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COMPLETE TIME-REVERSED REFOCUSING IN REFLECTION
WITH AN ACOUSTIC LAGRANGIAN MODEL∗

DANIEL G. ALFARO VIGO† , ADOLFO G. S. CORREIA‡ , AND ANDRÉ NACHBIN§

Abstract. Discrete reflection-transmission acoustic models are introduced and analysed re-
garding their underlying physical properties. Namely, phenomena related to multiple scattering as
encountered in the underlying continuous model. Moreover, the discrete models are designed so that
computational experiments can be performed efficiently. Each discrete model is expressed through its
corresponding reflection-transmission matrix establishing a connection with lattice models encoun-
tered in the Physics literature. Their connections with the continuous acoustic model are discussed
in detail. In particular we show how a Goupillaud medium can arise from a stable discretization
of a more general random medium. Related physical phenomena are studied computationally. In
particular reflection-transmission properties of waves in a rapidly varying random medim, which are
valid over long propagation distances. By using a long computational domain, in a regime where we
have Anderson localization, the energy of an incoherently scattered signal is entirely reflected back
and, by time-reversal, completely recompressed into the smooth initial data. Experiments are also
performed in a regime where separation of scales fails to hold. Another new result is the time-reversed
refocusing, in reflection, of a wave train in the form of a bit stream. The bit stream is scrambled
by reflection and unscrambled through time reversal. The robustness of the time-reversed refocusing
phenomenon is outstanding.
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1. Introduction
Time-reversal techniques have emerged as a new important and fascinating dis-

cipline within wave propagation in heterogeneous media [20, 19]. They are based
on the use of a time-reversal mirror, which is a device capable of receiving a signal
in time, keeping it in memory and re-emitting it back into the medium in the re-
versed direction of time. The main effect is the refocusing of the scattered signal
after time-reversal in a random medium: an acoustic pulse is sent in a disordered
medium generating a highly fluctuating, scattered signal which is time-reversed and
sent back into the medium. The new scattered signal is a pure pulse with a shape
similar to the initial pulse. Amazingly its “refocusing” takes place in time and space
and seems to be independent of the realization of the medium. The pulse shape is of
a deterministic character. This is called the stabilization of the refocused pulse shape
and is due to the self-averaging property [12]. Furthermore, in some situations the
randomness of the medium helps to improve refocusing “beating” the diffraction limit
[7, 6, 15]. Potential applications of these effects are numerous in imaging, wireless
communication, medicine, geophysics, underwater acoustic, among others as found in
[35, 27, 28, 15, 26].

Several regimes and scalings can be adopted for studying this fascinating phe-
nomenon. We chose to work in the regime where the medium’s correlation length
is smaller than the typical wavelength of the pulse. This choice has been made
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due to a great amount of well-founded mathematical theory (in the corresponding
wave/medium regime) that can be found, for example, in [4, 9, 10] and the references
within. Nevertheless it is well known that this is not the only regime for time-reversed
refocusing to take place. Results in the high-frequency regime (where the correlation
length is comparable to the carrier wavelength) can be found in [5, 7, 13, 14, 21].

From the theoretical point of view, a first proof of this refocusing effect has been
obtained by Clouet and Fouque [11] in the context of a one-dimensional random
medium for which only the time refocusing is relevant. The refocusing is obtained by
using asymptotics in the regime where the incident pulse propagates a long distance
in comparison to its characteristic length through a medium that fluctuates on a fine
scale relative to the pulse width. The fluctuations of the medium are not assumed to
be small.

The aim of this paper is to analyse discrete reflection-transmission acoustic models
through which we can perform efficient and robust numerical experiments. These
experiments are intended to assist in both theoretical and experimental investigations.
Hence we are interested in providing evidence that important physical properties are
retained by the discrete model. In particular important properties related to the
refocusing phenomenon in time-reversal.

We focus our experiments on the time-reversal in reflection (TRR) regime, which
has been much less explored than time-reversal in transmission (TRT) [5, 7, 13, 14,
20, 21, 28].

Anderson localization [2] is a well-known phenomenon for linear waves in a one-
dimensional (1D) random medium and has been mathematically analyzed for quite
some time [3, 24]. Nevertheless, as will be pointed out in more detail later on, many re-
cent papers [32, 16] consider the study of Anderson localization in lattices, graphs and
other discrete systems. By using a long computational domain, in a regime/scaling
where we have Anderson localization [3], we expect that the entire energy of the initial
data is backscattered as an incoherent signal. Namely, no transmission is (effectively)
observed over the (effective) bandwidth of the propagating pulse. Time reversing the
long incoherent (reflected) signal gives rise to a smooth pulse identical to the initial
profile. Our goal is to reproduce this known result with our discrete model: the
incoherent signal is completely recompressed into a smooth pulse, hence illustrating
the stochastic result given by Clouet and Fouque [11]. Moreover, in a subsequent
experiment we violate the separation of scales hypothesis used in [11] by consider-
ing a smooth varying background. Experiments with the discrete model show the
robustness of time reversal refocusing.

Another new result is the time-reversed refocusing, in reflection, of a wave train in
the form of a bit stream. Our main goal is to show how the bit stream can be scram-
bled by back scattering and accurately unscrambled by time reversal. In this paper
transmission is not an issue as for example in a wireless communication applications
where many recent studies have considered time-reversal as a robust tool for sending
and encoding bit streams [15, 26, 27]. The robustness of the time-reversed refocusing
phenomenon is outstanding. Robustness had already been analyzed in a different
context, where the random medium changes slightly in between the forward and the
time-reversed experiment. The corresponding stochastic theory and numerical results
are presented in Alfaro et al. [1]. The numerical experiments were performed with
the discrete model described (in detail, for the first time) in the present paper. The
agreement between the theoretical expressions and numerical results were excellent.

Recently Sølna [33] presented interesting numerical results for TRR, in the high
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frequency regime, for an impulsive source interacting with weak fluctuations in a
Goupillaud medium. In contrast, we time-reverse the incoherent backscattered signal
generated by a broad pulse interacting with a strongly fluctuating medium. Our
medium is not composed of slabs of equal traveltime (as in a Goupillaud medium; c.f.
appendix A). Another interesting numerical work is given by [25] in which again the
Goupillaud structure is taken advantage of numerically by using the Green’s function
over each subinterval. The evolution is done in frequency space (through a frequency
dependent transfer matrix) and a boundary integral formulation leads to an efficient
banded system to be solved numerically. In contrast our discrete lagrangian model
leads to transfer (reflection-transmission) matrices in physical space.

This paper is organized as follows, in Section 2 we present the model of a con-
tinuous one-dimensional acoustic medium, and for completeness in the appendix A
a commonly used discrete model, i.e. a Goupillaud layered medium. In Section 3
we briefly review the asymptotic theory of time-reversal refocusing [11]. In Section
4 the discretization of the equations is carried out, remarking the relationship with
the Goupillaud layered medium (appendix A) and setting up a numerical framework
for experiments. Additionally, in appendix B we prove that this discrete model rep-
resents a good approximation of its continuous counterpart. Finally, in Section 5
we present some numerical experiments illustrating time-reversal refocusing and the
relevant physical properties of the discrete model.

