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DIATOMIC GAS DIFFUSING IN A BACKGROUND MEDIUM:
KINETIC APPROACH AND REACTION–DIFFUSION EQUATIONS∗

MARZIA BISI† AND GIAMPIERO SPIGA‡

Abstract. The problem of a diatomic gas made up by atoms and molecules undergoing reactions
of dissociation and recombination through a transition state is addressed. The gas is diffusing in
a scattering and dissociating background medium. Extended Boltzmann-like kinetic equations for
the relevant distribution functions and exact balance equations for mass, momentum, and energy are
derived and discussed. It is shown that, in the asymptotic limit of small Knudsen numbers, a suitable
scaling leads to a consistent formal derivation of hydrodynamic equations of reaction–diffusion type
for number densities of atoms and molecules.

Key words. Kinetic theory, Reactions of dissociation/recombination, Asymptotic limit,
Reaction–diffusion equations.

Subject classifications. 82C40, 76P05, 35K57

1. Introduction
There exists an ample literature about the uneasy problem of a consistent quan-

titative description of chemically reacting rarefied flows starting from a kinetic ap-
proach. We quote, for instance, and among many others, the books [9, 5] and ref-
erences therein, and some recent contributions [6, 10, 8, 20, 15, 12]. Most of the
literature on the subject deals with bimolecular reversible or irreversible reactions,
which exclude some very important and common reactive processes, like reactions
of dissociation and recombination, one of the essential ingredients characterizing di-
atomic gases in the air. This is the problem that will be dealt with here, following
the scheme of [11], where kinetic equations were derived and discussed for a single
diatomic gas in the frame of the so–called transition–state theory [18]. It has been
possible to obtain explicitly conservation laws, collision equilibria, and fluid–dynamic
equations of the Euler type for the main macroscopic fields. We aim at extending
such an approach to the case of potential practical application, and of mathematical
and physical interest, in which the dilute diatomic gas is not an isolated system, but
its atoms and molecules also interact with a background medium in which they are
embedded, exchanging momentum and energy by elastic collisions, and undergoing
chemical reactions with field particles as well. After deriving kinetic equations for
the participating distribution functions, and exact non–closed balance equations for
the observable fields, we analyze the hydrodynamic limit in the collision dominated
regime, and show that suitable scalings at the mesoscopic level lead to an explicit
formal derivation of a closed set of fluid-dynamic equations, which turn out to be of
reaction–diffusion type, similar to, but of course different from, those which have been
recently derived for various scenarios of gas mixtures with bimolecular reactions [1].

According to the model proposed in the paper [11], briefly recalled here for the
readers’ convenience, a diatomic gas can be described as a mixture of three inter-
acting species: atoms A (with mass m1), stable diatomic molecules A2 (with mass
m2 =2m1), and unstable molecules A∗2 (with mass m3 =m2) which play the role of a
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780 DIATOMIC GAS IN A BACKGROUND: KINETIC APPROACH

transition state. For the purpose of a correct energy balance, it suffices to assume that
stable and unstable molecules are endowed with their own internal energies, which
are denoted, respectively, by −Q and E, where Q is a fixed positive quantity, while E
is a continuous variable ranging on the positive real axis. In addition, we extend now
such scenario by assuming that the present rarefied mixture is diffusing in a much
denser medium B, considered as a fixed background whose evolution is not influenced
by collisions with atoms/molecules. In the sequel the background will be identified
by the index 0, and it will be assumed in local thermodynamical equilibrium, namely
with distribution function f0 =n0M0, where M0 stands for the normalized Maxwellian

M0 =
(

m0

2πKT0

) 3
2

exp
(
− m0

2KT0
(v−u0)2

)
, (1.1)

and m0, n0, u0, T0 denote, respectively, the background particle mass, number density,
drift velocity, and temperature. Analogously, fields corresponding to the species A,
A2, A∗2 will be labelled by the indices 1, 2, 3, respectively.

Both atoms A and stable molecules A2 may be involved in binary reversible elastic
collisions with other atoms, stable molecules and background particles:

(E1) A+P ↔ A+P,
(E2) A2 +P ↔ A2 +P,

where P =A,A2, B. Unstable molecules A∗2 are not subjected to elastic scattering,
since they are characterized by a very small mean lifetime, so that once an unstable
molecule is created, it easily disappears through a (fast) chemical reaction. In our
model we assume that two atoms A may form a stable molecule A2 passing through
the transition state A∗2, while, on the other hand, both stable and unstable diatomic
molecules may dissociate into two atoms. More precisely, the recombination process
occurs in two steps:

(R) A + A → A∗2,
(I) A∗2 +P → A2 +P,

where P =A,A2, B. The reaction (R) may occur only if the relative speed of the
incoming particles fulfills the upper and lower energy thresholds determined by the
internal energy E of A∗2 [11]; otherwise, only an elastic scattering may occur. The
second step (I) may be considered as an inelastic scattering process that causes the
de–excitation of A∗2. Dissociation occurs via two possible reactions:

(D1) A2 +P → 2A+P,
(D2) A∗2 +P → 2A+P .

The conservation of energy determines an energy threshold for (D1) (it is an endother-
mic process), while for (D2), being exothermic, no threshold is needed [11].

The paper is organized as follows. A mesoscopic description of the preceding
physical situation is worked out in the next Section in the frame of a suitable for-
mulation of the Boltzmann equation [3], and the relevant extended kinetic equations
are written down and discussed in terms of collision frequencies and transition prob-
abilities. A huge number of such microscopic quantities appears, of course, and the
task of a realistic expression for all of them is quite hopeless. However, as pointed
out in [11], it is remarkable that several crucial mathematical and physical features of
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the problem are determined solely by the conservation properties that they have to
fulfill because of their own definition, and independently from their explicit form. For
instance, based only on the knowledge of conservation laws and basic properties of
microscopic quantities, exact non–closed balance equations are derived for the macro-
scopic fields of physical interest in Section 3. They constitute a set of five partial
differential equations quantifying mass conservation and exchange of momentum and
energy with the background, due to both elastic scattering and chemical reactions,
and retain integral non–local terms which describe binary collisions between test and
field particles. A deeper analysis of the present evolution equations at kinetic level
is in progress, and will be matter of future work, concerning collision equilibria, H–
theorem, hydrodynamic limits. The approach (restricted clearly to a formal level, a
rigorous treatment seems premature at this stage) is technically heavy and uneasy be-
cause of the several interaction mechanisms involved and relevant collision operators.
We focus here, among the above open problems, on existence of physical regimes
in which dominant processes lead to a consistent macroscopic closure of reaction–
diffusion type, moving, with the necessary extensions and modifications, along the
lines of Ref. [1], where this kind of derivation first appeared in the literature (for
a simpler scenario). Indeed, Section 4 deals with the asymptotic analysis for small
mean paths (times) of the previous kinetic equations. The investigation is restricted
in this first approach to a Maxwellian collision model, which allows as usual a fully
explicit analytical manipulation. Of course several small parameters can show up af-
ter adimensionalization, according to the several physical phenomena involved in the
process. It is shown that a suitable scaling yields a consistent formal derivation of a
closed set of reaction–diffusion equations for the densities of the two stable species,
with reactive contributions that are rational functions of the densities themselves, and
diffusion coefficients depending on elastic collision frequencies and background tem-
perature. Analysis of other meaningful scalings, as well as of other possible limits, is
also scheduled as future work.

