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PHYSICAL AND NUMERICAL VISCOSITY FOR QUANTUM
HYDRODYNAMICS∗

ANSGAR JÜNGEL† AND JOSIPA PINA MILIŠIĆ‡

Abstract. Viscous stabilizations of the quantum hydrodynamic equations are studied. The
quantum hydrodynamic model consists of the conservation laws for the particle density, momen-
tum, and energy density, including quantum corrections from the Bohm potential. Two different
stabilizations are analyzed. First, viscous terms are derived using a Fokker-Planck collision operator
in the Wigner equation. The existence of solutions (with strictly positive particle density) to the
isothermal, stationary, one-dimensional viscous model for general data and nonhomogeneous bound-
ary conditions is shown. The estimates depend on the viscosity and do not allow to perform the
inviscid limit. Second, the numerical viscosity of the second upwind finite-difference discretization
of the inviscid quantum hydrodynamic model is computed. Finally, numerical simulations using the
non-isothermal, stationary, one-dimensional model of a resonant tunnelling diode show the influence
of the viscosity on the solution.
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1. Introduction
The fluiddynamical formulation of the Schrödinger equation, which has been

known since the early years of quantum mechanics [32], has been used in many applica-
tions for quantum plasmas [34] or quantum semiconductor devices [12, 14]. Quantum
effects appear through terms involving the Bohm potential and containing third-order
derivatives which express the dispersive structure of the equations. These terms are
mathematically difficult to handle, and in fact there are only partial analytical and
numerical results. This work is devoted to an analytical and numerical study of these
equations when they contain additional viscosity terms originating either from particle
collisions or from an upwind numerical discretization of the equations.

More specifically, we consider the scaled stationary quantum hydrodynamic
(QHD) equations for the particle density n, the current density J , and the energy
density ne,

divJ =F1, (1.1)

div
(J⊗J

n

)
+divP −n∇V =F2, (1.2)

div
(J

n
·(P +neI)

)
−J ·∇V =F3, x∈Ω, t>0, (1.3)

where Ω⊂R3 is a bounded domain, I is the identity matrix, the (scaled) stress tensor
P and energy density ne are given by

P =nTI− ε2

12
n(∇⊗∇)logn, ne=

|J |2
2n

+
3
2
nT − ε2

24
n∆logn,
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with the scaled Planck constant ε and the particle temperature T , and F1, F2, and F3

are some given source terms which will be made explicit below. The electric potential
V is self-consistently coupled to the Poisson equation

λ2∆V =n−C(x), (1.4)

where λ is the scaled Debye length and C(x) the concentration of fixed charged
background ions (doping profile). Equations (1.1)-(1.4) are to be supplemented with
boundary conditions for n, J , ne, and V .

The model (1.1)-(1.3) can be derived from a mixed-state Schrödinger system
[18, 19] or from the moment equations of the Wigner-Boltzmann model with a shifted-
Maxwellian closure [14]. The mixed-state Schrödinger system does not include scat-
tering terms, so F1 =F2 =F3 =0 in the above equations. When a Caldeira-Leggett
collision operator with the relaxation-time τ is employed in the Wigner equation, we
obtain [26]

F1 =0, F2 =−J

τ
, F3 =−2

τ

(
ne− 3

2
nT0

)
,

where T0 =1 is the scaled lattice temperature.
The QHD model is a quantum regularization of the classical Euler equations which

are recovered in the semiclassical limit ε→0. This regularization is mathematically
only partially understood. More precisely, the existence of solutions, both for the
transient and the stationary model, has been proven only in particular situations,
either for small times [25] or for initial or boundary data sufficiently close to the
thermal equilibrium state [23, 24, 31]. The main mathematical difficulty, besides the
highly nonlinear structure of the third-order quantum terms, is the proof of positivity
(or non-negativity) of the particle density and temperature. In the stationary case,
the energy estimate only provides a bound for the energy production

∫ |J |2/(τn)dx
which does not exclude zeros of the particle density. For special boundary conditions
in the one-dimensional case, even a non-existence result was shown [13].

The mathematical difficulties can also be seen in the numerical approximation of
the equations. There is some numerical evidence that the equations, discretized by
finite differences or finite elements, need some kind of stabilization. In view of the
similarity of the (transient) quantum hydrodynamic model to the Euler equations, the
use of a hyperbolic scheme, treating the third-order quantum part as a perturbation,
seems to be appropriate. For instance, Gardner [14] employed the second upwind
scheme to the stationary one-dimensional quantum model, which introduces numerical
viscosity. We will show that the numerical viscosity is (in one space dimension) of
the form h(|u|nx)x/2 in (1.1) and h(|u|(nu)x)x in (1.2), where h is the mesh size and
u=J/n is the velocity (see section 4.2).

Instead of employing a numerical viscosity stabilization we study in this paper
the stabilization by a physical viscosity. Employing a Fokker-Planck-type collision
operator [6] and Gardner’s shifted-Maxwellian closure in the corresponding Wigner
model, we show in section 2 that the source terms become

F1 =ν∆n, F2 =−J

τ
+ν∆J−µ∇n,

F3 =−2
τ

(
ne− 3

2
nT0

)
+ν∆(ne)−µdivJ,

where ν >0 is the (scaled) viscosity constant and µ is proportional to ν/ε (see section
2 for details on the derivation and the scaling of the equations). Notice that the
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viscous terms in F1 and F2 are similar to the numerical viscosity with ν replaced
by h|u|. Now the effective current density is given by J0 =J +ν∇n such that J0 is
divergence-free. Equations (1.1)-(1.4) with the above expressions for F1, F2, and F3

are called the viscous quantum hydrodynamic (QHD) equations.
The use of physical viscosity has some important consequences. First, we are

able to show the existence of steady-state solutions to the one-dimensional isothermal
model with physically motivated boundary conditions for any value of ν >0 and any
value of the applied voltage or J0. This result is new in the literature for two rea-
sons. First, existence of solutions to the viscous QHD equations was up to now only
proved for sufficiently small |J0| [20]. Second, we do not use no-flux boundary condi-
tions, which simplify the analysis considerably, but we employ physically motivated
boundary conditions. Namely, we assume that the particle density n is given at the
boundary, that n satisfies as in [14] homogeneous Neumann boundary conditions, and
that the second derivative nxx is periodic at the boundary. Furthermore, the electric
potential on the boundary is given by the applied voltage. Note that there are not
many mathematical results on nonlinear third-order boundary-value problems.

The main difficulties which we needed to overcome are (i) the third-order differ-
ential operator, (ii) the strong nonlinearities, and (iii) the nonhomogeneous boundary
conditions. The first idea of the proof-of-existence result is to formulate the QHD
equations as in [22] as a fourth-order differential equation for the exponential vari-
able n=ew. This avoids the difficulty (i). The fixed-point operator in the existence
proof is then defined in the variable w=lnn with domain H2

per, the space of periodic
H2 functions. The second idea, which allows to treat the difficulty (ii), consists in
estimating the energy production

P =ν

∫ 1

0

(
nu2

x +
ε2

3
(
√

n)2xx +
ε2

144
n4

x

n3
+

n2

2νλ2
+4

(
T +

ν

τ

)
(
√

n)2x +
J2

0

ντn

)
dx,

where J0 =J +νnx, using the third-order formulation of the viscous QHD model.
Because of the boundary conditions (difficulty (iii)), we obtain in the first instance
only the estimate P ≤J0U/ν +c, where c>0 is a constant. However, the electric power
J0U/ν can be estimated, thanks to the Poisson equation, in terms of the integral∫

n2dx which can be absorbed by the energy production.
The bound on the energy production only provides an estimate for

√
n in H2;

however, the definition of the fixed-point operator makes necessary an estimate for
w=lnn in H2. This is achieved by first estimating the velocity J0/n, employing the
energy production bound, and then carefully proving a bound for wxx in L2, by using
the fourth-order formulation of the equation. These estimates are sufficient to apply
the Leray-Schauder fixed-point theorem.