2. One-dimensional acoustic waves
The governing equations for wave propagation through a one-dimensional acoustic

medium are the conservation laws for momentum and mass:

%∂tu+∂zp =0 (2.1a)
1
κ

∂tp+∂zu=0, (2.1b)

where p(z,t) is the pressure and u(z,t) the velocity. The medium coefficients %(z) and
κ(z) are, respectively, the density and bulk modulus, and the acoustic sound speed is
given by

c(z)=

√
κ(z)
%(z)

. (2.2)

The characteristics curves are defined as solutions of the ordinary differential equations
dz/dt=±c(z), which are highly oscillatory when the medium properties vary rapidly
in space. By introducing (as a new ‘space-related’ coordinate) the travel time from
the origin

x=
∫ z

0

ds

c(s)
, (2.3)

system (2.1) can be put in the form

ζ∂tu+∂xp=0 (2.4a)
∂tp+ζ∂xu=0 (2.4b)

where ζ is the acoustic impedance of the medium defined as

ζ(x)=
√

%(x)κ(x). (2.5)
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We remark that due to the change of variable (2.3) system (2.4) has a family of
characteristic lines

C±α :{x=x±(t)=±t+α}, α∈R, (2.6)

as opposed to the highly oscillatory characteristics of system (2.1). Moreover in the
homogeneous case, with ζ constant, it has the Riemann invariants

D= ζ
1
2 u+ζ−

1
2 p (2.7a)

U =−ζ
1
2 u+ζ−

1
2 p (2.7b)

representing right- and left-going waves respectively. By applying the operators ∂t±
∂x to (2.7) and using (2.4) we obtain

(∂t +∂x)D=−rU (2.8a)
(∂t−∂x)U = rD (2.8b)

with the reflectivity coefficient

r(x)=
ζ ′

2ζ
=

1
2
(logζ)′=

(ζ1/2)′

ζ1/2
. (2.9)

We clearly see that in a homogeneous medium D is a traveling wave to the right and
U to the left, and that they are completely uncoupled. The coupling of the Riemann
invariants is through the reflectivity, in the forcing term. The multiple scattering
nature of this model is evident through the constant exchange of energy between the
left and right propagating modes.

Conservation of mechanical energy is another important feature concerning acous-
tic wave propagation. For solutions of (2.4) it takes the form

E(t)=
1
2

∫ +∞

−∞
(ρu2 +

1
κ

p2)dz =constant (2.10)

and according to the transformations introduced above, in the new variables, the
following identity holds:

E(t)=
1
4

∫ +∞

−∞
(D2 +U2)dx=constant. (2.11)

In the next section we will discuss a situation where the leading front of the trans-
mitted wave seems to be under a diffusive-like behavior. This is an apparent diffusion
since the energy being lost (in a diffusive-like manner) by, say, mode D is being stored
as incoherent energy in mode U . The total energy is being conserved as expressed
through the conservation law (2.11).

3. Time-reversed refocusing in reflection
This section contains a brief review of the mathematical results given by Clouet

and Fouque [11] on time-reversal in reflection. As will be noticed below, the recorded
signal is formulated essentially the same way as found in the literature as, for example,
in [11, 12].

We discuss the regime of separation of scales in which the ratio of the correlation
length of the medium fluctuations to typical pulse wavelength is small and, comparable
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Fig. 3.1. A schematic representation of the random medium.

to the ratio of the typical wavelength to propagation distance. The medium considered
is a random half-space with its corresponding properties modeled through the variable
coefficients as

%(z)=
{

%0

(
1+η( z

ε )
)
, for z≥0

%0, for z <0 (3.1)

1
κ(z)

=

{
1
κ0

(
1+ν( z

ε )
)
, for z≥0

1
κ0

, for z <0.
(3.2)

Here the background properties, expressed through %0 and κ0, are constant. A
schematic picture is presented in Fig. 3.1. The theory [11, 22] allows for slow back-
ground variations but for simplicity we present our overview in this simpler scenario.
In one set of numerical experiments we will consider background variations. First
having the background varying on a slow scale, as determined by the theory, and
then on a faster scale violating the separation of scales hypothesis. We will see that
time-reversed refocusing is quite robust.

The fluctuations are determined through the centered stationary random pro-
cesses η(·), ν(·), which are bounded by a deterministic constant (i.e. |η|<C, |ν|<C,
almost surely with C <1). They are considered exponentially mixing in the sense
that (each) decorrelates exponentially fast, and have a correlation length of O(1).
The above scaling assures that the random fluctuations have correlation length of
O(ε), and we assume that ε>0 is a small parameter. Under this scaling the heteroge-
neous medium is rapidly varying with respect to the propagating pulse of O(1) width.
We remark that we do not consider the fluctuations to be small.

In the homogeneous half-space z <0 the Riemann invariants D, U correspond to
right- and left-going waves. Thus in that region the original wave fields are easily
obtained through

u(z,t)=
D0(t−z/c0)−U0(t+z/c0)

2ζ
1/2
0

p(z,t)=
ζ
1/2
0

2
(
D0(t−z/c0)+U0(t+z/c0)

)
,

where c0 =
√

κ0/%0, ζ0 =
√

%0κ0 are the sound speed and acoustic impedance in the
homogeneous half-space. We have used the notation D0(t)=D(x=0,t), U0(t)=U(x=
0,t). Consequently, for a pulse impinging upon the heterogeneous half-space from the
left we have, at the interface, the reflected signals

uref (0,t)=−U0(t)

2ζ
1/2
0

, pref (0,t)=
ζ
1/2
0 U0(t)

2
.
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If we consider a pulse with typical wavelength of O(1) and observe its evolution
for a relatively small time, since the correlation length of the fluctuations (3.1) is of
O(ε), one sees according to homogenization theory that the pulse practically does
not generate reflection and travels with velocity c0 without changing its shape [3].
However, if we continue observing for a longer time, reflections appear and the pulse
moves with a random speed and changes its shape, in a deterministic fashion, accord-
ing to the O’Doherty-Anstey (ODA) approximation (see [3, 22]). To leading order the
deterministic pulse shaping is diffusive-like. In accordance with these remarks, the
time-reversal procedure should be implemented for a sufficiently large time intervals.

The time-reversal procedure goes as follows: (i) let a right-going pulse impinge
upon the heterogeneous half-space, (ii) record the reflected time signal at the interface
up to a time t0 and (iii) reverse its time direction. Hence this incoherent signal is used
as new initial data being re-emitted backwards into the medium. A new reflected
signal is generated at the interface and its subsequent refocusing can be stated as
follows: if we observe this time-reversed reflection for a sufficiently long time (t>t0)
then a left-going pulse, that resembles the initial one, emerges at the interface exactly
at t= t0 and continues to travel to the left, into the homogeneous medium. This will
be shown in the numerical experiments.

Mathematically, this property is established through an asymptotic analysis (as
ε↓0) for the random differential equations which model the pulse reflection process
(for details see [11, 22]). In this analysis the scaling is crucial for establishing the
diffusion approximation that allows for the use of the powerful tools of stochastic
calculus.

