λ∈Λ is then said to belong to the class of initial
data if hypothesis (H-1)–(H-3) are satisfied.

Transparent boundary conditions for the initial conditions. It is proved in [10],
that wave functions satisfying hypothesis (H-1) verify some boundary conditions on
Γj , allowing for a simplification to a boundary value problem on the bounded domain
Ω0. Analogous boundary conditions have been obtained for the one-dimensional case
in [11]. The explicit form of these stationary boundary conditions is needed in the
sequel to carefully analyze their time-dependent version. We thus briefly describe
their form and derivation now; the details can be found in [10].

The restriction of ψ0
λ to Ωj is projected on the transversal basis (χ0,j

m )m, i.e.
ψ0

λ

∣∣
Ωj

(ξj ,ηj)=
∑

mχ
0,j
m (χj)f

j(ηj), so that f j verifies, according to (H-1),

−ε
2

2

∂2f j

∂η2
j

=(E(λ)−Ej
m)f j , ηj ∈R+,

and thus reads

f j(ηj)=aj
mexp

(
− iηj

ε
+

√
2(E(λ)−Ej

m)

)
+bjmexp

(
iηj

ε
+

√
2(E(λ)−Ej

m)

)
.

Above, +
√

denotes the complex square root with a non-negative imaginary part,

bjm is an unknown coefficient depending on the solution and aj
m is the amplitude of the

injected electrons travelling towards the active region and is thus known. We suppose
the electrons are injected in the lead j0, with a momemtum p, on the transversal
mode m0 and with an amplitude one, so that aj

m = δj0
j δ

m0
m and E(λ)= 1

2p
2 +Ej0

m0
.

The modes associated with Ej
m<E(λ) are the propagating modes and the modes

with Ej
m>E(λ) are the evanescent modes. When j= j0, b

j
m is a reflection coefficient,

and when j 6= j0, it is a transmission coefficient. The boundary conditions are obtained
by eliminating bjm and formally read

ε
∂ψ0

λ

∂ηj

∣∣∣∣
Γj

=Zj [E(λ)](ψ0
λ)+Sj [E(λ)]. (2.3)
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These relations are impedance-like boundary conditions. The operator Zj [E(λ)] cor-
responds to an homogeneous part while Sj [E(λ)] is a source term. They read

Zj [E(λ)](ψ0
λ)= i

∞∑

m=1

+

√
2(E(λ)−Ej

m)ψ0,j
m χ0,j

m (ξj), (2.4)

Sj [E(λ)]=−2iδj0
j pχ0,j

m0
(ξj),

ψ0,j
m =

〈
ψ0

λ(ηj =0,·), χ0,j
m

〉
j
. (2.5)

It is shown in [10] that these boundary conditions actually make sense in a weak
formulation for every ψ0

λ ∈H1(Ω0); see therein for more details and a complete analysis
of the related stationary open Schrdinger-Poisson system.

2.3. Potentials. In [12], it is assumed that the exterior potential of the
Hamiltonian (1.1) shares properties close to that of V 0. In order to solve exactly the
Schrdinger equation in the leads for the derivation of the boundary conditions, it is
supposed that the spatial dependence of the exterior potential Ve is only transversal.
The following class is then introduced in [12]: a given potential V belongs to the class
V if it satisfies:

1. V ∈C1([0,T ],L∞(Ω)),
2. for any j=1,... ,n, there exists a function Vj(t) such that for x∈Ωj we have
V (t,x)=V 0(x)+Vj(t).

The regularity in time is needed to obtain energy estimates, that is, H1(Ω0) bounds
for the wavefunction. One could also consider non-regular in time potentials with
some Sobolev regularity in space, but in the typical application we are interested in—
namely quantum transport in nanostructures—the potentials present a barrier profile
which is obviously not smooth.

3. The transient open Schrdinger-Poisson system

This consists in solving for Vs(t,x) and ψλ(t,x) the following system

iε∂tψλ =H(t)ψλ; ψλ(0,·)=ψ0
λ; x∈Ω; λ∈Λ, (3.1)

H(t)=−ε
2

2
∆+Ve(t,x)+Vs(t,x), (3.2)

ψλ =0; x∈Γ0

⋃(
∪n

j=1(Γj,0R+)
)
, (3.3)

−∆Vs =

∫

Λ

|ψλ|2dµ(λ), x∈Ω0; Vs |∂Ω0
=0, (3.4)

where Ve belongs to the class of potentials V and ψ0
λ belongs to the class of initial

conditions. Notice that the Schrdinger equation is set on the whole domain Ω including
the leads. As was done for the stationary case in [10] and in [11], it is proven in
[12], thanks to the introduction of suitable boundary conditions, that this system is
equivalent to the same Schrdinger-Poisson system posed only in the domain Ω0. In
the next subsection, we recall the time-dependent transparent boundary conditions
introduced in [12] and the theorem stating the existence and uniqueness of strong
solutions to (3.1)–(3.4) in the sense of [25]. We then present the weak formulation of
(3.1)–(3.4) and state the main result of the paper.
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3.1. Transparent boundary conditions and strong solutions. We first
introduce some notations. Let

χj
m(t,ξj) :=χ0,j

m (ξj) exp

(
− i

ε

∫ t

0

(Vj(τ)+Ej
m)dτ

)
.

At any time, (χj
m)m≥1(t,.) is an orthonormal basis of L2(Γj).

Definition 3.1. For any given function f ∈H1/2(0,T ), one defines—see [20], or
[29]:

∂1/2f :=
1√
π

d

dt

∫ t

0

f(τ)√
t−τ dτ =

1√
π

d

dt
I1/2f.

H1/2(0,T ), see [1], is the fractional Sobolev space of functions

H1/2(0,T )=

{
f ∈L2(0,T ) such that

∫ T

0

∫ T

0

|f(s)−f(τ)|2
(s−τ)2 dsdτ <∞

}
.

An alternative definition that will be used in the sequel defines H1/2(0,T ) as
the restriction to (0,T ) of functions belonging to H1/2(R). Then, for any f ∈
H1/2((0,T ), L2(Γj)), we set

D
1/2
j f(t,ξj) :=

√
2
∑

m≥1

χj
m(t,ξj)∂

1/2
〈
f(t,·), χj

m(t,·)
〉

j
. (3.5)

Let now

ψpw
λ :=ψ0

λ

n∑

j=1

µj θ
j
λ, (3.6)

θj
λ(t) :=exp

(
− i

ε

∫ t

0

(E(λ)+Vj(s))ds

)
, (3.7)

where (µj)j is the partition of unity introduced in Section 2.1. Then, according to
[12], the wave function ψλ satisfies the following boundary conditions:

∂

∂ηj
(ψλ−ψpw

λ )=−e
−iπ/4

√
ε

D
1/2
j (ψλ−ψpw

λ ); x∈Γj , j=1,...,n.

