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SELF-INDUCED STOCHASTIC RESONANCE FOR BROWNIAN

RATCHETS UNDER LOAD∗

R. E. LEE DEVILLE† AND ERIC VANDEN-EIJNDEN‡

Abstract. We consider a Brownian ratchet model where the particle on the ratchet is coupled
to a cargo. We show that in a distinguished limit where the diffusion coefficient of the cargo is small,
and the amplitude of thermal fluctuations is small, the system becomes completely coherent: the
times at which the particle jumps across the teeth of the ratchet become deterministic. We also show
that the dynamics of the ratchet-cargo system do not depend on the fine structure of the Brownian
ratchet. These results are relevant in the context of molecular motors transporting a load, which are
often modeled as a ratchet-cargo compound. They explain the regularity of the motor gait that has
been observed in numerical experiments, as well as justify the coarsening into Markov jump processes
which is commonly done in the literature.
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1. Introduction and motivation

Rectified thermal diffusion, or the Brownian ratchet, has been used in many
contexts as a model for processes at the molecular level; a few examples include
RNA polymerase [23], chromosome transport [19], protein translocation [22], and
ATP hydrolysis of kinesin [18] (see [9] for a comprehensive list).

The simplest example of a Brownian ratchet is the “perfect” ratchet. Here a
particle is moving on a one-dimensional track on which it diffuses freely except at
a set of discrete locations (called the “teeth”). At these teeth, the particle is only
allowed to pass in one direction (say, from left to right), inducing an average drift of
the particle to the right. Another, slightly more sophisticated, example of a Brownian
ratchet is that of a particle diffusing in a potential with a sequence of local minima,
such that each local minimum has lower energy than the one to its left. The bias
encoded in the potential also induces an average drift to the right in the particle’s
motion.

While a particle in a Brownian ratchet moves with a nonzero mean velocity, its
position also has a significant variance. For instance, in the second model above, if
the noise is small, each minimum of the potential becomes metastable, and jumps
occur amongst minima following Arrhenius’ law, i.e. the times between these jumps
are approximately independent and exponentially distributed.

The purpose of this paper is to show that a simple modification of Brownian
ratchets makes them much more regular. Specifically, we show that if we couple
the particle in the ratchet to a heavy cargo which applies a force to this particle,
the compound moves deterministically in a distinguished limit when (i) the diffusion
coefficient of the cargo is much smaller than that of the particle in the ratchet, and
(ii) the energy due to thermal effects is much less than the energy barrier to move the
particle from one ratchet tooth to the next while keeping the cargo fixed. Under these
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conditions, the times between successive jumps of the particle have a non-zero mean,
while their variance goes to zero. We also show that the dynamics does not depend
on the fine structure of the potential we choose: in fact, we show that any potential
can be characterized by a few parameters which completely determine the dynamics.

The phenomenon by which regularity arises is that of self-induced stochastic reso-
nance, studied in [12, 11, 3, 16, 5, 4, 6]. It can be roughly summarized as follows: if a
system is driven by small noise, the escape times of the system from some region are
exponentially distributed, and their transition rate is governed by an activation en-
ergy. Let us now assume that the system is placed out of equilibrium and parameters
are chosen so that it relaxes slowly. Assume also that the activation energy decreases
as the system relaxes. Then, during the relaxation phase, there is a specific time at
which the timescale for escape events switches from being longer than the relaxation
timescale to being shorter, and thus the system jumps reliably at that point. If the
jump brings the system back out of equilibrium, the relaxation stage can start over
again, and the scenario repeats itself indefinitely. Below we show how this scenario
can arise in Brownian ratchets coupled to a load.

The results presented here are relevant in the context of molecular motors, since
Brownian ratchets are often used as a model of a motor protein moving along a fil-
ament [14, 9] and have been shown to give a good phenomenological description of
such motors [1]. It has also been observed that having an elastic tether between mo-
tor and cargo allows the motor to efficiently transport a cargo with a much smaller
diffusion coefficient [9, 15], and moreover this can make the motor gait become much
more regular [20]. Our results explain why this regularity occurs. They also go some
way towards justifying the coarse-graining which is typically done in this field [10]:
many common motor protein models ignore the fine structure of the motor and sim-
ply model the coarse-grained dynamics empirically via Markov jump processes. In
fact, the authors have shown [7] in the context of Markov jump process models of
motor proteins that tethering a motor to a heavy cargo with an elastic spring can
induce regularity in the motion of the motor and make it jump deterministically. One
consequence of the present work is a justification of this coarse-graining.

We now describe the organization of the remainder of this paper. In Section 2 we
formulate the problem and describe the equations. In Section 3 we study a certain
distinguished limit in great detail and show that it gives rise to regular dynamics of
the system. In Section 4 we comment on several implications of the results here to
motor protein dynamics in general. In Appendix A we state a precise formulation of
the limit described in Section 3 and sketch the proof.