More precisely, we consider that the recording and observation times are long and
satisfy t0 =ε−1t′0 and t1 =ε−1t′1, respectively. A cutoff function Gt0(t), supported on
the interval [0,t0] represents (mathematically) the recording process. It is considered
to vary slowly, in the sense that

Gt0(t)=Gt′0(εt)

where Gt′0 is smooth in (0,t′0). In the simplest situation, one has Gt0 =1[0,t0] the
indicator function for the interval [0,t0].

The refocusing property is stated as follows. For an initial right-going pulse
D0(t)=f(t) the limiting (as ε↓0) time-reversed reflection observed at the time t1
satisfies [11]:

lim
ε↓0

Uε,TR
0 (

t′1
ε

+ t)=

{
fTR

Gt′0
(t), for t′1 = t′0

0, for t′1 6= t′0
(3.3)

where the refocused time-reversed (TR) pulse is

fTR
Gt′0

(t)=
(
HGt′0

(·)?f(−·))(t) (3.4)

with the (limiting) refocusing kernel HGt′0
(·) given by

ĤGt′0
(ω)=

(
Λ(ω, ·)?Gt′0(−·)

)
(0). (3.5)

By ĝ we represent the Fourier transform of the function g and the symbol ? stands for
convolution with respect to t. The function Λ(ω,t) is explicitly given by (see [9, 22])

Λ(ω,t)=
ω2γn

(1+ω2γnt)2
(3.6)
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with

γn =
1
c0

∫ ∞

0

E{n(s)n(0)}ds, (3.7)

and n(s)=(η(s)−ν(s))/2 (c.f. (3.1)). It is the limiting power spectral density associ-
ated with the random signal scattered at the interface [3, 9, 10].

A remarkable point is that the limiting form for the (time-reversed) refocused
pulse is deterministic and depends only on one statistical property of the random
medium as indicated in (3.7). This result is known as pulse stabilization (see [11, 12,
22]). Actually, the limit in (3.3) expresses convergence in probability. Consequently,
the observed refocused pulse stays arbitrarily close to the deterministic signal (3.4)
with a probability that approaches 1 as ε↓0.

As mentioned above, a better understanding on the shape of the refocused pulse is
achieved by analysing the case of a time-reversal mirror, with Gt′0 =1[0,t′0]. We simplify
the kernel’s notation by using the subscript t′0 in place of Gt′0 in the representation
of the corresponding refocused pulse and refocusing kernel. In this particular case we
get that the Fourier transform of the refocusing kernel Ht′0 is given by

Ĥt′0(ω)=
ω2γnt′0

1+ω2γnt′0
.

Therefore Ht′0 is a highpass filter, such that when t′0 goes to infinity Ht′0 tends to a
Dirac δ-function. Moreover, we have the following complete refocusing property.
There exists a real constant c1 >0 such that for any t′0 >0

lim
ε↓0
P
{
‖Uε,TR

0 ( t′0
ε + ·)−f(−·)‖∞<c1‖f̂‖∞(γnt′0)

−1/2
}

=1, (3.8)

where ‖g‖∞=supt∈R |g(t)| represents the usual L∞-norm of g(t). So we have that as
the recording time grows, the limiting refocused pulse shape approaches the initial
pulse waveform. Hence the original pulse is fully recovered through time-reversal in
reflection. The long incoherent reflected signal recompresses into the smooth initial
profile. This has never been shown numerically and is reminiscent of Anderson local-
ization [2]. Namely, the random medium is opaque (to all frequencies) and there is
no transmission. All the energy is reflected back and by time-reversed recompression
the initial pulse is fully recovered. Moreover, for the limiting time-reversed reflection,
after some elementary estimates we get that if ‖Gt′0(t

′)‖∞≤1 then

‖fTR
Gt′0
‖
2
≤‖fTR

t′0
‖
2
, (3.9)

where ‖g‖2 =(
∫ |g(t)|2dt)1/2 represents the L2-norm of the time-signal g(t). Further-

more, this is a sharp estimate and if additionally we only consider non-negative cutoff
functions then the equality holds if and only if Gt′0 =1t′0 . Hence the uniform cutoff
function is the best for energy recovery through recompression.

4. Discrete reflection-transmission systems
In this section we analyse discrete reflection-transmission systems which can be

used, for example, in numerical experiments. We present two ways of obtaining the
discrete physical models. First, we use numerical methods for approximating the
system of partial differential equations. We show that in one particular case we
obtain a Goupillaud medium commonly used in Geophysics. Both finite difference
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schemes presented have a discrete analog for the energy conservation law. We also
study a discrete physical model by approximating evolution operators.

Our main goal in this paper is to provide strong evidence that the underlying
discrete models retain some relevant physical properties of the continuum model. We
establish this by carrying out a convergence analysis in appendix B and through the
numerical simulations presented in section 5. This is interesting from the lattice
viewpoint and also as a computational tool that can assist laboratory experiments.

In the recent Physics literature one can find interesting research articles con-
cerning reflection-transmission on lattices and graphs, all including the study of 1D
Anderson localization. For example in Schanz and Smilanskyi [32] (equations (1) and
(2)) a scattering matrix formulation is used. This formulation is basically identical to
ours, given below. Schanz and Smilanskyi study localization in a 1D chain topology.
The matching conditions across the graph’s vertex is given by a unitary scattering
matrix. The transmission and reflection coefficients are given at the bottom of page
1427 [32] followed by a unitary operator that describes the time evolution map. This
is the essence of our presentation for the discrete models given below. We called this
section “Discrete reflection-transmission system” exactly to establish the connection
with, say, chains, lattices, graphs and other discrete models. In an even more recent
paper, Dominguez-Adame and Malyshev [16], also study 1D Anderson localization,
but on a disordered lattice where random energy are assigned to each lattice site.
This role is played in our paper by the random reflectivity assigned at each node.

It is interesting to note that in both references [32, 16] the analysis is performed
in wavenumber space. In the following subsections we will show that through the
use of Riemann invariants we get the scattering matrices, and develop discrete/lattice
models, for a full band of wavenumbers, directly in physical space.

We shall develop our discrete models related to (2.1), by basing our analysis on the
equivalent equations (2.8) that are more suitable for the study of the right- and left-
going waves, and therefore for reflection-transmission problems. As mentioned earlier,
the velocity and pressure fields can be easily obtained by using transformation (2.7).
The change of variable (2.3) can be carried out accurately by solving the corresponding
initial value problem (in z) through a suitable method. For simplicity we consider
that this coordinate change has been performed exactly.

We point out that the random medium under consideration does not need to be
piecewise constant. Thus we obtain reflection-transmission matrices corresponding
to the discrete scattering process for quite general random media profiles. We have
to stress that all discrete schemes presented conserve energy and are convergent.
Moreover the implicit schemes developed are such that there is no need to solve an
algebraic system of equations.

4.1. Semi-lagrangian schemes. The semi-lagrangian approach in the com-
putation of highly oscillatory solutions to hyperbolic differential equations has been
successfully used. An important reason for this, is its ability to perform the correct
advection of high frequency modes, eliminating one of the central source of problems
in the discrete approximations of the equations [17, 18]. We shall follow this approach
in the discretization of (2.8) to obtain an implicit conservative scheme.