We notice that the proof-of-existence result makes use of both the original third-
order and the fourth-order formulation of the QHD model. Furthermore, we remark
that all a priori bounds depend on ν and become useless in the limit ν→0. The
above energy estimate shows the regularizing effect of the viscosity since we obtain
(viscosity-dependent) a priori H2 bounds. The analysis of viscous regularizations in
related third-order Korteweg models has been studied in [4]; however, their estimates
cannot be used here. Our proof seems to be only valid in the one-dimensional setting
since we use the embedding H1 ↪→L∞. Moreover, it seems to be difficult to generalize
the proof to the viscous QHD model including the energy equation (1.3).

The second consequence of the viscous terms concerns the numerical approxi-
mation of the QHD model. The inviscid equations have been discretized employing
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an upwind finite-difference approximation [14], a Runge-Kutta discontinuous Galerkin
method [7, 8], and a relaxation scheme [28]. However, we found that the QHD model is
very sensitive with respect to a change of the physical viscosity. As mentioned above,
these hyperbolic-type schemes lead to possibly large numerical viscosity. Therefore, we
employ a simple central finite-difference scheme which avoids numerical viscosity. We
show in section 4.2 that the numerical dispersion, introduced by the central scheme, is
much smaller than the physical dispersion, given by the third-order quantum terms.

We are aware that a central finite-difference approximation is a rather simple
numerical method. However, it provides good numerical results and we give, for the
first time, a consistency analysis which allows to interpret the numerical results for
both the central and the upwind discretization. More advanced numerical methods
are either a steady-state Newton solver using ENO or WENO, or the Runge-Kutta
discontinuous Galerkin method [17].

The analytical results do not allow for the inviscid limit ν→0. Numerically this
can be seen by the fact that the viscosity cannot be chosen arbitrarily small in our
scheme (although the physical value for ν can be used). This indicates that the
physical viscosity is indeed needed for stabilization.

There is also a drawback of the viscous model. One of the interests of the QHD
equations is the simulation of resonant tunnelling diodes whose current-voltage char-
acteristics exhibit so-called negative differential resistance effects, i.e., the current
density is monotonically decreasing in a certain voltage range. An important quan-
tity is the peak-to-valley ratio, i.e. the quotient of local maximal to local minimal
current densities. Our numerical experiments for the non-isothermal model show that
the peak-to-valley ratio is too small compared to physical experiments [30]. Thus, the
physical viscosity strongly influences the quantum behavior of the model. We notice
that more physical current-voltage characteristics can be obtained by the “smooth”
QHD model of Gardner and Ringhofer [15, 16].

The paper is organized as follows. In section 2 we sketch the derivation of the
viscous QHD equations and detail the scaling. Section 3 is devoted to the proof of the
existence of solutions to the isothermal model in one space dimension. In section 4
some numerical results for the isothermal and the non-isothermal model are presented.
More precisely, finite-difference approximations of the viscous and inviscid model are
proposed, and the numerical viscosity and the numerical dispersion of the schemes
are computed. Moreover, numerical simulations of a resonant tunnelling diode are
presented.

2. Modeling-scaling
The viscous QHD equations are derived from the Wigner-Fokker-Planck equation

for the distribution function f(x,p,t),

∂tf +
p

m
·∇xf +

q

m
θ[V ]f =QFP (f), (x,p)∈R6, t>0, (2.1)

where (x,p) denotes the position-momentum variables, t>0 the time, and θ[V ] is a
pseudo-differential operator defined by

(θ[V ]f)(x,p,t)

=
i

(2π)3/2

∫

R6

m

~

[
V

(
x+

~
2
η,t

)
−V

(
x− ~

2
η,t

)]
f(x,p′,t)eiη·(p−p′)dηdp′

(see [20]). The physical constants are the effective electron mass m, the elementary
charge q, and the reduced Planck constant ~. The function V (x,t) is the electric
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potential, selfconsistently given by the Poisson equation

εs∆xV = q
(
~−3

∫

R3
fdp−C(x)

)
,

where εs denotes the permittivity of the semiconductor material and C(x) is the
doping profile. We assume that the collision operator QFP (f) models the interaction
of the electrons with the phonons of the crystal lattice (oscillators) and that it is given
by the Fokker-Planck expression [6]

QFP (f)=
1
τ0

divp(pf)+Dpp∆pf +2Dpqdivx(∇pf)+Dqq∆xf,

where τ0 is a friction parameter (relaxation time) and the constants

Dpp =
mkBT0

τ0
, Dpq =

Ω~2

12πkBT0τ0
, Dqq =

~2

12mkBT0τ0

constitute the phase-space diffusion matrix. Here, T0 is the lattice temperature and Ω
the cut-off frequency of the reservoir oscillators. If Dpq =0 and Dqq =0, this gives the
Caldeira-Leggett operator [5]. The above scattering operator has been derived under
the assumptions that the thermal energy kBT0 is of the same order as the wave energy
Ω~ corresponding to the cut-off frequency, and that the reservoir memory time 1/Ω is
much smaller than the characteristic time scale t∗ of the electrons and the relaxation
time τ0. For a discussion of the Wigner-Fokker-Planck model (2.1), we refer to [2].

In order to derive macroscopic equations we apply the moment method as in
[14]. The idea is to multiply (2.1) by 1, p, and 1

2 |p|2 and to integrate over R3 with
respect to p/~3. The resulting system of equations is closed by Gardner’s shifted
quantum Maxwellian [14], which is an approximation of the quantum equilibrium state
according to Wigner [35, formula (25)]. Gardner’s shifted Maxwellian is a quantum
mechanical analogue of the classical Maxwellian which lies in the kernel of the Fokker-
Planck operator. A different quantum Maxwellian derived from quantum entropy
maximization has been recently suggested by [9] (also see [26]). However, the resulting
model equations are more complicated such that we prefer here the simpler choice of
[14].

The only difference to the derivation in [14] is the integration of the Fokker-Planck
term. This yields

〈QFP (f)〉=Dqq∆x〈f〉,
〈pQFP (f)〉=− 1

τ0
〈pf〉−2Dpq∇x〈f〉+Dqq∆x〈pf〉,

〈 12 |p|2QFP (f)〉=− 2
τ0
〈 12 |p|2f〉+3Dpp〈f〉−2Dpqdivx〈pf〉+Dqq∆x〈 12 |p|2f〉,

where we used the notation

〈g(p)〉=~−3

∫

R3
g(p)dp

for functions g(p). Introducing the electron density n= 〈f〉, the electron current
density J =−(q/m)〈pf〉, and the energy density ne= 〈|p|2〉/2m, we obtain finally the
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viscous QHD equations

∂tn− 1
q
divJ =Dqq∆n, (2.2)

∂tJ− 1
q
div

(J⊗J

n

)
− qkB

m
∇(nT )+

q2

m
n∇V, (2.3)

+
q~2

12m2
div(n(∇⊗∇)logn)=− J

τ0
+

2qDpq

m
∇n+Dqq∆J,

∂t(ne)− 1
q
div

(J

n
(ne+P )

)
+J ·∇V, (2.4)

=− 2
τ0

(
ne− 3

2
nkBT0

)
+

2Dpq

q
divJ +Dqq∆(ne),

ε2
s∆V = q(n−C(x)), x∈R3, t>0, (2.5)

where J⊗J denotes the matrix with components JjJk, and the stress tensor and
energy density are given by, respectively,

P =nkBTI− ~2

12m
n(∇⊗∇)logn,

ne=
m

2q2

|J |2
n

+
3
2
nkBT − ~2

24m
n∆logn.

