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NEW EXACT SOLUTIONS FOR THE CUBIC-QUINTIC
NONLINEAR SCHRÖDINGER EQUATION∗

YAN-ZE PENG† AND E. V. KRISHNAN‡

Abstract. The algebraic method is developed to obtain new exact solutions, including station-
ary wave solutions and traveling wave solutions, for the cubic-quintic nonlinear Schrödinger (NLS)
equation. Specifically, we present two general solution formulae, which degenerate to the correspond-
ing solution of the cubic NLS equation, when the quintic nonlinear term is absent. It is expected
that they are useful in correlative physics fields.
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1. Introduction
There is a huge variety of methods available for constructing exact solutions of

nonlinear partial differential equations (PDEs). Some of the most important methods
are the inverse scattering transformation [1], the bilinear method [2], symmetry reduc-
tions [3, 4], Bäcklund and Darboux transformations [5], the singular manifold method
[6] and so on. Recently, searching for periodic wave solutions to nonlinear PDEs in
terms of the Jacobi elliptic functions has aroused great interest [7-11] because of the
elegant properties of the elliptic functions [12-14].

The cubic-quintic nonlinear Schrödinger equation,

iut +uxx +δ|u|2u−ε|u|4u=0, (1.1)

appears in many physics fields: the optical pulse propagations in dielectric media of
non-Kerr type [15], the nuclear hydrodynamics with Skyrme forces [16], etc. Also,
it is used to describe the boson gas with two and three body interactions [17]. So
it is important to search for the exact solutions of Eq. (1.1). Some traveling wave
solutions with linear phase have been reported [18-19]. The authors in [20] discussed
exact solutions of Eq. (1.1) and the relation to blowup. In this paper, the algebraic
method is developed to obtain the stationary periodic wave solutions and the traveling
periodic wave solutions with linear phase and with nonlinear phase. Under the long
wave limit, periodic waves degenerate to the corresponding solitary waves.

2. Stationary wave solutions
First, we look for a stationary solution for Eq. (1.1) of the form

u(x,t)=v(x)e−iΩt, (2.1)

where Ω is the constant to be determined, and v a real function. The substitution of
Eq. (2.1) into Eq. (1.1) yields

v′′+Ωv+δv3−εv5 =0, (2.2)
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where the prime denotes the derivative with respect to x. This is a special case of
the Lienard equation. Kong [21] and Feng [22] studied its exact solutions. Following
their methods, we obtain the following exact solutions of Eq. (1.1).
(1)

u(x,t)=±
[ −4C0Ωe−2

√−Ωx

(C0e−2
√−Ωx +δ/2)2 +4/3Ωε

]1/2

e−iΩt, (2.3)

where C0 is an arbitrary positive constant and which is valid for Ω<0 and ε≤0.
(2)

u(x,t)=±
[ 4

√
3Ω2/(3δ2 +16Ωε)sech2

√−Ωx

2+(−1+
√

3δ/
√

3δ2 +16Ωε)sech2
√−Ωx

]1/2

e−iΩt, (2.4)

which is valid for Ω<0, δ >0 and ε≤0 or Ω<0, δ≤0 and ε<0.
(3)

u(x,t)=±
√
−2Ω

δ
(1±tanh

√
−Ωx)e−iΩt, (2.5)

which is valid for Ω<0, δ >0 and 3δ2 +16Ωε=0.
In what follows, we will obtain some periodic wave solutions of Eq. (2.2), thus of

Eq. (1.1), in terms of the Jacobi elliptic functions, by means of the mapping method
proposed recently by the author [23-24]. Integrating Eq.(2.2) once, we have

v′ 2 +Ωv2 +
1
2
δv4− 1

3
εv6 =C, (2.6)

with C being the integration constant. It is convenient to introduce w=v2. In terms
of w, Eq. (2.6) has the form

w′ 2 +4Ωw2 +2δw3− 4
3
εw4 =4Cw. (2.7)

Now, we assume Eq. (2.7) has solutions of the form

w=A0 +A1f, (2.8)

where f satisfies the auxiliary ordinary differential equation

f ′ 2 =pf2 +
1
2
qf4 +r. (2.9)

Eq. (2.8) establishes a mapping relation between the solution of Eq. (2.7) and that
of Eq. (2.9). Due to the entry of parameters p, q and r, Eq. (2.9) is more flexible
than Eq. (2.7). Substituting Eq. (2.8) with Eq. (2.9) into Eq. (2.7) and equating the
coefficients of like powers of f , one obtains