2. Reactions of recombination/dissociation
By means of usual methods of extended kinetic theory [4, 13], we can write down

kinetic equations for the evolution of the distribution functions of the species A, A2,
A∗2, denoted by f1(v), f2(v), ϕ3(v,E), respectively:

∂f1

∂t
+v · ∂f1

∂x
=Q10(f1,f0)+Q11(f1)+Q12(f1,f2)

+J ∗1 (f1,f2,ϕ3)+J d
1 (f1,f2)+J r

1 (f1)+I∗1 (ϕ3,f0)+Id
1 (f2,f0),

∂f2

∂t
+v · ∂f2

∂x
=Q20(f2,f0)+Q21(f2,f1)+Q22(f2)

+J ∗2 (f1,f2,ϕ3)+J d
2 (f1,f2)+I∗2 (ϕ3,f0)+Id

2 (f2,f0),
∂ϕ3

∂t
+v · ∂ϕ3

∂x
=J ∗3 (f1,f2,ϕ3)+J r

3 (f1)+I∗3 (ϕ3,f0). (2.1)

Note that the distribution ϕ3 for the unstable molecules depends also on the internal
energy variable E; the usual velocity distribution is recovered as

f3(v)=
∫

ϕ3(v,E)dE .

In (2.1), symbols Qij stand for elastic scattering operators, Ji denote chemical opera-
tors relevant to the reactions not involving the background, while Ii identify chemical
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terms involving the background. The star superscript affects operators involving as
reactants the unstable molecules A∗2, while remaining chemical operators show d or r
superscript to distinguish if they are relevant to the dissociation or to the recombina-
tion process.

Bi–species elastic collision terms appearing in (2.1) are well known in classical
kinetic theory [4], and we will not enter in the details of the derivation:

Qij(v)=
∫

R3

∫

S2
bij(v−w,n̂)

[
fi(ṽ)fj(w̃)−fi(v)fj(w)

]
dwdn̂ (2.2)

for each pair (i,j)=(1,0), (1,1), (1,2), (2,0), (2,1), (2,2). The function bij represents
the microscopic differential collision frequency of the elastic encounter (i,j). Thanks
to conservation of momentum and kinetic energy by elastic scattering, post–collision
velocities (ṽ,w̃) can be expressed in terms of the incoming velocities (v,w) and of the
unit vector n̂ (apse line) as

ṽ=v− 2mj

mi +mj

[
(v−w) · n̂

]
n̂

w̃=w+
2mi

mi +mj

[
(v−w) · n̂

]
n̂. (2.3)

A similar treatment could be in order for bimolecular chemical reactions, as exten-
sively discussed in [14, 8]. However, we will describe these reactive collisions in terms
of an equivalent scattering kernel formulation of the Boltzmann equation [3]. Chem-
ical operators will involve total microscopic collision frequencies gk

ij , and scattering
probability distributions of the kind Πh,k

ij . The superscript k shall be k=d, r, i corre-
spondingly to dissociations (D1), (D2), recombination (R) and inelastic scattering (I)
respectively. The other superscript h denotes the species of the considered outgoing
particle: for instance, Π2,i

30 (v′,E;w′→v) represents the probability density that the
outcoming particle 2 attains velocity v as a result of a de-excitation collision of a
particle 3 with velocity v′ and internal energy E, against a background particle with
velocity w′. The explicit expressions of the scattering kernels, involving necessarily
also delta functions, may be deduced from the appropriate transition probabilities,
and satisfy all obvious indistinguishableness constraints. We are interested here in
deriving consistently as much practical information as possible from their basic prop-
erties, independently from their explicit expression. Operators Ji appearing in the
Boltzmann equations (2.1) have been introduced and extensively discussed in [11]. In
the evolution equation for atoms A we have

J ∗1 (f1,f2,ϕ3)=

= 3
∫∫∫

gd
13(|v′−w′|,E)Π1,d

13 (v′;w′,E→v)f1(v′)ϕ3(w′,E)dEdv′dw′

−f1(v)
∫∫

gd
13(|v−w|,E)ϕ3(w,E)dEdw

+ 2
∫∫∫

gd
32(|v′−w′|,E)Π1,d

32 (v′,E;w′→v)ϕ3(v′,E)f2(w′)dEdv′dw′

+
∫∫∫

gi
13(|v′−w′|,E)Π1,i

13 (v′;w′,E→v)f1(v′)ϕ3(w′,E)dEdv′dw′

−f1(v)
∫∫

gi
13(|v−w|,E)ϕ3(w,E)dEdw , (2.4)
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J d
1 (f1,f2)= 3

∫∫
gd
12(|v′−w′|)Π1,d

12 (v′;w′→v)f1(v′)f2(w′)dv′dw′

− f1(v)
∫

gd
12(|v−w|)f2(w)dw

+2
∫∫

gd
22(|v′−w′|)Π1,d

22 (v′;w′→v)f2(v′)f2(w′)dv′dw′ , (2.5)

J r
1 (f1)=−2f1(v)

∫
gr
11(|v−w|)f1(w)dw . (2.6)

Then, in the equation for stable molecules A2 there appear

J ∗2 (f1,f2,ϕ3)=

=
∫∫∫

gd
23(|v′−w′|,E)Π2,d

23 (v′;w′,E→v)f2(v′)ϕ3(w′,E)dEdv′dw′

− f2(v)
∫∫

gd
23(|v−w|,E)ϕ3(w,E)dEdw

+
∫∫∫

gi
31(|v′−w′|,E)Π2,i

31 (v′,E;w′→v)ϕ3(v′,E)f1(w′)dEdv′dw′

+ 2
∫∫∫

gi
23(|v′−w′|,E)Π2,i

23 (v′;w′,E→v)f2(v′)ϕ3(w′,E)dEdv′dw′

−f2(v)
∫∫

gi
23(|v−w|,E)ϕ3(w,E)dEdw , (2.7)