The stress tensor consists of the classical pressure and a quantum “pressure” term.
The energy density is the sum of kinetic energy, thermal energy, and quantum energy.

Next, we scale the above system of equations. Let L be a characteristic length, for
instance the device length. We define the characteristic density, voltage, and current
density, respectively, by

C∗=sup |C|, V ∗=
kBT0

q
, J∗=

qkBT0C
∗t∗

mL
,

where the characteristic time t∗ is given by kBT0 =mL2/(t∗)2, i.e., we assume that
the thermal energy of a particle is equal to the kinetic energy needed to cross the
device in time t∗. According to the conditions under which the Fokker-Planck term
has been derived, we assume that the cut-off wave energy equals the thermal energy,
i.e., Ω~=kBT0. Then, after introducing the scaling (notice the change of sign for the
current density)

x→Lx, t→ t∗t, C→C∗C, V →V ∗V, J→−J∗J, T →T0T,

we obtain the scaled equations

∂tn+divJ =ν∆n, (2.6)

∂tJ +div
(J⊗J

n

)
+∇(nT )−n∇V − ε2

6
n∇

(∆
√

n√
n

)
, (2.7)

=− J

τ
+ν∆J−µ∇n,

∂t(ne)+div
(J

n
(ne+P )

)
−J ·∇V, (2.8)

=− 2
τ

n
(
e− 3

2

)
+ν∆(ne)−µdivJ,

λ2∆V =n−C(x), (2.9)
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where the scaled parameters are the viscosity constant ν, the Planck constant ε, the
Debye length λ, given by

ν =
~√

kBT0mL2

~
12kBT0τ0

, ε2 =
~2

kBT0mL2
, λ2 =

εskBT0

q2C∗L2
,

and the relaxation time and interaction constant, respectively,

τ =
τ0

t∗
, µ=

~
6πkBT0τ0

.

The scaled stress tensor and energy density can be expressed as

P =nTI− ε2

12
n(∇⊗∇)logn, ne=

|J |2
2n

+
3
2
nT − ε2

24
n∆logn.

In the following sections we will study the one-dimensional stationary equations
in a bounded domain.

3. Analytical results
In this section we consider the stationary viscous QHD equations with constant

temperature T in one space dimension,

Jx =νnxx, (3.1)
(J2

n

)
x
+Tnx−nVx− ε2

6
n
( (
√

n)xx√
n

)
x
=−J

τ
+νJxx, (3.2)

λ2Vxx =n−C(x) in (0,1), (3.3)

with the physically motivated boundary conditions

n(0)=n(1)=1, nx(0)=nx(1), nxx(0)=nxx(1), (3.4)
V (0)=0, V (1)=U. (3.5)

Notice that the term µnx in (2.7) can be absorbed by Tnx. The first two boundary
conditions express that the total space charge vanishes at the boundary (if C(0)=
C(1)=1). The remaining conditions on n can be justified if the doping profile is
nearly constant close to the boundary points (see section 4.3). Notice that (3.1)
and the boundary condition nx(0)=nx(1) imply that the current density takes the
same value at x=0 and x=1, namely J(0)=J(1)=J0 for some constant J0. Given
the applied voltage U , the effective current density J0 can be computed from the
solution of the above boundary-value problem, which gives a well-defined current-
voltage characteristic.

It is not difficult to see that the number of boundary conditions for the system
(3.1)-(3.3) is correct. Indeed, (3.1) implies that J =νnx +J0, which gives

(J2

n

)
x
−νJxx =−2ν2n

( (
√

n)xx√
n

)
x
+

(J2
0

n

)
x
+2νJ0(logn)xx,

and hence (3.2) can be written as

(J2
0

n

)
x
+

(
T +

ν

τ

)
nx−nVx−

(
2ν2 +

ε2

6

)
n
( (
√

n)xx√
n

)
x

=− J0

τ
−2J0ν(logn)xx. (3.6)
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Therefore, the system (3.1)-(3.3) is (formally) equivalent to the system (3.6) and (3.3)
for which five boundary conditions are sufficient.

The left-hand side of (3.6) equals the usual QHD equations except that the scaled
Planck constant and the scaled temperature are larger. The viscosity ν has the effect
of increasing the Bohm potential and the pressure. Moreover, the right-hand side
of (3.6) contains the diffusion term 2J0ν(logn)xx. Thus, the viscous QHD equations
can be interpreted as a quantum fluid model with larger scaled Planck constant and
with a diffusion term in the variable logn. We notice that QHD models with various
diffusion terms in n (but not in logn) have been studied in [13].

Our main result is the following existence theorem.

Theorem 3.1. Let C ∈L2(0,1) and let T , ε, τ , and λ be positive constants. Then
there exists for any U ∈R and any ν >0 a solution (n,J,V )∈H4(0,1)×H3(0,1)×
H2(0,1) to (3.1)-(3.5) satisfying n>0 in (0,1). Moreover,

‖√n‖H2 +‖logn‖H2 +
∥∥∥J0

n

∥∥∥
L∞

≤ cν−1,

where J0 =J−νnx∈R and c>0 is a constant depending only on the data but not on
ν.

3.1. Reformulation of the equations. The first idea for the proof, taken
from [22], is to formulate the system (3.6) and (3.3) as a single fourth-order equation,
in which the Poisson equation is taken into account. We divide (3.6) by n, differentiate
the resulting equation with respect to x and employ the Poisson equation (3.3):

−
(
2ν2 +

ε2

6

)( (
√

n)xx√
n

)
xx

+
(
T +

ν

τ

)
(logn)xx

=
n−C

λ2
+J2

0

(nx

n3

)
x
−2J0ν

( 1
n

(logn)xx

)
x
− J0

τ

( 1
n

)
x
. (3.7)

The electric potential can be recovered from (3.6), after division by n and integration,
taking into account the boundary conditions n(0)=1 and V (0)=0,

V (x)=−
(
2ν2 +

ε2

6

) (
√

n)xx(x)√
n(x)

+
(
T +

ν

τ

)
logn(x)+

J2
0

2n(x)2

+
J0

τ

∫ x

0

ds

n
+2J0ν

nx(x)
n(x)2

+2J0ν

∫ x

0

n2
x

n3
ds

+
(
2ν2 +

ε2

6

)
(
√

n)xx(0)− J2
0

2
−2J0νnx(0). (3.8)

Introducing the new variable n=ew and observing that

( (
√

n)xx√
n

)
xx

=
1
2

( 1
n

(
n(logn)xx

)
x

)
x
=

1
2

(
wxx +

w2
x

2

)
xx

,

we can write (3.7)-(3.8) as

−
(
ν2 +

ε2

12

)(
wxx +

w2
x

2

)
xx

+
(
T +

ν

τ

)
wxx

=λ−2(ew−C)+J2
0 (e−2wwx)x−2J0ν(e−wwxx)x− J0

τ
(e−w)x, (3.9)
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and

V (x)=−
(
ν2 +

ε2

12

)(
wxx(x)+

wx(x)2

2

)
+

(
T +

ν

τ

)
w(x)+

J2
0

2
e−2w(x)

+
J0

τ

∫ x

0

e−w(s)ds+2J0νe−w(x)wx(x)+2J0ν

∫ x

0

e−w(s)wx(s)2ds

+
(
ν2 +

ε2

12

)(
wxx(0)+

wx(0)2

2

)
− J2

0

2
−2J0νwx(0). (3.10)

Equation (3.9) has to be solved in the interval (0,1) with the boundary conditions

w(0)=w(1)=0, wx(0)=wx(1), wxx(0)=wxx(1). (3.11)

We have shown the first part of the following lemma.