We consider the spatio-temporal grid {(xj ,tn), j∈Z, n∈Z+} with ∆x=∆t=h
and use the representation

Dn
j =D(xj ,tn)

Un
j =U(xj ,tn)
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where (xj ,tn)=(jh,nh).

t

x

j−1 j

n

n+1

C+

j−1/2

n+1/2

C−

Fig. 4.1. Characteristic lines, spatio-temporal grid and staggered gridpoints.

We shall approximate equation (2.8) in the staggered gridpoints (xj−1/2,tn+1/2)
(see Fig. 4.1). The differential operators ∂t±∂x are discretized by considering them
as directional derivatives along the characteristics C± using a central difference ap-
proximation. The right-hand side D, U are approximated by a midpoint averaging on
the characteristics C±, respectively, and the reflectivity coefficient (2.9) using a finite
difference approximation supported on the spatial grid points. We obtain

Dn+1
j −Dn

j−1

h
=−r̃j−1/2

(Un+1
j−1 +Un

j

2

)
(4.1a)

Un+1
j−1 −Un

j

h
= r̃j−1/2

(Dn+1
j +Dn

j−1

2

)
(4.1b)

where r̃j−1/2 represents the approximation of the reflectivity coefficient. There are
different ways to approximate the reflectivity, which gives place to different discrete
reflection-transmission models. In particular we will show that one of our choices
falls exactly on the Goupillaud medium commonly used by geophysicists in seismic
analysis.

For instance, we can use one of the following approximations:

r̃j−1/2 =
logζj− logζj−1

2h
=

1
2h

log(
ζj

ζj−1
) (4.2)

or

r̃j−1/2 =

(
ζ
1/2
j −ζ

1/2
j−1

h

)

(
ζ
1/2
j +ζ

1/2
j−1

2

) =
2
h

(ζ
1/2
j −ζ

1/2
j−1

ζ
1/2
j +ζ

1/2
j−1

)
(4.3)

which formally lead to second-order numerical schemes.
Regarding the implicit relation between D and U we solve a 2×2 system to get

that
(

Dn+1
j

Un+1
j−1

)
=

[
τ̃j−1/2 −σ̃j−1/2

σ̃j−1/2 τ̃j−1/2

](
Dn

j−1

Un
j

)
(4.4)
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where

τ̃j−1/2 =
1−(h2/4)r̃2

j−1/2

1+(h2/4)r̃2
j−1/2

,

σ̃j−1/2 =
hr̃j−1/2

1+(h2/4)r̃2
j−1/2

,

are the discrete transmission and reflection coefficients, respectively. A 1D Anderson
localization study on a lattice uses a similar matrix structure [32]. Therefore, the
matrix above defines the discrete reflection-transmission matrix at the staggered mesh
point xj−1/2.

Since these reflection-transmission matrices are orthogonal we obtain the following
discrete analog for the energy conservation law

∑

j∈Z

(
(Dn+1

j )2 +(Un+1
j )2

)
=

∑

j∈Z

(
(Dn

j )2 +(Un
j )2

)
. (4.5)

For the sake of simplicity we are considering the entire line. Below we will add
perfectly radiating boundary conditions. Therefore, the schemes presented are con-
servative and consequently stable in the discrete L2-norm. Thus taking into account
that it is second-order accurate, convergence follows directly from stability and consis-
tency of the scheme. However, since we deal with rapidly varying acoustic media and
high frequency wave fields (cf. equation (3.1)) accuracy in fact depends on how well
the high frequency modes are represented by the computational grid. Furthermore,
as we are interested in wave propagation in a random medium it is important to note
that an appropriate mesh size selection (that depends on the introduced small pa-
rameter ε) allows us to reproduce the relevant statistical features of its corresponding
continuous model.

We call attention to the analogy between the relations above and the equations
for a Goupillaud medium (see the appendix A). Specifically, by using the approx-
imation (4.3), the reflection-transmission matrices of the scheme and a Goupillaud
layered medium coincide. In this case the numerical scheme can be interpreted as ap-
proximating the acoustic medium by a Goupillaud medium. The Goupillaud medium
is frequently used in Geophysics.

As a final comment we point out that perfectly matching boundary condi-
tions are easily implemented through the Riemann invariant formulation. We allow
the computational domain to be homogeneous near its extreme points. Then the
reflectivity r̃ is identically zero over these lattice points and the equations in system
(4.1) decouple over these points. As a consequence of the decoupling, for example at
the extreme right of the domain, D propagates out of discrete model without gener-
ating any spurious reflection. This is clearly seen by (4.1b), with j in the (extreme)
homogeneous segment, implying that

Un+1
j−1 =Un

j

and observing that Un
j ≡0 there (recall that the impinging pulse is coming from the

left). Hence, by the initial configuration, the left propagating Riemann invariant U
will always be zero at the extreme right of the domain. This is a guarantee that no
spurious reflection will be generated at the boundary. We have tested the radiation
of waves through the boundary in the homogeneous medium case and it worked very
well.
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4.2. Operator splitting scheme. System (2.8) can be re-written in a more
compact operator notation

∂ta=H(x,∂x)a

where

a=
(

D
U

)
and H(x,∂x)=

[−∂x −r(x)
r(x) ∂x

]
.

The operator H can be decomposed as the sum of a constant-coefficient diagonal
hyperbolic operator H0 and a multiplicative operator M defined as

H0(∂x)=
[−∂x 0

0 ∂x

]
and M(x)=

[
0 −r(x)

r(x) 0

]
,

with associated evolution equations

∂ta=H0a and ∂ta=Ma, (4.6)

respectively. We assume that r(x) is continuous and bounded. The evolution (solu-
tion) operators H0 and M associated to equations (4.6) are unitary as in the lattice
problem given in [32]. Their action on a vector valued function is readily available
and we have

H0(t)
(

D(x)
U(x)

)
=

(
D(x− t)
U(x+ t)

)
,

M(t)
(

D(x)
U(x)

)
=

[
cos(r(x)t) −sin(r(x)t)
sin(r(x)t) cos(r(x)t)

](
D(x)
U(x)

)
.

Introducing a temporal grid with time step ∆t and using the Strang splitting
scheme [34], we obtain the semi-discrete conservative scheme

an+1 =H0(
∆t

2
)M(∆t)H0(

∆t

2
)an. (4.7)

Note that no approximation have been performed in space. For initial data and
reflectivity coefficient sufficiently regular, it is second order accurate in time, thus
convergence in the L2-norm follows. Moreover, if r(x) is only continuous and bounded
the scheme is consistent [31] and consequently convergent.

For the discrete model applications we introduce spatial mesh points {xj =
j∆x|j∈Z} and adopt approximate values r̃(x) for the reflectivity coefficient. There-
fore we obtain the discrete evolution operator M̃. After replacing it in (4.7) we get
the splitting scheme

an+1 =H0(
∆t

2
)M̃(∆t)H0(

∆t

2
)an. (4.8)

At this stage the medium has been discretized but not the solution modes D and
U . This discrete model is also conservative, but inherits truncation errors from the
space discretization. For instance, using a central difference approximation for the
reflectivity coefficient it becomes second order in space and time.
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By using a time step ∆t=∆x we avoid the introduction of interpolation errors
since the characteristic lines go through the mesh points. Going through a complete
discretization also in D and U , and rearranging terms, the semi-discrete expression
above takes the form

(
Dn+1

j

Un+1
j−1

)
=

[
cos(r̃j−1/2∆t) −sin(r̃j−1/2∆t)
sin(r̃j−1/2∆t) cos(r̃j−1/2∆t)

](
Dn

j−1

Un
j

)
. (4.9)

We again have a corresponding discrete reflection-transmission matrix as in [32].
Moreover, by approximating cos(r̃j−1/2∆t) and sin(r̃j−1/2∆t) by their second order
Padé approximants, we obtain (4.4). Furthermore, the convergence analysis that we
carry out in appendix B is also valid for this discrete model.