J d
2 (f1,f2)=

∫∫
gd
22(|v′−w′|)Π2,d

22 (v′;w′→v)f2(v′)f2(w′)dv′dw′

−2f2(v)
∫

gd
22(|v−w|)f2(w)dw

−f2(v)
∫

gd
21(|v−w|)f1(w)dw . (2.8)

Finally, equation for unstable molecules A∗2 involves

J ∗3 (f1,f2,ϕ3)=−ϕ3(v,E)
∫ [

gd
31(|v−w|,E)+gi

31(|v−w|,E)
]
f1(w)dw

−ϕ3(v,E)
∫ [

gd
32(|v−w|,E)+gi

32(|v−w|,E)
]
f2(w)dw , (2.9)

J r
3 (f1)=

∫∫
gr
11(|v′−w′|)Π3,r

11 (v′;w′→v,E)f1(v′)f1(w′)dv′dw′ . (2.10)

Collision operators Ii may be derived by similar techniques, and take the form

I∗1 (ϕ3,f0)=2
∫∫∫

gd
30(|v′−w′|,E)Π1,d

30 (v′,E;w′→v)ϕ3(v′,E)f0(w′)dEdv′dw′ ,

(2.11)
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Id
1 (f2,f0)=2

∫∫
gd
20(|v′−w′|)Π1,d

20 (v′;w′→v)f2(v′)f0(w′)dv′dw′ , (2.12)

I∗2 (ϕ3,f0)=
∫∫∫

gi
30(|v′−w′|,E)Π2,i

30 (v′,E;w′→v)ϕ3(v′,E)f0(w′)dEdv′dw′ ,

(2.13)

Id
2 (f2,f0)=−f2(v)

∫
gd
20(|v−w|)f0(w)dw , (2.14)

I∗3 (ϕ3,f0)=−ϕ3(v,E)
∫ [

gd
30(|v−w|,E)+gi

30(|v−w|,E)
]
f0(w)dw . (2.15)

3. Exact macroscopic balance equations
As well known in the literature [4], elastic collisions preserve mass, momentum

and kinetic energy, hence elastic operators not involving the background medium
satisfy the relations

∫
Qij(v)dv=0 ∀i,j

∫
vQjj(v)dv=0 ∀j

∫
v2Qjj(v)dv=0 ∀j

∫
v

(
Q12 +2Q21

)
dv=0

∫
v2

(
Q12 +2Q21

)
dv=0 . (3.1)

As concerns linear elastic operators (describing scattering with the background) it is
easy to check that the only collision invariant is the number density; by resorting to
the pre–post-collision velocities relations (2.3), the exchange rates of momentum and
energy with the host medium can be cast, for j =1,2, as [2]

∫
vQj0(v)dv=− 2m0

mj +m0

∫∫∫
bj0(v−w,n̂)

[
(v−w) · n̂

]
n̂fj(v)f0(w)dvdwdn̂,

(3.2)
∫

v2Qj0(v)dv=
4m0

mj +m0

∫∫∫
bj0(v−w,n̂)

{
m0

mj +m0

[
(v−w) · n̂

]2

−
[
(v−w) · n̂

]
(v · n̂)

}
fj(v)f0(w)dvdwdn̂. (3.3)

For chemical reactions, we have conservation (besides number of atoms) of mo-
mentum and total (kinetic plus internal) energy. For the recombination process (R),
such conservations read as

m1

(
v′+w′

)
=m3v,

1
2

m1

(
(v′)2 +(w′)2

)
=

1
2

m3v2 +E, (3.4)

so that, bearing in mind that m3 =2m1, the relevant collision kernel is explicitly given
by

Π3,r
11 (v′;w′→v,E)= δ

(
1
2
(v′+w′)−v

)
δ

(
1
4

m1(v′−w′)2−E

)
, (3.5)
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where δ is Dirac’s delta distribution. Consequently the following conservation prop-
erties hold:

∫∫
Π3,r

11 (v′;w′→v,E)dEdv=1,

∫∫
2vΠ3,r

11 (v′;w′→v,E)dEdv=v′+w′,
∫∫

(m1v
2 +E)Π3,r

11 (v′;w′→v,E)dEdv=
1
2

m1(v′)2 +
1
2

m1(w′)2 . (3.6)

Analogous considerations are in order for the reactive processes (I), (D1), (D2),
when the partner molecule P =A,A2 (the option P =B will be discussed later on
in this section), even if in such cases the four conservation constraints do not allow
to write down scattering kernels explicitly (there are more unknowns than condi-
tions). Skipping intermediate details for which the reader is referred to [11], we
report now only the conservation properties in the same probabilistic formalism as
in (3.6), recalling that kernels fulfill all indistinguishability conditions of the kind:
Π2,i

32 (v′,E;w′→v)=Π2,i
23 (w′;v′,E→v). As regards the inelastic scattering (I) we

have
∫

Π2,i
3p (v′,E;w′→v)dv=

∫
Πp,i

p3 (w′;v′,E→v)dv=1,

∫ [
2vΠ2,i

3p (v′,E;w′→v)+pvΠp,i
p3 (w′;v′,E→v)

]
dv=2v′+pw′,

∫ [
(m1v2−Q)Π2,i

3p (v′,E;w′→v)+
pm1

2
v2Πp,i

p3 (w′;v′,E→v)
]
dv=

=m1 (v′)2 +E +
pm1

2
(w′)2 . (3.7)

To the dissociation (D1) there correspond

∫
Π1,d

2p (v′;w′→v)dv=
∫

Πp,d
p2 (w′;v′→v)dv=1,

∫ [
2vΠ1,d

2p (v′;w′→v)+pvΠp,d
p2 (w′;v′→v)

]
dv=2v′+pw′,

∫ [
m1v2Π1,d

2p (v′;w′→v)+
pm1

2
v2Πp,d

p2 (w′;v′→v)
]
dv=

=m1 (v′)2−Q+
pm1

2
(w′)2 , (3.8)

while for the dissociation (D2) we have

∫
Π1,d

3p (v′,E;w′→v)dv=
∫

Πp,d
p3 (w′;v′,E→v)dv=1,

∫ [
2vΠ1,d

3p (v′,E;w′→v)+pvΠp,d
p3 (w′;v′,E→v)

]
dv=2v′+pw′,

∫ [
m1v2Π1,d

3p (v′,E;w′→v)+
pm1

2
v2Πp,d

p3 (w′;v′,E→v)
]
dv=

=m1 (v′)2 +E +
pm1

2
(w′)2 . (3.9)
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Thanks to the conservation properties established in (3.6)–(3.9), if we denote J1 =
J ∗1 +J d

1 +J r
1 , J2 =J ∗2 +J d

2 , J3 =J ∗3 +J r
3 , we get the following conservation laws:

∫
J1(v)dv+2

∫
J2(v)dv+2

∫∫
J3(v,E)dEdv=0,

∫
vJ1(v)dv+2

∫
vJ2(v)dv+2

∫∫
vJ3(v,E)dEdv=0,

∫
1
2

m1v2J1(v)dv+
∫

(m1v
2−Q)J2(v)dv+

∫∫
(m1v

2 +E)J3(v,E)dEdv=0,

(3.10)
that represent preservation of number of atoms, global momentum, and total (kinetic
plus internal) energy, respectively, by chemical reactions not involving the background.

