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A SHORT REVIEW ON THE DERIVATION OF THE NONLINEAR
QUANTUM BOLTZMANN EQUATIONS

D. BENEDETTO∗, F. CASTELLA† , R. ESPOSITO‡ , AND M. PULVIRENTI§

Abstract. In this review paper we describe the problem of deriving a Boltzmann equation for a
system of N interacting quantum particles, under the appropriate scaling limits. We mainly follow
the approach developed by the authors in previous works. From a rigorous viewpoint, only partial
results are available, even for short times, so that the complete problem is still open.
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1. Introduction
A large quantum system of N identical interacting particles can often be described

in terms of a Boltzmann equation. This is an asymptotic model: the equation given
from first principles is the N body Schrödinger equation. As such, the Boltzmann
description only holds in suitable regimes, namely when the number of particles is
large, and when the interaction potential between pairs of particles has a small effect.
Concerning this last point, two quite different settings are relevant. In the so-called
weak-coupling limit, the interaction potential itself is small, while the gas is dense:
the typical distance between particles is of order one. In the low-density regime
at variance, the elementary interaction potential is of order one, while the gas is
rarefied: the typical distance between particles is large, hence the effect of the pairwise
interactions is small.

A precise definition of the scalings, and the form of the limiting kinetic equations,
has been discussed by H. Spohn in [17]. In the present text, we follow this reference
to introduce the problem. We start from the N body Schrödinger equation, and we
scale it along either the weak-coupling, or the low-density regime. Next, we follow the
kinetic approach introduced by the authors in [2]: we transform the scaled N -particles
Schrödinger equation into a hierarchy of kinetic equations. This step uses the Wigner
transform and the BBGKY hierarchy. Then we try to show how, under these scaling
limits, the one-particle Wigner function of the system is indeed expected to obey a
Boltzmann equation with a suitable cross-section. This step heavily uses stationary
phase considerations, in possibly large dimensions. The derivation we present here
closely follows the works [2], [3], and [4].

We wish to stress that our arguments are partially formal: a complete, rigorous
derivation of the quantum Boltzmann equation is still far from being achieved, even
for short times.

To put the present text into perspective, we are reminded that a rigorous deriva-
tion of the classical Boltzmann equation in the low-density regime had been obtained
in 1975 by Lanford for short times (see [13]). This result was later extended to all
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Italy.
§Dipartimento di Matematica Università di Roma ‘La Sapienza’, P.le A. Moro, 5, 00185 Roma,

Italy.

55



56 QUANTUM BOLTZMANN EQUATIONS

times in Reference [12] (see also [8] for additional comments), for special situations
yet. At the quantum level, the transition from the Schrödinger picture to the kinetic
description is delicate in many ways. Most importantly, it brings a time reversible
system to an irreversible one, a difficulty that is already present at the classical level.
This fact is largely argued in the context of classical systems. We refer, e.g., to [8] on
that point.

We also remark that, in contrast with the quantum case, classical systems in the
weak-coupling limit are described by a kinetic equation which is diffusive in velocity,
namely by the Landau-Fokker-Planck equation (see for instance [16] and [1]). Thus
the domain of applicability of the Boltzmann equation is typically larger for quantum
systems than for classical ones: in the former case, kinetic descriptions are relevant
both for dilute gases (low density), and for dense, weakly interacting systems (weak
coupling), while in the latter, only dilute gases are pertinent.

The present review text treats separately the weak coupling regime, and the low-
density regime. This is a natural distinction. Another separation is yet in order .
Indeed, since we deal with quantum systems, it is necessary to discuss the statistic
independence of the particles under consideration. Namely, particles that follow the
Maxwell-Boltzmann statistics1 have a Wigner transform that may be taken as a tensor
product. This gives a simple picture of the “molecular chaos” assumption, that lies
at the core of the Boltzmann description of interacting particles. Bosonic particles,
on the other hand, follow the Bose-Einstein statistics, while fermionic particles follow
the Fermi-Dirac statistics. In these two cases, the molecular chaos assumption takes
a more subtle form, which we discuss in section 4. This fact has a fairly important
consequence. Namely, the Boltzmann equation that is appropriate in the Maxwell-
Boltzmann situation is quadratic in the unknown, while it becomes cubic in the Fermi-
Dirac or Bose-Einstein picture.

2. Setting of the problem
In this section, we give some quantitative statements describing the asymptotics

from the scaled N -body Schrödinger equation to the Boltzmann equation. Our pre-
sentation distinguishes between the weak-coupling and low-density regimes, together
with the Maxwell-Boltzmann versus Fermi-Dirac or Bose-Einstein statistics. Elements
of proof are given in the next sections.

• The weak coupling limit in the Maxwell-Boltzmann statistics
We consider N identical quantum particles in R3. We assume that the mass of the
particles, as well as ~, are normalized to unity. The interaction between particles is
described by a two-body potential φ, and the total potential energy is taken as

U(x1 . . . xN ) =
∑

i<j

φ(xi − xj). (2.1)

The associated Schrödinger equation reads

i∂tΨ(XN , t) = −1
2
∆NΨ(XN , t) + U(XN )Ψ(XN , t), (2.2)

where ∆N =
∑N

i=1 ∆i, ∆i is the Laplacian with respect to the xi variables, and XN

is a shorthand notation for x1 . . . xN .

1or particles obeying no statistics at all. Throughout this text, the reader may safely replace
“Maxwell Boltzmann statistics” by “no statistics at all” if needed.
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Due to the fact that the particles are identical, the wave function Ψ is assumed
to be symmetric in the exchange of particle, a property that is preserved along the
time evolution induced by (2.2). This symmetry assumption will actually hold in the
Fermi-Dirac or Bose-Einstein situation as well. As a consequence, we readily mention
that all objects Ψε

N , WN , and fN
j to be introduced later, are all symmetric as well.