5. Time-reversal refocusing experiments

−50 −40 −30 −20 −10 z = 0 10 20 30 40 50

0

TRANSMITTED WAVE →← REFLECTED WAVE

TIME−REVERSED WAVE →

z−AXIS
RANDOM MEDIUM HALF−SPACE

Fig. 5.1. A snapshot of a forward computational experiment together with the schematic indi-
cation of the time- reversal procedure. The leading wavefront is a right propagating pulse followed
by fluctuations. By schematic we mean that the recording time indicated here is much shorter than
in the experiments that follow, only to facilitate the visualization of the signal’s fluctuations. The
signal in the negative part of the domain is out of the computational domain and has been recorded
in time as indicated by the (vertically) shifted signal. This signal is time- reversed and sent back into
the random medium as a time dependent boundary condition along the (left) incoming characteristic.

In this section we present numerical illustrations of the refocusing of time-reversed
reflections. For h¿1, small enough, all discrete models give similar results. We
present the results for model (4.1) with the discrete reflectivity given by (4.2).

The numerical experiments are conducted as follows:
1. we let a pulse-shaped wave impinge upon the random medium from the left.
2. we record the reflected wave at the left extreme as a time signal, and re-enter

it into the medium after time-reversion, by considering it as a time-dependent
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boundary condition along the incoming characteristic (cf. Fig. 5.1). Along
the homogeneous region the incoming and outgoing signals (D and U) are
decoupled.

An equivalent procedure, frequently used, consists of capturing a spatial segment of
the reflected signal traveling to the left in the homogeneous half-space, at a particular
instant of time; ‘freezing’ this piece and sending it back into the heterogeneous medium
as a secondary right propagating wave.

Since we shall compute the approximate solution for a finite time interval, from
the hyperbolicity of the equations follows that only a slab of the heterogeneous half-
space should be considered. Then the domain of interest is completed by adding little
pieces of homogeneous medium to both sides of this slab, in order to correctly man-
age the radiation boundary conditions and also properly setting the initial incoming
pulse/signal.

The heterogeneous (slab) medium properties are modeled by considering a con-
stant compressibility κ0 and setting random density values at points z̃j = jε of
the physical domain. This is done using a random number generator, so that
ρ(z̃j)=ρ0(1+Yj) where Yj are independent random variables uniformly distributed
over (−C,C) with 0<C <1. This ensures that the fluctuations correlation length
is O(ε). Connecting these values we define the medium density as a piecewise lin-
ear function over the whole slab. For simplicity we set %0 =κ0 =1 in all numerical
experiments but section 5.2.

The computational mesh is constructed as follows: first the change of variables
(2.3) is performed by mapping analytically the points z̃j , of the physical domain,
into their travel time images x̃j in the computational domain. Then by a linear
interpolation we obtain approximately the points zk that map to the uniform mesh
defined by xk =kh and set the corresponding densities to ρk =ρ(zk).

Concerning the mesh size h, a choice of 5-10 mesh points per correlation length
(or layer) gives excellent results. This was also observed in the numerical experiments
presented in [4]. In [23, 33] a spatial discretization with mesh size equal ε also produced
very accurate results. This is in agreement with the analysis presented in appendix
B.

We again remark that when the signal is recorded in space we need to use a mesh
sufficiently large to accommodate for the entire reflected signal at the left side of the
heterogeneous slab (as indicated in Fig. 5.1). Therefore, the size of the computational
domain increases proportionally to the recorded time t0. However, the procedure
implemented in our experiments uses a computational domain roughly of the size of
the slab, independently of the length of the recording interval. This is due to the exact
radiation condition defined through the (corresponding) outgoing characteristics.

In all the experiments that follow we take ε=0.1, and a mesh size h=0.01. The
heterogeneous slab has length L and the initial pulse is given by the Gaussian deriva-
tive

f(z)=−7(z−2)exp
(− (z−2)2

0.1
)
. (5.1)

Note that its effective support is O(1), and consequently the medium correlation
length to pulse width ratio is O(ε). As a cutoff function for the time-reversal mirror
we take the indicator function of the time interval [0,t0]. The recording time for all
numerical experiments is large, corresponding to the propagation from 50 up to 400
initial pulse widths. We point out that this setting is in complete agreement with the
scaling discussed in section 3.
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5.1. Complete refocusing and localization (Figures 5.2–5.3). In this
first experiment, our goal is to illustrate the complete refocusing of the time-reversed
pulse. As we pointed out before, this is closely related to Anderson localization.

We use a heterogeneous slab with length L=405, having small homogeneous
segments at its extremes. The forward experiment, with the initial pulse generat-
ing (backscattered) reflections, is followed by the time-reversed experiment using the
recorded reflected signal as initial data.

z−AXIS
0 50 100 150 200 250 300 350 400

PULSE PROPAGATION

t = 0
t = 125
t = 250
t = 375
t = 500

Fig. 5.2. Forward experiment: the initial pulse profile is located at the left of the bottom
trace and seen as a vertical line near the origin. This is due to the long horizontal scale of the
graph (a total of 400 pulse widths). A detail of the initial pulse (of approximately unit width) is
provided in Fig. 5.3. The right propagating pulse evolves as displayed at different times t. Traces
from bottom to top are: t=0, 125, 250, 375 and 500. The attenuation and broadening of the pulse,
along the wavefront, is clearly seen to the right of the snapshots for t≥125.

Fig. 5.2 shows the forward experiment with the O’Doherty-Anstey attenuation
taking place along the wavefront [3, 30] as a manifestation of Anderson localization.
Time evolves from the bottom of the figure towards the top. At the bottom left (near
zero) we have the initial (Gaussian derivative) pulse. As time evolves we see the
diffusive-like behavior along the leading pulse. Very little energy is being transmitted
at the right end of the computational domain. Moreover, the higher-frequency modes
stay closer to the extreme left of the slab and their amplitudes clearly decay with
time. This indicates that they scatter back through the interface. At time t=500
(the top trace) the small leading wavefront has propagated out of the computational
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domain without generating any spurious reflections as explained earlier. The reflected
signal is recorded at the left end as it leaves the computational domain.

In order to see better how good the recompression is we compare two time-reversed
experiments: one for which we recorded the reflected signal for t0 =410 and another
which we recorded for a time interval twice as long (t0 =820). The result is shown in
Fig. 5.3 where we compare the refocused pulses with the initial profile. It is clear that
we have been able to recompress (effectively) the initial data’s energy. As mentioned
above, this is predicted by the theory (c.f. expression (3.8)) and is a manifestation
of localization: if the random medium is long enough we have zero transmission (the
medium is opaque).