2. Problem formulation

Hereafter we refer to the particle in the ratchet as the motor and to the attached
load as the cargo. We denote as x the position of the motor and y the position of the
cargo. A schematic diagram of the motor-cargo complex is given in Figure 2.1. The
potential energy of the system is given by

φ(x,y)=U(x)+S(|x−y|), (2.1)

where U represents the potential energy of the motor interacting with the ratchet,
and S represents the energy contained in the spring coupling the motor to the cargo.
We assume that U : R→R and S : R

+ →R
+ are C2, and that S is convex and satisfies

S(0)=S′(0)=0. We further assume that

U(x+A)=U(x)−U∗, (2.2)



R. E. LEE DEVILLE AND ERIC VANDEN-EIJNDEN 433

where U∗ >0, and that U has exactly one local minimum and one local maximum in
any interval of the form [x,x+A). Without loss of generality we will assume that the
local minima are located at integral multiples of A. An example potential is given in
figure 2.2.

Motor

Cargo

Fig. 2.1. A schematic diagram of the motor-cargo complex. The motor moves in the tilted
potential which we describe here, and the cargo is tethered to the motor by a nonlinear spring. We
will eventually assume that the diffusion coefficient of the motor is much larger than that of the
cargo, which we represent by a “small” motor pulling a “large” cargo.
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Fig. 2.2. One possible choice of U(x), namely U(x)=1/2(1−cos(2πx)−5x) (cf. Figure 3.1).

Following [9], we model the dynamics of both the cargo and motor as overdamped
due to their microscopic size. In this limit, the dynamics of both the cargo and the
motor can be described by the following pair of coupled SDEs:

dx=− DM

kBT

∂φ

∂x
dt+

√

2DM dW x
t ,

dy =− DC

kBT

∂φ

∂y
dt+

√

2DC dW y
t , (2.3)

where W x
t ,W y

t are independent Brownian motions modeling the effect of thermal noise
on the compound, and DM ,DC are the diffusion coefficients of the motor and cargo.
This SDE system will be the fundamental object of study in this paper.

In Figure 2.3, we show realizations of the nondimensionalized version of (2.3)
(specifically, the equations given in (3.2)) for two choices of parameters. It is easy to
see that the motion of the complex is very regular — in particular, the time between
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steps of the motor has a very small variance. The overarching goal of this paper is to
explain this phenomenon.
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Fig. 2.3. In this figure we show realizations of (3.2) for two different choices of parameters, and
histograms of their jumping times. In all simulations we have chosen U(x)=(1−cos(2πx))/6.6−x,
α=3.3, and S(x−y)=(x−y)2/2. The top left frame is a realization of (3.2) with ǫ=4×10−3 and
δ =8×10−2, where we plot the position of a realization of x and y versus δt (we show below that
this is the natural timescale for the problem, see for example Theorem A.1). It can be observed
that the motor stays pinned in a small region while the cargo relaxes towards it, and at some time
before the cargo reaches the motor, the motor jumps to the next region. The bottom left frame shows
a histogram of these residence times (more specifically, this is a histogram of the difference of the
times where the trajectory crosses the integers). The right two frames are similar, except we have
chosen ǫ=1×10−3 and δ =4.5×10−5. Notice that the second choice of parameters decreases the
variance of the residence times without appreciably changing their mean (in fact, the mean goes from
1.91 in the left to 1.73 in the right, but the standard deviation is halved, from 0.345 to 0.153). The
results of this paper explain all of these features. We point out that these simulations are done with
the nondimensionalized equations (3.2) instead of the original SDE (2.3) to emphasize the limiting
behavior which arises when δ,ǫ→0 in the particular distinguished limit considered in this paper.

3. Asymptotic analysis and self-induced stochastic resonance

In this section, we analyze (2.3) and show that in a particular distinguished scaling
limit, the dynamics of the motor become completely regular. This section contains
only a formal argument; we state and sketch the proof of a precise formulation of the
limit in Appendix A.

The main idea behind the argument is that the motor moves in a potential which
is the sum of the underlying potential given by U and the coupling to the cargo given
by S. As the cargo relaxes toward the motor, S decreases and thus the potential well
which the motor must escape to jump to the next tooth becomes less deep and hence
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less restrictive. We show that if the quantities are scaled correctly, there is a critical
point where the timescale it takes for the motor to jump switches from being much
longer than the relaxation timescale of the cargo to being much shorter. The motor
jumps deterministically at this critical point.

In Section 3.1 we nondimensionalize (2.3) and discuss the parameters of interest.
In Section 3.2 we propose a notational scheme and in Section 3.3 we describe the
necessary large-deviation results and matching of timescales. In Section 3.4 and 3.5
we describe the dynamics of the system in two separate parameter regimes.

3.1. Rescaling and nondimensionalization. Recall that S(|x−y|) is any
convex function of |x−y| with S(0)=S′(0)=0. We assume for simplicity in this
derivation that x≥ y, and we justify this assumption below. Plugging (2.1) into (2.3)
gives

dx=− DM

kBT
(U ′(x)+S′(x−y))dt+

√

2DM dW x
t ,

dy =
DC

kBT
S′(x−y)dt+

√

2DC dW y
t .