Lemma 3.2. Let (n,J,V ) be a smooth solution to (3.1)-(3.5) such that n>0 in (0,1).
Then w=logn is a solution to (3.9) with boundary conditions (3.11), V solves (3.10),
and J0 is defined by (3.8) with x=1, i.e.

U =
J0

τ

∫ 1

0

dx

n
+2J0ν

∫ 1

0

n2
x

n3
dx. (3.12)

Conversely, if w∈H4(0,1) is a solution to (3.9) with boundary conditions (3.11) and
if V and J0 are given by, respectively, (3.10) and (3.12), then (ew,J,V )∈H4(0,1)×
H3(0,1)×H2(0,1) is a solution to (3.1)-(3.5), where J :=νewwx +J0.

Proof. It remains to show that (ew,J,V ) solves (3.1)-(3.5). In order to see this,
first differentiate (3.10) twice with respect to x and take the difference with (3.9).
This yields the Poisson equation (3.3). Then differentiate (3.10) once with respect to
x and multiply the resulting equation by n. This yields (3.6). Defining J =νnx +J0,
we see that (3.6) is equivalent to (3.2). Moreover, differentiating J with respect to x
gives (3.1). The boundary conditions (3.4) are a consequence of (3.11). Finally, the
boundary conditions (3.5) are obtained by taking x=0 and x=1 in (3.10) and using
(3.12).

3.2. Uniform estimates. For the proof of Theorem 3.1 we need some uni-
form estimates. Our second idea of the existence analysis is to show that the energy
production is bounded, which provides the necessary estimates.

Lemma 3.3. Let (n,J,V )∈H4(0,1)×H3(0,1)×H2(0,1) be a solution to (3.1)-(3.5)
such that n>0 in (0,1). Then there exists a constant c>0 such that

∫ 1

0

( (Jxn−Jnx)2

n3
+

ε2

3
(
√

n)2xx +
ε2

144
n4

x

n3
+

n2

4λ2
+4

(
T +

ν

τ

)
(
√

n)2x

+
J2

0

ντn

)
dx≤ cν−2,

where c>0 only depends on τ , λ, U , and ‖C‖L2 .

The integrand of the above inequality can indeed be interpreted as the energy
production: In [21] is has been shown that, with thermal equilibrium boundary con-
ditions, the energy of the time-dependent viscous QHD equations is bounded for all
time and the energy production is given by the above integral. We notice that, setting
J =nu, the first integrand can be written as

∫ 1

0
nu2

xdx.
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Proof. We multiply (3.1) by T logn−J2/2n2−V −ε2(
√

n)xx/(6
√

n) and integrate
by parts to obtain

∫ 1

0

(
−TJ

nx

n
− J2Jx

2n2
+JVx− ε2

6
(
√

n)xx√
n

Jx

)
dx+[JT logn−JV ]10

=ν

∫ 1

0

(
−T

n2
x

n
+

( J2

2n2

)
x
nx +nxVx− ε2

6
(
√

n)xx√
n

nxx

)
dx

+ν
[
nxT logn−nx

J2

2n2
−nxV

]1

0
. (3.13)

Taking into account the boundary conditions (3.4)-(3.5) and J(0)=J(1), the above
equation becomes

∫ 1

0

(
−TJ

nx

n
− J2Jx

2n2
+JVx− ε2

6
(
√

n)xx√
n

Jx

)
dx−J(1)U

=ν

∫ 1

0

(
−T

n2
x

n
+

( J2

2n2

)
x
nx +nxVx− ε2

6
(
√

n)xx√
n

nxx

)
dx−νnx(1)U.

Furthermore, we multiply (3.2) by J/n and integrate by parts:

∫ 1

0

((J2

n

)
x

J

n
+TJ

nx

n
−JVx +

ε2

6
(
√

n)xx√
n

Jx

)
dx− ε2

6

[ (
√

n)xx√
n

J
]1

0

=
∫ 1

0

(
− J2

τn
−νJx

(J

n

)
x

)
dx+

[
νJx

J

n

]1

0
. (3.14)

Taking into account the boundary conditions (3.4) and Jx =νnxx, the boundary terms
vanish. Hence, adding (3.13) and (3.14) gives, since some terms cancel,

∫ 1

0

(
− J2Jx

2n2
+

(J2

n

)
x

J

n

)
dx+ν

∫ 1

0

(
Jx

(J

n

)
x
−

( J2

2n2

)
x
nx

)
dx

+ν
ε2

6

∫ 1

0

(
√

n)xx√
n

nxxdx−ν

∫ 1

0

nxVxdx+
∫ 1

0

(
νT

n2
x

n
+

J2

τn

)
dx

=J(1)U−νnx(1)U =J0U. (3.15)

The first integral vanishes since
∫ 1

0

(
− J2Jx

2n2
+

(J2

n

)
x

J

n

)
dx=

1
2

∫ 1

0

(J3

n2

)
x
dx=

1
2

[J3

n2

]1

0

=
1
2
(J(1)3−J(0)3)=0.

The second integral equals

ν

∫ 1

0

(
Jx

(J

n

)
x
−

( J2

2n2

)
x
nx

)
dx=ν

∫ 1

0

1
n3

(Jxn−Jnx)2dx.

Since, using n(0)=n(1) and nx(0)=nx(1),

∫ 1

0

n2
xnxx

2n2
dx=

1
3

∫ 1

0

(n3
x)x

2n2
dx=

1
3

∫ 1

0

n4
x

n3
dx+

1
3

[ n3
x

2n2

]1

0
=

1
3

∫ 1

0

n4
x

n3
dx,
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the third integral in (3.15) becomes

ν
ε2

12

∫ 1

0

(n2
xx

n
− n2

xnxx

2n2

)
dx=ν

ε2

3

∫ 1

0

(
(
√

n)2xx +
n4

x

48n3

)
dx.

Multiplying the Poisson equation (3.3) by n−1 and integrating by parts yields

λ2

∫ 1

0

Vxnxdx=−
∫ 1

0

(n−1)(n−C(x))dx≤−1
2

∫ 1

0

n2dx+c1,

where c1 =(1+‖C‖2L2)/2. Furthermore, it follows from J =−νnx +J0 that

∫ 1

0

J2

τn
dx=

J2
0

τ

∫ 1

0

dx

n
+

4ν2

τ

∫ 1

0

(
√

n)2xdx,

since the integral over the mixed term
∫ 1

0
(logn)xdx vanishes in view of the boundary

conditions n(0)=n(1)=1. Therefore, we obtain from (3.15), divided by ν,

∫ 1

0

( 1
n3

(Jxn−Jnx)2 +
ε2

3
(
√

n)2xx +
ε2

144
n4

x

n3
+

n2

2λ2
+4

(
T +

ν

τ

)
(
√

n)2x
)
dx

≤− J2
0

τν

∫ 1

0

dx

n
+

J0U

ν
+

c1

λ2
. (3.16)

It remains to estimate the term J0U/ν. For this we employ Young’s inequality,

J0U

ν
≤ J2

0

2τν

∫ 1

0

dx

n
+

τU2

2ν

∫ 1

0

ndx.