In fact, the recompressed energy measured as ‖Uε,TR
0 (t0 + ·)‖2/‖f‖2 increases

from 89.9% to 94.4% when t0 =410 and t0 =820, respectively. Moreover, the unrecov-
ered portion of the initial pulse quantified as ∆=‖Uε,TR

0 (t0 + ·)−f(−·)‖∞/‖f‖∞ falls
from ∆1 =12.6% when t0 =410 to ∆2 =8.5% for t0 =820, and their ratio ∆1/∆2 =1.47
appears to be very close to the predicted value

√
2 (c.f. (3.8)). The value

√
2 comes

from the fact that we doubled the recording time in the second experiment.

arrival TIME about the center of the refocused pulsepu
lse

 A
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Fig. 5.3. Initial profile (dashed line) and refocused pulses for t0 =410 (dash-dotted line) and
t0 =820 (solid line).

5.2. Background medium effect (Figure 5.4–5.6). Now we experiment
with a scenario that has not been explored before. In particular we will give evidence
on the robustness of the refocusing phenomenon by gradually going against the separa-
tion of scales hypothesis regarding the wave and the medium, which is very important
for developing the theory. In this example the background medium is not homoge-
neous: we define the background medium density by %0(z)=1+0.5sin(2πmz/L) on a
slab [4,84] of length L=80 and set m=4, 20 and 80. The physical domain extends
from zi =0 to zf =86 and the recording time t0 =90. In Fig. 5.4 we present the
numerical results for a wide range of background scales. In particular for m=80 the
deterministic background scale is of the same order as the pulse. We note that as
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the medium varies on faster scale the refocused pulse has a larger amplitude. In any
case the robustness of the incoherence recompression phenomenon (i.e. refocusing in
reflection) is remarkable.

−1.5 −1 −0.5 0 0.5 1 1.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

TIME

REFOCUSED PULSE

 

 
m = 80
m = 20
m = 4

Fig. 5.4. Refocusing in the case of a varying background. We show the refocused pulses for
m=4 (dashed line), m=20 (dash-dotted line) and m=80 (solid line).

The statistical stabilization of the refocused pulse has been theoretically estab-
lished only for a slowly varying background. Thus, our numerical simulations when
m=4 and 20 are consistent with this result even though we do not present this result
here. Moreover, from the results shown in Fig. 5.5, corresponding to time-reversal
experiments in the case where m=80, it is apparent that for this faster background
the refocused pulse is still statistically stable.

Furthermore, in Fig. 5.6 we show the averaged refocused pulses (over 10 real-
izations of the random medium) when m=4, 20 and 80. It is remarkable that for
m=4 and 20, the refocused pulses are almost identical while for m=80 it has a larger
amplitude. So, the fast periodic variations of the background enhances the quality of
the recompressed pulse amplitude.

We believe that this enhancement is a manifestation of the celebrated Bragg
resonance for waves propagating over periodic structures (see for instance [8]). Indeed,
the periodic background is able to reflect back a portion of the energy carried by the
Fourier modes whose wavelengths are close to the resonant wavelength (equal to twice
the background period). Moreover, due to the separation of scales within the medium
(i.e. the periodic profile and the random fluctuations) this effect is not annihilated by
the random fluctuations. Therefore, there is more energy available for recompression
and it leads to an improved refocused pulse. Nevertheless, a more detailed analysis
regarding the discussed effect is needed.

5.3. Wave train refocusing (Figure 5.7). In this experiment we consider
the refocusing of a pulse shaped wave train in the form of a bit stream, as presented at
the top trace given in Fig. 5.7. The objective of the example with the bit stream is to
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Fig. 5.5. Statistical stabilization of the refocused pulse corresponding to the case of a rapidly
varying background (m=80). The results of 10 realizations are shown.

show that, after being scrambled by random reflection, it can be unscrambled through
time-reversal. As an example for scrambling transmitted signals one will find the time-
reversal in transmission technique given by Heinemann and Smith [26]. They consider
2D experimental results of a scheme, for encrypting acoustic communication in a
reverberant environment. To the best of our knowledge this scrambling-unscrambling
has never been done for 1D time-reversal in reflection. At this stage, our goal is to
show how time-reversal unscrambling works in a nice and clean fashion. We hope that
this might lead to interesting applications in the future.

The top trace in Fig. 5.7 is the wave train f(t) corresponding to the bit stream
β =β1β1 ...β64. Each (initial) unit bit is described by the derivative of the Gaussian
f0 given by (5.1) and the support of a zero bit is the same as the effective support of
the unit bit. This initial pulse is given as f(t)=

∑64
i=1βif0(t+2(i−1)).

The middle trace in Fig. 5.7 represents the scrambled reflected signal generated
by the interaction of the bit stream with a disordered acoustic medium. Recall that
the reflected trace is recorded at the left end of the acoustic channel, namely along
the left going characteristic.

The initial pulse shape (of each bit) and the bit stream order were now randomly
scrambled through the forward experiment. We have used a heterogeneous slab of
length L=200 within a physical domain from zi =0 to zf =202 and we set t0 =485.
We then perform the time-reversal procedure for the incoherent time-signal given at
the middle trace of Fig. 5.7. Recall that we do not need to allocate the reflected and
refocused signals on the computational mesh. This long, incoherent, time-reversed
signal is sent back into the random slab as a time-dependent boundary condition at
the left end of our computational domain. This boundary condition is imposed along
the incoming characteristic, from the left. Again the robustness of the refocusing
phenomenon is clearly seen at the bottom trace of Fig. 5.7. The recompression
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Fig. 5.6. Mean refocused pulses (averaging over 10 realizations of the random medium) for
the case of a varying background. We show the refocused pulses for m=4 (dashed line), m=20
(dash-dotted line) and m=80 (solid line). Note that the first two signals are almost identical.

process is very efficient along the entire bit stream. In particular the zeros of the
bit stream are recovered in a very “clean” fashion and we have a uniform amplitude
distribution for the recompressed bits.

This looks paradoxical at first glance, as the reflected signal corresponding to the
i-th bit is recorded from t0,i =2(i−1) to t0 so there is less information available for
recompressing the last non-zero bit than for the first one. However, since t0,i/t0 =O(ε)
this quantity of information is negligible as ε→0. Moreover, if fTR

0 represents the
limiting refocused pulse corresponding to f0 then from (3.4) one gets that fTR(t)=∑64

i=1βif
TR
0 (t+2(i−1)). This is a wave train representing the bit stream β where

each unit bit is codified through fTR
0 .

Appendix A. The Goupillaud layered medium. Goupillaud layered media
are frequently used as geophysical models [3, 30]. Due to the analogy mentioned in
section 4, for the lagrangian schemes and the transmission-reflection relations for a
layered medium, in this section we describe a Goupillaud layered medium. Here %(z)
and κ(z) are piecewise constant with jump discontinuities at interfaces, in such a way
that the travel time across every layer is the same.