We will rescale by

x=Ax̂, y =Aŷ, t=Bt̂,

where A is the period of the ratchet and B is a timescale which we will set below.
This gives

dx̂=
DMB

kBTA
(U ′(Ax̂)+S′(A(x̂− ŷ)))dt̂+

√

2DMB

A2
dŴ x

t ,

dŷ =
DCB

kBTA
S′(A(x̂− ŷ))dt̂+

√

2DCB

A2
dŴ y

t .

We define κ=S′′(0) (this is the spring constant if the spring is linear) and set
B =kBT/DMκ, and we introduce the dimensionless potentials:

Û(x̂)=
U(Ax̂)

U∗

, Ŝ(x̂)=
S(Ax̂)

κA2
.

This gives

dx̂=

(

U∗

κA2
Û ′(x̂)+ Ŝ′(x̂− ŷ)

)

dt̂+

√

2kBT

κA2
dŴ x

t ,

dŷ =
DC

DM
Ŝ′(x̂− ŷ)dt̂+

√

2DCkBT

DMκA2
dŴ x

t .

Finally, we see that there are three nondimensional parameters remaining in the
system, so we denote

α=
U∗

κA2
, δ =

DC

DM
, ǫ=

kBT

κA2
, (3.1)

and dropping all the hats for simplicity, we arrive at

dx=−(αU ′(x)+S′(x−y))dt+
√

2ǫdW x
t ,

dy = δS′(x−y)dt+
√

2ǫδdW y
t . (3.2)
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The parameter δ is the ratio of the diffusion coefficients of the cargo and motor.
This paper considers the case where the cargo has a much smaller diffusion coefficient
than the motor, giving δ≪1. The parameter ǫ measures the energy accessible due to
thermal effects relative to the amount of work it takes to stretch the spring by one
period, and here we want to consider the case where this ratio is small, giving ǫ≪1.
The parameter α is the ratio of the energy released by the motor’s moving one step
forward in the ratchet relative to the amount of work it takes to stretch the spring by
this distance. However, the particular meaning of α here is to quantify the relative
strengths of the two potentials in which the motor moves (this can be seen from (3.2)),
and thus α−1 corresponds to the nondimensionalized strength of the spring. For this
paper, we will consider α to be a fixed O(1) quantity subject to conditions described
below. This will give an effective upper bound on the spring stiffness (we discuss this
issue further in Section 4). Finally, note that U has been rescaled in such a way that
now U(x+1)=U(x)−1.

We mention that if the spring is linear, namely that S(x−y)=κ(x−y)2/2,
then (3.2) becomes the simpler

dx=−(αU ′(x)+(x−y))dt+
√

2ǫdW x
t ,

dy = δ(x−y)dt+
√

2ǫδdW y
t . (3.3)

3.2. Notation. Consider (3.2) where we set δ =0. This fixes y, and we see
that x(t) is simply diffusion in the potential given by

Vy(x)=αU(x)+S(x−y). (3.4)

As derived above, U(x) is a function which is periodic up to a shift, has local minima
at the integers, and local maxima at k+d for some d∈ (0,1), k∈Z, and S is convex
with S(0)=S′(0)=0.

In particular, V0(x) has a local minimum at x=0. It follows from the implicit
function theorem that there exists a neighborhood N of 0 such that for all y∈N ,
the potential Vy(x) has at least one local minimum. Moreover, the location of this
local minimum can be chosen to depend smoothly on y. Let us define x0(y) to
be the location of this local minimum, and define (ymin,ymax) to be the maximal
neighborhood for which this minimum exists. We will assume throughout that Vy(x)
has the property that ymin <−1. Notice that for any choice of the motor potential
U , we can guarantee this condition by choosing α sufficiently large (note further that
this can be guaranteed by choosing the spring to be linear, and taking κ sufficiently
small while holding everything else fixed, as can be seen from (3.3)).

Also notice that the system (3.2) is invariant under the translation (x,y) 7→ (x+
k,y+k) for k∈Z. We can thus define xk(y)=x0(y−k) and it follows that for y∈
(ymin +k,ymax +k), there exists a local minimum of Vy(x) at xk(y). For topological
reasons, there exists a unique local maximum between any two local minima. Thus,
for any fixed y∈ (ymin +k+1,ymax+k), we define uk(y) to be the local maximum of
Vy(x) such that

xk(y)<uk(y)<xk+1(y). (3.5)

