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ADIABATIC QUANTUM-FLUID TRANSPORT MODELS∗

NAOUFEL BEN ABDALLAH† , FLORIAN MÉHATS‡ , AND CLAUDIA NEGULESCU§

Abstract. Coupled quantum-fluid models are derived by means of a diffusion approximation
from adiabatic quantum-kinetic models. These models describe the electron transport of a bidimen-
sional electron gas. Particles are confined in one direction (denoted by z) while transport occurs in
an orthogonal direction (denoted by x). The length-scale in the z direction is comparable to the
de Broglie wavelength, while the x-length scale is much bigger. The aim of this paper is to investi-
gate the diffusion limit from quantum-kinetic to quantum-fluid models, which are numerically more
interesting. Transitions between sub-bands are considered in the Fermi Golden rule setting.
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AMS subject classifications. 82D37, 78A35, 35J10, 82B40, 76P05

1. Introduction
Directionally coupled quantum/classical models are suited for the description of

the electron transport in devices in which the electron gas is confined in one direc-
tion and the transport is allowed in the remaining directions. This situation arises
for example in MOSFET transistors, nanotubes, nanowires, etc. In such devices the
length-scale of the confinement direction is of the order of the electron de Broglie
wavelength, such that quantum transport models have to be adopted in this direc-
tion. The length-scale in the transport direction is several times bigger than the de
Broglie wavelength, allowing thus the use of classical models for the electron transport
description.

Such type of subband models are the subject of recent work. In [6] a quan-
tum/kinetic subband model is derived by a partially semi-classical limit from a fully
quantum model. The study of the limit model is then presented in [5, 7], analyzing
the existence of weak or classical solutions for the Schrödinger-Vlasov system, cou-
pled with the Poisson equation. The starting model of the present paper is a similar
quantum/kinetic model, which describes the electron evolution in the confinement
direction by the Schrödinger equation, whereas the transport direction is governed by
the Boltzmann equation.

Quantum kinetic models are computationally rather expensive. In this aim the
derivation of quantum fluid adiabatic models has an important significance for the
semiconductor device simulation. A coupled Schrödinger/Drift-Diffusion system is
investigated in [8]. The purpose of this paper is to derive coupled quantum mesoscopic
models, which are computationally less expensive than the Schrödinger/Boltzmann
system and provide a physically more accurate description of the electron transport
than the Schrödinger/Drift-Diffusion system.
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Depending on the particular choice of the dominant collision mechanism, we show
that the Schrödinger/Boltzmann system tends in the diffusion limit either towards a
coupled Schrödinger/SHE model (Spherical Harmonic Expansion) or towards a cou-
pled Schrödinger/ET model (Energy-Transport). Considering firstly an elastic impu-
rity collision operator, which accounts also for the transitions between the subbands,
a diffusion limit α→0 is carried out formally and rigorously. The parameter α repre-
sents the ratio of the mean free path (between collisions) to the typical macroscopic
device size. The limit model is shown to be a coupled system constituted of the
Schrödinger equation in the confinement direction and the SHE model in the trans-
port one, the latter being a diffusion equation for the energy-dependent distribution
function. In a second part, we assume that the dominant scattering operator consists
of the sum of the elastic operator and the electron-electron collision operator. In
a formal asymptotic approach, the corresponding Schrödinger/Boltzmann system is
shown to relax towards a coupled Schrödinger/ET system. The resulting ET model
in the transport direction is constituted of a balance law for the electron density and
an energy balance equation.

In the pure classical framework, the derivation of fluid models from kinetic ones
has been amply investigated, using moment methods or Hilbert expansions. An
overview of these transport models can be found in [2, 10, 17, 19] as well as in the
following non-exhaustive list of references for the derivation of the SHE model [11, 14],
ET model [3, 4, 13, 20] and DD model [20, 22, 24, 25, 27]. The models derived in
the present paper differ from their classical counterparts in that the energy subbands
depend on the time and the position variables. Moreover the involvement of these
energy subbands in the coefficients of the fluid models, reflects the coupling with the
quantum model in the confinement direction.

The subband models introduced and derived in this paper are based on the fact
that quantum effects and collision mechanisms occur separately in different directions,
due to the geometry of the device. When such an assumption cannot be adopted, our
approach is not relevant and one has to follow a different route. In [9], several SHE
models incorporating quantum effects (in both longitudinal and transversal direc-
tions) are proposed. Let us briefly summarize this approach in order to put our paper
into perspective. In a first step, a quantum SHE model is derived as the diffusive
limit of a Wigner-Boltzmann system. The disadvantage of this approach is the fact
that collisions are modeled in a classical setting, which means that the collision op-
erator is local in the position variable and does not mix position and momentum.
Then, in a second step, a fully quantum SHE model is proposed, whose derivation
is based on the concept of the ”local quantum equilibrium”, introduced in [18], and
using an entropy minimization procedure. The idea consists of replacing the classical
elastic Boltzmann operator with a relaxation operator whose kernel consists of these
quantum equilibrium states (this approach was previously used in [15] in order to get
quantum Drift-Diffusion and quantum Energy-Transport systems; see also [16, 21]).
Unfortunately the so-obtained model presents a complicated non-local structure – it
is not a partial differential system – and its numerical implementation is not an easy
task. Consequently, it seems reasonable to define firstly an approximate model which
would be local in space: such a procedure is proposed in [9] in the semi-classical scal-
ing (O(~4)-approximations are also proposed for the QDD, QET and QHD models in
[15] as well as in [23], ~ being the reduced Planck constant). The present article pro-
poses a complementary strategy: the collisional Wigner equation is firstly (formally)
approximated via a semi-classical limit in the longitudinal directions (the confined
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direction remaining quantized), leading thus to our collisional subband model. Then
the diffusive approximation is performed to obtain a SHE model (or an ET model).

This paper is organized as follows. Section 2 is devoted to the diffusion limit
towards the adiabatic Schrödinger/SHE model. Firstly the properties of the elastic
collision operator are studied and a formal diffusive limit is performed, based on a
Hilbert expansion. The formal result is given in Theorem 2.7. Then a mathematical
rigorous proof is carried out in Section 2.4, the principal rigorous result being pre-
sented in Theorem 2.11. Section 3 deals with the formal diffusion limit towards the
adiabatic Schrödinger/ET model. This formal result is stated in Theorem 3.21.

The rigorous derivation of the Schrödinger/ET model is beyond the aim of this
paper, due to the complexity of the problem, and is deferred to an ulterior work. In
the classical case, the rigorous limit from the Boltzmann equation towards the ET
model was carried out in [4].

2. The diffusion limit towards the SHE model

2.1. The diffusion scaling. Let us consider an electron ensemble in the
slab R2×(0,1) of R3. The first two directions, called x, correspond to the classical
degrees of freedom of the electrons, whereas in the third direction z, quantum effects
take place. For a given electrostatic potential, the electron ensemble can be described
by a sequence (fn) of distribution functions (for the classical directions x∈R2 and
the corresponding velocities v∈R2) and a sequence (χn) of wave functions (for the
quantum direction z). The electron density is written then as

n(t,x,z)=
∑

n≥1

(∫

R2
fn(t,x,v)dv

)
|χn(t,x,z)|2 .