Therefore the interfaces are uniformly spaced at intervals of ∆x in the travel time
coordinate x and we use the notation

xj = j∆x, fj(...)=f(xj ,...), j∈ 1
2
Z,

for any function dependent on x.
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INITIAL SIGNAL

REFLECTED time−reversed SIGNAL

REFOCUSED SIGNAL

Fig. 5.7. Wave train refocusing. The horizontal axis is time for a signal recorded at the
left end of the computational domain. The initial profile is presented at the top trace representing
the bit stream 1101100011011000110110001101100011011000110110001101100011011000.
The incoherent reflected signal is presented at the middle trace and the (unscrambled) refocused wave
train at the bottom trace. The original bit stream is recovered.

Now, without loss of generality we consider the interfaces positioned at points
xj−1/2, j∈Z and by assuming the continuity of the pressure and velocity wavefields,
from equations (2.7) we get the following jump conditions for the right- and left-side
limits of D(x,t) and U(x,t), respectively, at the interface x=xj−1/2

[
ζ
−1/2
j−1 −ζ

−1/2
j−1

ζ
1/2
j−1 ζ

1/2
j−1

](
Dj−1/2−0(t)
Uj−1/2−0(t)

)
=

[
ζ
−1/2
j −ζ

−1/2
j

ζ
1/2
j ζ

1/2
j

](
Dj−1/2+0(t)
Uj−1/2+0(t)

)
. (A.1)

Moreover, since in each layer the underlying medium is homogeneous the Riemann
invariants are conserved along the segments of characteristic lines between the inter-
faces, and by continuity

Dj−1/2−0(t+∆t/2)=Dj−1(t)
Dj−1/2+0(t+∆t/2)=Dj(t+∆t)
Uj−1/2−0(t+∆t/2)=Uj−1(t+∆t)
Uj−1/2+0(t+∆t/2)=Uj(t) (A.2)

where we have set ∆t=∆x. Finally, by evaluating in (A.1) for time t+∆t/2 and
using the relations above we obtain the system

(
Dj(t+∆t)

Uj−1(t+∆t)

)
=

[
τj−1/2 −σj−1/2

σj−1/2 τj−1/2

](
Dj−1(t)
Uj(t)

)
(A.3)

where the matrix standing in the right hand side is known as the reflection-
transmission matrix with the transmission and reflection coefficients defined, respec-
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tively, by

τj−1/2 =2
√

ζjζj−1/(ζj +ζj−1)
σj−1/2 =(ζj−ζj−1)/(ζj +ζj−1). (A.4)

Since τ2
j−1/2 +σ2

j−1/2 =1, the reflection-transmission matrices are orthogonal and we
get the energy conservation law for the Goupillaud medium in the form

∑

j∈Z

(
D2

j (t)+U2
j (t)

)
=

∑

j∈Z

(
D2

j (t+∆t)+U2
j (t+∆t)

)
. (A.5)

These equations allow us to characterize the solution at any point in space and time.
More precisely, we get the solution at the midpoint of the layers using steps in time
equal to the travel time between interfaces. Note that all the analysis above can be
made by setting ∆x equal to an integer fraction of the travel time across the layers.

Appendix B. Convergence analysis of the discrete model. In this section
we carry out an analysis of the discrete models introduced in this work to establish that
some important features of the continuous model given by the acoustic wave equations
are very well reproduced. In fact, we show that as ε→0 , the limiting discrete (keeping
δ =h/ε constant) and continuous signals reflected at the interface of the random
medium give rise to mean zero stationary random processes with similar covariance
functions. Furthermore, as δ→0 this discrete covariance function approaches the
continuous one.

In this analysis, we assume that the reflectivity coefficient can be expressed as

r̃j−1/2 =
ε1/2

h

(
µ( jh

ε )−µ( (j−1)h
ε )

)

where µ(·) is a bounded, mean-zero stationary, and exponentially mixing random pro-
cess with correlation length of O(1). Consequently, the discrete reflection coefficient
can be written as

σ̃j−1/2 =ε1/2
(
µ( jh

ε )−µ( (j−1)h
ε )

)
+O(ε).

Our goal is to characterize the scattered signal generated by an incident pulse of
the form D(0,t)=ε−1/2f( t

ε ) where f(·)∈L2(R). The analysis relies on an appropriate
Fourier representation of the scattered signal, together with the asymptotic charac-
terization of some statistics of the reflection coefficient in the frequency domain.

We start by introducing an ε-scaled version of the semi-discrete Fourier transform
corresponding to the function g∈L2(hZ) as follows

ĝε
h(ω)=

h√
2π

∞∑
m=−∞

ei mhω
ε g(mh), ω∈ [−επ

h
,
επ

h
].

Consequently, the corresponding inversion formula is given by

g(mh)=
1√
2πε

∫ επ
h

− επ
h

e−i mhω
ε ĝε

h(ω)dω, h∈Z.

Note that when ε=1 this coincides with the usual semi-discrete Fourier transform in
L2(hZ) represented as ĝh(·).
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By using the semi-discrete Fourier transform, and introducing the unknowns
aε

m(ω)=e−i mhω
ε D̂ε

m(ω), bε
m(ω)=ei mhω

ε Ûε
m(ω) from (4.4) we get that

(
aε

j(ω)
bε
j(ω)

)
=P ε

j−1(ω)
(

aε
j−1(ω)

bε
j−1(ω)

)
, j∈Z

where

P ε
j−1(ω)=

1
τ̃j−1/2

[
1 −e−i

(2j−1)hω
ε σ̃j−1/2

ei
(2j−1)hω

ε σ̃j−1/2 1

]
, j∈Z.

The reflection and transmission coefficients Rε
0(ω), T ε

0 (ω) (in the frequency do-
main) corresponding to the stack of layers from j =0 to J = bL/hc (associated with
the random slab [0,L]) are defined through the equations

(
T ε

0

0

)
=Y ε

0

(
1

Rε
0

)

where

Y ε
0 =P ε

J−1P
ε
J−2 ···P ε

0 .

Using a discrete version of the invariant embedding technique and taking into account
the form of the matrices P ε

j we obtain a discrete analog of not the Riccatti equations
for these coefficients, namely that

T ε
j−1 =

τ̃j−1/2T
ε
j

1−e−i
(2j−1)hω

ε σ̃j−1/2R
ε
j

(B.1a)

Rε
j−1 =

Rε
j−ei

(2j−1)hω
ε σ̃j−1/2

1−e−i
(2j−1)hω

ε σ̃j−1/2R
ε
j

, (B.1b)

with the final conditions T ε
J =1, Rε

J =0. In this context, the conservation of energy
is expressed as |Rε

j |2 + |T ε
j |2 =1.

The concepts introduced above allow for the following representation of the (dis-
crete) scattered signal Um

0 =U(x=0,t=mh) reflected at the interface x=0 of the slab
[0,L]:

Um
0 =

1√
2πε

∫ επ
h

− επ
h

e−i mhω
ε Rε

0(ω)f̂h
ε

(ω)dω.