One can also write a boundary condition involving a half-integral I1/2 rather than a
half-derivative. The final system we will deal with in the sequel thus couples many
Schrdinger equations, posed on a bounded domain with open boundary conditions,
to the Poisson equation. The complete system reads:

iε∂tψλ =H(t)ψλ; ψλ(0,·)=ψ0
λ; x∈Ω0; λ∈Λ, (3.8)

∂

∂ηj
(ψλ−ψpw

λ )=−e
−iπ/4

√
ε

D
1/2
j (ψλ−ψpw

λ ); x∈Γj , (3.9)

ψλ =0; x∈Γ0, (3.10)

−∆Vs =

∫

Λ

|ψλ|2dµ(λ); x∈Ω0; Vs |∂Ω0
=0. (3.11)
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The existence result of [12] provides strong solutions to (3.8)–(3.11) in the sense that
the Schrdinger equation and the boundary conditions are satisfied almost everywhere
on Ω0 and on Γj , respectively. The exact statement is the following:

Theorem 3.1. [12]. Let Ve ∈V, ψ0
λ verifying hypothesis (H-1), d=2 or d=3, and

in addition
∫

Λ

‖ψ0
λ‖2

H2(K)dµ(λ)<∞; Φ has a compact support,

for any bounded set K⊂Ω. Then (3.8)–(3.11) is equivalent to (3.1)–(3.4) and there
exists a unique solution (ψλ,Vs) to (3.1)–(3.4) such that

ψλ ∈ψpw
λ +C0([0,T ],H2(Ω))∩C1([0,T ],L2(Ω)), λa.e.,

Vs ∈C0([0,T ],H1
0 (Ω))∩C0([0,T ],H4(Ω))∩C1([0,T ],H2(Ω)),

for any positive arbitrary large T and so that (3.8) and (3.9) are verified almost
everywhere.

The above theorem does not provide any information about the dependence on ε
of the different bounds on ψλ and Vs, which is paramount for the semi-classical limit.
The proof can actually be adapted to yield more regularity of the solution when
the data are more regular; for instance we can get pointwise in λ, ψλ ∈C∞([0,T ]Ω)
when ψ0

λ ∈C∞(Ω) and Ve ∈C∞([0,T ]Ω). We will use this regularity further to use ψλ

as a test function in the weak formulation. Some details about the regularization
procedure are given in Appendix B.

3.2. Weak formulation and main result. We present in this section the
weak formulation of (3.8)–(3.11) and the main result of the paper. The formulation
of the boundary terms requires particular attention to obtain the ε-independent es-
timates. More precisely, the boundary condition (3.9) is split into homogeneous and
inhomogeneous parts, that is,

∂ψλ

∂ηj
=−e

−iπ/4

√
ε

D
1/2
j (ψλ)+ε

j(ψ
pw
λ ),

where

ε
j(ψ

pw
λ ) :=

∂ψpw
λ

∂ηj

∣∣∣∣
Γj

+
e−iπ/4

√
ε

D
1/2
j (ψpw

λ )

=
1

ε

(
Zj [E(λ)](ψ0

λ)+Sj [E(λ)]
)
θj

λ +
e−iπ/4

√
ε

D
1/2
j (ψpw

λ ). (3.12)

Note here that we used the stationary open boundary conditions (2.3) to define
ε
j(ψ

pw
λ ). The solutions to (3.8) are sought under the following weak form: let

u∈C1([0,T ),H1(Ω0)) be a test function, where T is an arbitrary non-negative con-
stant; denoting by (·,·) the L2(Ω0) inner product and using the Green formula and
the boundary conditions (3.9) and (3.10), we find λ a.e.,

−iε
∫ T

0

(ψλ,∂su)ds= iε(ψ0
λ,u(0,·))+

1

2
ε2
∫ T

0

(∇ψλ,∇u)ds+

∫ T

0

(V ψλ,u)ds
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+
1

2

n∑

j=1

[
ε3/2e−iπ/4

∫ T

0

〈D1/2
j (ψλ), u〉j ds−ε2

∫ T

0

〈εj(ψpw
λ ), u〉j ds

]
. (3.13)

When the potential Ve belongs to the class V, it is rather natural to consider wavefunc-
tions ψλ solving (3.13) belonging to L2((0,T ),H1(Ω0))∩C0([0,T ],L2(Ω0)). Neverthe-
less, this regularity is not sufficient since the boundary terms need more integrability
in time to make sense. To define the convenient functional space, we introduce the
following family of unitary transformations: for any f ∈L2((0,T ),L2(Γj)), let

Tjf(t,ξj) :=
∑

m≥1

e
i
ε

R t
0
(Ej

m+Vj(s))ds
〈
f(t,·), χ0,j

m

〉
j
χ0,j

m (ξj), (3.14)

and let (Tj f)m := 〈Tj f,χ
0,j
m 〉. Consider now the functional space

E=
{
ϕ∈L2((0,T ),H1(Ω0))∩C0([0,T ],L2(Ω0)), such that

Tjϕ∈H1/4((0,T ),L2(Γj)), j=1,... ,n
}
,

and let E
0 be the space of functions belonging to E with a vanishing trace on Γ0, i.e.

E
0 =
{
ϕ∈E, such that ϕ|Γ0

=0
}
.

In the weak formulation (3.13), the boundary term
∫ T

0
〈D1/2

j (ψλ), u〉ds has to be un-
derstood in the following weak sense, which uses the expression of the half-derivative
in the Fourier space given in Lemma A.1 of Appendix A:

∫ T

0

〈D1/2
j (ψλ), u〉ds=

eiπ/4

2π

∑

m≥1

∫

R

−

√
ξF ˜(Tjψλ)mF ˜(Tj u)mdξ. (3.15)

Above, the˜sign is the extension by 0 outside [0,T ], F stands for the Fourier transform
with respect to time and −

√
is the complex square root with non-positive imaginary

part. The dual variable of t is denoted by ξ. This expression is well-defined for any
ψλ ∈E and u∈C1([0,T ],H1(Ω0)).

We state now the main result of the paper, which provides existence and unique-
ness for the system (3.11)-(3.13) as well as uniform bounds in ε for the density n and
energy E defined below:

Theorem 3.2. Let ψ0
λ belongs to the class of initial data, let Ve ∈V and assume µ

satisfies (2.2). Let

n(t) :=

∫

Λ

‖ψλ(t,·)‖2
L2(Ω0)

dµ,

E(t) :=
ε2

2

∫

Λ

‖∇ψλ(t,·)‖2
L2(Ω0)

dµ+
1

2
‖∇Vs(t,·)‖2

L2(Ω0)
.

Then the Schrdinger-Poisson system (3.11)–(3.13) admits a unique solution, for d=2
or d=3, such that, λ a.e.,

Vs ∈L2((0,T ),W 3,r(Ω0))∩H1((0,T ),W 1,r(Ω0)); ψλ ∈E
0,



OLIVIER PINAUD 707

with r<2 when d=2 and r= 3
2 when d=3. Moreover, assuming that

n(0)+E(0)+ε

∣∣∣∣∣∣

n∑

j=1

∫

Λ

〈
Zj [E(λ)](ψ0

λ), ψ0
λ

〉
j
dµ

∣∣∣∣∣∣
≤C0, (3.16)

where C0 is independent of ε, there exists C1, depending on C0, on ‖Ve‖C1([0,T ],L∞(Ω)),
on ‖p‖L5(Λ,dµ), on r, and independent of ε also, such that

‖n‖L∞(0,T ) +‖E‖L1(0,T ) +‖∂tVs‖L2((0,T ),Lr(Ω0))≤C1, (3.17)

where r<2 when d=2 and r< 3
2 when d=3.

The proof of the theorem is the object of the next section. The existence and
uniqueness part is very standard and is obtained after regularization of the prob-
lem in order to use Theorem 3.1. Some estimates then give some compactness re-
sults and allow to pass to the limit in the weak formulation. The proof of the ε-
independent estimates is more involved and requires a careful analysis of the boundary
term ε

j(ψ
pw
λ ). Indeed, the term ε〈εj(ψpw

λ ),ψλ〉j can be straightforwardly bounded by

C0‖ψλ‖L2(Γj)‖ψ0
λ‖H1/2(Γj) for some positive constant C0 independent of ε; by means of

trace theorems, this bound turns into ε−1/2C1‖ψλ ‖1/2
L2(Ω0)

‖ε∇ψλ‖1/2
H1(Ω0)

‖ψ0
λ‖H1/2(Γj),

which has a wrong homogeneity in ε whatever the available bound on ψ0
λ. We thus

expect some compensation or averaging between the homogeneous stationary bound-
ary conditions given by Zj and the homogeneous time-dependent boundary conditions
involving the half-derivative, which will allow control of the boundary terms in terms
of other boundary terms with a sign argument. That property is shown in the next
proposition. The ε-independent estimates rely as well on the verification of assump-
tion (3.16). If the initial condition ψ0

λ is a solution to the Schrdinger equation not
only in the leads but also in Ω0, as it is in [10], then (3.16) has to be verified by
the solution to a stationary open Schrdinger equation. This property has only been
shown until now in the one-dimensional case, in [11].

