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ON A SPLITTING SCHEME FOR THE NONLINEAR
SCHRÖDINGER EQUATION IN A RANDOM MEDIUM∗

RENAUD MARTY†

Abstract. In this paper we consider a nonlinear Schrödinger equation (NLS) with random
coefficients, in a regime of separation of scales corresponding to diffusion approximation. The primary
goal of this paper is to propose and study an efficient numerical scheme in this framework. We use a
pseudo-spectral splitting scheme and we establish the order of the global error. In particular we show
that we can take an integration step larger than the smallest scale of the problem, here the correlation
length of the random medium. We study the asymptotic behavior of the numerical solution in the
diffusion approximation regime.
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1. Introduction
Optical fibers have been extensively studied because they play an important role

in modern communication systems [1, 2]. In particular, the limitation effects of high
bit rate transmission and numerical simulations of pulse dynamics have attracted
attention of engineers, physicists an applied mathematicians.

One of the main limitations of high bit transmission in optical fiber is the chro-
matic dispersion. The different frequency components of the pulse have different phase
velocities, which gives pulse spreading. Solutions have been proposed to compensate
for the pulse broadening induced by dispersion. A widely used method consists of the
periodic compensation of accumulated dispersion by insertion of an additional piece
of fiber with a well controlled length and dispersion values. So, we obtain a fiber with
dispersion coefficient which is random and fluctuating around its zero mean value.
We shall consider such a fiber in this paper.

The evolution of the electric field in an optical fiber with constant dispersion
coefficient is governed by the nonlinear Schrödinger equation (NLS)

i
∂u

∂z
=d0

∂2u

∂t2
+n0|u|2u, (1.1)

where d0 (resp. n0) is the dispersion (resp. nonlinearity) coefficient. A lot of work has
been devoted to the numerical study of this equation using many different discretiza-
tion schemes. In particular, some papers are devoted to the study of order estimates
for splitting methods [5, 9, 14]. Splitting methods are based on the decomposition
of the flow of (1.1) into the flows of two partial problems: the linear Schrödinger
equation (with n0 =0) and the nonlinear equation (1.1) with d0 =0. These partial
problems can be solved explicitly.

In this paper we consider the pulse propagation in an optical fiber with a zero-
mean random dispersion coefficient. The electric field is a solution of a nonlinear
Schrödinger equation with random coefficients. One of our goals is to study numer-
ically the evolution of the electric field. We use a Fourier split-step method. This
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method has already been applied to homogeneous equations, but also to random
equations [3, 4].

Different scales are present in the problem: the fiber length, the correlation length
of the medium, the typical dispersion length and the nonlinearity length. We take
into account these different scales to study the asymptotics of the field. We obtain
a limit theorem for the solution of the random nonlinear Schrödinger equation. This
limit can be identified as the solution of a stochastic NLS-type equation. We can
cite other works dealing with different forms of stochastic NLS equations [7, 8]. We
propose two proofs for our limit theorem. The first one is based on the continuity
of the Itô’s map of the propagation equation. The second one is based on the error
estimate for the numerical solution and approximation-diffusion theorems.

Section 2 is devoted to the presentation of the pulse propagation model in a
randomly perturbed optical fiber. In Section 3 we study the nonlinear Schrödinger
equation driven by an arbitrary deterministic continuous noise. In Section 4 we pro-
pose a numerical scheme and we establish an error estimate. In Section 5 we study
the asymptotic behavior of the electric field. Section 6 is devoted to extend previous
results to a more realistic nonlinear model for a pulse propagation. In Section 7 we
give a formal approach for the global error computation to improve the results of
Section 4. Section 8 is devoted to numerical simulations.

Notations.
• L2 denotes the space of functions L2(R,C). For every p∈N, Hp denotes the

Sobolev space Hp(R,C).
• The Fourier transform of a function ψ∈L2 is denoted by F(ψ) or by ψ̂.

2. Formulation
The electric field evolution in an optical fiber with a zero-mean dispersion coeffi-

cient is governed by the random nonlinear Schrödinger equation [1]:

i
∂u

∂z
+εm(z)

∂2u

∂t2
+ε2f(|u|2)u=0, u(z =0,t)=u0(t). (2.1)

m is a centered stationary process and models the dispersion coefficient. f is an
increasing function which models the nonlinear response of the medium to the electric
field. The initial condition u0 is assumed to be in the Sobolev space H2.

We have written Equation (2.1) in the microscopic scale where the correlation
length and the initial pulse width are of order 1. m models the fluctuations of the
dispersion coefficient. In the microscopic scale the amplitude of the dispersion is small.
So we introduce a small dimensionless parameter ε¿1 so that the dispersion term is
written as εm(z)∂2u/∂t2. Hence, in the linear approximation, the propagation can
be modeled by the linear Schrödinger equation

i
∂u

∂z
+εm(z)

∂2u

∂t2
=0, u(z =0,t)=u0(t),

and the pulse amplitude is of order 1. We would like to study the role of the non-
linearity and its interplay with the dispersion term. We will see that the nonlinear
effects are of order 1 if the nonlinearity parameter is rescaled by ε2. So we consider
Equation (2.1).

We consider the propagation equation in the macroscopic scale. We introduce the
rescaled field uε(z,t)=u(z/ε2,t) which solves

i
∂uε

∂z
+

1
ε
m

( z

ε2

)∂2uε

∂t2
+f(|uε|2)uε =0, u(z =0,t)=u0(t). (2.2)
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We now give more precise conditions on the dispersion process m and the nonlinearity
function f . m is a Markov process with infinitesimal generator L. We assume that
m is centered, stationary, with values in a compact space, and satisfying Doeblin’s
condition [12, 13]. As a consequence, m admits a unique invariant probability measure,
and its infinitesimal generator satisfy the Fredholm alternative. For instance, we can
think of the process m as a continuous Markov process with values in a compact
interval, or a càd-làg Markov process with values in a finite set.

We assume that the nonlinearity function f is of class C∞(R+,R+). We further
assume that there exists a constant M >0 such that f(x)=x if x≤M , f(x)=3M/2 if
x≥2M , ‖f ′‖∞≤1 and ‖f ′′‖∞≤1. So, the function g : ζ 7→f(|ζ|2)ζ and all its partial
derivatives1 are Lipschitz functions. The case where f(x)=x for all x≥0, which
corresponds to the standard cubic NLS equation, will be considered in Section 6.

The first goal of this paper is to study Equation (2.2) numerically. Then we
establish an effective propagation equation for electric field when ε→0 for uε.

3. Nonlinear Schrödinger equation driven by a continuous noise
In this section we study nonlinear Schrödinger equation driven by a continuous

noise w:

u(z,t)=u0(t)+ iσ0

∫ z

z0

∂2u

∂t2
(z′,t)dw(z′)+ i

∫ z

z0

f(|u(z′,t)|2)u(z′,t)dz′, (3.1)

with σ0∈R, z0,z∈ [0,1] (z0≤z) and u0∈L2. The goal of this section is to show that
the solution is unique in C([z0,1],L2) and depends continuously on w.

3.1. Existence and uniqueness of the solution. The goal of this subsec-
tion is to give a sense to the solution for (3.1). The problem is more suitably written
in the mild form as:

u(z,t)=Xw(z0,z)u0(t)+ i

∫ z

z0

Xw(z′,z)f(|u(z′,t)|2)u(z′,t)dz′, (3.2)

where the parameter-dependent inhomogeneous operator Xw is defined as follows.
For a function v0∈L2, we give a sense to the solution for the linear problem:

v(z,t)=v0(t)+ iσ0

∫ z

z0

∂2v

∂t2
(z′,t)dw(z′). (3.3)

We first assume that w∈C1([0,1],R). We replace in (3.3) the differential term dw(z′)
by w′(z′)dz′ where w′ is the derivative of w. The unique solution of (3.3) in this case
is

v(z,t)=
1√

4iπσ0w(z0,z)

∫ ∞

−∞
exp

( i(t− t′)2

4σ0w(z0,z)

)
v0(t′)dt′,

with

w(z0,z)=
∫ z

z0

w′(z′)dz′=w(z)−w(z0).

We note that the expression of the solution v(z,t) depends only on the increments of
w. So, we use the formulation of this solution to define the solution of (3.3) for an

1In this paper g′ (resp. g′′) denotes the gradient vector (resp. Hessian matrix) of g.
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arbitrary continuous noise w. We denote by Xw(z0,z) the flow associated to (3.3) for
an initial condition at z =z0:

Xw(z0,z)v0(t)=
1√

4iπσ0w(z0,z)

∫ ∞

−∞
exp

( i(t− t′)2

4σ0w(z0,z)

)
v0(t′)dt′,

with w(z0,z)=w(z)−w(z0). We can write Xw(z0,z)v0 in the Fourier domain as

F(Xw(z0,z)v0)(θ)=F(v0)(θ)exp(−iθ2σ0w(z0,z)).