On the other hand, as concerns inelastic scattering or dissociation processes due
to encounters with background particles, conservation of atoms remains valid, but we
shall have non–vanishing terms in the momentum and energy equations, as typical
in linear kinetic theory (see the discussion above about the elastic linear macroscopic
contributions). More precisely, the integrations of the relevant scattering kernels yield
again

∫
Π1,d

30 (v′,E;w′→v)dv=
∫

Π1,d
20 (v′;w′→v)dv=

∫
Π2,i

30 (v′,E;w′→v)dv=1 ,

(3.11)
but we cannot have conservation properties as the second and the third in (3.6)–(3.9);
we would reobtain the usual conservation laws if the background were not assumed
fixed, and its evolution were governed by a kinetic Boltzmann equation. Thus if we
denote I1 =I∗1 +Id

1 , I2 =I∗2 +Id
2 , I3 =I∗3 , besides conservation of atoms:

∫
I1(v)dv+2

∫
I2(v)dv+2

∫∫
I3(v,E)dEdv=0 , (3.12)

some suitable changes of variables allow to cast momentum and energy contributions
as

∫
vI1(v)dv+2

∫
vI2(v)dv+2

∫∫
vI3(v,E)dEdv=

=
∫∫∫

gd
30(|v′−w′|,E)

[∫
2vΠ1,d

30 (v′,E;w′→v)dv−2v′
]
ϕ3(v′,E)f0(w′)dEdv′dw′

+
∫∫

gd
20(|v′−w′|)

[∫
2vΠ1,d

20 (v′;w′→v)dv−2v′
]
f2(v′)f0(w′)dv′dw′

+
∫∫∫

gi
30(|v′−w′|,E)

[∫
2vΠ2,i

30 (v′,E;w′→v)dv−2v′
]
ϕ3(v′,E)f0(w′)dEdv′dw′,

(3.13)
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∫

1
2

m1v2I1(v)dv+
∫ (

m1v
2−Q

)
I2(v)dv+

∫∫ (
m1v

2 +E
)
I3(v,E)dEdv=

=
∫∫∫

gd
30(|v′−w′|,E)

[∫
m1v2Π1,d

30 (v′,E;w′→v)dv

−
(
m1(v′)2 +E

)]
ϕ3(v′,E)f0(w′)dEdv′dw′

+
∫∫

gd
20(|v′−w′|)

[∫
m1v

2Π1,d
20 (v′;w′→v)dv−

(
m1(v′)2−Q

)]
f2(v′)f0(w′)dv′dw′

+
∫∫∫

gi
30(|v′−w′|,E)

[∫ (
m1v

2−Q
)
Π2,i

30 (v′,E;w′→v)dv

−
(
m1(v′)2 +E

)]
ϕ3(v′,E)f0(w′)dEdv′dw′.

(3.14)

We can draw immediate consequences at the macroscopic level. At first, inte-
gration and summation of kinetic equations (2.1) after multiplication by the string
(m1,m2,m3) yields the conservation of mass density defined as

ρ=m1

[
n1 +2(n2 +n3)

]
,

with nk standing for the number density of the k–species:

nk =
∫

fk(v)dv .

Precisely, the continuity equation reads as

∂ρ

∂t
+∇·(ρu)=0 , (3.15)

where u is the global drift velocity

u=
1
ρ

m1

[
n1u1 +2(n2u2 +n3u3)

]
with uk =

1
nk

∫
vfk(v)dv .

Analogously, multiplying the Boltzmann equations by the string (m1v, m2v, m3v)
we get the momentum equation, which is affected by collision contributions (3.2) and
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(3.13) due to (elastic and reactive) scattering with the host medium:

∂

∂t
(ρu)+∇·

(
ρu⊗u+P

)
=

=− 2m1m0

m1 +m0

∫∫∫
b10(v−w,n̂)

[
(v−w) · n̂

]
n̂f1(v)f0(w)dvdwdn̂

− 4m1m0

2m1 +m0

∫∫∫
b20(v−w,n̂)

[
(v−w) · n̂

]
n̂f2(v)f0(w)dvdwdn̂

+2m1

∫∫∫
gd
30(|v′−w′|,E)

[∫
vΠ1,d

30 (v′,E;w′→v)dv−v′
]
ϕ3(v′,E)f0(w′)dEdv′dw′

+2m1

∫∫
gd
20(|v′−w′|)

[∫
vΠ1,d

20 (v′;w′→v)dv−v′
]
f2(v′)f0(w′)dv′dw′

+2m1

∫∫∫
gi
30(|v′−w′|,E)

[∫
vΠ2,i

30 (v′,E;w′→v)dv−v′
]
ϕ3(v′,E)f0(w′)dEdv′dw′,

(3.16)

where P is the pressure tensor:

P=
3∑

k=1

mk

∫
(v−u)⊗(v−u)fk(v)dv .

Finally, the string
(

1
2 m1v

2, 1
2 m2v

2−Q, 1
2 m3v

2 +E
)

yields the evolution equation for
the total internal energy E= 1

2 ρu2 +Eth +Eexc, where thermal and excitation part are
given by

Eth =
3
2

nKT =
1
2
tr(P) n=

3∑

k=1

nk

Eexc =
∫ [∫

Eϕ3(v,E)dE−Qf2(v)
]
dv .