We decided in the theorem to set the transparent boundary conditions on the
Γj ’s, while they could have been set anywhere further in the guides. Doing so would
have led to L2

loc(Ω) estimates for the density and for the energy.

Proposition 3.2.1. Let ε
j be defined as in (3.12), ψpw

λ as in (3.6), Sj [E(λ)] as in (2.5)

and θj
λ(t) as in (3.7). Then, for any t>0, for ψ0

λ ∈H1/2(Γj), u∈L2+δ((0,t),L2(Γj)),
δ>0, we have, λ a.e,

∫ t

0

〈εj(ψpw
λ ), u〉j ds=

1

ε

∫ t

0

〈Sj [E(λ)]θj
λ,u〉j ds. (3.18)

Proof. Setting

Bj(ψ
pw
λ )=

1

ε
Zj [E(λ)](ψ0

λ)θj
λ; Cj(ψ

pw
λ )=

e−iπ/4

√
ε

D
1/2
j (ψpw

λ ),

(3.18) is equivalent to showing that
∫ t

0
〈Bj(ψ

pw
λ )+Cj(ψ

pw
λ ), u〉j ds=0. Let uj

m(t) be

the projection uj
m(t)=

〈
u(t,·), χ0,j

m

〉
j
. Then, plugging the definition of Zj (2.4) into
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Bj and denoting γj
m =2(E(λ)−Ej

m), it follows that

∫ t

0

〈Bj(ψ
pw
λ ), u〉j ds=

i

ε

∑

m

+

√
γj

mψ
0,j
m

∫ t

0

e−
i
ε

R s
0
(E(λ)+Vj(τ))dτ uj

m(s)ds,

=
i

ε

∑

m

+

√
γj

mψ
0,j
m FU j

m(−γj
m/(2ε)).

Above, F denotes the Fourier transform with respect to time and U j
m is defined as

U j
m(s)=




uj

m(s)e
i
ε

R s
0
(Ej

m+Vj(τ))dτ if s∈ [0,t],

0 if s /∈ [0,t].

Concerning Cj , invoking (3.5) yields

∫ t

0

〈Cj(ψ
pw
λ ), u〉j ds=

√
2e−iπ/4

√
ε

∑

m

ψ0,j
m

∫ t

0

e−
i
ε

R s
0
(Ej

m+Vj(τ))dτ uj
m(s)∂

1
2

(
e−

is
2ε γj

m

)
ds

=

√
2

2π
√
ε

∑

m

ψ0,j
m

∫

R

FU j
m(ξ) −

√
ξF
[
1IR+e−

i
2ε γj

m s
]
(ξ)dξ,

where we used the Fourier-Plancherel equality and (A.1). Above, −

√
is the complex

square root with non-positive imaginary part. Actually, in the distribution sense,

F
[
1IR+e−

i
2ε γj

m s
]
(ξ)=πδ(γj

m/(2ε)+ξ)−p.v.
i

γj
m/(2ε)+ξ

,

where p.v. stands for the principal value. Then,

∫ t

0

〈Cj(ψ
pw
λ ), u〉j ds=

1

2ε

∑

m

−

√
−γj

mψ
0,j
m FU j

m(−γj
m/(2ε))

− i
√

2

2π
√
ε

∑

m

ψ0,j
m p.v.

∫

R

FU j
m(ξ)

−

√
ξ

γj
m/(2ε)+ξ

dξ.

To conclude the proof, it remains to evaluate the integral of the second term of
the right hand side of the above equation. To this aim, we use standard complex

analysis. Let us first notice that FU j
m can be extended to an holomorphic function

for z∈C+ ={z∈C, Im z≥0}. Besides, we have the estimates, for z= reiθ ∈C+,

|FU j
m(z)|≤ C(δ)

(rsinθ)
1+δ
2+δ

‖uj
m‖L2+δ(0,t), (3.19)

as well as

|FU j
m(z)|≤‖uj

m‖L1(0,t). (3.20)

The function −

√
ξ is also holomorphic on C+−{0} (provided we choose the conve-

nient branch) so that, defining a convenient contour C=CR∪Cη1
∪Cη2

∪CR,η1,η2
⊂C+,
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where CR is the semi-circle centered at 0 of radius R, with R> |γj
m|/(2ε), Cη1

is the
semi-circle centered at 0 of radius η1, Cη2

is the semi-circle centered at −γj
m/(2ε) of

radius η2, and CR,η1,η2
connects the different semi-circles on R, the Cauchy theorem

yields

∫

C

FU j
m(z)

−

√
z

γj
m/(2ε)+z

dz=0. (3.21)

We evaluate now the integral on each contour. We have, according to (3.19),

∣∣∣∣∣

∫

CR

FU j
m(z)

−

√
z

γj
m/(2ε)+z

dz

∣∣∣∣∣≤
C

Rδ/(2(2+δ))
‖uj

m‖L2+δ(0,t)

∫ π

0

dθ

|sinθ| 1+δ
2+δ

,

so that the integral on CR goes to zero as R goes to the infinity as soon as δ>0. In
the same way, according to (3.20),

∣∣∣∣∣

∫

Cη1

FU j
m(z)

−

√
z

γj
m/(2ε)+z

dz

∣∣∣∣∣≤Cη
3/2
1 ‖uj

m‖L1(0,t),

which vanishes in the limit η1→0. Concerning the integral on Cη2
, we have

∫

Cη2

FU j
m(z)

−

√
z

γj
m/(2ε)+z

dz=

∫ 0

π

FU j
m

(
−γj

m/(2ε)+η2e
iθ
)

−

√
−γj

m/(2ε)+η2eiθidθ,

so that the Lebesgue dominated convergence theorem implies that the integral goes

to −iπ −

√
−γj

m/(2ε)FU j
m

(
−γj

m/(2ε)
)

as η2→0. Since the integral on CR,η1,η2
tends

to

p.v.

∫

R

FU j
m(ξ)

−

√
ξ

γj
m/(2ε)+ξ

dξ

as R→∞, η1→0 and η2→0, we finally get, using (3.21),

p.v.

∫

R

FU j
m(ξ)

−

√
ξ

γj
m/(2ε)+ξ

dξ= i
π√
2ε

−

√
−γj

mFU j
m(−γj

m/(2ε)).

Consequently,

∫ t

0

〈Cj(ψ
pw
λ ), u〉j ds=

1

ε

∑

m

−

√
−γj

mψ
0,j
m FU j

m(−γj
m/(2ε)),

and it remains to notice that
−

√
−γj

m =−i +

√
γj

m to end the proof.

4. Proof of the theorem
We start by regularizing the problem to apply the previous existence result of

[12] given in Theorem 3.1 where the initial condition is more regular. To be able
to use ψλ as a test function, we nevertheless need more regularity for ψλ than that
given in the theorem, which is only ψλ ∈ψpw

λ +C0([0,T ],H2(Ω))∩C1([0,T ],L2(Ω)).