Next, we rescale the equation (2.2) according to the hyperbolic space-time scaling

x → εx , t → εt, (2.3)

which corresponds to looking at (2.2) over large times of the order 1/ε, hence large
distances of the order 1/ε (particles move with a “velocity” of order one). Simultane-
ously we also rescale the potential by

φ → √
εφ. (2.4)

The resulting equation reads, in these new units,

iε∂tΨε(XN , t) = −ε2

2
∆NΨε(XN , t) + Uε(XN )Ψε(XN , t), (2.5)

where: Uε(x1 . . . xN ) =
√

ε
∑

i<j

φ

(
xi − xj

ε

)
. (2.6)

Naturally, the wave function Ψε(XN , t) at time t is fully determined by Eq. (2.5)
together with the initial datum Ψε(XN , 0). The latter depends on the very statistics
obeyed by the particles, and its value is specified later on (see (2.18)). We want to
analyze the limit ε → 0 in the above equations, while keeping

N = ε−3. (2.7)

Both scalings (2.4) and (2.7) specify a weak coupling regime. Here, the gas of
particles is dense (one particle per unit volume in the rescaled units), but the coupling
between neighbouring particles is weak, of order

√
ε. The cumulated effect of all the

interactions is of the size

O(time scale)×O(density of obstacles)×O([coupling]2)
= O(1/ε)×O(1)×O([

√
ε]2) = O(1). (2.8)

Note that the quadratic dependence upon the coupling constant in (2.8) is a standard
fact in quantum mechanics. It is related with the so-called Fermi Golden Rule (see
(2.22) below). Equivalently, it is a consequence of the Hamiltonian structure of the
Schrödinger equation.

Following [2], and in order to tackle the asymptotics ε → 0 in (2.5)-(2.6), we now
adopt a kinetic approach. We introduce the Wigner transform of Ψε, defined as (see
[19], or the more recent reference [14] for a general introduction to Wigner transforms)

WN (XN , VN ) =
(

1
2π

)3N ∫
dYN eiYN ·VN Ψ

ε
(
XN +

ε

2
YN

)
Ψε

(
XN − ε

2
YN

)
.

(2.9)

As it is standard, WN satisfies a transport-like equation, namely

(∂t + VN · ∇N )WN (XN , VN ) =
1√
ε

(
T ε

NWN
)
(XN , VN ). (2.10)
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Here, ∂t + VN · ∇N = ∂t +
∑N

i=1 vi · ∇xi
is the usual free stream operator. Also, the

operator T ε
N on the right-hand-side of (2.10) plays the role of a collision operator. It

may be split into

(T ε
NWN

)
(XN , VN ) =

∑

0<k<`≤N

(T ε
k,`W

N
)
(XN , VN ), (2.11)

where each T ε
k,` describes the “collision” of particle k with particle `, through

(T ε
k,`W

N
)
(XN , VN ) =

1
i

(
1
2π

)3N ∫
dYN dV ′

N eiYN ·(VN−V ′N )

[
φ

(
xk − x`

ε
− yk − y`

2

)
− φ

(
xk − x`

ε
+

yk − y`

2

)]
WN (XN , V ′

N ).

(2.12)

Thus the total operator T ε
N in (2.11) takes into account all possible “collisions” inside

the N particles system. Equivalently, we may write2 for T ε
k,`

(T ε
k,`W

N
)
(XN , VN ) = −i

∑
σ=±1

σ

∫
dh

(2π)3
φ̂(h) ei h

ε (xk−x`)

WN

(
x1, . . . , xk, . . . , x`, . . . , xN , v1, . . . , vk − σ

h

2
, . . . , v` + σ

h

2
, . . . , vN

)
. (2.13)

Note that in (2.13), “collisions” may take place between distant particles (xk 6=
x`). However, such distant collisions are penalized by the highly oscillatory factor
exp(ih(xk − x`)/ε). These oscillations turn out to play a crucial role throughout the
analysis, and they explain why collisions tend to happen when xk = x` in the limit
ε → 0 (see e.g. the computation of I1,1,2 in section 3 below).

In order to transform (2.9) into a hierarchy of kinetic equations, we next introduce
the partial traces of the Wigner transform WN , denoted by fN

j . They are defined
through the following formula, valid for j = 1. . . . , N − 1:

fN
j (Xj , Vj) =

∫
dxj+1 . . .

∫
dxN

∫
dvj+1 . . .

∫
dvN

WN (Xj , xj+1 . . . xN ;Vj , vj+1 . . . vN ) (2.14)

Obviously, we set fN
N = WN . The function fN

j is the kinetic object that describes
the state of the j particles subsystem at time t.

Proceeding then as in the derivation of the BBGKY hierarchy for classical systems
(see e.g.[8]), we readily transform the equation (2.10) satisfied by WN into a hierarchy
of equations for fN

j (1 ≤ j ≤ N), namely

(
∂t +

j∑

k=1

vk · ∇k

)
fN

j (Xj , Vj) =
1√
ε
T ε

j fN
j +

N − j√
ε

Cε
j+1f

N
j+1, (2.15)

with fN
N+1 ≡ 0 by convention. Eq.(2.10) is naturally recovered from (2.15) upon

choosing j = N in the latter equation. Here the new collision operator Cε
j+1 may be

2Here and below, bf(k) =

Z
e−ik·xf(x) dx denotes the Fourier transform of f .
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split into

Cε
j+1 =

j∑

k=1

Cε
k,j+1, (2.16)

and each Cε
k,j+1 satisfies

Cε
k,j+1f

N
j+1(Xj ;Vj) = −i

∑
σ=±1

σ

∫
dh

(2π)3
dxj+1 dvj+1 φ̂(h) ei h

ε (xk−xj+1)

fN
j+1

(
x1, x2, . . . , xj+1, v1, . . . , vk − σ

h

2
, . . . , vj+1 + σ

h

2

)
. (2.17)

The operator Cε
k,j+1 describes the “collision” of particle k, belonging to the j-particle

subsystem, with a particle outside the subsystem, conventionally denoted by the num-
ber j + 1 (this numbering uses the fact that all particles are identical). The total
operator Cε

j+1 takes into account all such collisions.
As usual (see e.g.[8]), equation (2.15) shows that the dynamics of the j-particle

subsystem is governed by three effects: the free-stream operator, the collisions “inside”
the subsystem (the T term), and the collisions with particles “outside” the subsystem
(the C term).