So, the flow Xw(z0,z) :L2→L2 is well-defined. Moreover, by Parseval’s theorem,
we have for every p∈N, ||Xw(z0,z)v0||Hp = ||v0||Hp , that is to say that Xw(z0,z) is
unitary in every Sobolev space Hp. We denote by X(z0,z) the flow Xw(z0,z) if there
is no ambiguity on the noise w.

Now we can establish the existence and the uniqueness of the solution of (3.2).

Theorem 3.1. Let u0∈L2. Equation (3.2) admits a unique solution u in
C([z0,1],L2).

The proof of Theorem 3.1 will be delayed until several technical lemmas can be
stated.

We denote by Sw(z0,z) (or S(z0,z) if there is not ambiguity on the noise w) the
flow which is associated to (3.2) with initial condition in z =z0.

Without loss of generality we assume z0 =0. To prove Theorem 3.1 we first
consider the sequence of functions ((z,t) 7→xn(z,t))n∈N which is defined by: x0(z,t)=
u0(t) and for every n>0:

xn(z,t)=X(0,z)u0(t)+ i

∫ z

0

X(z′,z)f(|xn−1(z′,t)|2)xn−1(z′,t)dz′. (3.4)

If f is bounded, then t→f(|xn−1(z′,t)|2)xn−1(z′,t) belongs to L2 for all z and n. So
(xn)n is a well-defined sequence of functions with integrable squared modulus with
respect to t.

We establish a regularity result for xn in Lemma 3.3 which is a consequence of
the following technical lemma.

Lemma 3.2. (i) Let (φn)n be a sequence of measurable and nonnegative functions. If
there exist two positive constants C1 and C2 such that φ0≡C1 and for all n∈N∗ and
z∈ [0,1],

φn+1(z)≤C1 +C2

∫ z

0

φn(z′)dz′,

then

sup
z∈[0,1]

φn(z)≤C1 exp(C2).

(ii) Let (φn)n be a sequence of measurable and nonnegative functions. If there exist
two positive constants C3 and C4 such that for all n∈N∗ and z∈ [0,1], φ0(z)≤C4 and

φn+1(z)≤C3

∫ z

0

φn(z′)dz′,
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then

sup
z∈[0,1]

φn(z)≤C4
Cn

3

n!
.

Proof. For (i) we prove by recurrence with respect to n that φn(z)≤C1 exp(C2z).
For (ii) we prove by recurrence with respect to n that φn(z)≤C4(C3z)n/n!.

Lemma 3.3. If u0∈H2, then the sequence (xn)n is bounded in Hp(R,C) for all
p=0,1,2, uniformly with respect to z∈ [0,1] and n∈N, that is to say that there exists
a constant C which depends only on f and ||u0||H2 such that for all n∈N we have

sup
z∈[0,1]

||xn(z, ·)||H2 ≤C.

Proof. Let p=0. X(z0,z) is unitary, then

||xn+1(z, ·)||L2 ≤||u0||L2 + ||f ||∞
∫ z

0

||xn(z′,·)||L2 dz′.

By Lemma 3.2, we get

sup
z∈[0,1]

||xn(z, ·)||L2 ≤||u0||L2 exp(||f ||∞). (3.5)

Let p=1. From (3.4), if xn∈H1 then xn+1∈H1, and X(z0,z) is unitary, then

||∂txn+1(z, ·)||L2 ≤||∂tu0||L2 + ||g′||∞
∫ z

0

||∂txn(z′,·)||L2 dz′.

By Lemma 3.2 we have

sup
z∈[0,1]

||xn(z, ·)||H1 ≤||u0||H1 exp(||f ||∞+ ||g′||∞).

Let p=2. X(z0,z) is unitary, so

||∂2
t xn+1(z, ·)||L2 ≤||∂2

t u0||L2

+||g′||∞
∫ z

0

||∂2
t xn(z′,·)||L2 dz′

+||g′′||∞
∫ z

0

||∂txn(z′,·)||2L4 dz′.

By Gagliardo-Nirenberg inequality

|| · ||2L4 ≤Cgn|| · ||H1 || · ||L2 ,

and the beginning of the proof, there exists C which depends on ||u0||H1 and f such
that

||xn+1(z, ·)||H2 ≤||u0||H2 +C

∫ z

0

||xn(z′,·)||H2 dz′.
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Then, by lemma 3.2 and the previous estimates, we have

sup
z∈[0,1]

||xn(z, ·)||H2 ≤||u0||H2 exp(C).

This ends the proof.

Before proving Theorem 3.1 we establish the two following lemmas.

Lemma 3.4. If u0∈L2, then (xn)n is a Cauchy sequence in L∞([0,1],L2).

Proof. Let p and q∈N. Since g′ is bounded, from (3.4):

||xp+q+1(z)−xq+1(z)||L2 ≤
∫ z

0

||g(xp+q(z′))−g(xq(z′))||L2 dz′

≤||g′||q+1
∞

∫ z

0

dz1

∫ z1

0

dz2 ···
∫ zq

0

||xp(zq+1)−x0||L2 dzq+1.

(3.6)

From (3.5), we get

||xp(zq+1)−u0||L2 ≤||u0||L2 + ||xp(zq+1)||L2

≤||u0||L2(1+exp(||f ||∞)).

Substituting into (3.6) and taking the supremum in z∈ [0,1], we obtain

sup
z∈[0,1]

||xp+q+1(z)−xq+1(z)||L2 ≤||u0||L2(1+exp(||f ||∞))
||g′||q+1

∞
(q+1)!

.

Letting q→∞, we establish that (xn)n is a Cauchy sequence in L∞([0,1],L2).

Lemma 3.5. The map

A :L∞([0,1],L2)→L∞([0,1],L2)

v 7→X(0,z)u0(t)+ i

∫ z

0

X(z′,z)g(v(z′,t))dz′,

is continuous.

Proof. Let v1 and v2 in L∞([0,1],L2). We have

||A(v1)(z)−A(v2)(z)||L2 ≤||
∫ z

0

X(z′,z)g(v1(z′))dz′−
∫ z

0

X(z′,z)g(v2(z′))dz′||L2

≤
∫ z

0

||g(v1(z′))−g(v2(z′))||L2 dz′

≤||g′||∞
∫ z

0

||v1(z′)−v2(z′)||L2 dz′,

then

||A(v1)−A(v2)||L∞([0,1],L2)≤||g′||∞||v1−v2||L∞([0,1],L2).

The continuity of A follows.

Now we prove Theorem 3.1.
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Proof. (Theorem 3.1) (xn)n is a Cauchy sequence in L∞([0,1],L2), so it converges
to a limit u in L∞([0,1],L2). By the continuity of A, u is solution to (3.2). Now we
prove that u∈C([0,1],L2). X(z0,z) is unitary in L2, so for z2 <z1:

||u(z1)−u(z2)||L2 ≤||(X(0,z1)−X(0,z2))u0||L2 +
∫ z1

z2

||g(u(z′))||L2 dz′

+
∫ z2

0

||(X(z′,z1)−X(z′,z2))g(u(z′))||L2 dz′.

An application of bounded convergence theorem gives u∈C([0,1],L2). Hence, (3.2)
has a solution in C([0,1],L2).

It remains to prove the uniqueness of this solution. Let ũ be another solution.
The facts that X(z0,z) is unitary and g is Lipschitz give for every z∈ [0,1]:

||u(z)− ũ(z)||L2 ≤C

∫ z

0

||u(z′)− ũ(z′)||L2 dz′.

So by Gronwall’s lemma, for every z∈ [0,1]:

||u(z)− ũ(z)||L2 =0,

which implies uniqueness.

We prove a result on the regularity of the solution of (3.2).

Lemma 3.6. Let u0∈H2. For every z∈ [0,1], u(z, ·)∈H2. Moreover:

sup
z∈[0,1]

||u(z,·)||H2 <∞, (3.7)

and

sup
z∈[0,1]

||g(u(z, ·))||H2 <∞. (3.8)

Proof. We fix z∈ [0,1]. By Lemma 3.3, (xn(z))n is in a closed ball of H2. Hence,
we can extract a subsequence (xnk

(z))k which converges weakly in H2 to a limit
y(z)∈H2 (because H2 is reflexive) and, consequently, in L2. But we also have that
(xnk

(z))k converges strongly in L2 to u. Hence u(z)=y(z) and u(z)∈H2.
Moreover, for all z∈ [0,1]

||u(z)||H2 ≤ liminf
k→∞

||xnk
(z)||H2 ≤C,

by Lemma 3.3 where C does not depend on z, so

sup
z∈[0,1]

||u(z,·)||H2 <∞.

that concludes the proof of (3.7). The proof of (3.8) is a direct consequence of (3.7)
and the boundedness of g′ and g′′.