The streaming terms of the energy equation involve also the heat flux vector q=
qth +qexc, where

qth =
1
2

3∑

k=1

mk

∫
(v−u)2(v−u)fk(v)dv,

qexc =
∫

(v−u)
[∫

Eϕ3(v,E)dE−Qf2(v)
]
dv ,

while collision contributions are essentially provided by (3.3) and (3.14):

∂E
∂t

+∇·
[
Eu+P ·u+q

]
=

=
2m1m0

m1 +m0

∫∫∫
b10(v−w,n̂)

{
m0

m1 +m0

[
(v−w) · n̂

]2

−
[
(v−w) · n̂

]
(v · n̂)

}
f1(v)f0(w)dvdwdn̂
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+
4m1m0

2m1 +m0

∫∫∫
b20(v−w,n̂)

{
m0

2m1 +m0

[
(v−w) · n̂

]2

−
[
(v−w) · n̂

]
(v · n̂)

}
f2(v)f0(w)dvdwdn̂

+
∫∫∫

gd
30(|v′−w′|,E)

[∫
m1v2Π1,d

30 (v′,E;w′→v)dv

−
(
m1(v′)2 +E

)]
ϕ3(v′,E)f0(w′)dEdv′dw′

+
∫∫

gd
20(|v′−w′|)

[∫
m1v

2Π1,d
20 (v′;w′→v)dv−

(
m1(v′)2−Q

)]

·f2(v′)f0(w′)dv′dw′

+
∫∫∫

gi
30(|v′−w′|,E)

[∫ (
m1v

2−Q
)
Π2,i

30 (v′,E;w′→v)dv

−
(
m1(v′)2 +E

)]
ϕ3(v′,E)f0(w′)dEdv′dw′. (3.17)

The five scalar partial differential equations (3.15), (3.16), (3.17) are of course exact
but not closed, since they involve a larger number of unknown fields (moments of
the distribution functions), and moreover the collision contributions appearing in
the momentum and in the energy equations are in general not directly amenable to
macroscopic quantities.

From now on we shall assume that the intermolecular forces are of Maxwell
molecules type [4], namely proportional to the power d−5, where d is the intermolecu-
lar distance. This choice implies that the differential collision frequencies (both elastic
and chemical) depend only on the angle formed by n̂ and the relative velocity, and
consequently total collision frequencies turn out to be constant, and will be denoted by
the symbol νk

ij . Under these assumptions, momentum and energy balance equations
can be rewritten in a simpler form. As concerns elastic operators, the total collision
frequencies are given by

νj0 =
∫

bj0

(
v−w
|v−w| · n̂

)
dn̂,

and integrations over the angular variable n̂ in elastic contributions (3.2) and (3.3)
can be explicitly cast in terms of the suitably weighted collision frequency

ν̄j0 =2π

∫ π/2

0

bj0(θ) cos2θ sinθdθ<νj0 ,

where θ represents the impact angle between v−w and n̂. Precisely, the required
integrals are amenable to

∫
bj0

(
v−w
|v−w| · n̂

)[
(v−w) · n̂

]
n̂dn̂= ν̄j0 (v−w),

∫
bj0

(
v−w
|v−w| · n̂

)[
(v−w) · n̂

]2

dn̂= ν̄j0 (v−w)2 . (3.18)
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In conclusion, the momentum equation for Maxwellian molecules is

∂

∂t
(ρu)+∇·

(
ρu⊗u+P

)
=

=− 2m1m0

m1 +m0
ν̄10

∫∫
(v−w)f1(v)f0(w)dvdw

− 4m1m0

2m1 +m0
ν̄20

∫∫
(v−w)f2(v)f0(w)dvdw

+2m1νd
30

∫∫∫ [∫
vΠ1,d

30 (v′,E;w′→v)dv−v′
]
ϕ3(v′,E)f0(w′)dEdv′dw′

+2m1νd
20

∫∫ [∫
vΠ1,d

20 (v′;w′→v)dv−v′
]
f2(v′)f0(w′)dv′dw′

+2m1νi
30

∫∫∫ [∫
vΠ2,i

30 (v′,E;w′→v)dv−v′
]
ϕ3(v′,E)f0(w′)dEdv′dw′ ,

(3.19)

while the energy equation takes the form

∂E
∂t

+∇·
[
Eu+P ·u+q

]
=

=
2m1m0

m1 +m0
ν̄10

∫∫ {
m0

m1 +m0
(v−w)2−(v−w) ·v

}
f1(v)f0(w)dvdw

+
4m1m0

2m1 +m0
ν̄20

∫∫ {
m0

2m1 +m0
(v−w)2−(v−w) ·v

}
f2(v)f0(w)dvdw

+νd
30

∫∫∫ [∫
m1v2Π1,d

30 (v′,E;w′→v)dv

−
(
m1(v′)2 +E

)]
ϕ3(v′,E)f0(w′)dEdv′dw′

+νd
20

∫∫ [∫
m1v

2Π1,d
20 (v′;w′→v)dv−

(
m1(v′)2−Q

)]
f2(v′)f0(w′)dv′dw′

+νi
30

∫∫∫ [∫ (
m1v

2−Q
)
Π2,i

30 (v′,E;w′→v)dv

−
(
m1(v′)2 +E

)]
ϕ3(v′,E)f0(w′)dEdv′dw′.

(3.20)
Notice that the elastic contributions and the “loss part” of the chemical terms (not
involving the scattering kernels Πh,k

ij ) might be expressed, wherever convenient, in
terms of main macroscopic moments of single interacting species (number densities nk,
mean velocities uk and temperatures Tk).

4. Reaction–diffusion asymptotic limit
As usual in kinetic theory, to build up consistent hydrodynamic equations for the

main macroscopic fields we shall analyze the kinetic Boltzmann equations (2.1) in
dimensionless form. At the kinetic level, the main effect of the adimensionalization is
the appearance of some ratios involving the different scales that measure the relative
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importance of each operator during the evolution of the mixture. Such ratios can
be expressed in terms of a small parameter ε, that often is one of them, typically
the Knudsen number. In the equations for atoms A and for stable molecules A2, we
shall assume that the elastic scattering with the background medium plays a crucial
role, so that the linear elastic operators shall be taken of order O(1/ε). This choice,
introduced and justified in many papers [1], is quite reasonable from a physical point
of view, since the host medium is much denser than the other species. Then, each
elastic operator Qij with i,j 6=0 shall be O(1) (slower than linear ones). Reactive
processes are usually assumed less frequent than elastic scattering, since reactions
involve more complicated microscopic dynamics such as change of chemical nature
(mass transfer) and mutual exchange of internal energy. However, chemical operators
J ∗i and I∗i (i=1,2) involving the unstable molecules distribution will be supposed
significantly faster than other chemical processes, because of the very small mean free
path typical of the transition state A∗2, so that it disappears nearly immediately after
creation. This is indeed consistent with the present physical model, in which the
process is characterized and driven by a transition state [11, 18]. So, dissociation and
recombination operators J r

i , J d
i and Id

i will be taken of order ε, as usual in order
to recover the time–scale of diffusion [7, 17, 19, 1], while J ∗i and I∗i (depending on
the distribution ϕ3) will be affected by a factor 1/ε. This means that decay times of
the unstable molecules is O(ε2) with respect to the other chemical relaxation times.
This also means that chemical collision frequencies with the background are smaller
by a factor ε than the corresponding collision frequencies of the participating species
between themselves. In this regime, the dominant role in the evolution of atoms and
of stable molecules is played both by elastic collisions with the host medium, and
by chemical reactions involving an unstable molecule among the ingoing particles.
Consequently, in the kinetic equation for the distribution ϕ3, the chemical terms
involving ϕ3 itself are assumed O(1/ε), while the remaining scattering operator J r