To finish the specification of the problem, we finally need to select an initial value
{f0

j }N
j=1 for the solution {fN

j (t)}N
j=1. The key point is that we assume {f0

j }N
j=1 is

completely factorized: for all j = 1, . . . , N , we suppose

f0
j = f⊗j

0 , (2.18)

where f0 is a one-particle Wigner function, and f0 is assumed to be a probability
distribution. This is the point where the statistics enters. Assumption (2.18) is rele-
vant for particles satisfying the Maxwell-Boltzmann statistics, but it totally excludes
fermionic or bosonic behaviour. To be complete, we should also raise here a techni-
cal point. Strictly speaking, a quantum state whose Wigner transform is a general
positive f0, is not a wave function: it is rather a density matrix. As a consequence,
and in view of the kind of initial data (2.18) we have in mind, the evolution equation
we should start with is not the Schrödinger equation (2.5), but rather the associated
Heisenberg equation for the density matrix. This is a harmless modification: in both
cases the corresponding Wigner equation is anyhow Eq. (2.10) or, equivalently, Eq.
(2.15).

In the limit ε → 0, we expect that the j-particle distribution function fN
j (t), that

solves the hierarchy (2.15) with initial data (2.18), tends to be factorized for all times:
fN

j (t) ∼ f(t)⊗j (molecular chaos). On top of that, the function f(t) (t ∈ [0, t0) for
some possibly small t0), which is the limit of the one-particle distribution function
fN
1 (t), is expected to be the solution of the following Boltzmann equation

(∂t + v · ∇x)f(t, x, v) = Qw(f, f)(t, x, v), (2.19)
Qw(f, f)(t, x, v)

=
∫

R3×S2
dv1 dω Bw(ω, v − v1) [f(t, x, v′)f(t, x, v′1)− f(t, x, v)f(t, x, v1)] .(2.20)

Here, the index “w” refers to “weak-coupling”. Also, v′ and v′1 denote the outgoing
velocities after a collision with impact parameter ω ∈ S2 and incoming velocities v
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and v1. Explicitly:

v′ = v − [v − v1] · ω ω, v′1 = v1 + [v − v1] · ω ω. (2.21)

Last, in Eq. (2.20), the factor Bw(ω, v − v1) is the cross-section. It depends on the
microscopic interaction potential φ. In the weak-coupling limit, collisions take place
at a small energy, and at a distance of order ε. For this reason, the cross section Bw

is computed at low energy, and via the quantum rules. In other words, it agrees with
the Born approximation of quantum scattering, namely

Bw(ω, v) =
1

8π2
|ω · v| |φ̂(ω (ω · v))|2. (2.22)

Note that the cross-section Bw is the only quantum factor in the purely classical
equations (2.19)-(2.20). It retains the quantum features of the elementary “collisions”.

• The weak coupling limit in the Bose-Einstein or Fermi-Dirac statistics
From a physical viewpoint, it certainly is more realistic to consider particles

obeying the Fermi-Dirac or Bose-Einstein statistics, than considering the Maxwell-
Boltzmann situation.

In this case, the starting point is still the scaled Schrödinger equation (2.5)-(2.6),
or the equivalent hierarchy (2.15). The only new point is that we cannot take a
totally decorrelated initial datum as in (2.18). Indeed, the Fermi-Dirac or Bose-
Einstein statistics yield correlations even at time zero. In this perspective, the most
uncorrelated states one can introduce, and that do not violate the Fermi-Dirac or
Bose-Einstein statistics, are the so-called quasi-free states. They are described in
section 4 below.

As a consequence, the following steps are needed in order to pass to the limit
in the hierarchy (2.15), and to identify the limiting Boltzmann equation. First, one
should characterize the quasi-free states in term of their Wigner transform. Then,
one should replace the initial condition (2.18) by the appropriate “quasi-free” initial
data. Last, one should perform the asymptotic procedure on the resulting formulae.

It is expected that the one-particle distribution function fN
1 (t) converges to the

solution of the following cubic Boltzmann equation:

(∂t + v · ∇x) f(t, x, v) = Qw,θ(f, f, f)(t, x, v), (2.23)

Qw,θ(f, f, f)(t, x, v) =
∫

R3×S2
dv1 dω Bw,θ(ω, v − v1)

[
f(t, x, v′)f(t, x, v′1)(1 + 8π3θf(t, x, v) f(t, x, v1))

−f(t, x, v)f(t, x, v1)(1 + 8π3θf(t, x, v′)f(t, x, v′1))
]
.

(2.24)

Here θ = +1 or θ = −1, depending on whether the Bose-Einstein or the Fermi-Dirac
statistics is considered, respectively. The index “w,θ” refers to “weak coupling, with
the bosonic or fermionic statistics”. Finally, Bw,θ is the symmetrized or antisym-
metrized cross-section derived from Bw (see (2.22)) in the natural way (see [3]).

As we see, the modification of the statistics transforms the quadratic Boltzmann
equation (2.19)-(2.20) of the Maxwell-Boltzmann case, into a cubic form of the equa-
tion (fourth order terms cancel). Also, the statistics affect the form of the cross-section
and Bw has to be (anti)symmetrized into Bw,θ.
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Note that the collision operator (2.24) has been introduced by Uehling and Uh-
lenbeck in 1933 on the basis of purely phenomenological considerations [18].