In dimensionless variables, the problem consists of finding for t∈ (0,T ), x∈R2, z∈
(0,1) and v∈R2 the unknowns (εn(t,x),χn(t,x,z),fn(t,x,v))n∈N∗ , where the potential
V (t,x,z) is assumed to be given. The wave functions χn depend parametrically on
t and x, and form a complete sequence of eigenfunctions of the one dimensional
Schrödinger operator− 1

2 d2/dz2 +V . More precisely, χn are solutions of the eigenvalue
problem





−1
2

∂zzχn +V χn =εnχn ,

χn(t,x,·)∈H1
0 (0,1),

∫ 1

0

χnχmdz = δnm ,

(2.1)

where εn are the corresponding eigenvalues. It is known that the eigenvalues are
simple and that they form an increasing sequence tending to +∞ (ε1 <ε2 < ···) [5, 26].
These functions represent the potential energy of the different electron subbands in
the confined z-direction and the index n stands for the n-th subband.

The distribution function fn of the subband n is the solution of the rescaled
Boltzmann equation





∂tfn +
1
α

(v ·∇xfn−∇xεn ·∇vfn)=
1
α2

Q(f)n

fn(0,x,v)=fin,n(x,v),
(2.2)
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where the operator Q accounts for collisions in the subband n, as well as for transitions
between the subbands. We shall denote by f the collection of all the subband distri-
bution functions, f =(fn)n∈N∗ . The collision operator Q is taken under the following
form

Q(f)n :=
∑

m∈N∗

∫

R2
[σ(t,x;m,v′→n,v)fm(t,x,v′)−σ(t,x;n,v→m,v′)fn(t,x,v)] dv′ .

(2.3)
The first term on the right hand side is the gain term, describing the particles “jump-
ing” from the subband m with a longitudinal velocity v′, towards the subband n
and possessing there the longitudinal velocity v. The second term is the usual loss
term. The transition rates σ(t,x;m,v′→n,v) are computed in the Fermi Golden rule
approximation and depend on the nature of the considered collisions.

In the first part of this paper, impurity collisions are considered, such that the
transition rates take the following form

σ(t,x;m,v′→n,v)=αmn(t,x,v′,v)δ(εn(t,x)+
|v|2
2
−εm(t,x)− |v

′|2
2

),

where αmn are the so-called scattering cross sections. The elastic impurity collision
operator Q0 reads then

Q0(f)n =
∑

m∈N∗

∫

R2
αnm(t,x,v,v′)δ(εn +

|v|2
2
−εm− |v

′|2
2

)[fm(t,x,v′)−fn(t,x,v)] dv′ ,

(2.4)
and we shall assume in the sequel the fundamental hypothesis:

Hypothesis 1: The coefficients αnm satisfy the following positivity, boundedness
and symmetry properties, with λ0 and λ1 two positive constants

0<λ0 <αnmN(t,x,εn +
|v|2
2

)<λ1 <+∞ , αnm(t,x,v,v′)=αmn(t,x,v′,v),

where the weight function N , the density of states, which is introduced in Definition
2.3.

Generally, the potential is not a priori known, but is computed self-consistently
by means of the charge density. Denoting by Vext the exterior potential and by Vs

the self-consistent one, then V =Vext +Vs, where Vs is the solution of the Poisson
equation

−∆Vs(t,x,z)=n(t,x,z),

subject to appropriate boundary conditions. In order to keep this paper as simple as
possible, we consider the potential as given. The extension to the self-consistent case
changes nothing to the formal analysis.

2.2. Properties of the collision operator Q0. In this section, we study
the elastic collision operator Q0. In particular, we determine its kernel, prove that
it is a Fredholm operator and show that it is dissipative. We begin by recalling the
coarea formula.
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Lemma 2.1. (Coarea formula) Let d∈N, B⊂Rd, R⊂R. Then for every function
f ∈C(Rd) and g∈C1(B,R) we have

∫

B
f(v)dv =

∫

R

(∫

Sε

f(v)dNε(v)
)

dε,

where Sε :={v∈B ; g(v)=ε} is the surface of constant energy ε, and

dNε(v) :=
dσε(v)
|∇g(v)| ,

is the coarea measure, with dσε(v) being the surface measure on the sphere Sε.

Remark 2.2. In this paper, we shall consider the parabolic band approximation and
take thus g(v) := |v|2

2 , leading to dNε(v)= dσε(v)
|v| . Moreover the surface

Sε−εn
(t,x)=

{
v∈R2 /

|v|2
2

+εn(t,x)=ε

}
,

represents the ensemble of possible velocities of electrons belonging to the n-th sub-
band and having the total energy ε.

Let us now introduce some notations.

Definition 2.3. The following definitions are used all through the paper:
• We define the function N (t,x,ε) :=max{n∈N∗ / εn(t,x)≤ε} with the

convention N (t,x,ε)=0 if ε<ε1(t,x). This represents the number of sub-
bands lying beneath the energy value ε at (t,x). The density of states is thus
defined as

N(t,x,ε) :=
∑

n∈N∗

∫

S
ε−εn

dNε−εn
(v)=2πN (t,x,ε). (2.5)

Remark that in the 2D case we have
∫

S
ε−εn

dNε−εn
(v)=2πH(ε−εn),

with H the Heaviside function.
• We introduce the Hilbert space

L2 :={f =(fn)n∈N∗ ,
+∞∑
n=1

∫

R2
|fn(v)|2dv <+∞},

with the L2 scalar product defined by

〈f,g〉 :=
∑

n∈N∗

∫

R2
fngndv .

• Let H denote a Lipschitz continuous function on R with H(0)=0. Then, for
all f ∈L2, H(f) defined by [H(f)]n =H(fn) is an element of L2.
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• The total energy of an electron, belonging to the n-th subband and having the
velocity v, is shortly denoted by

en(t,x,v) :=εn(t,x)+
|v|2
2

.

With the notations introduced above, we have for some function ψ

∑
n

∫

R2
ψn(v)dv =

∑
n

∫ +∞

εn

(∫

S
ε−εn

ψn(v)dNε−εn
(v)

)
dε,

∑
n

∫

R2
ψn(v)δ(εn +

v2

2
−ε)dv =

∑
n

∫

S
ε−εn

ψn(v)dNε−εn
(v).

We can pass now to the study of the elastic collision operator Q0. The variables t and
x are considered in the following of this section as parameters and are thus omitted
for simplicity.

Proposition 2.4. Under Hypothesis 1, the operator Q0 satisfies the following prop-
erties :
(i) The linear operator Q0 :L2→L2 is a bounded, symmetric, non-positive operator.
(ii) For any increasing Lipschitz continuous function H with H(0)=0, we have the
dissipative inequality

〈Q0(f),H(f)〉≤0, ∀f ∈L2. (2.6)

(iii) For any bounded function ψ :R→R we denote by ψ(e) the sequence (ψ(e))n(v)=
ψ( |v|

2

2 +εn). Defining ψ(e)f by (ψ(e)f)n(v)=ψ( |v|
2

2 +εn)fn(v), we have

Q0(ψ(e)f)=ψ(e)Q0(f) ∀f ∈L2 .

(iv)The Kernel of Q0 is the set

A :={f ∈L2 / ∃ψ :R→R with f =ψ(e)},

and f ∈A if and only if 〈Q0(f),H(f)〉=0 for some strictly increasing Lipschitz con-
tinuous function H. In particular, the collision operator Q0 conserves the mass and
the total energy.