We thus consider a sequence of regular data ψ0,k
λ ∈C∞(Ω) and V k

e ∈C∞([0,T ]Ω) such
that (3.8)–(3.11) admits a unique solution ψk

λ verifying ψk
λ ∈C∞([0,T ]Ω). All the

manipulations that will follow further are then justified. The regularization procedure
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is not direct and is sketched in Appendix B. The regularized data satisfies, for 1≤p<
∞,

ψ0,k
λ →ψ0

λ strongly in H1(K); V k
e →Ve strongly in C1([0,T ],Lp(K)), (4.1)

for any bounded set K⊂Ω. This implies that, for any u∈H1/4((0,T ),L2(Γj)),

D
1/2
j,k (u)→D

1/2
j (u) strongly in H−1/4((0,T ),L2(Γj)), (4.2)

ε
j,k(ψpw,k

λ )→ ε
j(ψ

pw
λ ) weakly in L2((0,T ),L2(Γj)). (4.3)

In the same way, Φ(p,m,j) is localized so that the obtained Φk(p,m,j) has compact
support and Φk converges strongly to Φ in L1(R∗

+,ℓ
1(N∗{1,... ,n})).

We prove now the bounds that will allow passing to the limit. They will also
provide the ε-independent estimates.

Density estimate. Consider this regular solution ψk
λ which is also obviously

a solution to (3.13). Multiplying (3.8) by ψk
λ, integrating in [0,T ] and taking the

imaginary part, it follows that

‖ψk
λ(T,·)‖2

L2(Ω0)
=‖ψ0,k

λ ‖2
L2(Ω0)

+
√
ε

n∑

j=1

Im e−iπ/4

∫ T

0

〈
D

1/2
j,k (ψk

λ),ψk
λ

〉
j
ds

−ε
n∑

j=1

Im
∫ T

0

〈
ε
j,k(ψpw,k

λ ), ψk
λ

〉
j
ds.

We drop in the sequel the k superscript to clarify the notation keeping in mind until
further notice that the wavefunctions we are manipulating are the regular solutions.
Define now for any s∈R,

Φj
m,T (s)= ˜(Tjψλ)m(s),

where Tj is the transformation previously introduced in (3.14), (Tjψλ)m (s)=
〈Tjψλ(s,ηj =0,·),χ0,j

m 〉j , and ˜ is the extension by 0 outside [0,T ]. Then, accord-
ing to (A.1) of Lemma A.1,

Im 2πe−iπ/4

∫ T

0

〈
D

1/2
j (ψλ),ψλ

〉
j
ds=−

√
2
∑

m

∫

R−

√
−ξ |FΦj

m,T (ξ)|2dξ. (4.4)

The term involving ε
j is treated using Lemma 3.2.1. Using the expression for Sj given

by (2.5), and since the electrons are injected with a momentum p, in the lead j0 and
in the transversal mode m0, we have E(λ)= 1

2p
2 +Ej0

m0
, and therefore

∫ T

0

〈εj(ψpw
λ ), ψλ〉j ds=−δj

j0

2ip

ε

∫ T

0

θj0
λ (s)ψj0

m0(s)ds=−δj
j0

2ip

ε
FΦj0

m0,T (p2/2ε).

Gathering the previous estimates and integrating with respect to λ, we find that

n(T )+

√
2ε

2π

∑

j,m

∫

Λ

∫

R−

√
−ξ |FΦj

m,T (ξ)|2dξdµ
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≤ n(0)+2

∫

Λ

p
∣∣∣FΦj0

m0,T (p2/2ε)
∣∣∣dµ, (4.5)

which gives after an integration in time,

‖n‖L1(0,T∗) +

√
2ε

2π

∑

j,m

∫ T∗

0

∫

Λ

∫

R−

√
−ξ |FΦj

m,T (ξ)|2dξdµdT

≤ T ∗n(0)+2

∫ T∗

0

∫

Λ

p
∣∣∣FΦj0

m0,T (p2/2ε)
∣∣∣dµdT. (4.6)

Energy estimate. We multiply now (3.8) by ∂tψλ. Taking the real part and
integrating in time yield,

ε2

2
‖∇ψλ(T,·)‖2

L2(Ω0)
=
ε2

2
‖∇ψ0

λ‖2
L2(Ω0)

+ ε2
n∑

j=1

Re

∫ T

0

〈
∂ψλ

∂ηj
,∂sψλ

〉

j

ds

−
∫ T

0

∫

Ω0

V (s,x)∂s|ψλ(s,x)|2dxds.

We need to be a bit careful to extend ∂sψλ by zero to R to use the Fourier tranform

since ψλ does not vanish at 0 and at T . Let ψ̃λ be this extension and let ∂sψ̃λ be its
derivative in the distribution sense so that

∂ψ̃λ

∂s
(s,x)=





∂ψλ

∂s
(s,x)−ψλ(T,x)δT +ψλ(0,x)δ0, s∈ [0,T ],

0, s /∈ [0,T ].

We then have
∫ T

0

〈
∂ψλ

∂ηj
,∂sψλ

〉

j

ds=

∫ T

0

〈
∂ψλ

∂ηj
,∂sψ̃λ

〉

j

ds

+

〈
∂ψλ

∂ηj
,ψλ

〉

j

(T )−
〈
∂ψλ

∂ηj
,ψλ

〉

j

(0).

Using now the boundary conditions, both stationary and time-dependent, we find
that
∫ T

0

〈
∂ψλ

∂ηj
,∂sψ̃λ

〉

j

ds=−e
−iπ/4

√
ε

∫ T

0

〈
D

1/2
j (ψλ),∂sψ̃λ

〉
j
ds+

∫ T

0

〈εj(ψpw
λ ), ∂sψ̃λ〉j ds,

〈
∂ψλ

∂ηj
,ψλ

〉

j

(T )=−e
−iπ/4

√
ε

〈
D

1/2
j (ψλ),ψλ

〉
j
(T )+〈εj(ψpw

λ ), ψλ〉j(T ),

〈
∂ψλ

∂ηj
,ψλ

〉

j

(0)=
1

ε

〈
Zj [E(λ)](ψ0

λ), ψ0
λ

〉
j
+

1

ε

〈
Sj [E(λ)], ψ0

λ

〉
j
,

and we recast the energy relation as

ε2

2
‖∇ψλ(T,·)‖2

L2(Ω0)
+L1 +L2 =

ε2

2
‖∇ψ0

λ‖2
L2(Ω0)

+R1 +R2 +R3

−
∫ T

0

∫

Ω0

V (s,x)∂s|ψλ(s,x)|2dxds, (4.7)
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where

L1 =ε3/2
n∑

j=1

Re e−iπ/4

∫ T

0

〈
D

1/2
j (ψλ),∂sψ̃λ

〉
j
ds,

L2 =ε3/2
n∑

j=1

Re e−iπ/4
〈

D
1/2
j (ψλ),ψλ

〉
j
(T ),

R1 =ε2
n∑

j=1

Re

∫ T

0

〈
ε
j(ψ

pw
λ ), ∂sψ̃λ

〉
j
ds,

R2 =ε2
n∑

j=1

Re
〈

ε
j(ψ

pw
λ ), ψλ

〉
j
(T ),

R3 =−ε
n∑

j=1

Re
[〈

Zj [E(λ)](ψ0
λ), ψ0

λ

〉
j
+
〈
Sj [E(λ)], ψ0

λ

〉
j

]
.

We now treat each term separately. For the nonlinear boundary term L1, we have,
thanks to the Fourier-Plancherel equality:

Re 2πe−iπ/4

∫ T

0

〈
D

1/2
j (ψλ),∂sψ̃λ

〉
j
ds

=
√

2
∑

m

∫
R+ ξ

3/2 |FΦj
m,T (−ξ)|2dξ

−
√

2

ε
Im 2πe−iπ/4

∑

m

∫ T

0

(Ej
m +Vj)∂

1/2 (Tjψλ)m (Tjψλ)mds.