A0 =
3δ

8ε
, A1 =±1

2

√
3q

2ε
,

Ω=−1
4
p− 49δ2

144ε
,

C =2ΩA0 +
3
2
δA2

0−
4
3
εA3

0, (2.10)
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with the constraint of the parameters

101δ4−144pδ2ε−384qrε2 =0. (2.11)

Thus, we obtain the exact stationary wave solution of Eq. (1.1)

u(x,t)=±
[3δ

8ε
± 1

2

√
3q

2ε
f(x)

]1/2

e−iΩt, (2.12)

where f satisfies Eq. (2.9) and Ω is given by the Eq. (2.10), with the constraint
(2.11) between the model parameters. In order to give the specific expression of f ,
the following discussion is meaningful and interesting.

Case 1. p=−(1+m2), q =2m2, r =1.
In this case, Eq. (2.9) has the periodic wave solution f =sn(x|m). Throughout

the paper, sn, cn and dn denote the Jacobi elliptic functions, and 0<m<1 is the
modulus of the elliptic function, this notation is standard. So, Eq. (1.1) has the
stationary periodic wave solution

u(x,t)=±
[3δ

8ε
± 1

2

√
3
ε
msn(x|m)

]1/2

e−iΩt, (2.13)

where Ω=
1
4
(1+m2)− 49δ2

144ε
, with the constraints of the model parameters, ε>0 and

101δ4 +144(1+m2)δ2ε−768m2ε2 =0. As m→1, Eq. (2.13) degenerates to the sta-
tionary kink or anti-kink solution

u(x,t)=±
[3δ

8ε
± 1

2

√
3
ε
tanh(x)

]1/2

e−iΩt, (2.14)

where Ω=
1
2
− 49δ2

144ε
, which is valid for ε>0 and 101δ4 +288δ2ε−768ε2 =0.

Case 2. p=−1
2
(2−m2), q =

1
2
m2, r =

1
4
.

The solution of Eq. (2.9) reads f =sn(x|m)/(1+dn(x|m). Thus, Eq. (1.1) has
the stationary periodic wave solution

u(x,t)=±
[3δ

8ε
± 1

4

√
3
ε
m

sn(x|m)
1+dn(x|m)

]1/2

e−iΩt, (2.15)

where Ω=
1
8
(2−m2)− 49δ2

144ε
, which is valid for ε>0 and 101δ4 +72(2−m2)δ2ε−

48m2ε2 =0. As m→1, the corresponding stationary shock wave solution of Eq. (1.1)
reads

u(x,t)=±
[3δ

8ε
± 1

4

√
3
ε

tanh(x)
1+sech(x)

]1/2

e−iΩt, (2.16)

where Ω=
1
8
− 49δ2

144ε
, which is valid for ε>0 and 101δ4 +72δ2ε−48ε2 =0.

Case 3. p=−1
2
(2m2−1), q =

1
2
, r =

1
4
.



246 NEW EXACT SOLUTIONS FOR NLS EQUATION

We have f =cn(x|m)/(
√

1−m2sn(x|m)+dn(x|m)). The corresponding solution
of Eq. (1.1) reads

u(x,t)=±
[3δ

8ε
± 1

4

√
3
ε

cn(x|m)√
1−m2sn(x|m)+dn(x|m)

]1/2

e−iΩt, (2.17)

where Ω=
1
8
(2m2−1)− 49δ2

144ε
, with the constraints of the model parameters, ε>0

and 101δ4 +72(2m2−1)δ2ε−48ε2 =0.

Case 4. p=−1
2
(2−m2), q =

1
2
m4, r =

1
4
.

Eq. (2.9) has the solution f =cn(x|m)/(
√

1−m2 +dn(x|m)). Hence, Eq. (1.1)
has the stationary wave solution

u(x,t)=±
[3δ

8ε
± 1

4

√
3
ε
m2 cn(x|m)√

1−m2 +dn(x|m)

]1/2

e−iΩt, (2.18)

where Ω=
1
8
(2−m2)− 49δ2

144ε
, which is valid for ε>0 and 101δ4 +72(2−m2)δ2ε−

48m4ε2 =0.
As m→1, Eqs. (2.17) and (2.18) degenerate to continuous wave solutions.