3

remains O(ε). Finally, since we are interested in the time scale of chemical reactions,
including the slower ones, we put the scaling ε in front of the temporal derivatives [1].
Actually the present scaling can be explicitly achieved by adimensionalization upon
introducing typical or average values for species densities n̄, background density n̄0,
scattering cross sections σ̄S and σ̄0S (for species and background), reacting cross
sections σ̄C and σ̄0C (not involving the unstable species), and σ̄∗C and σ̄∗0C (involving
the transition state). Now, if ξ denotes the scale of molecular velocities, and we take
σ̄0S = σ̄S , we can use the Knudsen number Kn= n̄/n̄0 as small parameter ε (n̄0 >>n̄),
measuring lengths in units of (n̄σ̄S)−1, times in units of (ξ n̄0 σ̄S)−1, and bearing in
mind that our physical problem is characterized by σ̄∗C/σ̄S =O(1/ε), σ̄C/σ̄S =O(ε),
σ̄∗0C/σ̄S =O(1), σ̄0C/σ̄S =O(ε2). Of course analogous scaling could be devised for
other physical conditions, with results that would be either similar to or different
from the present ones. The question will be matter of future work.

In any case, under our assumptions, the re–scaled kinetic system reads as

ε
∂f1

∂t
+v · ∂f1

∂x
=

1
ε
Q10(f1,f0)+Q11(f1)+Q12(f1,f2)

+
1
ε
J ∗1 (f1,f2,ϕ3)+εJ d

1 (f1,f2)+εJ r
1 (f1)+

1
ε
I∗1 (ϕ3,f0)+εId

1 (f2,f0),

ε
∂f2

∂t
+v · ∂f2

∂x
=

1
ε
Q20(f2,f0)+Q21(f2,f1)+Q22(f2)
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+
1
ε
J ∗2 (f1,f2,ϕ3)+εJ d

2 (f1,f2)+
1
ε
I∗2 (ϕ3,f0)+εId

2 (f2,f0),

ε
∂ϕ3

∂t
+v · ∂ϕ3

∂x
=

1
ε
J ∗3 (f1,f2,ϕ3)+εJ r

3 (f1)+
1
ε
I∗3 (ϕ3,f0). (4.1)

Let us perform an asymptotic analysis of these equations, in order to build up
a consistent set of closed evolution equations for the macroscopic fields n1, n2. We
deal here with Maxwellian molecules, for which coefficients appearing in the final
macroscopic equations may be evaluated in an explicit form. However, the main
steps of the procedure outlined in this section could be repeated, with of course some
additional technical difficulties, also for general cross sections [1]. Moreover, since
the background medium is assumed fixed (stationary and homogeneous), we may set
without loss of generality u0 =0. At first, it is worth analyzing the third equation
in (4.1); the chemical operators J ∗3 and I∗3 are the dominant ones, in the sense that

J ∗3 (f1,f2,ϕ3)+I∗3 (ϕ3,f0)=O(ε). (4.2)

Since both operators are constituted by the function ϕ3(v,E) multiplied by negative
factors (see (2.9) and (2.15)) and in I∗3 such factor is actually O(1), we get that to the
leading order the distribution ϕ3 vanishes, so we have ϕ3 = εϕ

(1)
3 , consistently with the

fact that unstable molecules easily disappear. This result has several consequences
going on in the asymptotic procedure. First of all, in the equations for f1 and f2 the
linear elastic scattering is actually the dominant process:

Q10(f1,n0M0)=O(ε), Q20(f2,n0M0)=O(ε), (4.3)

where M0 is the background Maxwellian distribution (1.1) (with u0 =0). As known in
the literature, the linear operator Li =Qi0(·,M0) is bounded, self–adjoint and Fred-
holm in L2(M−1(v)dv) (this is a consequence of the computations in [4] for example).
Moreover, according to the linear H-theorem, the spectrum of Li is included in R−,
and 0 is an eigenvalue of order 1 whose eigenfunction is the Maxwellian function

Mi =
(

mi

2πT0

) 3
2

exp
(
− mi

2T0
|v|2

)
, (4.4)

having the same zero mean velocity and temperature T0 as the fixed background. As
a consequence, f1 and f2 are a perturbation of order 1 of a collision equilibrium:

f1(t,x,v)=n1(t,x)M1(v)+εf
(1)
1 (t,x,v),

f2(t,x,v)=n2(t,x)M2(v)+εf
(1)
2 (t,x,v), (4.5)

where without loss of generality we may assume that the actual number densities
n1, n2 affect the leading order Maxwellian, while the O(ε) corrections have vanishing
density:

∫
f

(1)
1 (v)dv=

∫
f

(1)
2 (v)dv=0 .

Moreover, the result ϕ3 = εϕ
(1)
3 implies that in the third equation (4.1) leading order

streaming terms vanish, so that next step of the asymptotic procedure reads analo-
gously to (4.2), only with ϕ

(1)
3 in place of ϕ3, thus it yields ϕ

(1)
3 = εϕ

(2)
3 namely

ϕ3(t,x,v,E)= ε2ϕ
(2)
3 (t,x,v,E). (4.6)
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At this point, the third of (4.1) reads as

J ∗3 (f1,f2,ϕ
(2)
3 )+J r

3 (f1)+I∗3 (ϕ(2)
3 ,f0)=O(ε), (4.7)

from which, taking into account (4.5), we can derive an explicit expression for (the
leading order of) the perturbation ϕ

(2)
3 :

ϕ
(2)
3 (v,E)=

[
(n1)2

∫∫
gr
11(|v′−w′|)Π3,r

11 (v′;w′→v,E)M1(v′)M1(w′)dv′dw′
]

·
[
n1

∫
gt
31(|v−w|,E)M1(w)dw+n2

∫
gt
32(|v−w|,E)M2(w)dw

+n0

∫
gt
30(|v−w|,E)M0(w)dw

]−1

+O(ε), (4.8)

where

gt
3j =gd

3j +gi
3j . (4.9)

Recalling that in the Maxwell molecules case the total collision frequencies gk
ij are

constants (denoted by νk
ij), the function ϕ

(2)
3 can be given in a simpler fashion:

ϕ
(2)
3 (v,E)=

νr
11(n1)2

νt
30n0 +νt

31n1 +νt
32n2

∫∫
Π3,r

11 (v′;w′→v,E)M1(v′)M1(w′)dv′dw′+O(ε).