The second important result of this section is the continuity of the solution of
(3.2) with respect to the noise w (we call this map the Itô map). Here we use the
notation Xw(z0,z) for the linear flow and uw for the solution of (3.2) driven by w.
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Theorem 3.7. Let u0∈H2. The Itô map I associated to (3.2):

I :C([0,1],R)→C([0,1],L2)
w 7−→uw,

is continuous. In fact, it is a Lipschitz map.

Proof. Let w1 and w2 be two continuous noises. We have

uw1(z,t)−uw2(z,t)=Xw1(0,z)u0(t)+ i

∫ z

0

Xw1(z
′,z)g(uw1(z

′,t))dz′

−Xw2(0,z)u0(t)− i

∫ z

0

Xw2(z
′,z)g(uw2(z

′,t))dz′

=Xw1(0,z)u0(t)−Xw2(0,z)u0(t)

+i

∫ z

0

(Xw1(z
′,z)−Xw2(z

′,z))g(uw1(z
′,t))dz′

+i

∫ z

0

Xw2(z
′,z)(g(uw1(z

′,t))−g(uw2(z
′,t)))dz′,

so,

||uw1(z)−uw2(z)||L2 ≤||Xw1(0,z)u0−Xw2(0,z)u0||L2

+
∫ z

0

||(Xw1(z
′,z)−Xw2(z

′,z))g(uw1(z
′))||L2 dz′

+
∫ z

0

||g(uw1(z
′))−g(uw2(z

′))||L2 dz′

≤||w1−w2||∞||u0||H2

+2||w1−w2||∞
∫ z

0

||g(uw1(z
′))||H2 dz′

+||g′||∞
∫ z

0

||uw1(z
′)−uw2(z

′)||L2 dz′

≤||w1−w2||∞||u0||H2

+2C||w1−w2||∞||u0||H2

+||g′||∞
∫ z

0

||uw1(z
′)−uw2(z

′)||L2 dz′,

hence, by Gronwall’s lemma,

sup
z∈[0,1]

||uw1(z)−uw2(z)||L2 ≤3C exp(Cg)||w1−w2||∞,

which concludes the proof.

3.2. Pseudo-spectral scheme. We introduce a pseudo-spectral scheme to
solve (3.2) numerically for (z,t)∈ [0,1]×R. We give the definition of the flow Y (z)
associated to the equation

i
∂v

∂z
+f(|v|2)v =0. (3.9)

We consider an initial condition u0∈L2. There exists a unique solution in C([0,1],L2)
to Equation (3.9). This solution can be written as

Y (z)u0(t)=u0(t)exp(izf(|u0(t)|2)).
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We can deduce ||Y (z)u0||L2 = ||u0||L2 .
We let Xh

n :=X((n−1)h,nh). We fix an integer N and we let h=1/N . We define
the function t 7→uh

n(t) for all 0≤n≤N as an approximation of t 7→u(nh,t). We begin
by uh

0 =u0. Recursively we let for every n∈{0,··· ,N−1}:

uh
n→uh

n+1 :

{
uh

n+1/2 :=X(nh,(n+1)h)uh
n,

uh
n+1 :=Y (h)uh

n+1/2.

The main result of this section is the following:

Theorem 3.8. We assume that u0∈H2 and there exist two constants c,α>0 such
that for every z0,z∈ [0,1]

sup
z′∈[z0,z]

|w(z′)−w(z0)|≤ c|z−z0|α. (3.10)

Then there exists a constant C which depends only on g, c and ||u0||H2 , such that for
every h∈ (0,1], and n satisfying nh≤1:

||uh
n−u(nh, ·)||L2 ≤Chα.

The proof of Theorem 3.8 will be delayed until several technical lemmas can be
stated.

We recall and introduce some notation. We respectively denote by S(z0,z),
X(z0,z) and Y (z−z0) the flows associated to Equations (3.2), (3.3) and (3.9) with
initial conditions in z0 and Z(z0,z) :=Y (z−z0)X(z0,z). We let Sh

n :=S((n−1)h,nh),
Zh

n :=Z((n−1)h,nh), S̃h
n :=Sh

n ···Sh
1 and Z̃h

n :=Zh
n ···Zh

1 . We establish a first lemma.

Lemma 3.9. There exists a constant c0 which depends only on g such that for all u1

and u2 in H2:

||Z(z0,z)u1−Z(z0,z)u2||L2 ≤ (1+c0(z−z0))||u1−u2||L2 .

Proof. X(z0,z) is unitary and linear in L2, so it is sufficient to show that

||Y (z)u1−Y (z)u2||L2 ≤ (1+c0z)||u1−u2||L2 .

We have

Y (z)u1 =u1 + i

∫ z

0

g(Y (z′)u1)dz′.

Using the fact that g is a Lipschitz function:

||Y (z)u1−Y (z)u2||L2 ≤||u1−u2||L2 +C

∫ z

0

||Y (z′)u1−Y (z′)u2||L2 dz′,

where C only depends on g. By Gronwall’s lemma:

||Y (z)u1−Y (z)u2||L2 ≤ exp(Cz)||u1−u2||L2 .



688 ON A SPLITTING SCHEME FOR A RANDOM NLS EQUATION

There exists c0 >0 such that exp(Cz)≤ (1+c0z) for every z∈ [0,1], so

||Y (z)u1−Y (z)u2||L2 ≤ (1+c0z)||u1−u2||L2 ,

which completes the proof.

Lemma 3.10. Let u1∈H2. We have

||X(z0,z)u1−u1||L2 ≤|w(z)−w(z0)|||u1||H2 .

Proof. Let û1 be the Fourier transform of u1. We use the basic estimate |exp(ix)−
1|2≤x2 to obtain:

||X(z0,z)u1−u1||2L2 =
∫ +∞

−∞

∣∣∣û1(θ)exp
(
− iθ2(w(z)−w(z0))

)
− û1(θ)

∣∣∣
2

dθ

≤ (w(z)−w(z0))2||u1||2H2 .

This concludes the proof.

Lemma 3.11. Let u1∈H2. There exists a constant C0 which depends only on ||u1||H2

and g such that for every z∈ [z0,1]:

||S(z0,z)u1−Z(z0,z)u1||L2 ≤C0 sup
z′∈[z0,z]

|w(z)−w(z0)|(z−z0).

Proof. We have

S(z0,z)u1−Z(z0,z)u1 =R1(z0,z)+R2(z0,z), (3.11)

where

R1(z0,z)= i

∫ z

z0

X(z′,z){g(S(z0,z
′)u1)−g(Z(z0,z

′)u1)}dz′,

R2(z0,z)= i

∫ z

z0

{X(z′,z)g(Z(z0,z
′)u1)−g(Y (z′−z0)X(z0,z)u1)}dz′.

We deal separately with R1(z0,z) and R2(z0,z). X(z′,z) is unitary and g is a Lipschitz
function, then

||R1(z0,z)||L2 ≤||g′||∞
∫ z

z0

||S(z0,z
′)u1−Z(z0,z

′)u1||L2 dz′. (3.12)

By the fact that g is a Lipschitz function and using Lemmas 3.10 and 3.9:

||R2(z0,z)||L2 ≤
∫ z

z0

||X(z′,z)g(Z(z0,z
′)u1)−g(Z(z0,z

′)u1)||L2 dz′

+
∫ z

z0

||g(Z(z0,z
′)u1)−g(Y (z′−z0)X(z0,z)u1)||L2 dz′

≤C sup
z′∈[z0,z]

|w(z′)−w(z0)|
∫ z

z0

||Z(z0,z
′)u1||H2 dz′

+||g′||∞
∫ z

z0

(1+c0(z′−z0))||X(z0,z
′)u1−X(z0,z)u1||L2 dz′

≤C(z−z0) sup
z′∈[z0,z]

|w(z′)−w(z0)|,
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where the last constant C depends on g and the H2−norm of u1. So, following (3.11)
there exists a constant C depending on g and the H2−norm of u1 such that for every
z0, z1 and z satisfying z0≤z1≤z:

||S(z0,z1)u1−Z(z0,z1)u1||L2 ≤C(z1−z0) sup
z′∈[z0,z]

|w(z′)−w(z0)|

+C

∫ z1

z0

||S(z0,z
′)u1−Z(z0,z

′)u1||L2 dz′.

The proof is completed by an application of Gronwall’s lemma.

Lemma 3.12. Let u1 in H2. There exists a constant C which depends only on g,
||u1||H2 such that for every z∈ [z0,1]:

||S(z0,z)u1−Z(z0,z)u1||L2 ≤C(z−z0)1+α.