Using (4.4) and the fact that we assumed Ej
m ≥0, m≥1, j≥1, we have:

Im 2πe−iπ/4
∑

m

Ej
m

∫ T

0

∂1/2 (Tjψλ)m (Tjψλ)mds

=−
√

2
∑

m

Ej
m

∫

R−

√
−ξ |FΦj

m,T (ξ)|2dξ ≤ 0.

The last term of L1 is treated by multiplying the Schrdinger equation by∑
jµjVjψλ :=gψλ, integrating in time and taking the imaginary part, which yield

(gψλ,ψλ)(T )

=(gψ0
λ,ψ

0
λ)+

∫ T

0

(∂sgψλ,ψλ)(s)ds+Im
∫ T

0

(∇g, ψλ∇ψλ)(s)ds

+Im
n∑

j=1

[
ε1/2e−iπ/4

∫ T

0

〈D1/2
j (ψλ), Vjψλ〉j ds−ε

∫ T

0

〈εj(ψpw
λ ), Vjψλ〉ds

]
.

Applying (3.2.1) and using the expression of Sj , we have

ε

∣∣∣∣∣∣

n∑

j=1

∫ T

0

∫

Λ

〈εj(ψpw
λ ), Vjψλ〉dsdµ

∣∣∣∣∣∣
≤2

∫

Λ

p
∣∣∣F Vj0Φ

j0
m0,T (p2/2ε)

∣∣∣dµ.

This finally gives for L1,
√

2

2π

∑

m,j

∫

Λ

∫

R+

ε3/2ξ3/2 |FΦj
m,T (−ξ)|2dξdµ+R1

1 ≤
∫

Λ

L1dµ, (4.8)
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where R1
1 satisfies, using (4.5):

|R1
1|≤C

∫

Λ

p
∣∣∣F Vj0Φ

j0
m0,T (p2/2ε)

∣∣∣dµ+C
(
n(0)+‖n‖L1(0,T ) +‖E‖L1(0,T )

)
.

The generic constant C above depends on ‖Vj‖C1([0,T ]). For the boundary term R1,
an integration by parts and (3.2.1) give

R1 =−Re2ipε

∫ T

0

θj0
λ (s)∂t

˜ψj0
m0(s)ds

=−2pRe

[
p2

2
FΦj0

m0,T (p2/2ε)+F Vj0Φ
j0
m0,T (p2/2ε)

]
. (4.9)

The term L2 is integrated in time to be able to use similar arguments as those of the
density estimate. This yields

∫ T∗

0

L2(T )dT =

√
2ε3/2

2π

∑

j,m

∫

R+

√
ξ |FΦj

m,T∗(ξ)|2dξ, (4.10)

and in the same way,

∫ T∗

0

R2(T )dT =ε2pImFΦj0
m0,T∗(p

2/2ε). (4.11)

The last term R3 is straightforwardly bounded thanks to hypothesis (3.16) and Lemma
A.1:

∣∣∣∣
∫

Λ

R3dµ

∣∣∣∣≤C0 +C‖p‖1/2
L2(Λ;dµ) n

1/4(0)E1/4(0). (4.12)

It remains to tackle the term involving the potential V =Ve +Vs. Using the Poisson
equation (3.11), we find that

∫ T

0

∫

Λ

∫

Ω0

Vs∂s|ψλ|2dxdsdµ=
1

2
‖∇Vs(T,·)‖2

L2(Ω0)
− 1

2
‖∇Vs(0,·)‖2

L2(Ω0)
.

The term including the exterior potential Ve is easily handled after an integration by
parts,

∣∣∣∣∣

∫

Λ

∫ T

0

∫

Ω0

Ve∂s|ψλ|2dxdsdµ
∣∣∣∣∣≤‖Ve‖C1([0,T ],L∞(Ω0))

(
n(T )+n(0)+

∫ T

0

n(s)ds

)
.

The next step is to integrate (4.7) with respect to λ, to add (4.6) to it and to use (4.8),
(4.10), (4.9), (4.11), (4.12) and hypothesis (3.16). Gathering the different estimates,
we find that

‖E‖L1(0,T∗) +‖n‖L1(0,T∗) +T4≤C1 +R4 +C2

∫ T∗

0

(
‖n‖L1(0,T ) +‖E‖L1(0,T )

)
dT,

(4.13)
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where

T4 =

√
2ε3/2

2π

∑

j,m

∫ T∗

0

∫

Λ

∫

R+

ξ3/2 |FΦj
m,T (−ξ)|2dξdµdT

+

√
2ε

2π

∑

j,m

∫ T∗

0

∫

Λ

∫

R−

√
−ξ |FΦj

m,T (ξ)|2dξdµdT

+

√
2ε3/2

2π

∑

j,m

∫

R+

√
ξ |FΦj

m,T∗(ξ)|2dξdµ,

R4 =

∫ T∗

0

∫

Λ

p3
∣∣∣FΦj0

m0,T (p2/2ε)
∣∣∣dµdT +C3

∫ T∗

0

∫

Λ

p
∣∣∣F Vj0Φ

j0
m0,T (p2/2ε)

∣∣∣dµdT

+2ε

∫

Λ

p
∣∣∣FΦj0

m0,T∗(p
2/2ε)

∣∣∣dµ+C4

∫ T∗

0

∫

Λ

p
∣∣∣FΦj0

m0,T (p2/2ε)
∣∣∣dµdT.

The constants C1, C2, C3 and C4 depend on the constant C0 of (3.16) and
on ‖Ve‖C1([0,T ],L∞(Ω)). To end the proof we need now to bound R4 and thus

FΦj0
m0,t(p

2/ε), for t=T,T ∗. A straightforward attempt by using trace theorems would
again fail because of the homogeneity in ε. Indeed, we expect to estimate the trace
with the help of the derivative of ψλ, while the energy involves a derivative multiplied

by ε. Nevertheless, it is expected that FΦj0
m0,t(p

2/ε) goes to zero as ε→0, and the
rate of convergence is given by the regularity in time of ψλ, which induces the decay

of FΦj0
m0,t(ξ). This will allow to recover a correct homogeneity in ε to be able to use

trace theorems. To this aim, we apply Lemma (A.2), which provides, for p>0,

∣∣∣FΦj0
m0,t(p

2/2ε)
∣∣∣≤C

(
ε

p2

)1/4

‖ξ1/4FΦj0
m0,t‖L2(R+) +C

(
ε

p2

)1/2

‖FΦj0
m0,t‖L2(R),

and Lemma (A.1) yields

‖FΦj0
m0,t‖L2(R) =2π‖ψj0

m0,t‖L2(0,t)≤2π‖ψλ‖L2((0,t),L2(Γj0
))

≤C‖ψλ‖1/2
L2((0,t),L2(Ω0))

‖∇ψλ‖1/2
L2((0,t),L2(Ω0))

.

Notice here the fact that the L2 norm of the trace is controlled by ‖∇ψλ‖1/2
L2((0,t),L2(Ω0))

while with non-flat interfaces the exponent would have been 1/2+α, with α>0. This
would have led to a wrong homogeneity. We thus have, for β=1,3,
∫

Λ

pβ
∣∣∣FΦj0

m0,t(p
2/2ε)

∣∣∣dµ≤C‖n‖1/2
L1(0,t) +C‖E‖

1/2
L1(0,t)

+Cε1/4

(∫

Λ

‖ξ1/4FΦj0
m0,t‖2

L2(R+)dµ

)1/2

,

(4.14)
where the constant C depends on ‖p‖L5(Λ,dµ). According to Rem. A.3, it can be

easily shown that we have the same estimate as above for
∫
Λ
p
∣∣∣F Vj0Φ

j0
m0,t(p

2/2ε)
∣∣∣dµ.