This formula is analogous to the integral representation presented in [11].
Next, we study the asymptotic behavior when δ =h/ε=constant and ε→0 of the

interpolated reflected signal uδ,ε
t0 (·) in a ε-scaled time window centered at time t0,

where

uδ,ε
t0 (s)=Um

0 (B.2)

with m=(t0 +εs)/h. A simple asymptotic expansion for the reflection coefficient
yields E{Rε

0(ω)}=O(ε) and consequently limε→0E{uδ,ε
t0 (·)}=0. For the covariance
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Cδ,ε
t0 (s1,s2)=E{uδ,ε

t0 (s1)u
δ,ε
t0 (s2)}, after some transformations, we get the following

representation

Cδ,ε
t0 (s1,s2)=

1
2π

∫ π
δ

−π
δ

dωei(s2−s1)ω

∫ 2
ε (

π
δ −|ω|)

− 2
ε (

π
δ −|ω|)

dq×

e−i(t0+
s1+s2

2 ε)qE{Rε
0(ω+ε q

2 )Rε
0(ω−ε q

2 )}f̂δ(ω+ε q
2 )f̂δ(ω−ε q

2 ).

By applying a diffusion-approximation theorem (see section B.1 below) one gets that
limε→0E{Rε

0(ω+ε q
2 )Rε

0(ω−ε q
2 )}=wδ(ω,q) to be defined in the sequel. Consequently,

we have that

Cδ
t0(s2−s1)= lim

ε→0
Cδ,ε

t0 (s1,s2)=
∫ π

δ

−π
δ

ei(s2−s1)ωΛδ(t0,ω)|f̂δ(ω)|2dω

where Λδ(t,ω) is the (continuous) inverse Fourier transform of wδ(ω,q) with respect
to q. We establish in this way that the limiting re-scaled scattered signal is a station-
ary centered random process with power spectral density given by Λδ(t0,ω)|f̂δ(ω)|2.
Furthermore, the normalized spectral density is expressed as

Λδ(t,ω)=
Γδ

µ(ω)
(1+Γδ

µ(ω)t)2
(B.3)

where

Γδ
µ(ω)=

1
δ

{
sin2(ωδ)

∞∑

k=0

Rµ(kδ) cos(2ωkδ)+
Rµ(0)cos(2ωδ)−Rµ(δ)

4

}

with Rµ(s)=E{µ(s)µ(0)}.
We have to note that in the limit when δ→0, we have that Γδ

µ(ω)→ω2γc
µ(ω)

pointwise, where γc
µ(ω)=

∫ +∞
0

Rµ(s)cos(2ωs)ds. It follows that, Λδ(t,ω)→Λ(t,ω)

where Λ(t,ω)= ω2γc
µ(ω)

(1+ω2γc
µ(ω)t)2 , and since f̂δ(ω)→ f̂(ω), one finally gets that

lim
δ→0

Cδ
t0(s2−s1)=

∫ +∞

−∞
ei(s2−s1)ωΛ(t0,ω;µ(·))|f̂(ω)|2dω

which is consistent with the results in [3, 10].

B.1. Computation of Λδ(t,ω). The computation of the normalized spectral
density Λδ, of the limiting reflected signal, can be carried out along the same lines
as in [9]. We will establish that in the limit ε→0, the statistics of the reflection
coefficient Rε

0 are closely related to a diffusion process that can be readily described.
In particular, we find that the equation for computing wδ(ω,q)= limε→0E{Rε

0(ω+
ε q

2 )Rε
0(ω−ε q

2 )} is very similar to its continuous counterpart.
To simplify the computation of wδ(ω,q), we analyze the case of a totally reflecting

termination. This is consistent with the fact that we have Anderson localization.
Indeed, since |T ε

J |→0 when J→∞ it follows that |Rε
J |→1 as J→∞.

Consequently, we set Rε
j(ω)=eiφε

j(ω) where φε
j(·)∈R/2πZ, and after its substitu-

tion in (B.1b) one gets that

φε
j−1−φε

j =
1
i
log

[1− σ̃j−1/2e
−i

(
φε

j−(2j−1)
ωh
ε

)

1− σ̃j−1/2e
i
(
φε

j−(2j−1)
ωh
ε

)
]
. (B.4)
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Furthermore, we have to determine wδ(ω,q)= limε→0E{ei
(
φε

0(ω+ε
q
2 )−φε

0(ω−ε
q
2 )

)
} using

the stationary solution of equation (B.4).
After introducing the new variables

ψε,±
j (ω,q)=φε

j(ω± ε
2q)∓(j−1/2)εqδ

one gets that wδ(ω,q)= limε→0E{ei
(
ψε,+

0 (ω,q)−ψε,−
0 (ω,q)

)
}. And using the assumptions

introduced above we obtain that

ψε,±
j−1−ψε,±

j =2
√

ε∆µ(jδ)sin(ψε,±
j −(2j−1)ωδ)±εqδ

+ε(∆µ(jδ))2 sin
(
2(ψε,±

j −(2j−1)ωδ)
)
+O(ε3/2) (B.5)

where ∆µ(jδ)=µ(jδ)−µ((j−1)δ).
These discrete equations can be recast in the form

Xε
j+1−Xε

j =
√

εF (j,Xε
j )ξj +ε[Ḡ(Xε

j )+G̃(j,Xε
j ,ξj)]+O(ε3/2)

where Xε
j ∈R2, {ξj} is a random process and the functions F , Ḡ, G̃ are C∞. More-

over, {ξj} is a mean zero stationary mixing process with an exponentially decaying
correlation function Rj =E{ξjξ0}, the functions F , G̃ are almost-periodic on their first
argument and the average 〈G̃(j,X,ξ)〉j =limN→∞(N−j +1)−1

∑N
k=j G̃(k,X,ξ)=0 for

any fixed X, ξ.
Introducing the random process Xε(s)=Xε

j on [jε,(j +1)ε) and slightly general-
izing theorems 8 and 9 in [29, pp. 87–91] to consider the almost-periodic dependence,
we get that when ε→0 the random function {Xε(·)} weakly converges to a diffusion
process X(·) with generator

Af(x)= Ḡ(x)f ′x(x)+ 1
2R0〈FT (j,x)f ′′xx(x)F (j,x)〉j

+
〈 ∞∑

k=j+1

Rj−k[f ′x(x)F (k,x)]′xF (j,x)
〉

j

where f ′x, f ′′xx represent the gradient and the Hessian matrix of the function f(x),
respectively.

After a straightforward computation one gets that the limiting process ψ(·) asso-
ciated with ψε,+

j −ψε,−
j is a diffusion process with generator

Lf(ψ)=2qδf ′ψ(ψ)+C∆µ(δ,ω)(1−cosψ)f ′′ψψ(ψ) (B.6)

where

C∆µ(δ,ω)=
∞∑

j=0

R∆µ(jδ)cos(2ωjδ), (B.7)

and R∆µ(s)=E{∆µ(s)∆µ(0)}. Finally, one gets that wδ(ω,q)= lims→∞V (s,ψ;ω,q)
where V (s,ψ;ω,q) is the solution of the initial value problem

(∂s−L)V =0, (B.8a)

V (s=0,ψ)=eiψ. (B.8b)
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The equations (B.6) and (B.8) are similar to the ones obtained in [9, equations
(4.14)–(4.16) on p. 592]. Consequently, Λδ(t,ω)=(2π)−1

∫
e−iqtwδ(ω,q)dq is explicitly

expressed as

Λδ(t,ω)=
C∆µ(δ,ω)

4δ(1+ C∆µ(δ,ω)
4δ t)2

(B.9)

where C∆µ(δ,ω) is given by (B.7). After some simple algebra we get that C∆µ(δ,ω)
4δ =

Γδ
µ(ω).
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