• The low-density limit
There remains to consider the low-density limit. This regime is also called

Boltzmann-Grad limit in the context of classical systems. Here, the starting point
is still the unscaled Schrödinger equation (2.1)-(2.2). Contrary to the weak-coupling
regime, we now scale it according to

t → εt, x → εx, φ → φ, N = ε−2. (2.25)

In other words, the density of obstacles is ε, which is a rarefaction regime, but the
potential is unscaled and keeps an O(1) amplitude. In this case, the cumulated effect
of the interactions has size

O(time scale)×O(density of obstacles)×O([coupling]2)
= O(1/ε)×O(ε)×O(1) = O(1).

Another very important point is the following. Due to the fact that the density is
vanishing, the particles are too rare to make the statistical correlations effective. As a
consequence, we expect that the Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac
situations all give rise to the same Boltzmann equation along the low-density limit.

As a matter of fact, the expected Boltzmann equation is still a quadratic Boltz-
mann equation in that case, namely

(∂t + v · ∇x)f(t, x, v) = Q`(f, f)(t, x, v), (2.26)
Q`(f, f)(t, x, v)

=
∫

R3×S2
dv1 dω B`(ω, v − v1) [f(t, x, v′)f(t, x, v′1)− f(t, x, v)f(t, x, v1)] . (2.27)

Here, the index “`” refers to “low-density”. Also, v′, v′1, and ω are as in (2.21). Last,
the factor B`(ω, v − v1) is the cross-section. In the low-density limit, collisions take
place at a large energy (contrary to the weak-coupling situation), and at a distance
of order ε. For this reason, the cross-section B` is computed at large energy, and via
the quantum rules. In other words, it agrees with the full Born series expansion of
quantum scattering, namely

B`(ω, v) =
1

8π2
|ω · v| |φ̂(ω (ω · v))|2 +

∑

n≥3

B
(n)
` (ω, v), (2.28)

where each B
(n)
` (ω, v) is an explicitely known function, which is n-linear in φ (see

[15]). Note in passing that the convergence of the Born series expansion (2.28) is
well-known for potentials satisfying a smallness assumption.

As is seen on these formulae, the only difference between the low-density and
the weak-coupling regimes (at least for Maxwell-Boltzmann particles) lies in the very
value of the cross-section. The two cross-sections Bw and B` are actually related
through

B`(ω, v) = Bw(ω, v) + O([φ]3),

i.e. Bw and B` coincide up to third order in the potential. This very well reflects the
fact that the weak-coupling regime involves only low-energy phenomena, while the
low-density regime affects low to large energies.

In the next sections we briefly discuss the very few rigorous results concerning
the above problems.
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3. The weak-coupling limit for the Maxwell-Boltzmann statistics
To analyze the asymptotic behaviour of the hierarchy (2.15), we adopt the same

strategy as the one introduced by Lanford in [13] to treat the Boltzmann-Grad limit
for classical systems. In other words, we study the asymptotic behavior of the solution
fN

j (t), when expressed in terms of the series expansion obtained upon iterating the
Duhamel formula. We write down, on the other hand, the hierarchy satisfied by
the successive tensor products fj(t) := f(t)⊗j , where f(t) satisfies the Boltzmann
equation (2.19)-(2.20) — this hierarchy is usually called “Boltzman hierarchy”. We
explicitly solve the Boltzmann hierarchy as a complete series expansion obtained upon
iterating the Duhamel formula. We prove that the series expansion that expresses
fN

j (t) converges, in a sense which is precised below, towards the analogous series
expansion for fj(t) = f⊗j(t).

Let us come to the details. It is first easily proved, using computations similar
to those performed below for fN

j , that the solution to the Boltzmann hierarchy3

associated with (2.19)-(2.20) is given by the following series expansion

fj(t,Xj , Vj) ≡ f⊗j(t,Xj , Vj)

=
∑

n≥0

j+1∑

`2=1

· · ·
j+n∑

`n=1

∫ t

0

dt1 · · ·
∫ tn−1

0

dtn S(t− t1)C`1,j+1

S(t1 − t2) C`2,j+2 · · ·S(tn−1 − tn) C`n,j+n S(tn) f
⊗(j+n)
0 . (3.1)

Here, the operator S(t) is the free flow, defined as

(S(t)fj)(Xj , Vj) := fj(Xj − Vjt, Vj). (3.2)

Also, the classical collision operator C`,k+1, describing in an analogous fashion than
the quantum object Cε

`,k+1 a classical collision between particle k + 1 and particle `,
is deduced from formula (2.20) and has the value

(C`,k+1fk+1) (t,Xk, Vk) :=
∫

R3×S2
dvk+1 dω Bw(ω, v` − vk+1)

[
fk+1

(
Xk, x`, v1, . . . , v`−1, v

′
`, v`+1, . . . , vk, v′k+1

)

− fk+1 (Xk, x`, v1, . . . , v`−1, v`, v`+1, . . . , , vk, vk+1)
]
,

(3.3)

where Bw has been defined in (2.22), and v′` = v` − [v` − vk+1] · ω ω, v′k+1 = vk+1 +
[v` − vk+1] · ω ω, as in (2.21). This gives a complete series expansion expressing fj(t)
in terms of the initial datum f0.

In the similar spirit, we may write, for 1 ≤ j ≤ N ,

fN
j (t) =

N−j∑
n=0

(N − j) . . . (N − j − n)
(
√

ε)n

∫ t

0

dt1 . . .