Proof. This is a direct consequence of Lemma 3.11 and (3.10).

Now we prove Theorem 3.8.

Proof. (Theorem 3.8) We use the telescopic sum

uh
n−u(nh,·)=Zh

n ···Zh
1 u0−Sh

n ···Sh
1 u0

=
n∑

j=1

{Zh
n ···Zh

j Sh
j−1 ···Sh

1 u0−Zh
n ···Zh

j+1S
h
j ···Sh

1 u0}.

Taking L2−norm and applying Lemma 3.9 we obtain existence of a constant c0 such
that

||uh
n−u(nh,·)||L2 ≤

n∑

j=1

(1+c0h)n−j ||(Zh
j −Sh

j )Sh
j−1 ···Sh

1 u0||L2 .

Using Lemma 3.12 and the uniform boundedness of S(z0,z) in H2, there exists C
such that

||uh
n−u(nh, ·)||L2 ≤C

n∑

j=1

(1+c0h)(n−j)h1+α≤C exp(c0)hα.

The proof is completed.

4. Error estimate of the pseudo-spectral scheme for the electric field
This section deals with the numerical study of the electric field uε(z,t)=u(z/ε2,t)

which is solution of

i
∂uε

∂z
+

1
ε
m

( z

ε2

)∂2uε

∂t2
+f(|uε|2)uε =0. (4.1)

4.1. The split-step scheme. As for (3.2), there exists a unique solution of
uε in C([0,1],L2) if we take u0∈L2. We denote by Sε(z0,z) the flow associated to the
problem (4.1) with initial condition in z =z0.
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We introduce the split-step scheme to solve (4.1) numerically for (z,t)∈ [0,1]×R.
We consider the problems:

i
∂vε

∂z
+

1
ε
m

( z

ε2

)∂2vε

∂t2
=0, (4.2)

i
∂v

∂z
+f(|v|2)v =0. (4.3)

We denote respectively Xε(z0,z) and Y (z−z0) the flows associated to Equations (4.2)
and (4.3) with initial condition at z0. Moreover we let Zε(z0,z) :=Y (z−z0)Xε(z0,z).

We let Xε,h
n :=Xε((n−1)h,nh). We fix an integer N and we let h=1/N . We

define uε,h
n for every 0≤n≤N as an approximation of uε(nh, ·). We begin by uε,h

0 =u0.
Then we define recursively for every n∈{0,··· ,N−1}:

uε,h
n →uε,h

n+1 :

{
uε,h

n+1/2 :=Xε(nh,(n+1)h)uε,h
n ,

uε,h
n+1 :=Y (h)uε,h

n+1/2.
.

uε,h is defined by: for every z∈ [0,1],

uε,h(z)=
N−1∑

j=0

I[jh,(j+1)h)(z)(uε,h
j +(z/h− [z/h])(uε,h

j+1−uε,h
j )),

where IA(z)=1 if z∈A and 0 otherwise. Finally we let Sε,h
n :=Sε((n−1)h,nh),

Zε,h
n :=Zε((n−1)h,nh).

4.2. Error estimate. The main result of this section is the following.

Theorem 4.1. We assume that u0∈H2. There exists an constant C depending only
on g and ||u0||H2 , such that for every ε<1, h∈]0,1], and n satisfying nh≤1:

E[||uε,h
n −uε(nh,·)||2L2 ]≤C(h+ε2).

Moreover, for every z∈ [0,1]:

E[||uε,h(z)−uε(z, ·)||2L2 ]≤C(h+ε2).

Note that in classical simulation situations, the numerical grid step is smaller
than the smallest scale of the problem. Here, we can choose a numerical grid step
which is larger than the smallest scale, the natural scale of variations of the random
coefficient, because the solution varies relatively slowly.

The proof of this result follows the same lines as the proof of Theorem 3.8 and
use strongly the results of Section 3 and the following remark.

Remark 4.2. Lemmas 3.9, 3.10 and 3.11 establish properties of the operators
X(z0,z), Z(z0,z) and S(z0,z) defined in Section 3 with an arbitrary continuous noise
w. If we consider the noise w(z)=wε(z)=

∫ z

0
(1/ε)m(z′/ε2)dz′, these operators are

respectively Xε(z0,z), Zε(z0,z) and Sε(z0,z) defined in this section. Hence, Lemmas
3.9, 3.10 and 3.11 can be used here. Moreover, the constants which appear in Lemmas
3.9 and 3.11 are independant on ε because they are independant on the noise w.

We also need the two following lemmas.
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Lemma 4.3. For every l∈N∗, there exists a constant Cl such that

E

[(
sup

z′∈[z0,z]

∣∣∣∣∣
∫ z′

z0

1
ε
m

(z′′

ε2

)
dz′′

∣∣∣∣∣

)2l]
≤Cl(ε2l +(z−z0)l).

Proof. We denote by L the infinitesimal generator of m. Following the Fred-
holm alternative, there exists a function f1(m) such that Lf1(m)=m. Moreover, the
process Mz0 defined by

Mz0(z)=f1(m(z))−f1(m(z0))−
∫ z

z0

Lf1(m(z′))dz′,

is a martingale with bracket

〈Mz0〉(z)=
∫ z

z0

(
L(f2

1 )(m(z′))−2f1Lf1(m(z′))
)

dz′.

So we have
∫ z′

z0

1
ε
m

(z′′

ε2

)
dz′′=ε

(
f1(m(z′/ε2))−f1(m(z0/ε2))

)
−εMz0/ε2(z′/ε2). (4.4)

By Burkholder’s inequality and the boundedness of m, there exists Cl such that

E

[
sup

z′∈[z0,z]

∣∣∣∣∣εMz0/ε2(z′/ε2)

∣∣∣∣∣

2l]
≤ε2lCE[〈Mz0/ε2〉(z/ε2)l]

≤ε2lClE

[(∫ z/ε2

z0/ε2

(
L(f2

1 )(m(z′))−2f1Lf1(m(z′))
)

dz′
)l]

≤ε2lCl

(
z

ε2
− z0

ε2

)l

=Cl(z−z0)l. (4.5)

Moreover, again by the boundedness of m, and the Doeblin’s condition, there exists
C ′l such that

E

[
sup

z′∈[z0,z]

∣∣∣∣∣ε
(

f1(m(z′/ε2))−f1(m(z0/ε2))
)∣∣∣∣∣

2l]
≤ε2lC ′l .

Using (4.4) and (4.5) we complete the proof.

Lemma 4.4. Let u0∈H2. There exists C depending only on g and ||u0||H2 such that
for every h∈ (0,1) and n∈N such that nh≤1,

||Zε,h
n Zε,h

n−1 ···Zε,h
1 u0||H2 ≤C.

Proof. Let u0∈H2, h∈ (0,1) and n∈N. X(z0,z) and Y (z−z0) are unitary in L2,
so, we have

||Zε,h
n Zε,h

n−1 ···Zε,h
1 u0||L2 = ||u0||L2 ,
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that is to say Zε,h
n Zε,h

n−1 ···Zε,h
1 is unitary in L2.

Let u1∈H1. We have

||∂tY (z)u1||L2 ≤||∂tu1||L2 + ||g′||∞
∫ z

0

||∂tY (z′)u1||L2 dz′.

By Gronwall’s lemma, there exists C depending on g such that for every h:

||Y (h)u1||H1 ≤||u1||H1 exp(Ch).

So, X(z0,z) being unitary in H1, we have with the same constant C as previously

||Zε,h
n Zε,h

n−1 ···Zε,h
1 u0||H1 ≤||u0||H1 exp(Cnh)≤||u0||H1 exp(C).

Let u1∈H2. We have

||∂2
t Y (z)u1||L2 ≤||∂2

t u1||L2

+||g′||∞
∫ z

0

||∂2
t Y (z′)u1||L2 dz′

+||g′′||∞
∫ z

0

||∂tY (z′)u1||2L4 dz′.

Hence, by Gagliardo-Nirenberg’s inequality || · ||2L4 ≤Cgn|| · ||L2 || · ||H1 and the previous
step of the proof, there exists C depending on g and ||u1||H1 such that:

||Y (z)u1||H2 ≤||u1||H2 +C

∫ z

0

||Y (z′)u1||H2 dz′.

So by Gronwall’s lemma and the identity ||∂2
t X(z0,z)u1||L2 = ||∂2

t u1||L2 , there exists
C ′ depending on g and ||u1||H1 such that for every j≤n:

||Zε,h
j u1||H2 ≤||u1||H2 exp(C ′h).