See Figures 3.1 and 3.2 for examples. Now, define

∆V
(k)
+ (y)=Vy(uk(y))−Vy(xk(y)), ∆V

(k)
− (y)=Vy(uk−1(y))−Vy(xk(y))
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Fig. 3.1. The location of the local minima and maxima for U(x)=(1−cos(2πx))/5−x, S(x)=
(x−y)2, and α=5. We have graphed xk(y) with thick solid lines and uk(y) with dashed lines.
The thin solid line is the line y =x, along which the system is translation invariant. We have also
plotted several trajectories of the system (3.2) with ǫ=0 (deterministic) and δ =10−1. Of course,
the curves which are local minima for Vy(x) become attracting slow manifolds for the deterministic
system, and the local maxima likewise become repelling slow manifolds. All trajectories decay rapidly
to an attracting slow manifold and then move along it, and of course we always move toward y =x
along any such slow manifold.
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Fig. 3.2. Here we have chosen U(x)=(1−cos(2πx))/5−x, α=5, and S(x,y)=(x−y)2. In
the left frame we have plotted αU(x), the ratchet potential, and in the right frame we have plotted
the full potential αU(x)+S(x,y) with y =−1.7 (cf. the left frame and Figure 2.2). The three local
minima which appear in the right panel are x0(−1.7),x1(−1.7),x2(−1.7), and the two local maxima
are u0(−1.7),u1(−1.7).

for all y such that the right-hand sides exist. For any k, ∆V
(k)
+ (y) is monotone

decreasing in y and ∆V
(k)
− (y) is monotone increasing in y, due to the convexity of the

spring potential S. The interpretation of these two quantities is as follows: the local

minimum xk(y) will have a local maximum to either side of it, and then ∆V
(k)
+ (y)

is the height of the barrier to the right of xk(y), and ∆V
(k)
− (y) is the height of the

barrier to the left of xk(y).

3.3. Large-deviation asymptotics and matching. Throughout the re-
mainder of this paper we use the notation (Xt,Yt) to denote a realization of (3.2).
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Consider (3.2) with y∈ (ymin +1,0) fixed (for the time being set δ =0) and some initial

condition X0 =x, with x near x0(y). We will define τ
(0)
R (x,y) as the mean first exit

time past u0(y), and τ
(0)
L (x,y) the mean first exit time past u−1(y). More specifically,

choose some h>0 and define

τ
(0)
R (x,y)=Ex inf

t>0
{t : |Xt−x1(y)|<h},

τ
(0)
L (x,y)=Ex inf

t>0
{t : |Xt−x−1(y)|<h}.

Using the notation that f(ǫ)≍ g(ǫ) if and only if log(f(ǫ))/ log(g(ǫ))→1 as ǫ→0, it
is a well-known result of large-deviation theory [13] that in the limit as ǫ→0,

τ
(0)
R (x,y)≍ exp(ǫ−1∆V

(0)
+ (y)), τ

(0)
L (x,y)≍ exp(ǫ−1∆V

(0)
− (y)). (3.6)

Moreover, this limit is uniform for x in any compact subset of (u−1(y),u1(y)). We
also point out that we can define activation energies and escape times for the other
slow manifolds in a similar way by

∆V
(k)
± (y)=∆V

(0)
± (y−k),

τ
(k)
R,L(x,y)= τ

(0)
R,L(x−k,y−k),

and by the translation invariance we also have

τ
(k)
R (x,y)≍ exp(ǫ−1∆V

(k)
+ (y)), τ

(k)
L (x,y)≍ exp(ǫ−1∆V

(k)
− (y)). (3.7)

Now, consider the effect of δ >0, i.e. where we allow y to move as well. We want to
choose δ in such a way that the timescale on which y relaxes is comparable to jumping
events in x. This inspires us to consider the same limit as in [11, 6, 7]:

ǫ→0, δ→0, ǫ logδ−1→β, (3.8)

where β∈ (βmin,βmax), with βmin and βmax to be specified below. This matching is
equivalent to choosing δ≍ e−β/ǫ. We define yf(β) and yb(β) to be the unique solutions
of

∆V
(0)
+ (yf(β))=β, ∆V

(1)
− (yb(β))=β.

Uniqueness follows from the monotonicity of ∆V
(k)
± . At least formally, we can see

that in the limit (3.8), the values yf(β),yb(β) are the locations where we might expect
the system to jump forward or backward between the slow manifolds x0(y) and x1(y),
since these are the locations where the relaxation timescale of the cargo matches the
jumping timescale of the motor (for example, yf(β) is the value of y for which the
timescale to jump from x0(y) to x1(y) is the same as δ−1).

Finally, we assume throughout the rest of the paper that ∆V
(0)
+ (0)<∆V

(1)
− (0),

or, equivalently, that V0(0)>V0(1). This will hold as long as we choose α sufficiently
large in (3.4).

3.4. Non-stuttering dynamics. In this subsection, we will give an intuitive
timescale-matching argument as to what the dynamics are with β chosen sufficiently
small. Define βs to be the unique value of β so that yf(β)= yb(β) (see figure 3.3). In
this section, we will assume that β∈ (βmin,βs), where we define

βmin =∆V
(0)
+ (0). (3.9)
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Fig. 3.3. The left frame shows the dependence of ∆V
(0)
+ (y) and ∆V