The first term on the right-hand side can be absorbed by the corresponding term in
(3.16). We employ again Young’s inequality to treat the second term:

τU2

2ν

∫ 1

0

ndx=
τU2

2ν
‖√n‖2L2 ≤ τU2

2ν
‖√n‖2L4

≤ 1
4λ2

‖√n‖4L4 +
λ2τ2U4

4ν2
=

1
4λ2

∫ 1

0

n2dx+
λ2τ2U4

4ν2
.

Putting these inequalities into (3.16), we obtain

∫ 1

0

( 1
n3

(Jxn−Jnx)2 +
ε2

3
(
√

n)2xx +
ε2

144
n4

x

n3
+

n2

4λ2
+4

(
T +

ν

τ

)
(
√

n)2x
)
dx

≤− J2
0

2τν

∫ 1

0

dx

n
+

λ2τ2U4

4ν2
+

c1

λ2
.

This shows the lemma.

The following a priori estimates are consequences of the previous lemma.

Lemma 3.4. Let (n,J,V )∈H4(0,1)×H3(0,1)×H2(0,1) be a solution to (3.1)-(3.5)
satisfying n>0 in (0,1). Then there exists a constant c>0 such that

|J0|≤ cν−1, |J0|
∥∥∥ 1√

n

∥∥∥
2

H1
≤ cν−1,
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where J0 =J−νnx and c only depends on τ , λ, U , and ‖C‖L2 .

If U =0, (3.12) shows that J0 =0, and hence the above estimates become trivial.
A consequence of the above lemma is the boundedness of the velocity J0/n in L∞(0,1).

Proof. Lemma 3.3 immediately gives the bound ‖√n‖L∞ ≤ cν−1, since H2(0,1)
embeds into L∞(0,1). (Here and in the following, c>0 denotes a generic constant
not depending on ν.) Thus, since J2

0

∫ 1

0
dx/n is uniformly bounded,

J2
0 ≤J2

0

∫ 1

0

dx

n
‖√n‖2L∞ ≤ c‖√n‖2L∞ ≤ cν−2,

which shows the first assertion.
If U >0 then, by (3.12), J0 >0 and

J0

∫ 1

0

n2
x

n3
dx=

U

2ν
− J0

2τν

∫ 1

0

dx

n
≤ U

2ν
.

On the other hand, if U <0 then J0 <0 and

−J0

∫ 1

0

n2
x

n3
dx=− U

2ν
+

J0

2τν

∫ 1

0

dx

n
≤− U

2ν
.

This shows that

|J0|
∫ 1

0

∣∣∣
( 1√

n

)
x

∣∣∣
2

dx=
|J0|
4

∫ 1

0

n2
x

n3
dx≤ |U |

8ν
.

By Poincaré’s inequality, we have

|J0|
∫ 1

0

( 1
2n
−1

)
dx≤|J0|

∫ 1

0

( 1√
n
−1

)2

dx≤ c|J0|
∥∥∥
( 1√

n

)
x

∥∥∥
2

L2
≤ cν−1,

and hence, using the first assertion,

|J0|
2

∥∥∥ 1√
n

∥∥∥
2

L2
≤ cν−1 + |J0|≤ cν−1.

The second assertion is proved.

Lemma 3.5. Let (n,J,V )∈H4(0,1)×H3(0,1)×H2(0,1) be a solution to (3.1)-(3.5)
satisfying n>0 in (0,1). Then there exists a constant c>0 such that for all ν <1,

‖logn‖H2 ≤ cν−1,

and c>0 only depends on T , ε, λ, U , and ‖C‖L2 .

Proof. By Lemma 3.2, w=logn solves (3.9). Since w∈H2
per(0,1), where H2

per(0,1)
is the space of all periodic H2 functions, we can use w as a test function in the weak
formulation of (3.9) leading to

(
ν2 +

ε2

12

)∫ 1

0

w2
xxdx+

(
T +

ν

τ

)∫ 1

0

w2
xdx

=−λ−2

∫ 1

0

(ew−C)wdx+J2
0

∫ 1

0

e−2ww2
xdx

−2J0ν

∫ 1

0

e−wwxxwxdx− J0

τ

∫ 1

0

e−wwxdx.
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The last integral on the right-hand side vanishes since w(0)=w(1). The function
x 7→−xex, x∈R, has the maximal value e−1. Hence, the first integral on the right-
hand side can be estimated as follows, employing Poincaré’s and Young’s inequalities,

−λ−2

∫ 1

0

(ew−C)wdx≤λ−2

∫ 1

0

(e−1 +Cw)dx≤λ−2
(
1+‖C‖L2‖w‖L2

)

≤ c+
T

2
‖wx‖2L2 ,

where c>0 depends on T . Next, we consider the second integral:

J2
0

∫ 1

0

e−2ww2
xdx≤‖J0e−w‖L∞ |J0|

∫ 1

0

e−ww2
xdx

=
∥∥∥J0

n

∥∥∥
L∞

· |J0|
∫ 1

0

n2
x

n3
dx≤ cν−1 ·cν−1 = cν−2,

using Lemma 3.4. This inequality allows to treat the remaining third integral:

−2J0ν

∫ 1

0

e−wwxxwxdx≤ ε2

24

∫ 1

0

w2
xxdx+

24ν2J2
0

ε2

∫ 1

0

e−2ww2
xdx

≤ ε2

24

∫ 1

0

w2
xxdx+c.

Putting together the above estimates gives, for ν <1,

(
ν2 +

ε2

24

)∫ 1

0

w2
xxdx+

(T

2
+

ν

τ

)∫ 1

0

w2
xdx≤ cν−2.

Then the conclusion follows from Poincaré’s inequality.

3.3. Existence of solutions to (3.9) and (3.11).

Lemma 3.6. Let C ∈L2(0,1). Then there exists a solution w∈H4(0,1) to (3.9) and
(3.11).

Proof. The proof is based on Leray-Schauder’s fixed-point theorem and the a
priori estimate of Lemma 3.5. First, we consider weak solutions. Let H =H1

0 (0,1)∩
H2

per(0,1). As usual, w∈H is called a weak solution to (3.9) and (3.11) if, for J0∈R
given, for all φ∈H,

−
(
ν2 +

ε2

12

)∫ 1

0

(wxx +
1
2
w2

x)φxxdx−
(
T +

ν

τ

)∫ 1

0

wxφxdx

=λ−2

∫ 1

0

(ew−C)φdx−J2
0

∫ 1

0

e−2wwxφxdx

+2J0ν

∫ 1

0

e−wwxxφxdx+
J0

τ

∫ 1

0

e−wφxdx. (3.17)

For the definition of the fixed-point operator, let v∈W 1,4(0,1), I0∈R, and σ∈ [0,1]
be given. We wish to solve the following linear problem in H:

a(w,φ)=σF (φ) for all φ∈H, (3.18)
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where for all w, φ∈H,

a(w,φ)=
(
ν2 +

ε2

12

)∫ 1

0

wxxφxxdx+
(
T +

ν

τ

)∫ 1

0

wxφxdx,

F (φ)=−1
2

(
ν2 +

ε2

12

)∫ 1

0

v2
xφxxdx−λ−2

∫ 1

0

(ev−C)dx

+I2
0

∫ 1

0

e−2vvxφxdx+2νI0

∫ 1

0

(e−vφx)xvxdx− I0

τ

∫ 1

0

e−vφxdx.