Moreover, bearing in mind that the scattering kernel Π3,r
11 has the explicit form (3.5),

the integration in the velocity variables can be solved, and in conclusion we have

ϕ
(2)
3 (v,E)=

νr
11 (n1)2

νt
30n0 +νt

31n1 +νt
32n2

M3(v)χ(E)+O(ε), (4.10)

where M3(v) is the normalized Maxwellian (4.4) and the energy spectrum

χ(E)=2
(

E

π(T0)3

) 1
2

exp
(
− E

T0

)
, (4.11)

satisfies the normalization condition
∫

χ(E)dE =1 .

A consequence of (4.10) is that n3 = ε2n
(2)
3 +O(ε3), with

n
(2)
3 =

∫∫
ϕ

(2)
3 (v,E)dEdv=

νr
11 (n1)2

νt
30n0 +νt

31n1 +νt
32n2

. (4.12)

The balance equations for the number densities n1, n2 shall be obtained, as usual,
by integrating the kinetic equations for f1, f2 in the velocity variable. The evaluation
of relevant streaming and scattering contributions, together with the closure procedure
to the first order accuracy, will be explained in detail for species 1 (atoms A). The
same steps may then be performed as regards species 2 (molecules A2), for which we



794 DIATOMIC GAS IN A BACKGROUND: KINETIC APPROACH

shall report only the final results. Integrating the first equation in (4.1) we get the
continuity equation

ε
∂

∂t

∫
f1(v)dv+

∂

∂x
·
∫

vf1(v)dv=
1
ε

∫
J ∗1 (f1,f2,ϕ3)(v)dv+ε

∫
J d

1 (f1,f2)(v)dv

+ε

∫
J r

1 (f1)(v)dv+
1
ε

∫
I∗1 (ϕ3,f0)(v)dv+ε

∫
Id

1 (f2,f0)(v)dv ,

(4.13)
where elastic contributions disappear thanks to the preservation of particles by elastic

collisions, and where, as usual, also the momentum
∫

vf1(v)dv appears. In order to

evaluate it in terms of the number densities and of background fields, in the Maxwell
molecule frame it is convenient to resort to the momentum equation, achieved as weak
form of the Boltzmann equation corresponding to the weight function v:

ε
∂

∂t

∫
vf1(v)dv+

∂

∂x
·
∫

(v⊗v)f1(v)dv=

=
1
ε

∫
vQ10(f1,f0)(v)dv+

∫
vQ11(f1)(v)dv+

∫
vQ12(f1,f2)(v)dv

+
1
ε

∫
vJ ∗1 (f1,f2,ϕ3)(v)dv+ε

∫
vJ d

1 (f1,f2)(v)dv+ε

∫
vJ r

1 (f1)(v)dv

+
1
ε

∫
vI∗1 (ϕ3,f0)(v)dv+ε

∫
vId

1 (f2,f0)(v)dv . (4.14)

As shown in the previous section (see equalities (3.2) and (3.18)), the collision con-
tribution due to the dominant operator (the linear elastic one) can be cast, for
Maxwellian molecules, as

∫
vQ10(f1,f0)(v)dv=− 2m0

m1 +m0
ν̄10

∫∫
(v−w)f1(v)f0(w)dvdw=

=− 2m0

m1 +m0
ν̄10n0

∫
vf1(v)dv , (4.15)

where the last equality holds since we are assuming vanishing background drift ve-
locity. At this point, notice that last integral in (4.15) is just the momentum needed
in the continuity equation (4.13), hence it can be “extracted” from the momentum
equation (4.14) and inserted into (4.13), ending up with

∂

∂t

∫
f1(v)dv+

m1 +m0

2m0

1
ν̄10n0

∂

∂x
·
{
− ε

∂

∂t

∫
vf1(v)dv− ∂

∂x
·
∫

(v⊗v)f1(v)dv

+
∫

vQ11(f1)(v)dv+
∫

vQ12(f1,f2)(v)dv+ε

∫
vJ ∗1 (f1,f2,ϕ

(2)
3 )(v)dv

+ε

∫
vJ d

1 (f1,f2)(v)dv+ε

∫
vJ r

1 (f1)(v)dv+ε

∫
vI∗1 (ϕ(2)

3 ,f0)(v)dv

+ε

∫
vId

1 (f2,f0)(v)dv

}
=
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=
∫
J ∗1 (f1,f2,ϕ

(2)
3 )(v)dv+

∫
J d

1 (f1,f2)(v)dv

+
∫
J r

1 (f1)(v)dv+
∫
I∗1 (ϕ(2)

3 ,f0)(v)dv+
∫
Id

1 (f2,f0)(v)dv . (4.16)

Bearing in mind that f1, f2 take the form (4.5), namely they are perturbations of a
Maxwellian distribution, the leading order pressure tensor takes the isotropic form

∫
(v⊗v)f1(v)dv=

1
m1

n1T0 I+O(ε), (4.17)

where I is the identity tensor, while leading order elastic contributions on the left
hand side of (4.16) vanish:

∫
vQ11(f1)(v)dv=O(ε),

∫
vQ12(f1,f2)(v)dv=O(ε), (4.18)

(the second equality holds since M1 and M2 share the same drift velocity), thus the
macroscopic equation (4.16) does not contain O(1) elastic contributions. Finally, we
have to evaluate the O(1) chemical terms appearing on the right hand side. In the
Maxwell molecules frame (with constant collision frequencies), taking into account
that f1 =n1M1 +O(ε), f2 =n2M2 +O(ε), and that Πh,k

ij are normalized probability
densities, we easily get, to leading order,

∫
J ∗1 (f1,f2,ϕ

(2)
3 )(v)dv=2

(
νd
31n1 +νd

32n2

)
n

(2)
3 , (4.19)

where n
(2)
3 stands for the number density of the distribution ϕ

(2)
3 given in (4.12).

Analogous results are in order for the other chemical contributions:
∫
J d

1 (f1,f2)(v)dv=2
(
νd
12n1 +νd

22n2

)
n2 ,

∫
J r

1 (f1)(v)dv=−2νr
11 (n1)2,

∫
I∗1 (ϕ(2)

3 ,f0)(v)dv=2νd
30n

(2)
3 n0 ,

∫
Id

1 (f2,f0)(v)dv=2νd
20n2n0 . (4.20)

By inserting results (4.17)–(4.20) into the macroscopic equation (4.16), and then pass-
ing to the limit ε→0, we obtain the following evolution equation of reaction–diffusion
type for the number density n1:

∂n1

∂t
−m1 +m0

2m1m0

T0

ν̄10n0
∆xn1 =

=
2(νd

30n0 +νd
31n1 +νd

32n2)νr
11(n1)2

νt
30n0 +νt

31n1 +νt
32n2

+2
(
νd
20n0 +νd

21n1 +νd
22n2

)
n2−2νr

11(n1)2 .