Moreover, ||Zε,h
n Zε,h

n−1 ···Zε,h
1 u0||H1 ≤||u0||H1 exp(C), so there exists C ′′ depending on

g and ||u0||H1 such that

||Zε,h
n Zε,h

n−1 ···Zε,h
1 u0||H2 ≤||u0||H2 exp(C ′′nh)≤||u0||H2 exp(C ′′).

The proof is completed.

Now we prove Theorem 4.1.

Proof. (Theorem 4.1) We use the telescopic sum

uε,h
n −uε(nh, ·)=Zε,h

n ···Zε,h
1 u0−Sε,h

n ···Sε,h
1 u0

=
n∑

j=1

{Zε,h
n ···Zε,h

j Sε,h
j−1 ···Sε,h

1 u0−Zε,h
n ···Zε,h

j+1S
ε,h
j ···Sε,h

1 u0}.

We take the L2−norm. Then, by Lemma 3.9, there exists a constant c0 such that

||uε,h
n −uε(nh, ·)||L2 ≤

n∑

j=1

(1+c0h)n−j ||(Zε,h
j −Sε,h

j )Sε,h
j−1 ···Sε,h

1 u0||L2 .
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We take the expectation, we use Lemmas 3.11 and 4.3 and the fact that Sε(z0,z) is
uniformly bounded in H2. So there exists C such that

E[||uε,h
n −uε(nh,·)||2L2 ]≤Cn

n∑

j=1

(1+c0h)2(n−j)(h3 +ε2h2)≤C exp(2c0)(h+ε2).

We get the first part of Theorem 4.1. For the second part, it is sufficient to show that
for every z∈ [nh,(n+1)h)

E[||uε(z, ·)−uε(nh, ·)||2L2 ]≤C(h+ε2) (4.6)
and E[||uε,h(z,·)−uε,h

n (·)||2L2 ]≤C(h+ε2). (4.7)

For (4.6), we have

uε(z, ·)−uε(nh,·)=Xε(nh,z)uε(nh, ·)−uε(nh,·)
+i

∫ z

nh

Xε(z′,z)g(uε(z′,·))dz′.

Now we take the L2−norm:

||uε(z, ·)−uε(nh,·)||L2 ≤||Xε(nh,z)uε(nh,·)−uε(nh,·)||L2

+C(z−nh)||u0(·)||L2 .

In applying Lemmas 3.10 and 4.3 and |z−nh|≤h we obtain (4.6). For (4.7), we use
Lemmas 3.10, 4.3 and 4.4.

By a slight modification of the proof, we can obtain an extension of the previous
result. This extension will be used to establish a uniform error estimate.

Lemma 4.5. Let u0∈H2. There exists C depending only on g and ||u0||H2 such that
for every ε<1, h∈ (0,1], and n such that nh≤1, for every z∈ [0,1]:

E[||uε,h(z)−uε(z,·)||4L2 ]≤C(h2 +ε4).

4.3. Uniform error estimate. Here we establish the following result.
Theorem 4.6. Let u0∈H2. There exists C depending only on ||u0||H2 such that for
every ε<1, h∈ (0,1] and γ >0:

P

[
sup

z∈[0,1]

||uε,h(z)−uε(z)||L2 >γ

]
≤ C

γ4
(h+ε4/h).

Proof. We let vε,h(z,t) :=uε,h(z,t)−uε(z,t) for every z and t. For every N >0:

P

[
sup

z∈[0,1]

||vε,h(z)||L2 >γ

]
=P

[
N−1⋃

j=0

{
sup

z∈[j/N,(j+1)/N ]

||vε,h(z)||L2 >γ

}]

≤
N−1∑

j=0

P

[
sup

z∈[j/N,(j+1)/N ]

||vε,h(z)||L2 >γ

]

≤
N−1∑

j=0

P

[
sup

z∈[j/N,(j+1)/N ]

||vε,h(z)−vε,h(
j

N
)||L2 >

γ

2

]

+
N−1∑

j=0

P

[
||vε,h(j/N)||L2 >

γ

2

]
.
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By Markov’s inequality and Lemma 4.5, with N =1/h, we have:

N−1∑

j=0

P

[
||vε,h(j/N)||L2 >

γ

2

]
≤ C

γ4
(h+ε4/h).

By Lemma 4.7 below, with N =1/h, we get:

N−1∑

j=0

P

[
sup

z∈[j/N,(j+1)/N ]

||vε,h(z)−vε,h(
j

N
)||L2 >

γ

2

]
≤ C

γ4
(h+ε4/h).

This concludes the proof.

Lemma 4.7. We let vε,h(z,t) :=uε,h(z,t)−uε(z,t) for z and t. Let u0∈H2, z, ε, and
h in (0,1] and γ >0 then

P

[
sup

z′∈[z,z+h]

||vε,h(z′)−vε,h(z)||L2 >
γ

2

]
≤ C

γ4
(h2 +ε4)

.

Proof. We have

sup
[z,z+h]

||vε,h−vε,h(z)||L2 ≤ sup
[z,z+h]

||uε,h−uε,h(z)||L2 + sup
[z,z+h]

||uε−uε(z)||L2 .

We begin by dealing with sup[z,z+h] ||uε,h−uε,h(z)||L2 . For z′′∈ [0,1] we let:

ũε,h(z′′)=
N−1∑

j=0

I[jh,(j+1)h)(z′′)u
ε,h
j .

If z′∈ [h[z/h],h[z/h]+h[, then [z′/h]= [z/h] so ũε,h(z′)− ũε,h(z)=0. If z′∈ [h[z/h]+
h,h[z/h]+2h[, then [z′/h]= [z/h]+1 so

ũε,h(z′)− ũε,h(z)=uε,h
[z/h]+1−uε,h

[z/h]

=Y (z)Xε,h
[z/h]u

ε,h
[z/h]−uε,h

[z/h]

=Y (z)Xε,h
[z/h]u

ε,h
[z/h]−Xε,h

[z/h]u
ε,h
[z/h]

+Xε,h
[z/h]u

ε,h
[z/h]−uε,h

[z/h].

On the one hand we have

||Y (z)Xε,h
[z/h]u

ε,h
[z/h]−Xε,h

[z/h]u
ε,h
[z/h]||L2 ≤

∫ h

0

||g(Y (z′′)Xε,h
[z/h]u

ε,h
[z/h])||L2 dz′′

≤Ch,

where C depends on g and u0. On the other hand,

||Xε,h
[z/h]u

ε,h
[z/h]−uε,h

[z/h]||L2 ≤C

∣∣∣∣∣
∫ h[z/h]+h

h[z/h]

1
ε
m

(z′′

ε2

)
dz′′

∣∣∣∣∣,
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where C depends on g and u0 by Lemma 4.4. Then we have

||ũε,h
[z/h]+1− ũε,h

[z/h]||L2 ≤C

(∣∣∣∣∣
∫ h[z/h]+h

h[z/h]

1
ε
m

(z′′

ε2

)
dz′′

∣∣∣∣∣+h

)
.

We take the fourth moment and we apply Lemmas 3.10 and 4.3, and we obtain

E[ sup
z′∈[z,z+h]

||ũε,h(z′)− ũε,h(z)||4L2 ]≤C(h2 +ε4).

It remains to prove

E[ sup
z′∈[z,z+h]

||ũε,h(z′)−uε,h(z′)||4L2 ]≤C(h2 +ε4). (4.8)

For every z′, we have

uε,h(z′)− ũε,h(z′)=(z′/h− [z′/h])(uε,h
[z′/h]+1−uε,h

[z′/h]),

hence

||ũε,h(z′)−uε,h(z′)||L2 ≤C

(∣∣∣∣∣
∫ h[z′/h]+h

h[z′/h]

1
ε
m

(z′′

ε2

)
dz′′

∣∣∣∣∣+h

)
,

so,

sup
z′∈[z,z+h]

||ũε,h(z′)−uε,h(z′)||L2 ≤C

(∣∣∣∣∣
∫ h[z/h]+h

h[z/h]

1
ε
m

(z′′

ε2

)
dz′′

∣∣∣∣∣

+

∣∣∣∣∣
∫ h[z/h]+2h

h[z/h]+h

1
ε
m

(z′′

ε2

)
dz′′

∣∣∣∣∣+h

)
.

We get (4.8) in taking the expectation and in applying Lemma 4.3. It remains to deal
with supz′∈[z,z+h] ||uε(z′)−uε(z)||L2 . Let z′∈ [z,z+h], we have

uε(z′)−uε(z)=Xε(z,z′)uε(z)−uε(z)+ i

∫ z′

z

Xε(z′′,z′)g(uε(z′′))dz′′,

there exists C depending on g and u0 such that

||uε(z′)−uε(z)||L2 ≤||Xε(z,z′)uε(z)−uε(z)||L2 +
∫ z′

z

||g(uε(z′′))||L2 dz′′

≤C

(
h+

∣∣∣∣∣
∫ z′

z

1
ε
m

(z′′

ε2

)
dz′′

∣∣∣∣∣

)
.