(1)
− (y) on y, and the right

shows the dependence of yf(β) and yb(b) on β. The monotonicity of these curves comes from the
convexity of the spring potential S. The fact that ys <0, or equivalently, that βs >βmin, is due to the
monotonicity and to the assumption that V0(0)>V1(0).
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Fig. 3.4. Two simulations plotted in phase space, demonstrating both non-stuttering (the left
panel) and stuttering (the right panel). Here we again use U(x)=(1−cos(2πx))/5−x, α=5, and
S(x,y)=(x−y)2 (cf. the deterministic phase plane in Figure 3.1). Each panel shows a simulation
of (3.2) with this choice of U and S; the difference between the two panels is the choice of ǫ,δ.
In the left panel, we choose ǫ=3×10−2,δ =10−3; this gives an effective value of β≈0.207 (one
can calculate that βs ≈0.881 for this choice of U and S) so that we expect not to stutter, and in
fact we expect to jump off of x0(y) at yf ≈−0.232. (We have plotted y =−0.232 as a gray line in
the left panel; notice that the trajectory jumps off of x0(y) very close to this line.) In the right
panel, we choose ǫ=10−1,δ =4.54×10−5, giving β≈1.00, so that we expect stuttering. One can
further compute that for this β, we have yf ≈−2.243,yb ≈−1.757, so that the band of stuttering is
approximately (−2.243,−1.757). We plot the two lines y =−2.243 and y =−1.757 as gray lines in
the right panel; notice that the trajectory seems to switch between x0(y) and x1(y) several times
inside this band.

Referring again to Figure 3.3, note that the assumption made above that V0(0)>V1(0)
is sufficient to guarantee that βs >βmin.

Moreover, it is equivalent to assume any of the following: that β <βs, that

∆V
(0)
+ (yf(β))<∆V

(1)
− (yf(β)), or that yf(β)>yb(β).
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For any y∈ (ymin +1,0), it follows from (3.6) that for ǫ sufficiently small,

{

τ
(0)
R (x,y)≫ δ−1, y <yf(β),

τ
(0)
R (x,y)≪ δ−1, y >yf(β).

Now pick y∈ (yb(β),yf(β)), and consider any realization (Xt,Yt) of (3.2) with initial
condition (X0,Y0)= (x0(y),y). While Yt ∈ (yb(β),yf(β)), the time it takes for Xt to
jump to any neighborhood of x1(Yt) or x−1(Yt) is always much larger than δ−1, so
a jump is very unlikely. Moreover, in the limit as ǫ→0, Xt spends an exponentially
large fraction of time in any given neighborhood of x0(y).

In contrast, as soon as Yt >yf(β), then τ
(0)
R (Xt,y)≪ δ−1, so we expect the trajec-

tory to move to a neighborhood of x1(y) quickly. Since ∆V
(1)
− (y)>β, the probability

of a backward jump, i.e. for Xt to jump back to a neighborhood of x0(Yt), is very
small. Thus we expect the limiting process to move along the manifold x0(y) until Yt

reaches yf(β), at which time the process moves to a neighborhood of x1(y). Using the
translation invariance of the system, the trajectory then moves along x1(y) until Yt

reaches yf(β)+1, at which time it jumps to a neighborhood of x2(y), and this process
repeats. See Figure 3.4.

3.5. Stuttering dynamics. Let us now assume that β >βs (again see Fig-
ure 3.3) and thus yb(β)>yf(β). Thus for any fixed y∈ (yf(β),yb(β)), we have both

τ
(0)
R (x,y)≪ δ−1, τ

(1)
L (x,y)≪ δ−1.

We call this interval the “unstable region”, simply because for y in this region, we
expect Xt to make many switches between the two local minima at x0(Yt) and x1(Yt)
in the time it takes Yt to appreciably change. Define

ρ(y)=
τ

(0)
R (y)

τ
(0)
R (y)+τ

(1)
L (y)

,

and define ys by

∆V
(0)
+ (ys)=∆V

(1)
− (ys). (3.10)

The interpretation of ρ is as follows: if we consider the first equation of (3.2)
with fixed y∈ (yf(β),yb(β)), then ρ(y) is the fraction of time we expect a realization
to spend in a neighborhood of x1(y), and (1−ρ(y)) is the fraction of time it spends
in a neighborhood of x0(y).

Using the formulas in (3.6), we see that, in the limit ǫ→0,

ρ(y)→
{

0, y∈ (yf(β),ys),

1, y∈ (ys,yb(β)).

Now consider the three intervals

I1(β)= (yb(β)−1,yf(β)), I2(β)= (yf(b),ys), I3(β)= (ys,yb(β)). (3.11)

As before, in the limit ǫ→0, we expect the process to escape any of these intervals in
time which scales like δ−1, and to escape from the top with probability one. In fact,
we expect the following:
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1. In I1(β), the trajectory stays near the slow manifold x0(y) at all times.
2. In I2(β), the trajectory spends an exponentially large fraction of time near

x0(y). It escapes to a neighborhood of x1(y) in any small y neighborhood,
but returns quickly on the δ−1 timescale, since Vy(x0(y))<Vy(x1(y)).

3. In I3(β), similarly to above, the trajectory spends an exponentially large
fraction of time near x1(y), but escapes to a neighborhood of x0(y) in any
small y neighborhood.