Notice that the product v2
xφxx is integrable since v∈W 1,4(0,1). The bilinear form

a(·,·) is continuous and coercive in H since we can apply Poincaré’s inequality. Fur-
thermore, the linear functional F is continuous. Hence, Lax-Milgram’s lemma pro-
vides the existence of a unique solution w∈H to (3.18). Finally, we define J0 as the
solution to (see (3.12))

σU =J0

(1
τ

∫ 1

0

e−wdx+2ν

∫ 1

0

e−ww2
xdx

)
. (3.19)

Clearly, if U =0 then J0 =0.
Thus we can define the fixed-point operator

S : (W 1,4(0,1)×R)× [0,1]→W 1,4(0,1)×R

by S(v,I0,σ)=(w,J0). By Poincaré’s inequality, S(v,I0,0)=(0,0). By standard argu-
ments, S is continuous and, since the range of S is contained in H2(0,1) and H2(0,1)
embeds compactly into W 1,4(0,1), S is also compact. It remains to show that there
is a constant c>0 such that ‖w‖W 1,4 + |J0|≤ c for all fixed points (w,J0) of S(·,·,σ).

Let (w,J0)∈H×R be a fixed point of S. Then w∈H satisfies (3.9) in the sense
of H−2(0,1). Since (w2

x)xx, (e−wwxx)x ∈H−1(0,1), this equation shows that
wxxxx∈H−1(0,1) and wxxx∈L2(0,1). Employing (3.9) again, we obtain wxxxx∈
L2(0,1) and thus w∈H4(0,1), i.e., (3.9) is satisfied pointwise in (0,1). Moreover,
V ∈H2(0,1) by (3.10). (In fact, V is much more regular, but we do not need this
fact.) Thus, (n,J,V )∈H4(0,1)×H3(0,1)×H2(0,1) with n=ew >0, and J =νnx +J0

solves (3.1) (3.5). In particular, Lemmas 3.4 and 3.5 can be applied providing uniform
bounds for |J0| and w=logn in H2(0,1). More precisely, this settles the case σ =1;
however, it is not difficult to see that a similar estimate also holds for σ <1. Hence,
Leray-Schauder’s fixed-point theorem gives a solution to (3.17) and thus to (3.9) and
(3.11).

4. Numerical results
In this section we discretize and numerically solve the viscous and the inviscid

QHD equations using finite differences.

4.1. Numerical discretization. The stationary viscous QHD model is nu-
merically solved in one space dimension. In this situation, the temperature in (2.7)
can be replaced by the energy density and a term involving n(logn)xx, which can
be summarized with the quantum term in (2.7). This leads to the following set of
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equations in the variables n, J , and ne (and the potential V ):

Jx =νnxx, (4.1)
2
3

(J2

n

)
+

2
3
(ne)x−nVx− ε2

18
(
n(logn)xx

)
x

=−J

τ
+νJxx−µnx, (4.2)

5
3

(J ne

n

)
−

( J3

3n2

)
x
−JVx− ε2

18
(
J(logn)xx

)
x

=−2
τ

(
ne− 3

2
n
)

+ν(ne)xx−µJx, (4.3)

λ2Vxx =n−C(x). (4.4)

We define a uniform mesh by xi = ih (i=0,... ,N), where h=1/N is the mesh
size. In order to discretize the Neumann boundary conditions, we introduce the ghost
cells [x−1,x0] and [xN ,xN+1], where x−1 =−h and xN+1 =(n+1)h.

First we discretize the viscous QHD equations using a central finite-difference
scheme. For this, the electron density n and electric potential V are approximated
at the grid points xi, whereas the current density J and the energy density ne are
discretized in the mid-points xi−1/2 =(xi +xi−1)/2. We denote by ni and Vi the ap-
proximations of n(xi) and V (xi) and by Ji−1/2 and nei−1/2 the approximations of
J(xi−1/2), and ne(xi−1/2), respectively. For the sake of completeness, and since we
analyze the numerical scheme in the next subsection, we make explicit the discretiza-
tion. The central finite-difference scheme for (4.1) and (4.4) at x=xi reads as

0=
Ji+1/2−Ji−1/2

h
− ν

h2
(ni+1−2ni +ni−1), (4.5)

0=−λ2

h2
(Vi+1−2Vi +Vi−1)+ni−Ci, (4.6)

where Ci =C(xi) and i=1,.. .,N−1. The central discretization of (4.2) at x=xi−1/2

is

0=
1
6h

( (Ji+1/2 +Ji−1/2)2

ni
− (Ji−1/2 +Ji−3/2)2

ni−1

)

+
1
3h

(nei+1/2−nei−3/2)−
ni +ni−1

2
Vi−Vi−1

h

− ε2

18h3

(
ni log

ni+1ni−1

n2
i

−ni−1 log
nini−2

n2
i−1

)

+
Ji−1/2

τ
+

µ

h
(ni−ni−1)− ν

h2
(Ji+1/2−2Ji−1/2 +Ji−3/2), (4.7)

and the central discretization of (4.3) at x=xi−1/2 reads as

0=
5

12h

( (Ji+1/2 +Ji−1/2)(nei+1/2 +nei−1/2)
ni

− (Ji−1/2 +Ji−3/2)(nei−1/2 +nei−3/2)
ni−1

)

− 1
24h

( (Ji+1/2 +Ji−1/2)3

n2
i

− (Ji−1/2 +Ji−3/2)3

n2
i−1

)
−Ji−1/2

Vi−Vi−1

h
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− ε2

36h3

(
(Ji+1/2 +Ji−1/2)log

ni+1ni−1

n2
i

−(Ji−1/2 +Ji−3/2)log
nini−2

n2
i−1

)

+
2
τ

(
nei−1/2−

3
4
(ni +ni−1)

)
+

µ

2h
(Ji+1/2−Ji−3/2)

− ν

h2
(nei+1/2−2nei−1/2 +nei−3/2), (4.8)

where i=1,.. .,N .
We impose the following boundary conditions:

n0 =C0, nN =CN , n1 =n−1, nN−1 =nN+1, (4.9)
J1/2 =J−1/2, JN+1/2 =JN−1/2, ne1/2 =ne−1/2, neN+1/2 =neN−1/2, (4.10)

V0 =0, VN =U. (4.11)

With these ten conditions, the discrete system seems to be overdetermined. However,
the choice of the doping profile of the tunnelling diode simulated in section 4.3 im-
plies that the particle density fulfills approximately the conditions n=C, J =νnx =0,
and Jx =νnxx =0 at the boundary such that the discrete system is practically not
overdetermined.

Next, we turn to the discretization of the inviscid QHD model using second upwind
finite differences first employed in [14]. The QHD equations are here written in the
variables n, u=J/n, and T rather than in n, J , and ne. Furthermore, the variables
n, T , and V are approximated at the grid points xi, but only u is discretized at
the mid-points xi−1/2. The QHD system can be formulated in the form (ug)x +
f =0, where g, f ∈R4 are appropriate vector-valued functions, namely, writing g =
(g(1),g(2),g(3),g(4)),

g(1) =n, g(2) =nu,

g(3) =
5
2
nT +

1
2
nu2−nV − ε2

12
(
n(logn)xx

)
x
, g(4) =0.