We take the supremum and the fourth moment and we apply Lemma 4.3. We obtain:

E[ sup
z′∈[z,z+h]

||uε(z′)−uε(z)||4L2 ]≤C(h2 +ε4).

Then we apply Markov’s inequality to complete the proof.
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5. Diffusion-approximation
In this section we deal with the effective pulse propagation. We establish diffusion-

approximation results for the exact solution and the numerical solution.

5.1. Diffusion-approximation for the exact solution. We consider the
equation:

u(z,t)=u0(t)+ iσ0

∫ z

0

∂2u

∂t2
(z′,t)◦dW (z′)+ i

∫ z

0

f(|u(z′,t)|2)u(z′,t)dz′, (5.1)

where W is a standard Brownian motion and σ0 >0. The mild form of this equation
is:

u(z,t)=X(0,z)u0(t)+ i

∫ z

0

X(z′,z)f(|u(z′,t)|2)u(z′,t)dz′, (5.2)

where X(z0,z) is a.s. defined by:

X(z0,z)v0(t)=
1√

4iπσ0W (z0,z)

∫ ∞

−∞
exp

( i(t− t′)2

4σ0W (z0,z)

)
v0(t′)dt′,

for v0∈L2 and where W (z0,z)=W (z)−W (z0). By Ito’s formula, the function
v(z,t)=X(z0,z)v0(t) is a.s. the unique solution of the linear equation

v(z,t)=v0(t)+ iσ0

∫ z

z0

∂2v

∂t2
(z′,t)◦dW (z′). (5.3)

Note that we can get the same solution if we use the general framework introduced
in Section 3 for each sample paths of W . We can also write the Fourier transform of
X(z0,z)v0 as

F(X(z0,z)v0)(θ)=F(v0)(θ)exp(−iθ2σ0W (z0,z)).

So, X(z0,z) :L2→L2 is well-defined. Moreover, by Parseval’s theorem, we establish
the equality ||X(z0,z)v0||L2 = ||v0||L2 .

Following Section 2, there exists a unique solution (that we denote by u) in
C([0,1],L2) to the problem (5.1).

One of the main theorems of this section is the following.

Theorem 5.1. Let u0∈H2. If σ2
0 =2

∫∞
0
E[m(0)m(z)]dz then uε converges to u in

distribution in C([0,1],L2) as ε goes to 0.

Proof. We define Mε(z)=ε
∫ z/ε2

0
m(z′)dz′ for every z∈ [0,1]. By classical

diffusion-approximation theorems [12], Mε converges in the space of continuous func-
tions to σ0W when ε→0. Hence, by Theorem 3.7, we get the result.

5.2. Diffusion-approximation for the numerical solution. In this sub-
section we construct an approximation uh for u. As for uε,h, we subdivide [0,1] in
N small steps. We let h=1/N . We define: uh

0 (t) :=u0(t) (initial condition), and for
every n∈{0,··· ,N−1}:

uh
n→uh

n+1 :

{
uh

n+1/2 :=X(nh,(n+1)h)uh
n,

uh
n+1 :=Y (h)uh

n+1/2.
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Finally, uh is defined as: for every z∈ [0,1]

uh(z)=
N−1∑

j=0

Iz∈[jh,(j+1)h](uh
j +(z/h− [z/h])(uh

j+1−uh
j )).

We establish for the limit process analogous error estimates with Theorem 4.1 and
4.6.

Theorem 5.2. We assume that u0∈H2. There exists a constant C depending only
on g and ||u0||H2 , such that for every h∈ (0,1], and n satisfying nh≤1:

E[||uh
n−u(nh, ·)||2L2 ]≤Ch.

Moreover, for every z∈ [0,1]:

E[||uh(z)−u(z, ·)||2L2 ]≤Ch.

Theorem 5.3. Let u0∈H2. There exists C such that for every h∈ (0,1] and γ >0:

P

[
sup

z∈[0,1]

||uh(z)−u(z)||L2 >γ

]
≤ C

γ4
h.

The proofs for these theorems are the same as for Theorems 4.1 and 4.6. The
main difference is the substitution of Lemma 4.3 by Lemma 5.4 which follows.

Lemma 5.4. Let W be a Brownian motion. For every l∈N∗, there exists Cl such
that

E
[(

sup
z′∈[z0,z]

|W (z′)−W (z0)|
)2l]

≤Cl(z−z0)l.

The proof of Lemma 5.4 is a direct consequence of Burkholder’s theorem [10].
We establish the convergence of uε,h to uh as ε goes to 0.

Theorem 5.5. Let u0∈L2 and N ∈N. We fix h=1/N . Then uε,h converges in
distribution in C([0,1],L2) to uh as ε→0.

Proof. We begin the proof by showing that for a fixed N , the se-
quence (u0,u

ε,h
1 ,··· ,uε,h

N ) converges to (u0,u
h
1 ,··· ,uh

N ) in distribution in (L2)N+1

as ε goes to 0. It is sufficient to show that for every n≤N the sequence
(Mε,u0,u

ε,h
1/2,u

ε,h
1 ,··· ,uε,h

n−1/2,u
ε,h
n ) converges to (σ0W,u0,u

h
1/2,u

h
1 ,··· ,uh

n−1/2,u
h
n) in

distribution in C([0,1],R)×(L2(R,C))2n+1 as ε→0, where Mε(z)=ε
∫ z/ε2

0
m(z′)dz′

for every z∈ [0,1]. We proceed recursively on n.
Let n=0. By diffusion-approximation theorems [12], Mε converges in distribution

in C([0,1],R) to σ0W as ε goes to 0. u0 is not random, then (Mε,u0) converges in
distribution in C([0,1],R)×L2 to (σ0W,u0).

Now we assume the convergence of (Mε,u0,u
ε,h
1/2,u

ε,h
1 ,··· ,uε,h

n−1/2,u
ε,h
n ) and we

prove the convergence of (Mε,u0,u
ε,h
1/2,u

ε,h
1 ,··· ,uε,h

n+1/2,u
ε,h
n+1). The Fourier transform

of uε,h
n+1/2 is written as

ûε,h
n+1/2(θ)= ûε,h

n exp(−iθ2(Mε((n+1)h)−Mε(nh))).
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Let a sequence ((wk,vk))k which converge in C([0,1],R)×L2 to a limit (w,v). We
have

||vk exp(−iθ2(wk((n+1)h)−wk(nh)))−vexp(−iθ2(w((n+1)h)−w(nh)))||L2

≤||vk−v||L2 + ||v−vexp(−iθ2(w((n+1)h)−w(nh)−wk((n+1)h)+wk(nh)))||L2 .

The last term of the inequality goes to 0 by the bounded convergence theorem, hence,
uε,h

n+1/2 is written as a continuous function of (Mε,u0,u
ε,h
1/2,u

ε,h
1 ,··· ,uε,h

n−1/2,u
ε,h
n ).

So the convergence in distribution of (Mε,u0,u
ε,h
1/2,u

ε,h
1 ,··· ,uε,h

n ,uε,h
n+1/2) to

(σ0W,u0,u
h
1/2,u

h
1 ,··· ,uh

n,uh
n+1/2) as ε goes to 0 holds. Now we deal with

(Mε,u0,u
ε,h
1/2,u

ε,h
1 ,··· ,uε,h

n+1/2,u
ε,h
n+1). We have

uε,h
n+1 =uε,h

n+1/2 exp(ihf(|uε,h
n+1/2|2))=Y (h)uε,h

n+1/2.

By Lemma 3.9 Y (h) is a Lipschitz map from L2 to L2. So uε,h
n+1 can be written

as a continuous function of (Mε,u0,u
ε,h
1/2,u

ε,h
1 ,··· ,uε,h

n+1/2), hence the convergence of

(Mε,u0,u
ε,h
1/2,u

ε,h
1 ,··· ,uε,h

n+1/2,u
ε,h
n+1) to (σ0W,u0,u

h
1/2,u

h
1 ··· ,uh

n+1/2,u
h
n+1) as ε goes to

0 holds.
Hence, (Mε,u0,u

ε,h
1/2,u

ε,h
1 ,··· ,uε,h

N−1/2,u
ε,h
N ) converges in distribution in

C([0,1],R)×(L2)2N+1 to (σ0W,u0,u
h
1/2,u

h
1 ,··· ,uh

N−1/2,u
h
N ) as ε→0. Hence,

(u0,u
ε,h
1 ,··· ,uε,h

N ) converges in distribution in (L2)N+1 as ε goes to 0 to (u0,u
h
1 ,··· ,uh

N ).
To conclude it remains to prove the continuity of the map

Ψ: (L2)N+1→C([0,1],L2),

(v0,··· ,vN ) 7→z 7→
N−1∑

j=0

Iz∈[jh,(j+1)h](vj +(z/h− [z/h])(vj+1−vj)).