∫ tn−1

0

dtn Sε
int(t− t1)Cε

j+1

Sε
int(t1 − t2)Cε

j+2 . . . Sε
int(tn−1 − tn)Cε

j+nSε
int(tn)f⊗(j+n)

0 . (3.4)

3We do not write down the Boltzmann hierarchy here for sake of simplicity, and simply refer to
[8] or [2] for details.
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Here Sε
int(t)fj is the j-particle interacting flow, namely the solution to the initial value

problem:




(∂t + Vj · ∇j)Sε
int(t)fj =

1√
ε
T ε

j Sε
int(t)fj ,

Sε
int(0)fj = fj .

(3.5)

Then, we again expand Sε
int(t) as a perturbation of the free flow S(t). We find

Sε
int(t)fj = S(t)fj +

∑

m≥0

1
(
√

ε)m

∫ t

0

dτ1

∫ τ1

0

dτ2 . . .

∫ τm−1

0

dτm

S(t− τ1) T ε
j S(τ1 − τ2) T ε

j . . . S(τm−1 − τm) T ε
j S(τm)fj . (3.6)

Inserting (3.6) into (3.4), we obtain an explicit perturbative expansion that relates
the value of fN

j (t) at time t, in terms of the initial datum f0. This expression involves
a series that contains a huge number of terms. It is similar to, though much more
complicated than, equation (3.1). However, we expect that many of these terms
are negligible in the limit. On top of that, we also expect that the other, non-
vanishing contributions eventually converge towards the series expansion (3.1) (in
some topology).

To give a flavour of the computations performed in [2] along these lines, let us
now analyze some terms of the explicit expansion that expresses fN

j (t), and compare
them with the analogous terms for fj(t).

We begin with those terms of degree less than two in the potential.
The relevant terms are the following five:

I0 := S(t)f0
j , (3.7)

I1 :=
N − j√

ε

∫ t

0

dt1 S(t− t1)Cε
j+1S(t1)f0

j+1, (3.8)

I2 :=
1√
ε

∫ t

0

dτ1 S(t− τ1)T ε
j S(τ1)f0

j , (3.9)

I3 :=
N − j

ε

∫ t

0

dτ1

∫ τ1

0

dt1 S(t− τ1)T ε
j S(τ1 − t1)Cε

j+1S(t1)f0
j+1, (3.10)

I4 =
j∑

r=1

∑

1≤s<`≤j+1

Ir,`,s
4 , (3.11)

Ir,`,s
4 :=

N − j

ε

∫ t

0

dt1

∫ t1

0

dτ1 S(t− t1)Cε
r,j+1S(t1 − τ1)T ε

`,sS(τ1)f0
j+1. (3.12)

It is possible to show (see [2]) that the terms Ii, i = 1, 2, 3 are negligible in the
limit ε → 0. This phenomenon is mainly governed by oscillations, whose effect is to
decrease the effective size, in ε, of the various terms (non-stationary phase). Somewhat
more surprinsingly, an important role is also played by cancellations between terms
whose effective size is a truly diverging power of ε. We do not give the details here.
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For similar reasons, it is also possible to show (see [2]) that all the contributions
to I4, but that given by r = ` and s = j + 1, are equally vanishing. In other words,
only the collision/recollision event “particle ` hits particle j + 1 through Cε

`,j+1, then
recollides it through T ε

`,j+1”, happens to give a non-zero contribution in this picture.

So, the only O(1) term is I`,`,j+1
4 , the collision-recollision event.

We compute this term for ` = j = 1:

I1,1,2
4 = −N − 1

ε

∑

σ,σ′=±1

σσ′
∫ t

0

dt1

∫ t1

0

dτ1

∫
dx2 dv2

dh

(2π)3
dk

(2π)3

φ̂(h) φ̂(k) ei h
ε ·

(
x1−x2−v1(t−t1)

)
ei k

ε ·
(
x1−x2−v1(t−t1)−(v1−v2−σh)(t1−τ1)

)

f0
2

(
x1 − v1t + σ

h

2
t1 + σ′

k

2
τ1, x2 − v2t1 − σ

h

2
t1 − σ′

k

2
τ1;

v1 − σ
h

2
− σ′

k

2
, v2 + σ

h

2
+ σ′

k

2

)
. (3.13)

This term is apparently of size ε−4. In order to perform its analysis, we need to take
advantage of the fast oscillations. Rearranging terms, they read

exp
(

i
h + k

ε
· [x1 − x2 − v1(t− t1)

])
exp

(
−i

k

ε
· [v1 − v2 − σh

]
(t1 − τ1)

)
.

Hence, as seen by direct inspection (at least at an informal level), the oscillations
induce two different phenomena. The first oscillatory exponential enforces the variable
k to have the value −h, while the relative position of particles 1 and 2 at the time t1 of
the collision, which is precisely x1−v1(t−t1)−x2, tends to vanish asymptotically (recall
that particle 1 is “created” at time t and has position x1− v1(t− t1) at time t1, while
particle 2 is “created” at time t1, and has position x2 at that time). This is all due to
the fact that

∫
exp(iy ·x)ψ(x, y)dxdy = ψ(0, 0) whenever ψ is smooth enough. Second,

the difficult oscillatory term is the remaining exp(−ik(v1 − v2 − σh)(t1 − τ1)/ε). The
previous argument now needs to be refined, since the space and velocity variables k,
v1, etc., entering this oscillation also are involved in the previously analyzed oscillatory
term. The point is that this second exponential actually induces oscillations in the
independent time variable t1 − τ1: for that reason, the time variable τ1 needs to be
rescaled so that τ1 becomes t1. In other words, the collision occuring at time t1 and
the recollision occuring at time τ1 eventually tend to happen simultaneously.