The advection terms (ng(j))x are discretized using second upwind differences. More
precisely, (nu)x at xi is discretized by

A1 =
1
h

(ui+1/2n
up
i+1/2−ui−1/2n

up
i−1/2), (4.12)

where

nup
i+1/2 =

{
ni if ui+1/2 >0,
ni+1 if ui+1/2 <0.

The term (nu2)x is approximated at xi+1/2 by

A2 =
1
h

(ui+1(nu)up
i+1−ui(nu)up

i ), (4.13)

where

(nu)up
i+1 =

{
1
2 (ni +ni+1)ui+1/2 if ui+1 >0,
1
2 (ni+1 +ni+2)ui+3/2 if ui+1 <0.
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The remaining term (ng(3))x is discretized at xi+1/2 in a similar way noticing that
g(3)(xi) is approximated by

g
(3)
i =

5
2
niTi +

1
8
ni(ui−1/2 +ui+1/2)2−niVi− ε2

12h2
ni log

(ni+1ni−1

n2
i

)
.

Gardner has imposed the following boundary conditions

n(0)=C(0), n(1)=C(1), nx(0)=nx(1)=0,

T (0)=T (1)=1, V (0)=0, V (1)=U,

which are discretized similar as in (4.9)-(4.11).
The above discrete nonlinear system is solved by using Newton’s method and the

line search method of [10] (Algorithm A6.3.1, p. 325). For a given applied voltage, we
employed the continuation method, i.e., with the solution for the applied voltage U
as an initial guess, we solve the problem applying the potential U +4U and use this
solution again as an initial guess for the next applied voltage. For the computations
in section 4.3, we have chosen 4U =1 mV and the final voltage is usually U =0.5V.
The number of grid points is N =1000 such that h=1/N =10−3.

4.2. Numerical viscosity and numerical dispersion. In this section, we
analyze the finite-difference schemes of the previous subsection. In particular, we
derive the consistency error in order to examine the strength of numerical viscosity
or dispersion introduced by the discretization.

We start with the viscous QHD model. Let (n,J,ne,V ) be a smooth solution to
(4.1)-(4.4). To simplify the notation we set ni =n(xi), ni+1/2 =n(xi+1/2) etc. Since
we consider in this section only exact solutions, no confusion with the notation of the
previous section should arise. By standard Taylor expansion, we find that (4.1) can
be expanded as

(Jx +νnxx)(xi)=
1
h

(Ji+1/2−Ji−1/2)−
ν

h2
(ni+1−2ni +ni−1)

+
νh2

24
nxxxx(xi)+O(h4).

Typical values of ε2, ν, and h are (see section 4.3) ε2 =10−2, ν =10−2, h=10−3. Thus
our central finite-difference discretization involves the numerical fourth-order diffusion
(νh2/24)nxxxx≈10−10nxxxx.

The expansions for the terms of (4.2) read as follows:
(J2

n

)
x
(xi−1/2)=

1
4h

( (Ji+1/2 +Ji−1/2)2

ni
− (Ji−1/2 +Ji−3/2)2

ni−1

)

+
h2

24

(J2

n

)
xxx

(xi−1/2)+O(h3),

nx(xi−1/2)=
1
h

(ni−ni−1)− h2

24
nxxx(xi−1/2)+O(h4)

ni log
(ni+1ni−1

n2
i

)
−ni−1 log

(nini−2

n2
i−1

)

+
ε2h2

24
nxxx(xi−1/2)+O(h3),

νJxx(xi−1/2)=
ν

h2
(Ji+1/2−2Ji−1/2 +Ji−3/2)−

ν2h2

12
nxxxxx(xi−1/2)+O(h4).
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Thus we obtain a numerical dispersion at most of order (h2/24)nxxx≈10−7nxxx which
is much smaller than the physical dispersion being of order ε2nxxx≈10−4nxxx.

In a similar way, one can show that the numerical viscosity and diffusion in the
central discretization of (4.3) is of order h2 =10−6 and therefore much smaller than ε2

and ν. Therefore, we expect that the numerical error of the central scheme is rather
small. This expectation will be verified numerically in section 4.3.

Next, we turn to the second upwind discretization of the QHD model. The main
error comes from the discretization of the advection terms which are only of order
one. Setting u+

j =max{u(xj),0} and u−j =−min{u(xj),0}, we can write the upwind
discretization A1 of (nu)x(xi) (see (4.12)) as

A1 =
1
h

(
(u+

i+1/2ni−u−i+1/2ni+1)−(u+
i−1/2ni−1−u−i−1/2ni)

)

=
1
h

(−u−i+1/2ni+1 +(u+
i+1/2 +u−i−1/2)ni−u+

i−1/2ni−1

)

=
1
h

(ui+1/2ni+1/2−ui−1/2ni−1/2)

− 1
h

u+
i+1/2(ni+1/2−ni)− 1

h
u−i+1/2(ni+1−ni+1/2)

+
1
h

u+
i−1/2(ni−1/2−ni−1)+

1
h

u−i−1/2(ni−ni−1/2).

The central discretization of nxx gives

ni+1/2−ni =
1
2
(ni+1−ni)+

h2

8
nxx(xi+1/2)+O(h4),

and hence, we obtain

A1 =
1
h

(ui+1/2ni+1/2−ui−1/2ni−1/2)

− 1
2h

(|ui+1/2|(ni+1−ni)−|ui−1/2|(ni−ni−1)
)

− h

8
(
ui+1/2nxx(xi+1/2)−ui−1/2nxx(xi−1/2)

)
+O(h3).

A Taylor expansion shows that this expression can be written as

A1 =(un)x(xi)− h

2
(|u|nx)x(xi)+O(h2).

The upwind discretization A2 of (nu2)x(xi+1/2) (see (4.13)) can be written as

A2 =
1
h

(ni+1u
2
i+1−niu

2
i )+

(
ui+1((nu)up

i+1−ni+1ui+1)−ui((nu)up
i −niui)

)

=
1
h

(ni+1u
2
i+1−niu

2
i )−

B

h
,

where

B =u+
i+1

(
ni+1ui+1− 1

2
(ni+1 +ni)ui+1/2

)

−u−i+1

(
ni+1ui+1− 1

2
(ni+2 +ni+1)ui+3/2

)

−u+
i

(
niui− 1

2
(ni +ni−1)ui−1/2

)
+u−i

(
niui− 1

2
(ni+1 +ni)ui+1/2

)
.
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Employing the approximation ui =(ui+1/2 +ui−1/2)/2+u′′(xi)h2/4+O(h3) and the
relation u±=(|u|±u)/2, we obtain after some tedious computations

B =
1
4

(
|ui+1|

(
(ni+1 +ni+2)ui+3/2−(ni+1 +ni)ui+1/2

)

−|ui|
(
(ni+1 +ni)ui+1/2−(ni +ni−1)ui−1/2

))

+
1
4

(
ui+1

(
(ni+1−ni)ui+1/2−(ni+2−ni+1)ui+3/2

)

−ui

(
(ni−ni−1)ui−1/2−(ni+1−ni)ui+1/2

))
+O(h3).