Proof. Let us first prove (i). Like in the scalar case, the symmetry of the operator
Q0 is a direct consequence of the symmetry of the cross sections αnm, while the
negativity is a consequence of the positivity of these cross sections. Namely, it is
immediately seen that

〈Q0f,g〉=−1
2

+∞∑
m,n=1

∫

R2×R2
αm,n δ(εm + |v′|2/2−εn−|v|2/2)(f ′m−fn)(g′m−gn)dv′dv ,

(2.7)
where we have dropped the (t,x) dependence for notational simplicity and where
we have used the usual notation f ′m =fm(v′), fn =fn(v). The right-hand side being
invariant when the roles of f and g are exchanged, the operator Q0 is symmetric. The
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negativity of Q0 is also immediate as well as item (ii). Let us now prove that Q0 is
bounded on L2. To this aim, it is enough to prove that

|〈Q0f,g〉|≤C‖f‖‖g‖ ∀f,g∈L2 .

From (2.7), a simple Cauchy-Schwarz inequality leads to

|〈Q0f,g〉|≤A(f)A(g),

where

A(h)2 =
1
2
λ1

∑
m,n

∫

R2

∫

R2

1

N(εn + |v|2
2 )

δ(εm +
|v′|2
2
−εn− |v|

2

2
)(h′m−hn)2dvdv′

≤ λ1

∑
m,n

∫ ∫
1

N(εn + |v|2
2 )

δ(e′m−en)((h′m)2 +h2
n)dvdv′

= 2λ1

∑
m,n

∫ ∫
1

N(εn + |v|2
2 )

δ(e′m−en)h2
ndvdv′

= 2λ1

∑
n

∫ ∞

ε1

∫

S
ε−εn

(∑
m

∫

S
ε−εm

dNε−εm
(v′)

)
1

N(ε)
h2

n(v)dNε−εn
(v)dε

= 2λ1

∑
n

∫ ∞

ε1

∫

S
ε−εn

h2
n(v)dNε−εn

(v)dε=2λ1‖h‖2,

which finishes the proof of item (i). Besides, item (iii) is immediate. Let us now prove
item (iv). It is clear that A is a subset of ker(Q0). Let now H be strictly increasing
and such that 〈Q0(f),H(f)〉=0. From (2.7), we deduce that fm(v′)=fn(v) whenever
εm + |v′|2

2 =εn + |v|2
2 . This is satisfied if and only if f is a function of the energy,

f =ψ(e).

Let us now prove that −Q0 is coercive on the orthogonal to its kernel.

Proposition 2.5. The operator Q0 satisfies the following properties:
(i) The orthogonal to the kernel of Q0 is given by

ker(Q0)⊥ :={f ∈L2, such that
∑

n

∫

S
ε−εn

fn(v)dNε−εn
(v)=0 for a.a. ε≥ε1}.

(ii) There exists a constant C >0, such that

−〈Q0(f),f〉≥C‖f‖2, ∀ f ∈ker(Q0)⊥. (2.8)

(iii) The range R(Q0) is closed and coincides with ker(Q0)⊥.

Proof. Item (i) is immediate and item (iii) is a direct consequence of item (ii). It
remains to show (ii). The starting point is

−〈Q0(f),f〉 =
1
2

+∞∑
m,n=1

∫

R2×R2
αm,n(v′,v)δ(εm +

|v′|2
2
−εn− |v|

2

2
)(f ′m−fn)2dv′dv

≥ 1
2
λ0

+∞∑
m,n=1

∫

R2×R2

1

N(εn + |v|2
2 )

δ(e′m−en)(f ′2m−2fnf ′m +f2
n)dv′dv .
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Using the fact, that f ∈ker(Q0)⊥, we have

+∞∑
m,n=1

∫

R2×R2

1
N(en)

δ(e′m−en)fnf ′mdv′dv =0 ,

implying

−〈Q0(f),f〉 ≥ 1
2
λ0

+∞∑
m,n=1

∫

R2×R2

1
N(en)

δ(e′m−en)(f ′2m +f2
n)dv′dv

= λ0

+∞∑
m,n=1

∫

R2×R2

1
N(en)

δ(e′m−en)f2
n dv′dv

= λ0

+∞∑
n=1

∫ ∞

ε1

∫

S
ε−εn

|fn(v)|2dNε−εn
(v)dε=λ0‖f‖2 .

Remark 2.6. Defining by

P : L2→ker(Q0); P⊥ : L2→ ker(Q0)⊥ ,

the projections on the kernel respectively on the orthogonal of the kernel of Q0, such
that P⊥(f)=(Id−P)(f), we can express the coercivity inequality (2.8) as

−〈Q0(f),f〉≥C‖f−Pf‖2, ∀ f ∈L2 . (2.9)

2.3. The diffusion limit α→0: formal approach. We investigate in this
section the formal limit α→0 in order to derive from the above model a quantum-fluid
subband model, corresponding to the chosen elastic collision operator Q0. The limit
model will be quantum in the confined z-direction, and in the transport direction x
we shall get the SHE model. This diffusion approximation is based upon the Hilbert
expansion

fα =f0 +αf1 +α2f2 + ··· (2.10)

Inserting this expansion in (2.2) and identifying equal powers of α, leads to the equa-
tions

Q0(f0)n =0, (2.11)

Q0(f1)n =v ·∇xf0
n−∇xεn ·∇vf0

n, (2.12)

Q0(f2)n =∂tf
0
n +v ·∇xf1

n−∇xεn ·∇vf1
n. (2.13)

The first equation and Proposition 2.4 imply the existence of an energy dependent
function F (t,x,ε), such that

f0
n(t,x,v)=F (t,x,

|v|2
2

+εn). (2.14)
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The second equation can then be rewritten as

Q0(f1)n(t,x,v)=v ·(∇xF )(t,x,
|v|2
2

+εn).

Denoting

G(t,x,ε) :=∇xF (t,x,ε),

we have

Q0(f1)=vψ(e) ·G
ψ

(e),

where ψ :R→R is a function, such that vψ(e)∈L2. It is then readily seen that
vψ(e)∈ker(Q0)⊥, so that the equation

−Q0(h)=vψ(e),

admits a unique solution in ker(Q0)⊥, that we write h=ϑψ(e). Therefore, the only
solution f1∈ker(Q0)⊥ of (2.12) is defined by

f1 =−ϑ ·G(e). (2.15)

This last equation has to be understood as follows

f1
n(t,x,v)=−ϑn(t,x,v) ·G(t,x,εn +

|v|2
2

),

where ϑn is a vector-valued function in R2 (as well as G(·)∈R2). Remark that ϑ is
independent from the choice of the function ψ.
Now in order to assure the solvability of equation (2.13), it is necessary and sufficient
that the right-hand side belongs to ker(Q0)⊥. This leads to the solvability condition

∑
n

∫

S
ε−εn

(∂tf
0
n +v ·∇xf1

n−∇xεn ·∇vf1
n) dNε−εn

(v)=0 , for a.a. ε≥ε1 .