Case 5. p=2m2−1, q =−2m2, r =1−m2.
The solution of Eq. (2.9) is f =cn(x|m). Therefore, the stationary periodic wave

solution reads

u(x,t)=±
[3δ

8ε
± 1

2

√
−3
ε

mcn(x|m)
]1/2

e−iΩt, (2.19)

with Ω=−1
4
(2m2−1)− 49δ2

144ε
, which is valid for ε<0 and 101δ4−144(2m2−1)δ2ε+

768m2(1−m2)ε2 =0.

Case 6. p=2−m2, q =−2, r =−(1−m2).
Eq. (2.9) has the solution f =dn(x|m). Hence, we obtain the stationary periodic

wave solution for Eq. (1.1)

u(x,t)=±
[3δ

8ε
± 1

2

√
−3
ε

dn(x|m)
]1/2

e−iΩt, (2.20)

with Ω=−1
4
(2−m2)− 49δ2

144ε
, which is valid for ε<0 and 101δ4−144(2−m2)δ2ε−

768(1−m2)ε2 =0.

Case 7. p=
1
2
(1+m2), q =−1

2
, r =−1

4
(1−m2)2.

The solution of Eq. (2.9) reads f =mcn(x|m)+dn(x|m). The corresponding
solution for Eq. (1.1) is

u(x,t)=±
[3δ

8ε
± 1

4

√
−3
ε

(mcn(x|m)+dn(x|m))
]1/2

e−iΩt, (2.21)
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Fig. 3.1. The graph of Eq. (2.21) for w≡|u|2 with δ =0, m=1.

with Ω=−1
8
(1+m2)− 49δ2

144ε
, which is valid for ε<0 and 101δ4−72(1+m2)δ2ε−

48(1−m2)2ε2 =0.
Eqs. (2.19), (2.20) and (2.21) are invalid for m→1 since the model parameters δ

and ε are real.

3. Properties of stationary solutions
In this section, we discuss the property of stationary solutions when δ≥0 and

ε<0, taking Case 7 as an example. When δ =0 and ε<0, the NLS is critical in the
sense that if the initial data has negative energy and the initial mass exceeds that of the
ground state (i.e. stationary solution when v(x) is localized and positive), solutions
blow up in finite time. The stationary solution (ground state) in this case provides the
critical mass (L2 norm) for blow up. Without loss of generality, we take ε=−1. We
draw the figures of Eq. (2.21) for w≡|u|2 with δ =0, m=1, δ =0.486804, m=0.5 and
δ =0.608578, m=0.25, respectively. After computation, it is found that the maximum
of w is 0.866025, 0.466968 and 0.313049 in figures 3.1, 3.2, and 3.3, respectively.
The maximum of w is decreasing with the increase of δ. Although the authors in
[20] discussed the blowup phenomenon of exact solutions of Eq. (1.1), the solutions
obtained above do not develop singularity at a finite point, i.e. for any fixed t= t0,
there exists x0 at which the solutions blow up.

4. Traveling wave solutions

4.1. Traveling wave solutions with linear phase. In order to obtain the
traveling wave solution with linear phase for Eq. (1.1), we make the ansatz

u(x,t)=v(ξ)ei(Kx−Ωt), ξ =k(x−ct). (4.1)

It is assumed that k >0 without loss of generality. Substituting Eq. (4.1) into Eq.
(1.1) and taking c=2K, one obtains the differential equation for v

k2v′′+(Ω−K2)v+δv3−εv5 =0. (4.2)

Eq. (4.2) is the same as Eq. (2.2). So making the transformation

Ω→ Ω−K2

k2
, δ→ δ

k2
, ε→ ε

k2
,

x→k(x−2Kt), e−iΩt→ ei(Kx−Ωt) (4.3)
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Fig. 3.2. The graph of Eq. (2.21) for w≡|u|2 with δ =0.486804, m=0.5.
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Fig. 3.3. The graph of Eq. (2.21) for w≡|u|2 with δ =0.608578, m=0.25.

in the stationary wave solutions (2.3)-(2.5) and (2.13)-(2.21), we obtain the corre-
sponding traveling wave solution with linear phase for Eq. (1.1).