We now control the last term of the right hand side for any η>0,

ε1/4

(∫

Λ

‖ξ1/4FΦj0
m0,t‖2

L2(R+)dµ

)1/2

≤ 1

η
+η

√
ε
∑

j,m

∫

Λ

∫

R−

√
−ξ |FΦj

m,t(ξ)|2dξdµ.



OLIVIER PINAUD 715

This allows to write

R4≤Cη +Cη
(
‖n‖L1(0,T∗) +‖E‖L1(0,T∗) +T4

)
,

so that the Gronwall lemma and (4.13) imply that ‖n‖L1(0,T∗), ‖E‖L1(0,T∗) are
bounded independently of ε for any finite T ∗>0 and in turn so are T4 and ‖n‖L∞(0,T∗)

thanks to (4.5). In particular, we obtain that

√
ε
∑

j,m

∫

Λ

∫

R

−

√
ξ |FΦj

m,T∗(ξ)|2dξdµ≤C, (4.15)

where C is independent of ε and of the regularization parameter k, and thus a bound
in H1/4((0,T ), L2(Γj)) for Tjψλ.

To conclude the derivation of the different bounds, it remains to estimate Vs.
The fact that ‖n‖L∞(0,T ) and ‖E‖L1(0,T ) are bounded imply that

∫
Λ
|ψλ|2dµ(λ)∈

L2((0,T ),W 1,r(Ω0)), with r<2 for d=2 and r= 3
2 for d=3, which in turn gives

Vs ∈L2((0,T ),W 3,r(Ω0)), thanks to standard elliptic regularity results. We estimate
now ∂tVs, which solves

∆∂tVs =J, x∈Ω0, ∂tVs =0, x∈∂Ω0,

where J =Im ε
∫
Λ
ψλ∇ψλdµ(λ). J belongs to L2((0,T ),Lr(Ω0)), with the same r

as above. Elliptic regularity then implies that ∂tVs is in L2((0,T ),W 1,r(Ω0)). To
get the ε-independent bound on ∂tVs, we cannot use any Sobolev embeddings such
that J is bounded independently of ε only in L2((0,T ),L1(Ω0)), which implies the
L2((0,T ),Lr(Ω0)) estimate announced in (3.17).

End of the proof of existence. So far, estimate (3.17) has been proved for regular
data. It remains true at the limit for unregularized data as we will see in the sequel
using standard compactness results. Thanks to (3.17),

ψk
λ ∈L∞((0,T ),L2(Ω0Λ;dxdµk)); ∇ψk

λ ∈L2((0,T ),L2(Ω0Λ;dxdµk))),

with bounds independent of k, so that ψk
λ converges weakly-* to a limit ψλ ∈

L∞((0,T ),L2(Ω0Λ;dxdµ)) as well as for ∇ψk
λ, up to the extraction of a subse-

quence. Remember that Φk converges strongly to Φ in L1(R+,ℓ
1(N∗{1,... ,n})), so

that the weak-* limit of ψk
λ in L∞((0,T ),L2(Ω0Λ;dxdµk)) is equal to that of ψk

λ in
L∞((0,T ),L2(Ω0Λ;dxdµ)). This implies that

‖ψλ‖L∞((0,T ),L2(Ω0Λ;dxdµ)≤ liminf ‖ψk
λ‖L∞((0,T ),L2(Ω0Λ;dxdµk),

with the same relation for ∇ψλ with an L2 norm in time. Hence, estimate (3.17) is
also verified at the limit by ψλ and ∇ψλ.

We pass now to the limit in the weak formulation (3.13). ψk
λ is obviously a

solution to (3.13). Integrating with respect to Λ and choosing a test function u
such that u∈C1([0,T ),L2(Ω0Λ;dxdµ)) and ∇u∈C1([0,T ),L2(Ω0Λ;dxdµ)), the non-
boundary linear terms pass to the limit readily; only the boundary terms and the
non-linear one require some attention. Thanks to the previously obtained bounds, we
have for d=2 or d=3,

V k
s ∈L2((0,T ),H1

0 (Ω0)); ∂tV
k
s ∈L2((0,T ),Lr(Ω0)),
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where r<2 when d=2 and r< 3
2 when d=3 with bounds independent of k, so that

there still exists a subsequence—denoted by V k
s —such that V k

s converges strongly to
Vs in L2((0,T ),Lr(Ω0)), for any 1≤ r≤6 in three dimensions and for any 1≤ r<∞ in
two dimensions. See [31] for a standard compactness result. In the same way, thanks
to standard Sobolev embeddings, ψk

λ converges weakly—up to the extraction of a
subsequence—to ψλ in L2((0,T ),Lr,2(Ω0Λ;dxdµ)) (where Lr,2(Ω0Λ;dxdµ) is defined
as the Banach space of functions f such that

∫
Ω0

‖f(x,·)‖r
L2(Λ,dµ)dx<∞), for any

1≤ r≤6 in three dimensions and for any 1≤ r<∞ in two dimensions. This thus
allows to pass to the limit in the non-linear term

∫ T

0

∫

Λ

∫

Ω0

V k
s (s,x)ψk

λ(s,x)u(s,x,λ)dxdsdµ.

The boundary terms remain, namely

1

2

n∑

j=1

[
ε1/2e−iπ/4

∫ T

0

〈D1/2
j,k (ψλ), u〉j ds+ε

∫ T

0

〈εj,k(ψpw
λ ), u〉ds

]
.

The second term converges straightforwardly because of (4.3). The first one is treated
thanks to its weak formulation (3.15). We know from (4.15) that Tjψ

k
λ is bounded in

H1/4((0,T ),L2(Γj)), independently of k so that thanks to (4.2),
∫ T

0
〈D1/2

j,k (ψk
λ), u〉j ds

converges to
∫ T

0
〈D1/2

j (ψλ), u〉j ds.
We show now that the limit ψλ actually belongs to C0([0,T ],L2(Ω0)), λ a.e., so

that the initial condition can be identified. Let us denote by ψk
λ and ψl

λ, k, l∈N∗, two
elements of the sequence of regularized solutions and define w=ψk

λ−ψl
λ. w verifies

the following boundary conditions on Γj ,

∂w

∂ηj
=−e

−iπ/4

√
ε

D
1/2
j,k (w)+

e−iπ/4

√
ε

[
D

1/2
j,k −D

1/2
j,l

]
(ψl

λ)+
[

ε
j,k(ψpw,k

λ )−ε
j,l(ψ

pw,l
λ )

]
.

Proceeding as in the proof of estimate (4.5), we obtain

‖w(t,·)‖2
L2(Ω0)

=‖w(t=0,·)‖2
L2(Ω0)

+
√
ε

n∑

j=1

Im e−iπ/4

∫ t

0

〈
D

1/2
j,k (w),w

〉
j
ds

+
2

ε
Im
∫ t

0

∫

Ω0

(V k−V l)ψl
λwdxds+R1 +R2,

R1 =−
√
ε

n∑

j=1

Im e−iπ/4

∫ t

0

〈[
D

1/2
j,k −D

1/2
j,l

]
(ψl

λ), w
〉

j
ds,

R2 =−ε
n∑

j=1

Im
∫ t

0

〈
ε
j,k(ψpw,k

λ )−ε
j,l(ψ

pw,l
λ ), w

〉
j
ds.