Multiplication with an arbitrary energy-dependent test function ϕ∈C0(R) and inte-
gration with respect to the energy variable ε, yields

∫ ∞

ε1

∑
n

∫

S
ε−εn

(∂tf
0
n +v ·∇xf1

n−∇xεn ·∇vf1
n) dNε−εn

(v) ϕ(ε) dε=0 . (2.16)

The first term gives

∫ ∞

ε1

∑
n

∫

S
ε−εn

∂tf
0
n dNε−εn

(v) ϕ(ε) dε=
∫ ∞

ε1

∑
n

∫

S
ε−εn

(∂tF +∂εF∂tεn) dNε−εn
(v) ϕ(ε) dε

=
∫ ∞

ε1

∂tF N ϕ(ε) dε+
∫ ∞

ε1

∂εF

(∑
n

∂tεn

∫

S
ε−εn

dNε−εn
(v)

)
ϕ(ε) dε.
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Using (2.15) we can deduce furthermore
∫ ∞

ε1

∑
n

∫

S
ε−εn

v ·∇xf1
n dNε−εn

(v) ϕ(ε) dε=
∑

n

∫

R2
∇x ·(v f1

n) ϕ(en) dv =

=∇x ·
[∑

n

∫

R2
v f1

n ϕ(en) dv

]
−

∑
n

∫

R2
f1

n v ·∇xεn ϕ′(en) dv

=−
∫ ∞

ε1

∇x ·
[∑

n

∫

S
ε−εn

v⊗ϑn dNε−εn
(v) ·∇xF

]
ϕ(ε) dε−

∑
n

∫

R2
f1

n v ·∇xεn ϕ′(en)dv ,

and for the last term of (2.16)

−
∫ ∞

ε1

∑
n

∫

S
ε−εn

∇xεn ·∇vf1
n dNε−εn

(v) ϕ(ε) dε=−
∑

n

∫

R2
∇v ·(f1

n∇xεn) ϕ(en) dv =

=
∑

n

∫

R2
f1

n∇xεn ·v ϕ′(en) dv .

Concluding, the solvability condition for equation (2.13) reads for all test functions
ϕ∈C0(R)

∫ ∞

ε1

∂tF N ϕdε+
∫ ∞

ε1

∂εF κ ϕdε+
∫ ∞

ε1

∇x ·J ϕ dε=0 ,

where we used the notations

J(t,x,ε) :=
∑

n

∫

S
ε−εn

vf1
n dNε−εn

(v)=−
∑

n

∫

S
ε−εn

(v⊗ϑn)dNε−εn
(v) ·∇xF ,

(2.17)
with

D(t,x,ε) :=
∑

n

∫

S
ε−εn

v⊗ϑn dNε−εn
(v), (2.18)

the so-called diffusion matrix. Moreover we denoted

κ(t,x,ε) :=
∑

n

∂tεn

∫

S
ε−εn

dNε−εn
(v)=−2π∂t

(∑
n

(ε−εn)+
)

. (2.19)

Recalling the definition of the density of states

N(t,x,ε)=
∑

n∈N∗

∫

S
ε−εn

dNε−εn
(v), (2.20)

we observe that we have in a distributional sense the relation

∂tN(t,x,ε)=−∂εκ(t,x,ε).

Thus we deduce the following important theorem

Theorem 2.7. (Formal diffusion limit). The system of equations (2.11)-(2.13),
deduced from the Hilbert expansion (2.10), is solvable if and only if f0 and f1 are
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determined by (2.14), (2.15), and the distribution function F (t,x,ε) satisfies the fol-
lowing diffusion equation in the position-energy space

N∂tF +∇x ·J +κ∂εF =0 , (2.21)

where the current density is given by

J(t,x,ε)=−D(t,x,ε) ·∇xF (t,x,ε), (2.22)

and N , D, κ are defined in (2.20), (2.18), (2.19).

This model is referred to as the SHE model. In contrast to the Boltzmann equation,
the distribution function F , solution of the SHE model, is only energy dependent. Due
to the elastic collisions, the angular dependence of the electron velocity is averaged in
the diffusion limit.

Hereby we shall also remark, that a similar equation is obtained for the 1D case,
in the diffusion limit α→0 of the following rescaled Boltzmann equation





∂tf +
1
α

(∇vε ·∇xf−∇xε ·∇vf)=
1
α2

Q(f)

f(0,x,v)=fin(x,v),

where ε(t,x,v) is an arbitrary regular function, satisfying ε(t,x,v)=ε(t,x,−v). In
the limit we get the diffusion equation

(∂tF )N +∇x ·J +(∂εF )κ=0 ,

with J :=−D ·∇xF and

D(t,x,ε) :=
∫

Sε

∇vε⊗ϑdNε(v) ; κ(t,x,ε) :=
∫

Sε

∂tε dNε(v) ; N =
∫

Sε

dNε(v),

the surface of constant energy being defined as Sε :={v∈R2 / ε(t,x,v)=ε}.
Let us now state an important property of the diffusion matrix D, corresponding

to the SHE model (2.21)-(2.22).

Lemma 2.8. The diffusion matrix D(t,x,ε), defined in (2.18) is a symmetric, non-
negative 2×2 matrix, satisfying

D(t,x,ε)≥C
∑

n

∫

S
ε−εn

v⊗v dNε−εn
(v), (2.23)

with a constant C >0 independent on t, x and ε.

Proof. Let t and x be fixed parameters within this proof. Moreover let ϕ∈C0(R)
be an arbitrary test function with compact support, and ψ :R→R a function, such
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that vψ(e)∈L2. Then using the selfadjointness of the operator Q0, we have
∫ ∞

ε1

Dij(ε)ϕ(ε)dε =
∫ ∞

ε1

∑
n

∫

S
ε−εn

vi ϑj
n dNε−εn

(v)ϕ(ε) dε

=
∑

n

∫

R2
(vi ψ(en))

(
1

ψ(en)
ϑj

nϕ(en)
)

dv

= −
∑

n

∫

R2
Q0(ϑi ψ(e))n

(
1

ψ(en)
ϑj

nϕ(en)
)

dv

= −
∑

n

∫

R2

(
ϑi

n

1
ψ(en)

)
Q0(ψ(e)ϑj)n ϕ(en) dv

=
∑

n

∫

R2
ϑi

n vj ϕ(en) dv =
∫ ∞

ε1

Dji(ε) ϕ(ε) dε.

Since ϕ was arbitrary, we deduce the equality Dij(ε)=Dji(ε) for a.a. ε∈ [ε1,∞). The
non-negativity is a direct consequence of the inequality (2.23). To prove this inequal-
ity, let ϕ∈C0(R) be a test function, with ϕ≥0. Note, that in this case v

√
ϕ(e)∈L2.

Let (ξ1,ξ2)∈R2 be fixed, we have

∫ ∞

ε1

ϕ(ε)
2∑

i,j=1

Dij(ε)ξi ξj dε=
∫ ∞

ε1

∑
n




∫

S
ε−εn

ϕ(ε)
∑

i,j

vi ϑj
n ξi ξj dNε−εn

(v)


dε=

=
∑

n

∫

R2

∑

i

(√
ϕ(en) vi ξi

)∑

j

(√
ϕ(en) ϑj

n ξj

)
dv

=−
∑

n

∫

R2
Q0

(
2∑

i=1

√
ϕ(e) ϑi ξi

)

n




2∑

j=1

√
ϕ(en)ϑj

n ξj


 dv.

Using the coercivity and the boundedness of the operator Q0, we deduce
∫ ∞

ε1

ϕ(ε)
∑

i,j

Dij(ε) ξi ξj dε≥C ||
2∑

i=1

ϑi ξi

√
ϕ(e) ||2≥C ||Q0

(
2∑

i=1

ϑi ξi

√
ϕ(e)

)
||2

=C ||Q0(ϑ
√

ϕ(e)) ·ξ||2 =C ||
√

ϕ(e) v ·ξ ||2

=C
∑

n

∫ ∞

ε1

ϕ(ε)
∫

S
ε−εn

|v ·ξ|2 dNε−εn
(v) dε

=C
∑

n

∫ ∞

ε1

ϕ(ε)
∫

S
ε−εn

∑

i,j

(v⊗v)ij ξi ξj dNε−εn
(v) dε

=C

∫ ∞

ε1

ϕ(ε)
∑

i,j

[∑
n

(∫

S
ε−εn

(v⊗v)ij dNε−εn
(v)

)]
ξi ξj dε

for all ϕ∈C0(R), ϕ≥0, which implies (2.23).