Let (v0,··· ,vN ) and (ṽ0,··· , ṽN ) in (L2)N+1. If z∈ [jh,(j +1)h], then

||Ψ(v0,··· ,vN )(z)−Ψ(ṽ0,··· , ṽN )(z)||L2 ≤2||vj− ṽj ||L2 + ||vj+1− ṽj+1||L2 .

Hence,

sup
z∈[0,1]

||Ψ(v0,··· ,vN )(z)−Ψ(ṽ0,··· , ṽN )(z)||L2 ≤2
N−1∑

j=0

||vj− ṽj ||L2

+
N−1∑

j=0

||vj+1− ṽj+1||L2 .

This concludes the proof.

5.3. Link between diffusion-approximation and splitting scheme. In
this subsection we show that the robustness of the splitting scheme allows us to
propose a new proof for Theorem 5.1. This can be illustrated by the following com-
mutative diagram:

uε,h ε→0−→ uh

↓ h→0 ↓h→0

uε ε→0−→ u.
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Proof. (Theorem 5.1) By Portmanteau’s theorem [6], we show that for every
bounded Lipschitz function Φ :C([0,1],L2)→R we have

lim
ε→0

E[Φ(uε)]=E[Φ(u)].

We let ∆ε = |E[Φ(uε)]−E[Φ(u)]| and ||v|| :=supz∈[0,1] ||v(z,·)||L2 for v∈C([0,1],L2).
Let M >0 and δ >0. By Markov’s inequality and Theorems 4.6 and 5.3 we have:

0≤∆ε≤|E[Φ(uε)−Φ(uε,h)]|+ |E[Φ(uh)]−E[Φ(uε,h)]|+ |E[Φ(uh)−Φ(u)]|
≤ |E[Φ(uh)]−E[Φ(uε,h)]|+2 sup

{||x||≤M,||x−x′||≤δ}
|Φ(x)−Φ(x′)|

+2||Φ||∞
(

2
E[||u0||2]

M2
+2

h+ε4/h

δ4

)
.

So by Theorem (5.5), for every M , δ and h, we have

limsup
ε→0

∆ε≤2 sup
{||x||≤M,||x−x′||≤δ}

|Φ(x)−Φ(x′)|+4||Φ||∞
(
E[||u0||2]

M2
+

h

δ4

)
.

First we let h→0, then δ→0 and finally M→∞ to complete the proof.

6. Cubic nonlinear Schrödinger equation
In this section we deal with the cubic nonlinear Schrödinger equation which is a

more realistic model for pulse propagation in an optical fiber:

i
∂uε

∂z
+

1
ε
m

( z

ε2

)∂2uε

∂t2
+ |uε|2uε =0. (6.1)

We introduce some notations. For every M >0, we define the truncation function
fM ∈C∞(R+,R+) by fM (x)=x if x≤M , fM (x)=3M/2 if x≥2M , ‖f ′M‖∞≤1 and
‖f ′′M‖∞≤1. So, the complex function gM : ζ 7→fM (|ζ|2)ζ and all its partial derivatives
are Lipschitz. For a fixed M , we introduce:

i
∂uε,M

∂z
+

1
ε
m

( z

ε2

)∂2uε,M

∂t2
+fM (|uε,M |2)uε,M =0. (6.2)

The main result of this section is the following.

Lemma 6.1. Let u0∈H2. Then, there exists Z0 >0 and M0 >0 depending only on
||u0||H1 such that for every ε∈ (0,1), z∈ [0,Z0] and M >M0, uε,M (z, ·)=uε,M0(z, ·),
||uε,M (z, ·)||2∞≤M0, and uε,M0 is the unique solution of (6.1) on [0,Z0].

Before proving Lemma 6.1, we establish a technical lemma.

Lemma 6.2. Let φ : [0,1]→R a nonnegative continuous function and C a constant
such that for every z∈ [0,1]:

φ(z)≤φ(0)+C

∫ z

0

φ(z′)3dz′.

Then for every z∈ [0,(2Cφ(0)2)−1),

φ(z)≤ 1√
φ(0)−2−2Cz

.
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Note that this estimate holds only for finite z but is sufficient in our framework.

Proof. We assume φ to be differentiable. We have φ′(z)/φ(z)3≤C, then∫ z

0
φ′(z′)/φ(z′)3dz′≤Cz, and for every z∈ [0,(2Cφ(0)2)−1),

φ(z)≤ 1√
φ(0)−2−2Cz

.

We extend this result to every continuous functions by density.

Proof. (Lemma 6.1) By an explicit computation, we verify ||uε,M ||L2 = ||u0||L2 .
Moreover we have

uε,M (z,t)=Xε(0,z)u0(t)+ i

∫ z

0

Xε(z′,z)gM (uε,M (z′,t))dz′,

so

∂tu
ε,M (z,t)=Xε(0,z)∂tu0(t)+ i

∫ z

0

Xε(z′,z)∂tu
ε,M (z′,t)g′M (uε,M (z′,t))dz′,

then

||∂tu
ε,M (z)||L2 ≤||∂tu0||L2 +

∫ z

0

||∂tu
ε,M (z′)g′M (uε,M (z′))||L2 dz′

≤||∂tu0||L2 +C

∫ z

0

||∂tu
ε,M (z′)|uε,M (z′)|2||L2 dz′

(C independant of M , only depending on g and u0)

≤||∂tu0||L2 +C

∫ z

0

||uε,M (z′)||2∞||∂tu
ε,M (z′)||L2 dz′

≤||∂tu0||L2 +C

∫ z

0

||uε,M (z′)||3H1 dz′

(Sobolev’s inequality) ,

hence

||uε,M (z)||H1 ≤||u0||H1 +C

∫ z

0

||uε,M (z′)||3H1 dz′.

Following Lemma 6.2, for every z∈ [0,(2C||u0||2H1)−1),

||uε,M (z)||H1 ≤ 1√
||u0||−2

H1−2Cz
.

This upper bound does not depend on M . We choose Z0 < (2C||u0||2H1)−1. For every
z≤Z0, we have

||uε,M (z)||2H1 ≤K0 := (||u0||−2
H1−2CZ0)−1.

By Sobolev’s embedding H1⊂L∞

||uε,M (z)||2∞≤M0 :=CsobK0.
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As fM (x)=x for every x≤M , the solution uε,M of (6.2) does not depend on M and
is also solution of (6.1). This concludes the proof by uniqueness of the solution.

An important consequence of Lemma 6.1 is the extension of result for (4.1) to
(6.1). We define as solution of (6.1) with initial condition u0∈H2 the solution which
is defined in 6.2 for a sufficiently great M . Note that the same procedure can be used
to define the solution of the equation:

u(z,t)=u0(t)+ iσ0

∫ z

0

∂2u

∂t2
(z′,t)◦dW (z′)+ i

∫ z

0

|u(z′,t)|2u(z′,t)dz′. (6.3)

Moreover, the error estimate for the pseudo-spectral split-step scheme and the
diffusion-approximation theorem can be established.

Theorem 6.3. Let u0∈H2, uε (resp. u) the solution of (6.1) (resp. (6.3)) defined as
previously on [0,Z0] where Z0 is defined in Lemma 6.1, (uε,h)h be the pseudo-spectral
split-step scheme for uε defined as in Section 4. Then:
(i) there exists C depending only on M0 defined in Lemma 6.1 such that for every
ε<1, h∈ (0,1], and n satisfying nh≤Z0:

E[||uε,h
n −uε(nh,·)||2L2 ]≤C(h+ε2).

(ii) If σ2
0 =2

∫∞
0
E[m(0)m(z)]dz, then, uε converges in distribution in C([0,Z0],L2) to

u.

7. Optimal error estimate for numerical scheme
We consider in this section the pseudo-spectral split-step scheme for Equation

(5.1) for the effective pulse propagation in an optical fiber. In previous sections, we
have shown by operator-theoretic proofs that the splitting method is an approximation
of the exact solution at least of order 1 in h. In this section we use a formal approach
to compute a Taylor’s development of the error. So it seems that the splitting method
is in fact an approximation of order 2, that is to say:

E[||uh
n−u(nh, ·)||2L2 ]≤Ch2. (7.1)

It would be ideal to present a rigorous proof of this estimate at a mathematical level as
the one presented previously. However the situation turns out to be tricky because the
Taylor’s development follows very fastidious calculations. We shall check in Section 8
by numerical simulations.