The first term of the right hand side goes to zero as k,l→∞ thanks to (4.1); the
second one is negative; the third one is treated using the Gronwall Lemma and that

‖
(
(V k

s −V l
s )ψl

λ

)
(t,·)‖L2(Ω0Λ;dxdµ)≤‖(V k

s −V l
s )(t,·)‖L3(Ω0)‖ψl

λ(t,·)‖L6(Ω0,L2(Λ,dµ))

≤CE(t)‖w(t,·)‖L2(Ω0Λ;dxdµ). (4.16)
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Moreover R1, R2 converge to zero as well thanks to (4.2), (4.3) and (4.15). ψk
λ−ψl

λ

is thus a Cauchy sequence in C0([0,T ],L2(Ω0)), so that the limit ψλ belongs as well
to this space.

It just remains to show that (3.13) indeed holds almost everywhere in λ and to
treat the Poisson equation. For the first claim, it suffices to take a test function of
the form u(t,x)f(λ), with u∈C1([0,T ),H1(Ω0)), f ∈L2(Λ). For the Poisson equa-
tion, using a weak formulation, V k

s passes straightforwardly to the limit, as well as∫
Λ
|ψk

λ|2dµ. We only need to show that its limit equals
∫
Λ
|ψλ|2dµ. This requires some

local estimates with respect to λ. Using the fact that the non-linear potential V k
s is

bounded, the density and energy estimates can be rewritten in local in λ versions so
as to obtain

‖ψk
λ‖2

L2((0,T ),H1(Ω0))
≤C(T )

(
1+p5 +‖ψ0

λ‖2
L2(Ω0))

+ε2‖∇ψ0
λ‖2

L2(Ω0)

)
,

for some constant C independent of k. Multiplying by Φ, and using (2.2) and hypoth-
esis (H-3), we get a uniform in λ bound for Φ‖ψk

λ‖2
L2((0,T ),H1(Ω0))

. We thus have that√
Φψk

λ converges weakly—up to the extraction of a subsequence—in L2((0,T ),Lr(Ω0))

to
√

Φψλ, λ a.e., where r≤6 in three dimensions and r<∞ in two dimensions. This
allows then to identify the limit of

∫
Λ
|ψk

λ|2dµ with
∫
Λ
|ψλ|2dµ and concludes the proof

of existence.
Uniqueness. We claim that two solutions to (3.13) in E

0, ψi
λ, i=1,2, with the

same initial condition satisfy the relation

‖ψ1
λ−ψ2

λ‖2
L2(Ω0)

≤ 2

ε
Im
∫ t

0

∫

Ω0

(V 1
s −V 2

s )ψ1
λ

(
ψ1

λ−ψ2
λ

)
dxds.

Such an estimate is proved in the same manner as the density estimate (4.6): by first
deriving it with regular solutions, and then by passing to the limit. Following (4.16),
we obtain

‖(ψ1
λ−ψ2

λ)(t,·)‖L2(Ω0Λ;dxdµ)≤C
∫ t

0

E(s)‖(ψ1
λ−ψ2

λ)(s,·)‖L2(Ω0Λ;dxdµ)ds,

so that the Gronwall Lemma yields ψ1
λ =ψ2

λ, since E is bounded in L1(0,T ).

Appendix A. Some technical lemmas. We state first the following Lemma.
The (easy) proof is left to the reader.

Lemma A.1. Let f ∈H1/2(0,T ), and define:

∂1/2f :=
1√
π

d

dt

∫ t

0

f(τ)√
t−τ dτ, 0≤ t≤T.

Denoting by Ef the extension by zero outside (0,T ) and by f̂ its Fourier transform,
we have the identities

∂1/2f =
1√
π

d

dt
Ef ∗

(
1IR+

1√·

)
, t∈R,

∂̂1/2f(ξ)=eiπ/4 −

√
ξ f̂(ξ), (A.1)

where −

√
stands for the complex square root with non-positive imaginary part and 1IR+

for the indicatrix function of R+.
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The second Lemma basically states that if a function g(x) belong to L2(R), as
well as |x|1/4g(x), and if g is the Fourier transform of a function with a bounded
support, then g decays as |x|−1/4.

Lemma A.2. Let f be a function in L2(0,t). Denote by Ef its extension by zero

outside (0,t) and let f̂ be the Fourier transform of Ef . Assuming k1/4 f̂(k)∈L2(R+),
we have, for any a>0, for ξ≥a,

∣∣∣f̂(ξ)
∣∣∣≤C

(
(1+ t)ξ−1/4‖k1/4f̂‖L2(R+) +ξ

−1/2‖f̂‖L2(R)

)
,

where C depends on a.

Proof. The proof strongly relies on the fact that we compute the Fourier transform
of a function with bounded support. From the definition, we have

f̂(ξ)=

∫ t

0

f(s)e−iξsds= ̂1I[0,t]Ef =(H ∗ f̂)(ξ)

where H(ξ)= 1̂I[0,t] =(−iξ)−1(e−iξt−1). H satisfies

|H(ξ)|≤ t, ∀ξ∈R; |H(ξ)|≤ 2

|ξ| , ∀|ξ|>0. (A.2)

We assume that ξ≥a>0. The convolution H ∗ f̂ is then split into four terms, with
0<β<a:

∫

R

H(ξ−y) f̂(y)dy=

∫

R−

+

∫ ξ−β

0

+

∫ ξ+β

ξ−β

+

∫ +∞

ξ+β

= I1 +I2 +I3 +I4.

Having in mind that ξ≥a>0, if follows readily from (A.2) that

I1≤‖H(ξ+ ·)‖L2(R+)‖f̂‖L2(R)≤2ξ−1/2‖f̂‖L2(R).

Concerning I2, we have

I2≤
(∫ ξ−β

0

H(ξ−y)2
y1/2

dy

)1/2

‖y1/4f̂(y)‖L2(R+),

≤2

(∫ ξ−β

0

dy

|ξ−y|2y1/2

)1/2

‖y1/4f̂(y)‖L2(R+).

Consider now an α such that 0<α<1−β/a<1−β/ξ and α<a. Then

∫ ξ−β

0

dy

|ξ−y|2y1/2
=

1

ξ3/2

∫ 1−β/ξ

0

dy

|y−1|2y1/2

=

∫ α

0

+

∫ 1−β/ξ

α

≤ 1

ξ3/2

2α1/2

(1−α)2
+

1

ξ3/2

1

α1/2

(
ξ

β
+

1

1−α

)

=O(ξ−1/2).
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Proceeding analogously, I3 is easily estimated thanks to (A.2)

I3≤ t
(∫ ξ+β

ξ−β

dy√
y

)1/2

‖y1/4f̂(y)‖L2(R+)

≤
√

2βt

(ξ−β)1/4
‖y1/4f̂(y)‖L2(R+).

In the same way,

I4≤2

(∫ ∞

ξ+β

dy

|ξ−y|2y1/2

)1/2

‖y1/4f̂(y)‖L2(R+)

≤ 2√
β (ξ+β)1/4

‖y1/4f̂(y)‖L2(R+).

The proof is then ended by gathering the different estimates on I1, I2, I3 and I4.

Remark A.3. The previous lemma can be generalized to functions of the form
g(s)f(s) where f satisfies the hypothesis of the lemma and g is a C1([0,t]) function.
Indeed, in this case the convolution kernel H satisfies, instead of (A.2),

|H(ξ)|≤C1, ∀ξ∈R; |H(ξ)|≤ C2

|ξ| , ∀|ξ|>0,

for two positive constants C1 and C2, so that the proof of the lemma still applies. The
result is thus

∣∣∣f̂g(ξ)
∣∣∣≤C

(
(1+ t)ξ−1/4‖k1/4f̂‖L2(R+) +ξ

−1/2‖f̂‖L2(R)

)
,

where the constant C depends on ‖g‖C1([0,t]). This relation is used at the end of the
proof of the energy estimate.