In a simplified case, we can give the exact expression for the diffusion matrix D and
show that the estimate (2.23) is sharp. Let us consider cross sections of the form

αnm(t,x,v,v′) :=α(t,x,εn +
|v|2
2

),



N. BEN ABDALLAH, F. MÉHATS AND C. NEGULESCU 633

with α(t,x,ε) an energy dependent function. Then we are able to determine the
expression of the unique solution h∈ (kerQ0)⊥ of −Q0(h)=vψ(e). Indeed

Q0(h)n(v)=
∑
m

∫

R2
α(t,x,en)δ(en−e′m)h′mdv′−

∑
m

∫

R2
α(t,x,en)δ(en−e′m)dv′hn .

The first term vanishes, as h∈ (kerQ0)⊥. Hence

−Q0(h)n(v)=α(t,x,en)
∫ ∞

ε1

∑
m

∫

S
ε−εm

δ(en−e′m)dNε−εm
(v)dεhn =α(en)N(en)hn(v),

implying

hn(t,x,v)=v
ψ(en)

α(t,x,en)N(t,x,en)
⇒ ϑn(t,x,v)=

1
α(t,x,en)N(t,x,en)

v .

Consequently, the diffusion matrix D has the explicit form

D(t,x,ε) =
1

α(t,x,ε)N(t,x,ε)

∑
n

∫

S
ε−εn

v⊗v dNε−εm
(v)

=
2π

α(t,x,ε)N(t,x,ε)

∑
n

(ε−εn)+Id,

with Id the identity matrix.

2.4. The rigorous approach. This section is devoted to the rigorous proof
of the convergence of the solution corresponding to the adiabatic quantum/kinetic
model (2.1)-(2.2) towards the solution corresponding to the quantum/fluid model
(2.1), (2.21), (2.22), which was formally derived in the last section. We first claim the
following existence result for the one-dimensional Schrödinger equation (2.1). Details
can be found in [5].

Lemma 2.9. Let the potential V be a fixed real-valued function belonging to
C1([0,T ]; W 1,∞(R2× [0,1])). The eigenvalue problem (2.1) admits a unique solution
(εn,χn)n∈N∈C1([0,T ];W 1,∞(R2))×C1([0,T ];W 1,∞(R2× [0,1])).

To precisely describe the right functional framework, we have to introduce some new
notations.

• We shall denote by L2 and L2
x,εloc

the following spaces

L2 :=

{
f =(fn(x,v))n∈N /

∑
n

∫

R2×R2
|fn(x,v)|2dvdx<∞

}
,

L2
x,εloc

:=
{

ρ :R2×R→R /

∫

R2

∫

K

|ρ(x,ε)|2dεdx<∞, ∀K⊂R bounded
}

.

• The transport operator Λ is defined by

Λ :D(Λ)→L2 ; (Λg)n(x,v) :=v ·∇xgn−∇xεn ·∇vgn ,

with the domain and corresponding norm

D(Λ) :={g∈L2 / Λg∈L2}; ||g||2D(Λ) := ||g||2L2 + ||Λg||2L2 .
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The weak formulation of the Boltzmann equation (2.2) is given in the following

Definition 2.10. A function fα∈L2(0,T,L2) is called a weak solution of (2.2), if
fα satisfies

∑
n

∫ T

0

∫

R2×R2
fα

n ∂tϕn dvdxdt+
1
α

∑
n

∫ T

0

∫

R2×R2
fα

n (Λϕ)n dvdxdt

+
1
α2

∑
n

∫ T

0

∫

R2×R2
Q0(fα)nϕn dvdxdt=−

∑
n

∫

R2×R2
fα

in,nϕn(0) dvdx,

(2.24)
for all test functions ϕ belonging to

S :=
{
ϕ∈W 1,2(0,T ;L2)∩L2(0,T ;D(Λ)) , ϕ(T, ·,·)≡0

}
.

The goal of this section is to prove the following main theorem:

Theorem 2.11. (Rigorous diffusion limit). Let fα be the weak solution of the
Boltzmann equation (2.2) for α>0 and let fα

in converge in L2 towards a function fin,
as α→0. Then, up to a subsequence, fα converge weakly in L2(0,T ;L2) towards a
function f which is only energy-dependent, that means

fn(t,x,v)=F (t,x,εn(t,x)+
|v|2
2

),

and the distribution function F satisfies in a weak sense the following SHE model

∂t(N F )+∇x ·J +∂ε(Fκ)=0 , (2.25)

with the current density given by

J(t,x,ε)=−D(t,x,ε) ·∇xF (t,x,ε), (2.26)

and the initial data

F (0,x,ε)=Fin(x,ε) :=
1

N(0,x,ε)

∑
n

∫

S
ε−εn(0,x)

fin,n(x,v)dNε−εn
(v), (2.27)

where N , D, κ are defined in (2.20), (2.18), (2.19).

Remark 2.12. The weak formulation of the continuity equation (2.25) reads
∫ T

0

∫

R2

∫

R
N F ∂tΦ dεdxdt+

∫ T

0

∫

R2

∫

R
J ·∇xΦ dεdxdt+

∫ T

0

∫

R2

∫

R
F κ∂εΦ dεdxdt=

=−
∫

R2

∫

R
N(0,x,ε)Fin(x,ε)Φ(0,x,ε) dεdx, ∀Φ∈C1

0 ([0,T )×R2×R),

(2.28)
whereas the current equation has the following weak form
∫ T

0

∫

R2

∫

R
J ·Ψ dεdxdt=

∑
n

∫ T

0

∫

R2×R2
(Λf)nQ−1

0 (v ·Ψ)n dvdxdt,

∀Ψ∈C0([0,T ]×R2×R)2 .
(2.29)
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The derivation of the current weak formulation (2.29) is immediate by observing that

∑
n

∫ T

0

∫

R2×R2
(Λf)nQ−1

0 (v ·Ψ)n dvdxdt=−
∑

n

∫ T

0

∫

R2×R2
(∇xF ·v)(ϑn ·Ψ)dvdxdt

=−
∫ T

0

∫

R2

∫ ∞

ε1

∇xF (t,x,ε) ·
(∑

n

∫

S
ε−εn

v⊗ϑndNε−εn
(v)

)
·Ψ(t,x,ε) dεdxdt.

To justify the existence of all these integrals, we show later on, that the involved
functions belong to the right functional spaces.

The proof of Theorem 2.11 is done in several steps. Establishing a priori estimates,
the sequence {fα} of weak solutions of (2.2) is shown to be bounded in L2(0,T,L2).
This implies the existence of a function f ∈L2(0,T,L2) such that, up to a subsequence,
fα→f weakly in L2(0,T,L2). It will be proven in a next step that this limit function
is only energy-dependent. Finally, passing to the limit in the weak formulation (2.24),
with special choices of test functions, enables us to get the desired equation.

Lemma 2.13. The Boltzmann equation (2.2) admits for each α>0 and fα
in∈L2 a

unique weak solution fα∈L2(0,T ;L2).

Proof. To prove this lemma, we shall use a fixed point argument. Let us define
for a fixed α>0 the application

τ :L2(0,T ;L2)→L2(0,T ;L2); fold 7→fnew ,

with fnew solution of




∂tf
new
n +

1
α

(v ·∇xfnew
n −∇xεn ·∇vfnew

n )+
1
α2

Q−0 (fnew)n =
1
α2

Q+
0 (fold)n

fnew(0,x,v)=fin,n(x,v),
(2.30)

where Q+
0 and Q−0 are the gain respectively loss terms, given by

Q+
0 (f)n(t,x,v) =

∑

m∈N∗

∫

R2
αnm(t,x,v,v′)δ(en−e′m)fm(t,x,v′)dv′ ,

Q−0 (f)n(t,x,v) =
∑

m∈N∗

∫

R2
αnm(t,x,v,v′)δ(en−e′m)dv′ fn(t,x,v).