Technically, all these considerations lead us to the following change of variables,
which is both physically and mathematically relevant:

t1 − τ1 = εs1, ξ = (h + k)/ε, (3.14)

i.e. τ1 = t1 − εs1 and h = −k + εξ. This gives in (3.13) the equivalent value

I1,1,2
4 = −(N − 1) ε3

∑

σ,σ′=±1

σσ′
∫ t

0

dt1

∫
dv2

dk

(2π)3

∫ t1/ε

0

ds1

∫
dx2

dξ

(2π)3
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φ̂(−k + εξ) φ̂(k) eiξ·
(
x1−x2−v1(t−t1)

)
e−is1k·(v1−v2−σ(−k+εξ))

f0
2

(
x1 − v1t + σ

−k + εξ

2
t1 + σ′

k

2
[t1 − εs1],

x2 − v2t1 − σ
−k + εξ

2
t1 − σ′

k

2
[t1 − εs1];

v1 − σ
−k + εξ

2
− σ′

k

2
, v2 + σ

−k + εξ

2
+ σ′

k

2

)
, (3.15)

and the reader should keep in mind that the weak-coupling regime implies (N−j)ε3 ∼
1 in (3.15). In the limit ε → 0, the above formula gives the asymptotic value

I1,1,2
4 ∼

ε→0
−

∑

σ,σ′=±1

σσ′
∫ t

0

dt1

∫
dv2

dk

(2π)3

|φ̂(k)|2
(∫ +∞

0

e−is1k·(v1−v2+σk) ds1

)

f0
2

(
x1 − v1t− (σ − σ′)

k

2
t1, x1 − v1(t− t1)− v2t1 + (σ − σ′)

k

2
t1;

v1 + (σ − σ′)
k

2
, v2 − (σ − σ′)

k

2

)
. (3.16)

In other words, the asymptotic process ε → 0 tends to produce in (3.15) a Dirac
mass at ξ = 0 and x2 = x1 − v1(t − t1) on the one hand, and an oscillatory integral∫ +∞
0

ds1 · · · on the other hand, which translates the fact that τ1 = t1 − εs1, i.e., that
the collision and recollision event happen at the same time. As we shall see, this
oscillatory integral also allows to recovery of conservation of kinetic energy along the
collisions.

In [2], we completely, and rigorously, justify formula (3.16). In particular the
emergence of the oscillatory integral

∫ +∞
0

ds1 · · · , can be fully explained. The main
ingredient is that the oscillatory factor exp(is1 · · · ) in (3.15) has size s

−3/2
1 as s1

becomes large, uniformly in ε.
Next, we turn to identifying the limiting value obtained in (3.16). To do so, we

observe the equality (in the distributional sense)

Re
∫ ∞

0

e−is1k·(v1−v2+σk) ds1 = πδ(k · (v1 − v2 + σk)). (3.17)

Using formula (3.17) we realize that the contribution σ = −σ′ in (3.16) gives rise to
the gain term

∫ t

0

dt1

∫

R3×S2
dv2 dω Bw(ω, v1 − v2)

f0
2 (x1 − v1(t− t1)− v′1t1, x2 − v2(t− t1)− v′2t1; v

′
1, v

′
2), (3.18)

where Bw has been defined in (2.22), and v′1 = v1−[v1−v2]·ω ω, v′2 = v2+[v1−v2]·ω ω
as in (2.21). In this picture, the variable k measures the momentum transferred
during the collision, and the Dirac mass δ(· · · ) in (3.17) expresses nothing else than
the conservation of the energy during the collision. The momentum conservation is
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automatically satisfied. Similarly, the term σ = σ′ in (3.16) yields the loss term

∫ t

0

dt1

∫

R3×S2
dv2 dω Bw(ω, v1 − v2)f0

2 (x1 − v1t, x1 − v1(t− t1)− v2t1; v1, v2). (3.19)

We finally remark that the imaginary part of the time integral in the left hand side
of (3.17) does not give any contribution. This uses a cancellation effect.

We have now proved

lim
ε→0

I1,1,2 =
∫ t

0

dt1S(t− t1) C1,2 S(t1) f⊗2
0 , (3.20)

in accordance with (3.1).
Let us draw a preliminary conclusion. Up to now, we have studied those terms

entering the full perturbative series expansion of fN
j (t), that are of degree less than

two in the potential. Two important facts come out of this analysis. First, only
collision-recollision terms have a non-vanishing contribution, i.e., terms of the form

ε−4

∫ t

0

dt1

∫ t1

0

dτ1 S(t− t1)Cε
α,βS(t1 − τ1)T ε

α,βS(τ1)f0
j+1, (3.21)

for any possible values of the particles names α and β. These terms correspond
to particles α, β “colliding” (through the T term) at time τ1, then immediately
“recolliding” (through the C term) at time t1 (in (3.21) we have replaced the true
prefactor (N−j)/ε by ε−4 for simplicity). All other terms involving S(t−t1)Cε

α,βS(t1−
τ1)T ε

α′,β′ with (α, β) 6= (α′, β′) do vanish. Second, we can also explicitly compute the
limiting value of (3.21): it agrees with the gain term and loss term of the physically
expected Boltzmann equation. Hence, in a sense, our quantum system agrees with
the Boltzmann evolution up to the second order in the potential.

Naturally, this result is far from being conclusive: there are examples, like, e.g.,
the pathologies of the Broadwell model quoted in [8], for which the agreement fails at
the fourth order only.