(4.21)
The same procedure may then be applied to the second kinetic equation in (4.1).

We realize again that the dominant linear contribution in the momentum equation is
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proportional to the momentum of the distribution f2:
∫

vQ20(f2,f0)(v)dv=− 2m0

2m1 +m0
ν̄20

∫∫
(v−w)f2(v)f0(w)dvdw=

=− 2m0

2m1 +m0
ν̄20n0

∫
vf2(v)dv , (4.22)

and, as shown above, this allows to achieve the closure of the streaming part of the
continuity equation for n2. The relevant scattering contributions now can be cast as

∫
J ∗2 (f1,f2,ϕ

(2)
3 )(v)dv=

(
νi
13n1 +νi

23n2

)
n

(2)
3 ,

∫
J d

2 (f1,f2)(v)dv=−
(
νd
21n1 +νd

22n2

)
n2 ,

∫
I∗2 (ϕ(2)

3 ,f0)(v)dv=νi
30n

(2)
3 n0 ,

∫
Id

2 (f2,f0)(v)dv=−νd
20n2n0 , (4.23)

so that, in conclusion, the closed reaction–diffusion system for the number densities n1

and n2 reads as

∂n1

∂t
−m1 +m0

2m1m0

T0

ν̄10n0
∆xn1 =

=
2(νd

30n0 +νd
31n1 +νd

32n2)νr
11(n1)2

νt
30n0 +νt

31n1 +νt
32n2

+2
(
νd
20n0 +νd

21n1 +νd
22n2

)
n2−2νr

11(n1)2 ,

∂n2

∂t
− 2m1 +m0

4m1m0

T0

ν̄20n0
∆xn2 =

=
(νi

30n0 +νi
31n1 +νi

32n2)νr
11(n1)2

νt
30n0 +νt

31n1 +νt
32n2

−
(
νd
20n0 +νd

21n1 +νd
22n2

)
n2 .

(4.24)
It is easily checked that this set of partial differential equations obviously fulfils mass
conservation, in the sense that the chemical source term for atoms (the right hand
side of the first equation) is just twice the opposite of the corresponding chemical term
for molecules. This property follows immediately from the fact that νt

3j =νd
3j +νi

3j ,
which is the present version of (4.9). In our Maxwell molecules frame the diffusion
coefficients, namely the positive factors in front of the Laplacian operators

Di =
mi +m0

2mim0

T0

ν̄i0n0
, i=1,2, (4.25)

turn out to be proportional to the background temperature and inversely proportional
to the macroscopic scattering collision frequency with the medium.

5. Conclusions
We may notice that reactive contributions in (4.24) are strongly affected by the

number density n
(2)
3 (whose expression (4.12) is used in the first term on the right

hand sides). This is what in the literature [16] is usually referred to as “ghost effect”,
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in the sense that even if the species 3 (unstable molecules) disappears (up to the first
order accuracy in the parameter ε), it leaves an actual trace in the hydrodynamic
equations for n1, n2; in fact, in the present scaling, chemical operators involving the
distribution ϕ3 =O(ε2) are assumed much faster (O(1/ε)) than other reactions (O(ε)),
so that when passing to the limit ε→0 they provide non–vanishing contributions, at
the same leading order as the other reactive terms.

The right hand sides in (4.24), denoted by R1 and R2 respectively, fulfill the
obvious condition

R1 +2R2 =0 , (5.1)

which reproduces the preservation of total number of atoms, either free or bound
together in a molecule. The overall reaction–diffusion system may be rewritten as

∂ni

∂t
−Di ∆xni = Ri, i=1,2, (5.2)

with diffusion coefficients given by (4.25), and reactive terms defined by (5.1) and by

R2 =−
(
νd
20n0 +νd

21n1 +νd
22n2

)
n2 +

νi
30n0 +νi

31n1 +νi
32n2

νt
30n0 +νt

31n1 +νt
32n2

νr
11(n1)2 . (5.3)

The chemical source R2 for stable molecules is then made up by a loss contribution,
due to their global dissociation reaction rate, and by a gain contribution, propor-
tional to the recombination reaction rate νr

11(n1)2 through a reduction factor repre-
senting the overall probability of inelastic scattering in collisions relevant to unstable
molecules. Such a factor is the only parameter affected by the excited species, via the
microscopic collision frequencies νk

3j . In the considered physical situation, reactive
terms Ri are rational functions of the number densities ni. Collision equilibria for
the fluid–dynamic equations (corresponding to vanishing right hand sides in (5.2)) are
given by the requirement

νr
11(n1)2

(
νi
30n0 +νi

31n1 +νi
32n2

)

−
(
νd
20n0 +νd

21n1 +νd
22n2

)(
νt
30n0 +νt

31n1 +νt
32n2

)
n2 =0 . (5.4)

Notice that this is a cubic equation for the unknown field n1, of the form

A(n1)3 +B (n1)2−Cn1−D =0 ,

with coefficients depending on n2, and with A,C, D>0. Hence, similarly to [11], just
on the basis of the sign of the coefficients, it can be easily checked that there exists a
unique admissible (i.e. positive) solution for n1 as a function of n2. In fact, the other
two roots are either real and negative, or complex conjugate with negative real part.
Equation (5.4) plays thus the role of a mass action law for chemical equilibrium.

Under different scalings for chemical reactions, we could obtain simpler collision
contributions in the macroscopic reaction–diffusion equations for n1, n2. Roughly
speaking, if in (4.24) the background density n0 were assumed much greater than
species densities n1, n2 (ratio O(1/ε2) at the dimensional level), or, equivalently, if
physical parameters are such that all chemical collision frequencies of the type νk

i0

are much greater (O(1/ε)) than the remaining νk
ij with j >0, then only the contribu-

tions proportional to νd
20n0n2 would be preserved to the leading order. The relevant
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reaction–diffusion equations would take a completely linear form, and they could be
hopefully studied from a mathematical point of view following the same steps outlined
in the paper [1]. In this particular case the equilibrium condition would be trivially,
but consistently, n2 =0, that means disappearance also of stable molecules. This dras-
tic regime is avoided if we keep additionally the recombination collision frequency νr

11

greater by a factor 1/ε than the other ones, so that R2 =νr
11 (νi

30/νt
30)(n1)2−νd

20n0n2,
with a non–trivial collision equilibrium, and only a quadratic nonlinearity.
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