The idea is to prove that this application is a contraction and admits thus a fixed
point f ∈L2(0,T,L2). Our first concern shall be to show that τ is well defined. For
this let fold∈L2(0,T,L2). By standard existence results for the transport equation,
we deduce for each n∈N∗ the existence of a weak solution fnew

n ∈L∞(0,T,L2
x,v) of

(2.30), satisfying the estimate

||fnew
n (t,·,·)||L2

x,v
≤||fin,n(·,·)||L2

x,v
+

1
α2

∫ t

0

||(Q+
0 (fold))n(s)||L2

x,v
ds for a.a. t∈ (0,T ).

This implies after a summation over n

||fnew(t,·,·)||2L∞(0,T,L2)≤2||fin||2L2 +2T
1
α4
||Q+

0 (fold)||2L2(0,t,L2) ,
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yielding fnew ∈L∞(0,T,L2)⊂L2(0,T,L2). To prove that τ is a contraction, we shall
introduce a new equivalent norm in L2(0,T,L2), by

||g||2δ :=
∫ T

0

e−δt||g(t,·,·)||2L2 dt ∀g∈L2(0,T,L2).

The parameter δ >0 shall be specified later on. With this norm, we have

||τ(fold
1 )−τ(fold

2 )||δ = ||fnew
1 −fnew

2 ||δ =
∫ T

0

e−δt||fnew
1 (t)−fnew

2 (t)||2L2 dt

≤ 2T

α4

∫ T

0

e−δt

∫ t

0

||Q+
0 (fold

1 −fold
2 )(s)||2L2dsdt

=
2T

α4

∫ T

0

∫ T

s

e−δt||Q+
0 (fold

1 −fold
2 )(s)||2L2dtds

≤ 2cT

α4

∫ T

0

||fold
1 (s)−fold

2 (s)||2L2
e−δs−e−δT

δ
ds

≤ 2cT

α4δ
||fold

1 −fold
2 ||2δ .

For fixed α>0 and T , we can choose δ >0 in such a manner, that the application τ
is a contraction in (L2(0,T ;L2),|| · ||δ). Thus τ admits a fixed point f ∈L2(0,T,L2),
unique weak solution of the Boltzmann equation (2.2).

Lemma 2.14. The weak solutions fα of the rescaled Boltzmann equation (2.2) form
a bounded sequence in L2(0,T ;L2), such that up to a subsequence fα→f weakly in
L2(0,T ;L2), as α→0. Moreover there exists an energy-dependent function F (t,x,ε)
such that the limit function f reads

fn(t,x,v)=F (t,x,εn +
|v|2
2

).

Proof. Multiplying (2.2) with fα and integrating with respect to (t,x,v), leads to

1
2

∑
n

∫ t

0

∫

R2×R2
∂t|fα

n |2dvdxds=
1
α2

∑
n

∫ t

0

∫

R2×R2
Q0(fα)nfα

n dvdxds,

implying

1
2
||fα(t,·,·)||2L2 =

1
2
||fα

in(·,·)||2L2 +
1
α2

∑
n

∫ t

0

∫

R2×R2
Q0(fα)nfα

n dvdxds. (2.31)

This procedure requires some regularity for the functions fα. However a standard
regularisation technique permits us to deduce (2.31) even for fα∈L2(0,T,L2). The
non-positivity of the operator Q0 and the boundedness of the sequence fα

in imply

||fα(t,·,·)||2L2 ≤||fα
in(·,·)||2L2 ≤ c, ∀α>0,

establishing thus the boundedness of the sequence fα in L∞(0,T ;L2). Consequently,
up to a subsequence, fα is weakly convergent in L2(0,T ;L2) as α tends to zero. It
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remains to prove that the limit function f is only energy dependent. For this, we
multiply equation (2.31) by α2 and pass to the limit α→0. Thus, we have

∑
n

∫ t

0

∫

R2×R2
Q0(fα)nfα

n dvdxds→0, ∀t∈ [0,T ].

With (2.9) this yields P⊥fα→0 in L2(0,T,L2), hence Q0(fα)=Q0(P⊥fα)→0. As
however fα ⇀f and thus Q0(fα)⇀Q0(f) in L2(0,T,L2), we get Q0(f)=0. Conse-
quently, the limit function f belongs to the kernel of Q0.

It remains to show that the limiting distribution function F of Lemma 2.14 sat-
isfies in a weak sense the SHE model (2.25), (2.26). For this, it will be of use to
introduce the electron and the current densities associated to the statistics fα

ρα(t,x,ε) :=
∑

n

∫

S
ε−εn

fα
n (t,x,v)dNε−εn

(v), Jα(t,x,ε) :=
1
α

∑
n

∫

S
ε−εn

vfα
n dNε−εn

(v),

as well as the terms

Γα(t,x,ε) :=
∑

n

∂tεn

∫

S
ε−εn

fα
n (t,x,v)dNε−εn

(v), ρα
in(x,ε) :=

∑
n

∫

S
ε−εn(0,x)

fα
in,ndNε−εn

.

Using the boundedness of the distribution functions fα in L2(0,T,L2) and choosing
in (2.24) the particular test function ϕ1∈S given by

ϕ1
n(t,x,v) :=Φ(t,x,εn +

|v|2
2

), (2.32)

with Φ∈C1
0 ([0,T )×R2×R), we can show immediately:

Lemma 2.15. (i) The energy-dependent functions (ρα,Jα,Γα)∈L2(0,T ;L2
x,εloc

)4 and
the initial data ρα

in∈L2
x,εloc

satisfy in a weak sense the following system
{

∂tρ
α +∇x ·Jα +∂εΓα =0

ρα(0)=ρα
in .

(ii) The sequences ρα,Jα,Γα as well as ρα
in are bounded in the corresponding spaces

and thus (up to a subsequence) weakly convergent for α→0 towards some functions
(ρ,J,Γ)∈L2(0,T ;L2

x,εloc
)4 and ρin∈L2

x,εloc
. These limit functions satisfy the following

equation
∫ T

0

∫

R2

∫

R
ρ∂tΦ dεdxdt+

∫ T

0

∫

R2

∫

R
J ·∇xΦ dεdxdt+

∫ T

0

∫

R2

∫

R
Γ∂εΦ dεdxdt=

=−
∫

R2

∫

R
ρin(x,ε)Φ(0,x,ε) dεdx, ∀Φ∈C1

0 ([0,T )×R2×R).

(2.33)

Proof. It remains to show that Jα is a bounded sequence in L2(0,T ;L2
x,εloc

)2. For
this let us decompose fα as follows

fα =hα +αgα with hα :=Pfα ; gα :=
1
α
P⊥fα . (2.34)
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Thus
∫ T

0

∫

R2

∫

K

|Jα(t,x,ε)|2dεdxdt=
∫ T

0

∫

R2

∫

K

∣∣∣∣∣
∑

n

∫

S
ε−εn

gα
n(t,x,v)vdNε−εn

(v)

∣∣∣∣∣

2

dεdxdt

≤
∫ T

0

∫

R2

∫

K

(∑
n

∫

S
ε−εn

|gα
n(t,x,v)|2dNε−εn

(v)

)(∑
n

∫

S
ε−εn

|v|2dNε−εn
(v)

)
dεdxdt

≤ cK <∞,

where cK >0 is a constant independent on α. For this last estimate we used the
coercivity inequality (2.8) as well as equation (2.31), and the fact, that K is a bounded
set.