The last lemma is a reformulation of a standard trace theorem when considering
flat boundaries. Notice that applying straightforwardly the existing results would
have given

‖ϕ‖L2(Γj)≤C‖ϕ‖
1/2−α
L2(Ω0)

‖∇ϕ‖1/2+α
L2(Ω0)

, α>0, j=1,... ,n,

while we have the following lemma:

Lemma A.1. Let ϕ∈H1(Ω0) where Ω0 is smooth (at least C1) and is defined in
Section 2. Assume that the trace of ϕ vanishes on Γ0. Then there exists C>0 such
that

‖ϕ‖L2(Γj)≤C‖ϕ‖
1/2
L2(Ω0)

‖∇ϕ‖1/2
L2(Ω0)

, j=1,... ,n.

Proof. We assume that ϕ is regular and proceed by density. Let us parametrize
Ω0 by an orthogonal set of coordinates x=(x′,η) such that if η=0, then x belongs to
the plane into which Γj is included. Such a construction is possible, since the interface
Γj is plane. Thus ϕ(x′,0) is the trace of ϕ on Γj for x′∈Γj . We have

|ϕ(x′,η)|2 = |ϕ(x′,0)|2 +2Re

∫ η

0

ϕ(x′,y)
∂ϕ(x′,y)

∂y
dy.
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Then, the Cauchy-Schwarz inequality implies that

‖ϕ‖2
L2(Γj)

≤‖ϕ‖2
L2(Ω0)

+2‖ϕ‖L2(Ω0)‖∇ϕ‖L2(Ω0).

Finally, the Poincar ineqality allows to control ‖ϕ‖L2(Ω0) in terms of ‖∇ϕ‖L2(Ω0), and
this concludes the proof.

Appendix B. Sketch of the regularization. The particular geometry and the
different assumptions made on the data render the problem not straightforward to
regularize. Indeed, the initial wave function is supposed to crucially solve a Schrdinger
equation in each wave guide and the potentials have as well some important properties.
We give here the main ideas about how this procedure can be pursued.

Let ρ be a standard mollifier such that 0≤ρ≤1, ρ∈C∞(Rd), ‖ρ‖L1 =1 and whose
support is included in the unit ball centered at zero. We denote by ρδ :=ρ(x

δ ) and by
E an extension operator either from (0,T )Ω to Rd+1 or from Ω to Rd, see [1]. Let
Ve ∈C1([0,T ],L∞(Ω)) be in the class of potentials introduced in Section 2.3, and define
V δ

e :=ρδ ∗t

(
ρδ ∗xEVe

)
, where we use a one-dimensional mollifier for the time variable.

Then V δ
e ∈C∞(Rd+1) and V δ

e converges strongly to Ve in C1([0,T ],Lp(K)), p<∞, for
any bounded set K⊂Ω. It is assumed in each wave guide Ωj (equipped with the set
of coordinates (ξj ,ηj)) that Ve verifies Ve(t,x)=V 0(ξj)+Vj(t), which is not true for
V δ

e . Nevertheless, as soon as ηj ≥ δ, V δ
e shares a similar structure, that is, V δ

e (t,x)=

V 0,δ(ξj)+V δ
j (t), where V 0,δ(ξj)=

∫
Rd−1

∫ δ

−δ
EV 0(z)ρ(ξj −z,y)dzdy and V δ

j =ρ∗tEVj .
This suggests to define a fixed parameter δ0, with 0<δ<δ0, such that the transparent
boundary conditions are prescribed on Γδ0

j ={(ηj ,ξj)∈Ωj ,ξj ∈Γj ,ηj = δ0)}. It is not

possible to define them for x∈Ωj , ηj ≤ δ, since V δ
e does not satisfy the adequate

decomposition.
In the same way, let ψ0,δ

λ :=χδ ρδ ∗x

(
Eψ0

λ

)
∈C∞(Ω), where χ is a cut-off which

ensures that ψ0,δ
λ vanishes on the boundary ∂Ω. ψ0,δ

λ converges strongly to ψ0
λ in

H1(K), for any bounded set K⊂Ω. Let now χ0,j,δ
m be the solution to (2.1) with the

regularized potential V 0,δ and Ej,δ
m be the associated eigenvalue. According to the

regularity of the potential, χ0,j,δ
m ∈C∞(Γj). In each guide Ωj , ψ

0
λ reads:

ψ0
λ(ξj ,ηj)=

∑

m

[
χ0,j

m (ξj)δ
m0

m δj0
j exp(

−iηj

ε
+

√
2(E(λ)−Ej

m))

+bjmexp(
iηj

ε
+

√
2(E(λ)−Ej

m))

]
.

This leads to the definition of

ϕδ
λ(ξj ,ηj)=

∑

m

[
χ0,j,δ

m (ξj)δ
m0

m δj0
j exp(

−iηj

ε

+

√
2(E(λ)−Ej,δ

m ))

+bjmexp(
iηj

ε

+

√
2(E(λ)−Ej,δ

m ))

]
,

so that ϕδ
λ ∈C∞(Ωj) and ϕδ

λ converges strongly to ψ0
λ in H1(K), for any bounded set

K⊂Ωj . In each wave guide, we thus have, for ηj ≥0,

−ε
2

2
∆ϕδ

λ +V 0,δϕδ
λ =E(λ)ϕδ

λ.

Let χ be another smooth cut-off function equal to one on Ω0 and whose support is

included in the set {x∈Rd, ηj ≤ δ0, j=1,... ,n}, and let ψ̃0,δ
λ =χψ0,δ

λ +(1−χ)ϕδ
λ. We
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have that ψ̃0,δ
λ ∈C∞(Ω), and ψ̃0,δ

λ converges strongly to ψ0
λ in H1(K), for any bounded

set K⊂Ω.
Consider now the following regularized Schrdinger-Poisson problem:

iε
∂ψδ

λ

∂t
=−ε

2

2
∆ψδ

λ +
(
V δ

e +V δ
s

)
ψδ

λ; ψδ
λ(t=0,·)= ψ̃0,δ

λ ; x∈Ω,

−∆V δ
s =

∫

Λ

|ψδ
λ|2dµ(λ); x∈Ω0; V δ

s |∂Ω0
=0.

Define as well:

ψpw,δ
λ = ψ̃0,δ

λ

n∑

j=1

µj θ
j,δ
λ ; θj,δ

λ (t)=exp

(
− i

ε

∫ t

0

(E(λ)+V δ
j (s))ds

)
,

where (µj)j is the partition of unity introduced in Section 2.1. The previous con-

struction of ψ̃0,δ
λ and V δ

e insures that

iε
∂ψpw,δ

λ

∂t
=−ε

2

2
∆ψpw,δ

λ +
(
V δ

e +V δ
s

)
ψpw,δ

λ , x∈Ωj , ηj ≥ δ0,

so that Theorem 3.1 applies and provides a unique strong solution (ψδ
λ,V

δ
s ). The C∞

regularity is easily deduced from that of the data. Moreover, ψδ
λ satisfies:

∂

∂ηj
(ψδ

λ−ψpw,δ
λ )=−e

−iπ/4

√
ε

D
1/2
j,δ (ψδ

λ−ψpw,δ
λ ); x∈Γδ0

j .

The definition of D
1/2
j,δ is the same as (3.5), χ0,j

m being replaced by χ0,j,δ
m so that we

have (4.1)–(4.3).
For the sake of clarity of the paper and without loss of generality, we abusively

decided to set the boundary conditions in the proof of the theorem on the interfaces
Γj instead of Γδ0

j .
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