Now, [2] proves more than agreement up to second order. We indeed consider the
subseries (of the full series expansion expressing fN

j (t)) formed by all the collision-
recollision terms. In other words, we sum up all terms of the form (3.21) and consider
the subseries of fN

j (t) given by

∑

n≥1

∑

α1,...,αn,β1,...,βn

ε−4n

∫ t

0

dt1

∫ t1

0

dτ1 S(t− t1)Cε
α1,β1

S(t1 − τ1)T ε
α1,β1

· · ·
∫ τn−1

0

dtn

∫ tn

0

dτn S(τn−1 − tn)Cε
αn,βn

S(tn − τn)T ε
αn,βn

S(τn)f0
j+n+1. (3.22)

Here the sum runs over all possible choices of the particles number α’s and β’s.
We establish in [2] that the subseries (3.22) is indeed convergent for short times,
uniformly in ε. Moreover, we prove that it approaches the corresponding complete
series expansion obtained by solving iteratively the Boltzmann equation (2.19)-(2.20),
with cross-section given by (2.22), namely the expansion given by (3.1). Technically,
our analysis proves that each term S(ti−1 − ti)Cε

αi,βi
S(ti − τi)T ε

αi,βi
in (3.22) goes

to the corresponding S(ti−1 − ti)Cαi,βi in (3.1) as ε → 0. Besides, each variable τi

in (3.22) eventually needs to be rescaled as τi = ti − εsi, and all integrals
∫ ti

0
dτi
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eventually become
∫ +∞
0

dsi, giving rise to oscillatory integrals of the form (3.17)
that allow recovery of the natural conservation of kinetic energy along each classical
collision.

This is a much stronger convergence result towards the Boltzmann equation than
mere “convergence up to second order in the potential”. Technically, it is proved
using a summation argument that we obtain through the stationary phase in large
dimensions with a uniform control with respect to the dimension.

However, this does not completely finish the proof yet: the true series expansion
of fN

j (t) contains many more terms than those we retain in (3.22). Unfortunately,
a rigorous proof of the term-by term convergence for the full series expansion giving
f j

N (t) is still missing. Even more difficult seems to find a uniform bound on this series.
Thus a mathematical justification of the quantum Boltzmann equation is a still an
open, challenging and difficult problem.

4. The Bose-Einstein and Fermi-Dirac statistics
The weak-coupling limit is more difficult to analyze when considering the case of

Bosons and Fermions. Indeed, the statistics then modifiy the structure of the states,
and a complete factorization of the initial datum as in (2.18) is not compatible with
Bose-Einstein or Fermi-Dirac statistics.

Systems of independent particles obeying the Bose-Einstein or Fermi-Dirac statis-
tics are usually called quasi-free. Their reduced density matrices satisfy the following
property (the integer j denotes the number of particles):

ρj(x1 . . . xj ; y1 . . . yj) =
∑

π∈Pj

θs(π)

j∏

i=1

ρ(xi; yπ(i)). (4.1)

Here ρ(x, y) is the kernel of a one-particle density matrix, Pj is the group of the
permutations of j elements, and, to each permutation π, we associate its signature
s(π) which is 1 if π is even, and −1 if π is odd. As usual, θ = 1 in the bosonic case,
while θ = −1 in the fermionic case. Condition (4.1) implies that the Wigner function
of a quasi-free state is given by the following sum over all permutations

fj(x1, v1, . . . , xj , vj) =
∑

π∈Pj

θs(π) fπ
j (x1, v1, . . . , xj , vj) (4.2)

where each fπ
j has the value

fπ
j (x1, v1, . . . , xj , vj) =

∫
dy1 . . . dyjdw1 . . . dwj ei(y1·v1+···+yj ·vj)

j∏

k=1

e−
i
ε wk·(xk−xπ(k)) e−

i
2 wk·(yk+yπ(k)) f

(
xk + xπ(k)

2
+ ε

yk − yπ(k)

4
, wk

)
, (4.3)

and f is a given one-particle Wigner function. Note in passing that the Maxwell-
Boltzmann case treated in the previous section corresponds, in this picture, to only
retaining the contribution due the permutation π = Identity in (4.3).

Plugging in the hierarchy (2.15) an initial datum satisfying (4.3), we can follow
the same procedure as we did in section 3 for the Maxwell-Boltzmann statistics: we
write the full perturbative series expansion expressing fN

j (t) in terms of the initial
datum (see (3.4) and (3.6)), and try to analyze its asymptotic behaviour.
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As in the previous section, we first restrict our attention to those terms of degree
less than two in the potential.

The analysis up to second order is performed in [3]. We actually recover here Eq.
(2.24) with the suitable Bw,θ. The number of terms to control is much larger than in
section 3, due to the sum over all permutations that enters the definition (4.2) of the
initial state. Also, the asymptotics is much more delicate. In particular, we stress the
fact that the initial datum (4.2)-(4.3) brings its own highly oscillatory factors in the
process, contrary to the Maxwell-Boltzmann case where the initial datum is uniformly
smooth, and where the oscillatory factors simply come from the collision operators
T ε

k,` and Cε
k,j+1. These new oscillatory factors naturally play a crucial role. Indeed,

as we saw in the previous section, oscillations dominate the asymptotic process, and
they are the building blocks that allow recovery of the relevant Boltzmann equation
in the limit. This is the very reason why a cubic Boltzmann equation is obtained in
the Fermi-Dirac or Bose-Einstein case, while the equation simply is quadratic in the
Maxwell-Boltzmann situation.

Technically, we analyze in [3] the repeated application of the collision-recollision
operators Cε

j+1, T ε
j+1, as we did in the previous section, when they act on initial states

of the form (4.3). The analysis is similar in spirit to the one we used to study I0,
. . ., I4 in the previous section. Our approach yields various terms: two of them are
bilinear in the initial condition f0, and twelve are trilinear in f0. Some of these terms
vanish in the limit due to a non-stationary phase argument. Others give rise to truly
diverging contributions (negative powers of ε). However, when grouping the terms
in the appropriate way, those terms are seen to cancel each other. Last, some terms
give the collision operator (2.24). The computation is heavy and hence we address
the reader to [3] for the details.

This ends the analysis of terms up to second order in the potential.
Obviously, and as in the Maxwell-Boltzmann case, we could extend the result

in [3] and try to resum the dominant terms, as we did in the previous section when
extending the analysis of (3.21) to that of (3.22). This would lead to analyzing a
true subseries of the complete series expansion expressing fN

j (t). We do not see any
conceptual difficulty. However, this resummation procedure has not been explicitly
done in [3].