In order to finish the proof of the main theorem, it remains to express the limit
functions ρ,J,Γ and ρin in terms of the distribution function F .

Proof of Theorem 2.11. For the identification of the functions ρ,J,Γ and ρin, we
shall use the fact that fα ⇀f in L2(0,T,L2). Thus we have for some arbitrary test
function Φ∈C1

0 ([0,T )×R2×R)
∫ T

0

∫

R2

∫

R
ρα(t,x,ε)Φ(t,x,ε)dεdxdt=

∑
n

∫ T

0

∫

R2×R2
fα

n (t,x,v)Φ(t,x,εn +
|v|2
2

)dvdxdt

−→α→0

∫ T

0

∫

R2

∫

R
F (t,x,ε)N(t,x,ε)Φ(t,x,ε)dεdxdt.

But since ρα ⇀ρ in L2(0,T,L2), we get ρ=F N ∈L2(0,T ;L2
x,εloc

). Similarly due to
the fact that fα

in→fin in L2, we deduce ρin =FinN(0)∈L2
x,εloc

. Furthermore

∫ T

0

∫

R2

∫

R
Γα(t,x,ε)Φ(t,x,ε)dεdxdt=

∑
n

∫ T

0

∫

R2×R2
fα

n ∂tεnΦ(t,x,εn +
|v|2
2

)dvdxdt

−→α→0

∫ T

0

∫

R2

∫

R
F (t,x,ε)

(∑
n

∂tεn

∫

S
ε−εn

dNε−εn
(v)

)
Φ(t,x,ε)dεdxdt,

implying Γ=F κ∈L2(0,T ;L2
x,εloc

). And finally, let us analyse the limit of the following
term

∫ T

0

∫

R2

∫

R
Jα ·Ψdεdxdt=

1
α

∑
n

∫ T

0

∫

R2×R2
fα

n (t,x,v)v ·Ψ dvdxdt,

for some test function Ψ∈C0([0,T ]×R2×R)2. For this, let us consider again the
decomposition (2.34), implying, in view of v ·Ψ∈ker(Q0)⊥, that

1
α

∑
n

∫ T

0

∫

R2×R2
fα

n (v ·Ψ)n dvdxdt=
∑

n

∫ T

0

∫

R2×R2
gα

n (v ·Ψ)n dvdxdt.

As shown in the proof of Lemma 2.15, the sequence gα is bounded in L2(0,T,L2), and
thus converges weakly (up to a subsequence) towards some function g∈L2(0,T,L2),
leading to

∑
n

∫ T

0

∫

R2×R2
gα

n(v ·Ψ)n dvdxdt→
∑

n

∫ T

0

∫

R2×R2
gn(v ·Ψ)n dvdxdt.
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To finish the proof we have to express this last integral in terms of the distribution
function F . For this purpose, let us insert the decompostion (2.34) in the variational
formulation (2.24), where ϕ∈S is an arbitrary test function, deducing thus

∑
n

∫ T

0

∫

R2×R2
hα

n(Λϕ)n dvdxdt+
∑

n

∫ T

0

∫

R2×R2
Q0(gα)nϕn dvdxdt=O(α).

Here we used the fact, that fα, gα and hα are bounded sequences in L2(0,T,L2)
and O(α) stands for the terms of the order one in α. From (2.34), one can deduce
immediately that hα ⇀f in L2(0,T,L2), such that passing to the limit in the last
equation yields

∑
n

∫ T

0

∫

R2×R2
fn(Λϕ)n dvdxdt+

∑
n

∫ T

0

∫

R2×R2
Q0(g)nϕn dvdxdt=0 , (2.35)

which shows that Λf =∇xF ·v is a well defined function in L2(0,T,L2). Choosing at
this stage the special function ϕ2∈L2(0,T,L2) (unique in ker(Q0)⊥), given by

ϕ2 :=Q−1
0 (v ·Ψ),

we have by using (2.35)

∑
n

∫ T

0

∫

R2×R2
gn(v ·Ψ)n dvdxdt =

∑
n

∫ T

0

∫

R2×R2
gnQ0(ϕ2)n dvdxdt=

=
∑

n

∫ T

0

∫

R2×R2
(Λf)nϕ2

n dvdxdt=
∑

n

∫ T

0

∫

R2×R2
(Λf)n(Q−1

0 (v ·Ψ))n dvdxdt.

Altogether we have thus ∀Ψ∈C0([0,T ]×R2×R)2

∫ T

0

∫

R2

∫

R
Jα ·Ψdεdxdt−→α→0

∑
n

∫ T

0

∫

R2×R2
(Λf)n(Q−1

0 (v ·Ψ))n dvdxdt,

which proves that J ∈L2(0,T ;L2
x,εloc

) is a solution of the weak formulation (2.29).
This fact, as well as equation (2.33) permits us to finish the proof of the main
theorem.

3. The diffusion limit towards the ET model
In the previous section we have derived the coupled Schrödinger/SHE model from

the Schrödinger/Boltzmann system, by assuming that the elastic impurity collisions
are predominant. In this section we shall perform another relaxation limit, based on
a different collision mechanism, constituted of the elastic impurity scattering and the
electron-electron scattering. In the limit of a vanishing rescaled free mean path α→0,
we shall get the coupled Schrödinger/ET model.

Starting point is the coupled model composed of the rescaled Boltzmann equation
in the transport direction x





∂tfn +
1
α

(v ·∇xfn−∇xεn ·∇vfn)=
1
α2

(Q0(f)n +Qe(f)n)

fn(0,x,v)=fin,n(x,v),
(3.1)
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whereas the confinement direction is still described by means of the 1D Schrödinger
equation (2.1). The linear, elastic collision operator Q0, describing the lattice-defect
collisions, is the same as in the previous section,

Q0(f)n :=
∑

m∈N∗

∫

R2
αmn(t,x,v′,v)δ(εn +

|v|2
2
−εm− |v

′|2
2

)(fm(t,x,v′)−fn(t,x,v))dv′ ,

(3.2)
and the elastic, non-linear electron-electron collision operator Qe is given by

Qe(f)n(v) :=

∑

m,r,s∈N∗

∫

(R2)3
βnmrs(t,x,v,v1,v

′,v′1)δ(εn +
|v|2
2

+εm +
|v1|2

2
−εr− |v

′|2
2
−εs− |v

′
1|2
2

)

δ(v+v1−v′−v′1)[f
′
rf
′
s,1(1−ηfn)(1−ηfm,1)−fnfm,1(1−ηf ′r)(1−ηf ′s,1)]dv1dv′dv′1 ,

(3.3)
where η≥0 is a distribution function scale and the terms 0≤1−ηfn≤1 express the
Pauli exclusion principle. We shall denote in the following the kinetic energy of the
electrons belonging to the n− th energy subband, by

en(t,x,v) :=εn(t,x)+
|v|2
2

.

The notations em,1, e′r and e′s,1 stand then for em(v1), er(v′) respectively es(v′1).
The scattering cross sections αnm satisfy Hypothesis 1, whereas βnmrs are assumed
to satisfy:
Hypothesis 2: The coefficients βnmrs satisfy the following positivity, boundedness
and symmetry properties

0<λ2 <βnmrsM(t,x,v,n,v1,m)<λ3 <+∞,

βnmrs(v,v1,v
′,v′1)=βmnrs(v1,v,v′,v′1)=βrsnm(v′,v′1,v,v1).