4.2. Traveling wave solutions with nonlinear phase. Now we introduce
the amplitude φ(x,t) and the phase ψ(x,t). Assume

u(x,t)=φ(x,t)eiψ(x,t), (4.4)

where both φ(x,t) and ψ(x,t) are real functions. Substituting Eq. (4.4) into Eq. (1.1)
and separating the real and imaginary parts, one has

φt +2ψxφx +ψxxφ=0,

−ψtφ+φxx−ψ2
xφ+δφ3−εφ5 =0, (4.5)

which is equivalent to the original Eq. (1.1). We restrict ourselves to traveling wave
solutions in this paper. That is, we set

φ(x,t)=φ(ξ), ξ =x−vt,

ψ(x,t)=Kx−Ωt+θ(ξ). (4.6)
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In the above, v, K and Ω are real constants. With Eq. (4.6), Eq. (4.5) reduces to a
set of coupled ordinary differential equations,

(2K−v+2θ′)φ′+θ′′φ=0,

φ′′+[Ω+vθ′−(K +θ′)2]φ+δφ3−εφ5 =0, (4.7)

where the prime means the differential with respect to ξ. Integrating the first of Eq.
(4.7), we have

θ′=C1φ
−2− 1

2
(2K−v), (4.8)

where C1 is the constant of integration. Using Eq. (4.8) in the second of Eq. (4.7),
we get a closed differential equation for the amplitude φ(ξ),

φ′′−C2
1φ−3 +(Ω−vK +

v2

4
)φ+δφ3−εφ5 =0. (4.9)

The integration of Eq. (4.9) yields

φ′ 2 +C2
1φ−2 +(Ω−vK +

v2

4
)φ2 +

1
2
δφ4− 1

3
εφ6 =C2, (4.10)

with C2 being the integral constant. It is convenient to introduce Φ(ξ)=φ2(ξ), which
is nothing but the number density ρ(x,t)=u∗(x,t)u(x,t) for the traveling waves. In
terms of Φ(ξ), Eq. (4.10) has a simpler form,

Φ′ 2 =−4C2
1 +4C2Φ−4(Ω−vK +

v2

4
)Φ2−2δΦ3 +

4
3
εΦ4. (4.11)

If C1 =0, Eq. (4.11) reduces to Eq. (2.7). Then, it follows from Eq. (4.8) that one
can only obtain the traveling wave solutions with linear phase for Eq. (1.1). So, we
must study the exact solutions of Eq. (4.11) with C1 6=0. Hereafter, we assume that
the roots of the polynomial at the right hand of Eq. (4.11) are all real and distinct,
that is

Φ′ 2 =
4
3
ε(Φ−a)(Φ−b)(Φ−c)(Φ−d),

a<b<c<d. (4.12)

The constants a, b, c and d satisfy the relations

a+b+c+d=
3δ

2ε
,

ab+bc+cd+da+ac+bd=−3(Ω−vK +v2/4)
ε

,

abc+bcd+cda+dab=−3C2

ε
,

abcd=−3C2
1

ε
. (4.13)

The bounded traveling wave solutions are classified into two types depending on the
sign of ε. Note that the last one of Eq. (4.13) and Φ=φ2 >0.
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4.2.1. ε>0. The case a<0<b<c<d is considered. Other choices do not lead
to a bounded solution. Possible solutions lie in the region b<Φ<c. In this case, the
solution of Eq. (4.12) reads

Φ(ξ)=
c(d−b)−d(c−b)sn2[α(ξ−ξ0)|m]
(d−b)−(c−b)sn2[α(ξ−ξ0)|m]

=
b(d−c)+d(c−b)cn2[α(ξ−ξ0)|m]
(d−c)+(c−b)cn2[α(ξ−ξ0)|m]

, (4.14)

where

α=
√

ε

3
(c−a)(d−b), m=

√
(d−a)(c−b)
(d−b)(c−a)

, (4.15)

and ξ0 is the integral constant. A well-known formula, sn2(x|m)+cn2(x|m)=1, has
been used. The solution (4.14) corresponds to a bright solution train. The function
θ(ξ) is then found to be

θ(ξ)=
C1

d

∫ ξ

ξ0

(d−b)(d−c)
c(d−b)−d(c−b)sn2[α(ξ−ξ0)|m]

dξ

+[
C1

d
− 1

2
(2K−v)]ξ+θ0, (4.16)

which is an elliptic integral of the third kind, and θ0 is a constant of integration.
The formulas (4.4), (4.6), (4.14) and (4.16) provide the general bounded traveling
wave solution of Eq. (1.1) with ε>0. To see this explicitly, we consider a special
case, m=1 (the infinite periodic case). From Eq. (4.15) and a<0<b, one sees that
a= b=0 (The case c=d can only result in the trivial result). Eq. (4.13) reduces to

C1 =0, C2 =0,

c=
3δ−

√
9δ2 +48ε(Ω−vK +v2/4)

4ε
,

d=
3δ+

√
9δ2 +48ε(Ω−vK +v2/4)