To end this paragraph, we mention that a similar analysis, using commutator
expansions in the framework of the second quantization formalism, has been performed
in [11] (following [10]) in the case of the van Hove limit for lattice systems (that is
the same as the weak-coupling limit, yet without rescaling the distances). For more
recent formal results in this direction, but in the context of the weak-coupling limit,
we also wish to quote [9].

5. The low density limit
Up to here, we only have investigated the weak-coupling regime. In this section,

we tackle the low-density regime, a technically more difficult situation.
Before coming to the details, we first recall that in the low-density regime, the

statistics are expected to play no role in the asymptotic, due to the fact that the gas
is rarefied. For that reason, we limit ourselves to completely factorized initial states,
corresponding to a Maxwell-Boltzmann statistics, as in (2.18).

In the low-density case, the number of particles N diverges moderately, namely
as ε−2 (in three dimensions of space), while the potential φ is not scaled at all. As
a result, when keeping the kinetic approach already described in section 3, the low-
density regime gives rise to exactly the same collision operators Ce

k,j+1 and T ε
k,j+1
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than in the weak coupling regime (they are given in (2.17), and (2.13), respectively),
and the underlying hierarchy is also similar to (2.15), with a different normalization
in ε yet: the new point is that the prefactor 1/

√
ε that we have in the weak-coupling

regime in front of T ε
j , is now replaced by 1/ε (a stronger prefactor), and the prefactor

(N − j)/
√

ε ∼ ε−7/2 in front of Cε
j+1 is now replaced by (N − j)/ε ∼ ε−3 (a weaker

prefactor). Quantitatively, the hierarchy is, in the low-density case:
(

∂t +
j∑

k=1

vk · ∇k

)
fN

j (Xj , Vj) =
1
ε
T ε

j fN
j +

(N − j)
ε

Cε
j+1f

N
j+1. (5.1)

Starting from (5.1), we may now solve (5.2) iteratively, as we did in section 3. This
gives rise to a huge series expansion. Similarly to what has been done in section 3,
we only analyze the subseries of the true series expansion of fN

j (t), that is obtained
upon retaining the dominant terms only (see (3.22) in the weak-coupling case).

Now, due to the fact that the potential is stronger, the selection of dominant
terms is somewhat different than in the weak-coupling situation. Actually, collision-
recollision terms (one C operator followed by one T - see (3.21)) do not dominate the
asymptotic, contrary to the weak-coupling case: one has to consider all terms obtained
through a creation-recollision sequence with 1 operator C followed by n operators T ,
for any value of n. Namely, the dominant terms are all the

∫ t

0

dt1

∫ t1

0

dτ1 · · ·
∫ τn−1

0

dτn S(t− t1)Cε
α,βS(t1 − τ1)T ε

α,βS(τ1 − τ2)T ε
α,β

· · · S(τn−1 − τn)T ε
α,βS(τn)f0

j+1, (5.2)

for any values of the particles number α and β (compare with (3.21), for which
n = 1). Such terms certainly behave in a different way for the weak-coupling and the
low-density regimes. Indeed the coefficient in front of such sequences are:

ε−( 7
2+ n

2 ) in the weak-coupling regime, (5.3)

ε−(3+n) in the low-density regime. (5.4)

Besides, as we have seen in the computations of section 3, each C operator gives a gain
of ε3 due to oscillations, and each T operator gives a gain of ε due to the associated
time integration (see the change of variable (3.14)). As a result, the term involved in
(5.2) has the effective size

ε+( n
2− 1

2 ) in the weak-coupling regime, (5.5)

O(1) in the low-density regime. (5.6)

In conclusion, for the weak-coupling regime, only the term for n = 1 is O(1), all
the others being negligible - in agreement with what we assert in section 3. On the
contrary, for the low-density regime, all the terms of the type (5.2) are O(1) and,
therefore, they have to be resummed.

Our contribution in [4] is the following. First, we analyze each term of the form
(5.2), for each value of n. Using stationary phase methods in large dimensions and
carefully analyzing the phase factors involved, we are able to pass to the limit in these
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terms. We refer to [5] for a similar analysis in the context of the linear Boltzmann
equation. Second, we resum these terms with respect to n. Using the very specific
algebraic structure of the underlying series, and using a previous identity proved in
[6], we show the typical relation

lim
ε→0

( ∑

n≥1

ε−3+n

∫ t

0

dt1

∫ t1

0

dτ1 · · ·
∫ τn−1

0

dτn

S(t− t1)Cε
1,2S(t1 − τ1)T ε

1,2 · · · S(τn−1 − τn)T ε
1,2S(τn)f0

2

)

=
∫

dv1dωB`(ω, v − v1) [f0(t, x, v′) f0(t, x, v′1)− f0(t, x, v) f0(t, x, v1)] , (5.7)

where B` is the full Born series expansion of quantum scattering (see (2.28)). The
difficulty actually lies in identifying the coefficient B` at this step. Last, we resum all
term of the form (5.2). We refer to (3.22) for the analogous approach in the weak-
coupling regime. We do not write the corresponding formulae. We simply mention
that the corresponding series is proved to converge for small times, uniformly in ε,
towards the perturbative series expansion of the solution to the Boltzmann equation
(2.26)-(2.27)-(2.28). We refer to [4] for the details. Note that our results need a
smallness assumption on the potential, as does the Born series expansion of quantum
scattering.

As in section 3, this analysis only yields a partial result, stating that a subseries of
the true series expansion of fN

j (t) converges to the appropriate Boltzmann equation:
neither are we able to bound the true series, nor are we able to pass to the limit
term-by-term.
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