We recall and introduce some notations. We consider:

u(z,t)=u0(t)+ iσ0

∫ z

z0

∂2u

∂t2
(z′,t)◦dW (z′)+ i

∫ z

z0

f(|u(z′,t)|2)u(z′,t)dz′, (7.2)

v(z,t)=u0(t)+ iσ0

∫ z

z0

∂2v

∂t2
(z′,t)◦dW (z′), (7.3)

w(z,t)=u0(t)+ i

∫ z

z0

f(|w(z′,t)|2)w(z′,t)dz′. (7.4)

We denote respectively by S(z0,z), X(z0,z) and Y (z−z0) the flows associated to (7.2),
(7.3) and (7.4) with initial conditions on z0 and we let Z(z0,z) :=Y (z−z0)X(z0,z),
Sh

n :=S((n−1)h,nh), Zh
n :=Z((n−1)h,nh), Sh

l→n :=Sh
n ···Sh

l and Zh
l→n :=Zh

n ···Zh
l , if

l<n. Here the bracket 〈·,·〉 (resp. 〈·,·〉L2) stands for the scalar product in R2 (resp.
L2).
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We begin by the computation of local error. Note that the notation O is formal.
We have

S(z0,z)u0 =X(z0,z)u0 + i

∫ z

z0

X(z′,z)g(S(z0,z
′)u0)dz′,

and

g(S(z0,z
′)u0)=g(u0)+〈(X(z0,z

′)u0−u0),g′(u0)〉+O(z′−z0),

then

S(z0,z)u0 =X(z0,z)u0 + i(z−z0)g(u0)

+i

∫ z

z0

〈(X(z0,z
′)u0−u0),g′(u0)〉dz′+O((z−z0)2).

In the same way we get

Z(z0,z)u0 =X(z0,z)u0 + i(z−z0)g(u0)
+i(z−z0)〈(X(z0,z)u0−u0),g′(u0)〉+O((z−z0)2),

so

S(z0,z)u0−Z(z0,z)u0 =F (u0)D(z0,z)+O((z−z0)2), (7.5)

where D(z0,z)=
∫ z

z0
D(z′,z)dz′ with D(z1,z2)=σ0(W (z2)−W (z1)), and F (u0)=

〈(∂2u0/∂t2),g′(u0)〉−(∂2g(u0)/∂t2).
Now we deal with global error. We have

uh
N −u(1,·)=Zh

N ···Zh
1 u0−Sh

N ···Sh
1 u0

=
N∑

j=1

{Zh
n ···Zh

j Sh
j−1 ···Sh

1 u0−Zh
n ···Zh

j+1S
h
j ···Sh

1 u0}.

Taking L2−norm:

||uh
N −u(1,·)||2L2 ≤A+B,

where

A=
N∑

j=1

||Zh
n ···Zh

j Sh
j−1 ···Sh

1 u0−Zh
n ···Zh

j+1S
h
j ···Sh

1 u0||2L2 ,

and

B =
N∑

j,k=1,j 6=k

〈Zh
j→nSh

1→j−1u0−Zh
j+1→nSh

1→ju0,

Zh
k→nSh

1→k−1u0−Zh
k+1→nSh

1→ku0〉L2 ,

where Sh
l0→l1

(resp. Zh
l0→l1

) denotes Sh
l1
···Sh

l0
(resp. Zh

l1
···Sh

l0
). As in the proof of

Theorem 4.1 we get E[A]≤Ch2. Now we want to prove a similar inequality for B.
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We first consider the rough approximation Zh
n ≈1. Letting Dh

j :=D((j−1)h,jh)
and using (7.5) we have

E[B]≈
(

N∑

j,k=1,j<k

+
N∑

j,k=1,j>k

)
E

[
Dh

jDh
k 〈F (Sh

1→j−1u0),F (Sh
1→k−1u0)〉L2

]
.

So, by independence of the increments of the Brownian motion, if j >k we can write

E[Dh
j ]E

[
Dh

k 〈F (Sh
1→j−1u0),F (Sh

1→k−1u0)〉L2

]
,

but E[Dh
j ]=0, then, in a first approximation, E[B]≈0.

Now we consider a more precise development for Zh
n . If we let Dh

n :=D((n−
1)h,nh), then we have Zh

nu0≈u0 + iDh
n∂2u0/∂t2, so

Zh
j→nu0≈u0 + i

n∑

l=j

Dh
l

∂2u0

∂t2
.

Then, by calculations as previously and the fact that W is centered and with inde-
pendent increments, we get E[B]≈0.

We conclude this section by the conjecture: there exist a constant C only depend-
ing on g and u0 such that

E[||uh
n−u(nh, ·)||2L2 ]≤Ch2.

8. Numerical simulations
In this section we solve

i
∂uε

∂z
+

1
ε
m

( z

ε2

)∂2uε

∂t2
+2|uε|2uε =0. (8.1)

We implement the splitting scheme introduced in this paper. The aim of this section
is to estimate by numerical methods the error between the numerical solution and the
exact solution.

First we simulate the random dispersion coefficient. In previous sections we as-
sume that m is a bounded and Markov process, in fact to simplify presentation of the
proofs. All of what precedes can be done in a greater generality. The most important
is that m has rapidly decaying correlations. For instance, it can be assumed that m
is mixing [11]. For a covariance function r, we define the dispersion process m by:
m(z)=

∫ +∞
−∞ exp(−izζ)

√
r̂(ζ)W (dζ), where r̂ is the Fourier transform of r and W is a

Gaussian measure. Then m is a Gaussian process which is centered, stationary and its
covariance function is r. Figure 8.1a give a realization of m when r(z)=exp(−z2/2).
Note that such a process is neither bounded, nor a Markov process, but mixing.

To compute the exact solution uε of (8.1) for z =1 we use the splitting method
introduced in this paper. We recall that Xε(z0,z) and Y (z−z0) denotes, respectively,
the flows associated to the equations

i
∂vε

∂z
+

1
ε
m

( z

ε2

)∂2vε

∂t2
=0 and i

∂w

∂z
+2|w|2w=0, (8.2)

with initial condition on z0. Let ∆z the elementary length step. We choose a soliton-
type initial condition:

u0(t)=
1

cosh(t)
.
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Fig. 8.1. Figure a: A realization of m. Figure b: Input intensity profile (dotted lines) output
profile (solid line) for ε=0.01.
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Fig. 8.2. Error E[||uε,h
1/h

−uε(1, ·)||2
L2 ]. Figure a: for ε=0.01. Figure b: for ε=0.05.

For every n∈{0,...,(∆z)−1−1} we compute uε,∆z
n+1 (t)=uε((n+1)∆z,t) from

uε,∆z
n (t)=uε(n∆z,t):

uε,∆z
n →uε,∆z

n+1 :

{
uε,∆z

n+1/2 :=Xε(n∆z,(n+1)∆z)uε,∆z
n (First step)

uε,∆z
n+1 :=Y (∆z)uε,∆z

n+1/2 (Second step)
.

In Fourier space the effect of the operator Xε(n∆z,(n+1)∆z) is a scalar multipli-
cation by exp

(−(iθ/ε)
∫ (n+1)∆z

n∆z
m(z′/ε2)dz′

)
. Hence, the first step is solved using a

Fourier transform:

uε,∆z
n (t) F−→ ûε,∆z

n (θ)
↓ ↓

uε,∆z
n+1/2(t)

F−1

←− ûε,∆z
n+1/2(θ)= ûε,∆z

n (θ)×exp
(−(iθ2/ε)

∫ (n+1)∆z

n∆z
m(z′/ε2)dz′

)
.

The second step is solved explicitly by exponentiation:

uε,∆z
n+1 =uε,∆z

n+1/2×exp
(
2i∆z|uε,∆z

n+1/2|2
)
.

Figure 8.1b give the input intensity profile and the output profile for a numerical
experiment.
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Fig. 8.3. Error E[||uε,h
1/h

−uε(1, ·)||2
L2 ] in log-log plot (solid line) and the line y =2x (dashed

line). Figure a: for ε=0.01. Figure b: for ε=0.05.

Now we simulate the error E[||uε,h
1/h−uε(1,·)||2L2 ] at z =1 with respect to h. Figures

(8.2a) and (8.2b) give the error E[||uε,h
1/h−uε(1,·)||2L2 ] at z =1 with ε=0.01 and ε=

0.05. Figures (8.3a) and (8.3b) give the error E[||uε,h
1/h−uε(1,·)||2L2 ] in a log-log plot.

Note that this simulations are in good agreement with formal theoretical result
of the previous section: the error is proportional to h2.

Acknowledgement. I thank Josselin Garnier for very helpful suggestions on
this work.
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