4ε
. (4.17)

Thus, it follows from Eqs. (4.14), (4.16) and (4.6) that

φ(x,t)=
{ cd sech2[

√
−(Ω−vK +v2/4)(x−vt−x0)]

d−c+c sech2[
√
−(Ω−vK +v2/4)(x−vt−x0)]

}1/2

,

ψ(x,t)=
1
2
vx−(Ω−vK +

1
2
v2)t+θ0, (4.18)

where c and d are given by Eq. (4.17), and which is valid for δ >0, ε>0 and
−9δ2/(48ε)<Ω−vK +v2/4<0. Hence, Eqs. (4.4) and (4.18) constitute a bright
solitary wave solution of Eq. (1.1) with δ >0 and ε>0. As ε→0, Eq. (4.18) degen-
erates to

φ=

√
2
δ
k sech[k(x−vt−x0)], (4.19)

with k =
√
−(Ω−vK +v2/4), while ψ remains to be unchanged, and which is a bright

solitary wave solution for the cubic nonlinear Schrödinger equation with δ >0, a well-
known result.
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4.2.2. ε<0. We consider the case a<b<0<c<d, and the other cases may
be considered in a similar way. The possible solution lies in the region c<Φ<d, and
reads

Φ(ξ)=
d(c−a)−a(c−d)sn2[β(ξ−ξ0)|m]
(c−a)−(c−d)sn2[β(ξ−ξ0)|m]

, (4.20)

where

β =
√
−ε

3
(d−b)(c−a), m=

√
(a−b)(c−d)
(d−b)(c−a)

, (4.21)

and ξ0 is the integral constant. The function θ(ξ) is

θ(ξ)=
C1

a

∫ ξ

ξ0

(c−a)(a−d)
d(c−a)−a(c−d)sn2[β(ξ−ξ0)|m]

dξ

+
[C1

a
− 1

2
(2K−v)

]
ξ+θ0, (4.22)

where θ0 is the integral constant. The formulas (4.4), (4.6), (4.20) and (4.22) provide
a general bounded traveling wave solution of Eq. (1.1) with ε<0. As m→1, it follows
from Eq. (4.21) and b<0<c that b= c=0 (The case a=d can only result in the trivial
result). Then Eq. (4.13) reduces to

C1 =0, C2 =0,

a=
3δ+

√
9δ2 +48ε(Ω−vK +v2/4)

4ε
,

d=
3δ−

√
9δ2 +48ε(Ω−vK +v2/4)

4ε
, (4.23)

with δ >0. Notice that δ <0 will bring on a contradiction. Then, from Eqs. (4.20),
(4.22) and (4.6) we obtain

φ(x,t)=
{ ad sech2[

√
−(Ω−vK +v2/4)(x−vt−x0)]

a−d tanh2[
√
−(Ω−vK +v2/4)(x−vt−x0)]

}1/2

,

ψ(x,t)=
1
2
vx−(Ω−vK +

1
2
v2)t+θ0, (4.24)

where a and d are given by Eq. (4.23), and which is valid for δ >0, ε<0 and Ω−
vK +v2/4<0. As ε→0, Eq. (4.24) degenerates to Eq. (4.19), an expected result.

5. Conclusion
In this paper, an algebraic method is devised to search for exact solutions, in-

cluding stationary wave solutions and traveling wave solutions, for the cubic-quintic
NLS Eq. (1.1). All solutions obtained in this paper are classified into two types de-
pending on the sign of quintic nonlinear term, i.e., the sign of ε. The solutions (2.5),
(2.13)-(2.18) and (4.14) are valid for ε>0 while (2.3), (2.4), (2.19)-(2.21) and (4.20)
for ε<0. Note that cases (2)-(4) and (7) in Sec.2 are new results for the solutions of
Eq. (2.9), which are not given in [23-24]. The solutions (4.18) and (4.24) can only de-
generate to the solution of the cubic NLS equation with anomalous dispersion (δ >0).
It is an open problem how to obtain from Eq. (4.11) the solution of the cubic-quintic
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NLS equation (1.1) which degenerates to the solution of the cubic NLS equation with
normal dispersion (δ <0).

There is a rich literature on extended cubic NLS (including cubic-quintic NLS)
that arise in optical physics, and exact solitary type solutions are studied, see e.g.
[25], and among others the recent book by F. Abdullaev, et al, on cubic-quintic media
[26]. Thus, concrete applications of these exact solutions are omitted.
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