This term is a central finite-difference approximation of

h2(|u|(nu)x)x +h3(u(unx)x)x at x=xi+1/2

such that

A2 =(nu2)x(xi+1/2)+h(|u|(nu)x)x(xi+1/2)+O(h2).

The above calculations show that the upwind scheme introduces diffusion terms
for the variables n and nu (with diffusion coefficient |u|) being of the order h=10−3.
Since the scaled velocity |u| has numerically values of the order 103 (or larger), the
numerical diffusion term is of the order O(1) which is much larger than the physical
diffusion being of the order ν =10−2.

4.3. Numerical simulations of a resonant tunneling diode. The nu-
merical scheme of section 4.1 is used to simulate a simple one-dimensional resonant
tunneling diode. We choose the same geometry and data as in [14]. The tunneling
diode consists of highly doped GaAs regions near the contacts and a lightly doped
middle region of 25 nm length (see Figure 4.1). The middle region contains a quantum
well of 5 nm length sandwiched between two 5 nm AlGaAs barriers. The double bar-
rier heterostructure is placed between two 10 nm GaAs spacer layers with a doping of
5 ·1015 cm−3. These spacers are enclosed by two layers of 50 nm length and with dop-
ing 1018 cm−3. The total length is thus 125 nm. The double barrier height is 0.209 eV.
The physical effect of the barriers is a shift in the quasi-Fermi potential level, which
is modeled by an additional step function Vext added to the electric potential. The
physical constants are summarized in Table 4.1.
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Fig. 4.1. Geometry of the resonant tunneling diode with Al mole fraction x=0.3.
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Parameter Physical meaning Numerical value
q elementary charge 1.602 ·10−19 As

meff effective electron mass 0.067 ·10−31 kg
kB Boltzmann constant 1.380 ·10−23 J/K
~ reduced Planck constant 1.055 ·10−34 Js
εS semiconductor permitivity 1.012 ·10−10 As/Vm
T0 lattice temperature 77K
τ0 momentum relaxation time 0.9 ·10−12 s
ν viscosity 1.589 ·10−5m2/s2

Table 4.1. Physical parameters for GaAs.
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Fig. 4.2. Current-voltage characteristics of a tunneling diode for various values of the viscosity
with ν0 =1.589 ·10−5 m2/s2 (left) and various values of the lattice temperature (right), computed
from the isothermal model.

Gardner [14] has added the heat flux term kBσ(nTx)x to the right-hand side of
(2.4), where σ =κτ0kBT0/m and κ=0.2 is the thermal conductivity, for numerical
stability. This term is not needed in the numerical solution of the viscous QHD
equations, but we used it in the solution of the QHD model. We notice that the
values for the momentum relaxation and energy relaxation times are different in the
QHD model. We use the same values as in [14].

First, we present numerical results for the isothermal model (4.1), (4.2), (4.4)
with constant lattice temperature T0 =77 K in order to test our numerical algorithm.
The stationary numerical solution was already calculated in [28] (as the limit of the
transient solution for “large” times) such that our results can be compared to those
in [28]. Current-voltage characteristics for the resonant tunneling diode described
above are displayed in Figures 4.2 and 4.3. We observe several regions of negative
differential resistance (NDR) characterizing the tunneling diode. The curve becomes
“smoother” for larger values of the viscosity constant which is expected physically.
However, there is a jump of the current density to a larger value after each local
minimum; this jump seems to be not physical since in experiments [30], as well as in
numerical simulations using the Schrödinger equation (see, e.g., [11]), sharp gradients
are observed just after the current peaks. A possible explanation, already given in
[28], is that the energy equation needs to be taken into account which will be done
below. In fact, we expect that the electrons cool down dramatically as they penetrate
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the potential barriers such that the isothermal model is not accurate enough.
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Fig. 4.3. Current-voltage characteristics of a tunneling diode for various values of the effective
mass computed from the isothermal model.

It is interesting to observe that there are NDR regions also at room temperature;
this is not the case of the quantum drift-diffusion model [27]. In Figure 4.3 the current-
voltage curves for various values of the effective mass constant α with meff =α ·m0

are shown. The peak-to-valley ratios are given in Table 4.2. Interestingly, the peak-
to-valley ratios are not monotoneous with the effective mass like in the quantum
drift-diffusion model [27].

Effective mass First ratio Second ratio
0.067m0 1.750 1.180
0.092m0 1.707 1.086
0.126m0 2.205 1.108

Table 4.2. Peak-to-valley ratios from Figure 4.3 for different effective masses.
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Fig. 4.4. Current-voltage characteristics of a tunneling diode computed from the non-isothermal
model with relaxation time τ =0.9 ps and viscosity ν =1.589 ·10−5 m2/s2.

Next, we turn to the numerical results obtained from the non-isothermal model
(4.1)-(4.4). In Figure 4.4 the current-voltage characteristics are shown with lattice
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Fig. 4.5. Zoom of Figure 4.4.
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Fig. 4.6. Electron density versus position with relaxation time τ/4=0.225 ps at the peak (left)
and valley (right) current.

temperature T0 =77 K. In order to obtain NDR effects, we need to choose a smaller
relaxation time than that taken in the isothermal model. The peak-to-valley ratio
is too small compared to experiments which may be due to the viscosity. Again, for
larger viscosity constants, the current-voltage curves become “smoother”. Numeri-
cal difficulties (supported by the analytical estimates of section 3) do not allow to
perform numerically the inviscid limit ν→0. Interestingly, the current-voltage curve
shows a plateau-like behavior (see the zoom in Figure 4.5) which can be also observed
experimentally [3, 29].

In Figure 4.6, the electron densities for the isothermal and non-isothermal model
at the peak and valley current values are displayed. For the non-isothermal model, the
data corresponds to the dashed curve in Figure 4.4 (left). The electron density shows a
charge enhancement in the quantum well which is more pronounced in the isothermal
model. At the center of the right barrier, the electron density dramatically decreases.
At the peak current (left figure), the density from the isothermal model develops a
“wiggle”. This phenomenum is not a numerical effect since it has been observed in
various numerical simulations [28, 33]. This “wiggle” disappears at the valley current
where the density becomes very small (right figure). The electron density from the
non-isothermal model is “smoother” and its minimum is larger than in the isothermal
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Fig. 4.7. Current-voltage characteristics of a tunneling diode computed from the non-isothermal
model for various values of the lattice temperature (left: ν =1.589 ·10−5 m2/s2; right: ν =5 ·1.589 ·
10−5 m2/s2).
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Fig. 4.8. Influence of the number of discretization points on the current-voltage characteristics
computed from the non-isothermal viscous model.

model, which stabilizes the numerical scheme.
Next, we investigate the influence of the lattice temperature (see Figure 4.7).

In order to compute the solution for T0 =200K and T0 =300 K we needed a larger
viscosity constant, namely 5ν. We see that there is no NDR region, even not for small
lattice temperature. It seems that the viscosity dominates the quantum effects.

Finally, we notice that the number of discretization points influences the solution
behavior only slightly (Figure 4.8) which is to be expected since the central scheme
is of second order.
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[11] A. El Ayyadi and A. Jüngel, Semiconductor simulations using a coupled quantum drift-diffusion
Schrödinger-Poisson model, SIAM J. Appl. Math., 66, 554-572, 2005.

[12] D. Ferry and J.-R. Zhou, Form of the quantum potential for use in hydrodynamic equations
for semiconductor device modeling, Phys. Rev. B, 48, 7944-7950, 1993.
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