Then, as above, using the translation-invariance of the system and the formulas
in (3.7), this repeats as follows: for y∈ (ys +k−1,ys +k), the system spends almost
all of its time near the slow manifold xk(y), but for some band of values near ys +k
(which increases in size as β increases), the trajectory makes many escapes to an
adjacent slow manifold. See Figure 3.4. In particular, if we are only paying attention
to where the system spends most of its time, stuttering is not qualitatively different
from non-stuttering: it will spend most of its time near one manifold until the switch
at ys, and even in the non-stuttering case the system still makes excursions away from
the slow manifolds (just not excursions to neighborhoods of other slow manifolds).
The stuttering only becomes apparent if we keep track of which manifold we are close
to: then, the non-stuttering case only makes one transition between any two adja-
cent slow manifolds, and always does so in a forward manner, whereas the stuttering
case makes many transitions between any adjacent slow manifolds. This distinction
is made more precise in the limit theorems in Appendix A.

We want to define βmax so that for β <βmax, these bands do not overlap. Thus we
define βmax so that

yb(βmax)= yf(βmax)+1. (3.12)

One can see from Figure 3.3 that this ensures that

βmin <βs <βmax.

We note in passing that the restriction β <βmax is artificial and made only for
simplicity. One could choose β >βmax, and then the motor would stutter amongst
more than two adjacent domains (e.g. for β just a bit above βmax, the motor could
sometimes stutter amongst three local minima of Vy). We do not consider this com-
plication here, but of course the present results can be extended to that case as well.

4. Conclusions

We would like to conclude with a few comments on the properties of this model
in the limit (3.8), and on what this might say for real motor protein models. In
particular, we discuss the universality and the realizability of the analysis presented
here.

We first discuss universality. Note that most details of the potential U did not play
any role in these calculations. Recall that we define U so that it has local minima at
integral multiples of the period A and exactly one local maximum in the region [0,A).
Let d∈ [0,A) be the location of this local maximum. One can see that knowing the
spring potential S and the three parameters d, U(d)−U(0) and U∗ is enough to fully

specify the functions ∆V
(k)
+ (y) and ∆V

(k)
− (y) completely, and in turn these specify

the dynamics completely in the limit (3.8). Of course, what makes all of this work
is that the matching which controls the dynamics only needs to consider the rough
large-deviation estimates as in (3.7); since the prefactor corrections do not play a role
here (as they only contribute an asymptotically small term in (3.8)), neither does
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the fine structure of the potential U . Thus the theory can be extended to much more
complicated potentials than those considered here. In particular, it can be generalized
to cases where the motor-cargo complex is described by a model with more than two
degrees of freedom, to account at some level for the internal structure of the motor
(see [17, 18, 14, 2]). One particular generalization is non-smooth potentials; this
can be achieved by taking a limit of smooth potentials where the three determining
quantities are held constant. This is important because non-smooth potentials (e.g.
piecewise-linear) are used in several applications [19, 9].

Second, we discuss some aspects of the realizability of the dynamics achieved
here. The analysis above is applicable only in the distinguished limit (3.8), and in
particular this implies that we are in the scaling limit δ≪ ǫ≪1. Here we repeat the
definition of α,δ,ǫ from equation (3.1):

α=
U∗

κA2
, δ =

DC

DM
, ǫ=

kBT

κA2
.

Conversely, notice that as long as δ≪ ǫ≪1, we will be close to the limit (3.8) for
some β >0. In particular, the meaning of ǫ≪1 means that the work involved in one
step of the motor is a significant multiple of kBT .

It is observed [20] (see also [21]) or inferred [19] for multiple examples of motor
proteins that the activation energy required to move the motor one step in the ratchet
is about one order of magnitude greater than kBT , but comparable to the energy
released in the hydrolyzation of one ATP molecule. This means that α is O(1), and
ǫ is small enough so that ǫ≪1, but, perhaps more importantly, it is not too small.
Recall that for fixed β, δ is exponentially small in ǫ (δ≍ e−β/ǫ), and if ǫ were too small
this would make the timescales on which any motion occurs inaccessible to the motor.
Another view of this as it pertains to the choice of ratchet is that requiring α=O(1)
and ǫ≪1 means that we should have U∗≫kBT . But, again, if the motor is driven
by ATP hydrolysis, then U∗≈12kBT and we have ǫ one order of magnitude smaller
than α. Thus the choices of parameters for which we expect this limit to describe the
dynamics of a molecular motor are of the same order of magnitude to those which
have been measured.

The fact that ǫ is small for specific motor proteins suggests that regularity may
be advantageous to their function. As was pointed out in [20], regularity in motor
protein stepping could allow for a dense serial packing of identical motors along a
filament. In the absence of any regularizing effect, such an array of motors would be
likely to collide unless the packing were much more sparse. However, if they move
regularly, they can move without collisions.

With a view towards experimental verification, we note that it is clear that in
vitro experiments can be constructed in such a way as to test for the effect of changing
DC and observing the dynamics of the motor-cargo complex. By taking DC small (i.e.
high friction cargo) one can control the magnitude of δ and thus β. By controlling
the magnitude of DC one can move the model from the stuttering regime to the
non-stuttering regime, and vice versa. This adds another degree of falsification to
these models, and it is quite interesting to see whether this observation is made in the
future. It follows from the arguments in Appendix A that the velocity of (3.2) scales
like δ−1, and converting this velocity back into the original variables gives

v =
ADCκ

kBT
.
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Thus we see that taking DC small while holding everything else fixed slows down the
velocity of the motor. However, it is reasonable to assume that DM can be made
larger by modifying the solution in which the motor moves (e.g. by increasing the
ATP concentration for a motor which uses ATP hydrolysis).

All of the above comments suggest that the limit considered in this paper may
be realized by motor proteins in vivo. However, since it is not typically possible to
modify the activation energy of a motor protein (which in this context implies that ǫ is
inaccessible to experimenters), it will be useful to describe small (in ǫ) perturbations
to the dynamics described here. The authors have, in other contexts, considered
perturbations to self-induced stochastic resonance in [4] and calculated corrections to
the theory when the noise is taken to be small but positive. The authors are currently
working on [8] in which these asymptotic effects are considered in real models of motor
proteins.
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Appendix A. Theorem and proof. We want to state and prove precise state-
ments corresponding to the intuitive arguments presented in Section 3. We first define
the piecewise smooth trajectory to which the stochastic process limits. We then state
and give a sketch of the proof of the limit theorem which corresponds to the dynamics
described in Subsections 3.4 and 3.5. We point out that at the level of the first limit
theorem, no distinction is made between the stuttering and non-stuttering cases; in
fact, the stuttering is only in some sense evident when we coarse-grain the position
of the motor into discrete bins. Finally, to make this distinction clearer, we state and
prove the last theorem of this section.

Choose y⋆ <0. For fixed y⋆, define (ξ(t),η(t)) as follows: let η(t) solve

dη

dt
=S′(ξ(t)−η(t)), ξ(t)=x0(η(t)),

with initial condition η(0)= y⋆−1, for all t∈ [0,t⋆), where t⋆ is defined by η(t⋆)= y⋆.
Equivalently, we can solve explicitly for t⋆ by

t⋆ =

∫ y⋆

y⋆−1

dη

G(η)
, G(y)=S′(x0(y)−y).

We extend this periodically: choose k∈Z, and for t∈ [kt⋆,(k+1)t⋆), let

ξ(t)= ξ(t−kt⋆)+k, η(t)= η(t−kt⋆)+k.

This defines a piecewise smooth trajectory for all t∈R. (The discontinuities are
located at integral multiples of t⋆.)

We also point out that there were two restrictions needed in the arguments of
Section 3: the first is that ymin <−1, and the second is that V0(1)<V0(0). Recall that
both of these can be achieved by choosing α sufficiently large in (3.4).

Theorem A.1. Choose β∈ (βmin,βmax) where we define βmin,βmax in (3.9) and (3.12).
Assume that Vy(x) is such that ymin <−1 and V0(1)<V0(0). Define δ = δ(ǫ) so that
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ǫ logδ−1 =β, and choose x,y∈R with y≤x. For each ǫ, let (Xǫ
t ,Y

ǫ
t ) solve (3.2) with

initial condition Xǫ
0 =x,Y ǫ

0 = y, and δ = δ(ǫ). Define (X̂ǫ
t ,Ŷ

ǫ
t )= (Xǫ

t/δ,Y
ǫ
t/δ) and y⋆ as

y⋆ =

{

yf(β), β∈ (βmin,βs],

ys, β∈ (βs,βmax).

and define (ξ(t),η(t)) as above. Then, for all T >0,η>0, there exists a phase shift
t0∈R such that

lim
ǫ→0

Prob

(

∫ T

0

∣

∣

∣
X̂ǫ

t −ξ(t+ t0)
∣

∣

∣

2

dt>η

)

=0,

lim
ǫ→0

Prob

(

sup
t∈[0,T ]

∣

∣

∣
Ŷ ǫ

t −η(t+ t0)
∣

∣

∣
>η

)

=0.

Proof. [Sketch of proof.] With a few minor changes, the proof of this theorem
is almost exactly the same as that given in [11]. In fact, the only difference between
the setup in this paper and in [11] is that a stochastic term has been added to the
slow variable, i.e. to the second equation in (3.2). A similar setup (in the context of
multiscale Markov chains) with a noisy slow variable, which contains a proof with all
details, is in [6].

For example, choose β∈ (βmin,βs]. Choose any initial condition with

Y0∈ (yf(β)−1,yf(β)] and X0∈ (u0(Y0),u1(Y0)).

(Recall that we have defined uk(y) in (3.5).) The argument in [11] starting at
equation (11) and ending with the paragraph below (12) shows that as long as
Yt ∈ (yf(β)−1,yf(β)), the probability of Xt leaving the basin of attraction of x0(y),
in time less than O(δ−1), is exponentially small in ǫ. Now, further note that if Xt

remains in this basin of attraction, the second equation in (3.2) has a positive drift,
and thus as ǫ→0, the probability that Yt exits the interval (yf(β)−1,yf(β)) in time
O(δ−1), and does so through the top, goes to one. The convergence to the limiting
trajectory as stated in the theorem follows in exactly the same manner as in [11].

Now assume β∈ (βs,βmin). Recall the definitions of I1(β),I2(β),I3(β) as in (3.11).
Choose initial conditions Y0∈ I1(β) and X0∈ (u0(Y0),u1(Y0)). The same argument as
already given implies that Yt leaves I1(β) through the top, and that Xt and Yt converge
to the limiting trajectory in the manner prescribed in the theorem. Now assume

that Y0∈ I2(β) and X0∈ (u0(Y0),u1(Y0)). Now, in this case, since ∆V
(0)
+ (Yt)<β,

and thus τ
(0)
R (Yt)≪ δ−1, we expect Xt to switch to a neighborhood of x1(Yt) — in

fact, by the same arguments as used in [11], for any ∆y >0, and any neighborhood
(y0−∆y,y0 +∆y) with y0∈ I2(β), it is easy to show that Xt makes an excursion
to a neighborhood of the slow manifold x1(y). However, the same large deviations
estimates show that for Yt ∈ I2(β), Xt spends an exponentially large fraction of time
near the slow manifold x0(y). This is enough to show the convergence, as long as
y <ys−∆y. The same argument shows convergence to the slow manifold x1(y) for
y∈ (ys +∆y,yf(β)+1). It should be noted that for any ǫ>0, we must take ∆y >0 in
the above argument, but as ǫ→0, we can choose ∆y to go to zero as well.

As stated above, this limit theorem does not make any distinction between stut-
tering and non-stuttering. The main reason for this is the type of convergence one
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obtains in the fast direction. It can be shown (see [6, 11, 12] for the statement and
proof in similar problems) that for any of the allowable β, the convergence cannot
be made uniform in the x-direction, and in fact it can be shown that there is a
O(1)-neighborhood of the slow manifolds in which the trajectory is dense. From this
perspective, the distinction between stuttering and non-stuttering is simply that of
whether the size of this neighborhood includes two local minima of Vy(x) instead of
one, but this does not affect the limit since the system spends an exponentially large
proportion of time near the minimum that is more stable. The real criterion distin-
guishing stuttering and non-stuttering is made apparent only if we think of the motor
as sitting at a series of discrete sites — however, note that this is a typical perspec-
tive for motor protein models and Brownian ratchets in general, because these local
minima are located at discrete states where the motor protein attaches to a filament.

We now make the distinction between the two cases more clear. Choose β∈
(βmin,βmax) and let (X̂ǫ

t ,Ŷ
ǫ
t ) be a realization of the stochastic process as in the previous

theorem. Define the coarse-grained process X̃t by

X̃ǫ
t =k iff X̂ǫ

t ∈ (uk(Ŷ ǫ
t ),uk+1(Ŷ

ǫ
t )].

(In words, we are simply keeping track of which basin of attraction the motor sits
in.) Define ξ̃(t)=

⌊

t
t⋆

⌋

. It follows from Theorem A.1 that X̃ǫ
t converges to ξ̃(t) (with

an appropriate phase shift) in an L2 sense. The distinction between stuttering or
not is made by considering whether the convergence of the coarse-grained process is
uniform:

Theorem A.2. Choose β∈ (βmin,βs) and define the coarse-grained process X̃ǫ
t and

the coarse-grained limit ξ̃(t) as above. Then there exists t0∈R such that for any
T >0,h>0, we have

lim
ǫ→0

Prob

(

sup
t∈Th

∣

∣

∣
X̃ǫ

t − ξ̃(t+ t0)
∣

∣

∣
>h

)

=0,

where we define the set

Th =[0,T ]\
∞
⋃

k=0

(t⋆−h,t⋆ +h).

In counterpoint, if we choose β∈ (βs,βmax), then this convergence is not uniform.
(In fact, more can be said: the relative measure of the set on which the coarse-grained
process converges uniformly is less than one for β∈ (βs,βmax) and goes to zero as
β→βmax.)

Proof. [Sketch of proof.] The argument for this is really contained in the proof
sketch above.

Choose β∈ (βmin,βs]. We know that we have the uniform convergence of Yt to η(t)
from the result above. By construction, ξ(t) jumps in such a way that the inter-jump
times go to t⋆ in the limit ǫ→0. However, the argument above shows that for any
∆t>0, the probability of X̃t switching basins of attraction outside of the set of times
[kt⋆−∆t,kt⋆ +∆t] goes to zero exponentially fast as ǫ→0. Combining this with the
uniform convergence of Yt to η(t) gives the result.

For β∈ (βs,βmax), the proof of Theorem A.1 implies that anywhere in the “un-
stable region” (yf(β),yb(β)), Xt is guaranteed to make many switches between x0(Yt)
and x1(Yt), and this region is of size O(1) even in the limit ǫ→0, and thus uniform
convergence is not possible.
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