The weight function M is defined as

M(t,x,v,n,v1,m) :=
∑

r,s∈N∗

∫

R2

∫

R2
δ(en +em,1−e′r−e′s,1)δ(v+v1−v′−v′1)dv′dv′1 .

Similarly as for the elastic impurity collisions, the weight function M is a density of
states. It gives the number of possible configurations the electrons can occupy after an
electron-electron collision, if their configuration before the collision was (v,n,v1,m).
Using the conservation of the energy and the impulsion, the outgoing velocities are
given by





v′=
v+v1

2
+

√
εn +εm−εr−εs +

1
4
|v−v1|2 σ

v′1 =
v+v1

2
−

√
εn +εm−εr−εs +

1
4
|v−v1|2 σ

, |σ|=1 , σ∈R2 ,
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such that the density of states can be written in the form

M(t,x,v,n,v1,m) :=2π
∑

r,s∈N∗

(
εn +εm−εr−εs +

1
4
|v−v1|2

)+

.

As for the derivation of the SHE model, we shall perform a Hilbert expansion

fα =f0 +αf1 +α2f2 + ··· (3.4)

The electron-electron collision operator being not linear, we have to expand it around
the equilibrium function f0, as

Qe(f)=Qe(f0)+αDQe(f0)(f1)+α2

[
DQe(f0)(f2)+

1
2
D2Qe(f0)(f1,f1)

]
+ ··· .

Substituting the Hilbert expansion in the Boltzmann equation (3.1) and comparing
the terms in the same order of α, yields the equations

Qe(f0)n +Q0(f0)n=0, (3.5)

DQe(f0)(f1)n+Q0(f1)n=v ·∇xf0
n−∇xεn ·∇vf0

n , (3.6)

DQe(f0)(f2)n+Q0(f2)n=∂tf
0
n +v ·∇xf1

n−∇xεn ·∇vf1
n−

1
2
D2Qe(f0)(f1,f1)n . (3.7)

To solve these equations we have to analyze the operators Qe +Q0 respectively
DQe(f0)+Q0. In particular, we are interested in finding the kernel of Qe +Q0 and
the orthogonal to the kernel of DQe(f0)+Q0. This shall be the aim of the next
sections.

3.1. Properties of the operator Qe +Q0: formal approach. The purpose
of this section is to derive some properties of the operator Qe +Q0, especially to
determine its kernel, and consequently to solve the equation (3.5) in order to find the
zeroth order term of the Hilbert expansion.

Proposition 3.16. Under the Hypothesis 2, the operator Qe satisfies the following
properties:
(i) The micro-reversibility assumption on βnmrs implies immediately

〈Qe(f),g〉=−1
4

∑
n,m,r,s

∫

(R2)4
βnmrsδeδv[f ′rf

′
s,1(1−ηfn)(1−ηfm,1)−

−fnfm,1(1−ηf ′r)(1−ηf ′s,1)] [g
′
r +g′s,1−gn−gm,1]dvdv1dv′dv′1 .

(ii) Let the function H be defined as H(x) := ln x
1−ηx . Then Qe satisfies the following

dissipative inequality

〈Qe(f),H(f)〉≤0. (3.8)

(iii) Collision invariants

〈
Qe(f),




1
v1
e(v)




〉
=0 . (3.9)
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Proof. The proof of this proposition is immediate and similar to the proof of
Proposition 2.4. It is based on the positivity and symmetry properties of the cross
sections βnmrs. We remark only, that with the special choice of the function H, we
have

〈Qe(f),H(f)〉=
− 1

4

∑
n,m,r,s

∫

(R2)4
βnmrsδeδv[f ′rf

′
s,1(1−ηfn)(1−ηfm,1)−fnfm,1(1−ηf ′r)(1−ηf ′s,1)]

[ln(f ′rf
′
s,1(1−ηfn)(1−ηfm,1))− ln(fnfm,1(1−ηf ′r)(1−ηf ′s,1))]dvdv1dv′dv′1 .

Let us now pass to the description of the kernel of the operator Qe +Q0.

Proposition 3.17. The kernel of the operator Qe +Q0 is given by

Ker(Qe +Q0)={f(t,x,v) ; ∃µ(t,x), T (t,x) such that fn(t,x,v)=Fµ,T (t,x,en(v))} ,

with the Fermi-Dirac distribution function

Fµ,T (t,x,ε) :=
1

η+exp ε−µ(t,x)
T (t,x)

, (3.10)

where µ is the associated chemical potential and T >0 the electron temperature .

Proof. In this proof we shall consider t and x as fixed parameters. To show
the inclusion “⊂”, let f ∈ker(Qe +Q0) and H(x) := ln x

1−ηx . Then we have 〈Q0(f)+
Qe(f),H(f)〉=0, which implies in view of (2.6) and (3.8)

〈Q0(f),H(f)〉=0 ; 〈Qe(f),H(f)〉=0 .

As in the case of the SHE model, we deduce from the first equality the existence of a
function F (t,x,ε), such that

fn(t,x,v)=F (t,x,εn +
|v|2
2

).

The second equation implies

ln(f ′rf
′
s,1(1−ηfn)(1−ηfm,1))= ln(fnfm,1(1−ηf ′r)(1−ηf ′s,1)), (3.11)

for all (n,m,r,s)∈N4 and (v,v1,v
′,v′1)∈ (R2)4 with





v+v1 =v′+v′1 ,

εn + |v|2
2 +εm + |v1|2

2 =εr + |v′|2
2 +εs + |v′1|2

2 .

Equation (3.11) can be rewritten in the form

ln
fn

1−ηfn
+ln

fm,1

1−ηfm,1
=ln

f ′r
1−ηf ′r

+ln
f ′s,1

1−ηf ′s,1

,
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or simply

(H ◦F )(εn +
|v|2
2

)+(H ◦F )(εm +
|v1|2

2
)=(H ◦F )(εr +

|v′|2
2

)+(H ◦F )(εs +
|v′1|2

2
).

Let us now fix for each energy ε>ε1 a subband n and a velocity v 6=0, such that
εn + |v|2

2 =ε. Placing us in the n-th subband, we shall assume, that for each ε>ε1

there exists an αε >0, such that

[ε−αε,ε+αε] ⊂
{
e′n / en =en,1 =ε ; v+v1 =v′+v′1 ; en +en,1 =e′n +e′n,1

}
,

[ε−αε,ε+αε] ⊂
{
e′n,1 / en =en,1 =ε ; v+v1 =v′+v′1 ; en +en,1 =e′n +e′n,1

}
.

In other words, the sets of outgoing electron energies e′n and e′n,1 contain the set
[ε−αε,ε+αε], when the incoming energies are equal ε. This means that for ∀ε>ε1

there exists an αε >0, such that

2(H ◦F )(ε)=(H ◦F )(ε−α)+(H ◦F )(ε+α) ∀α∈ [−αε,αε].

Hence H ◦F : (ε1,∞)→R is an affine function, implying thus the existence of two
functions µ and T with

Fµ,T (ε)=
1

η+exp ε−µ
T

,

and T >0, ensuring the integrability of F .
The other inclusion ′′⊃′′ is immediate.

Remark 3.18. A consequence of Proposition 3.17 is that the solutions of (3.5) are
given by a Fermi-Dirac distribution function

f0
n(t,x,v)=Fµ,T (t,x,εn +

|v|2
2

). (3.12)

3.2. Properties of the operator DQe(f0)+Q0: formal approach. Before
discussing the properties of the operator DQe(f0)+Q0, let us introduce the right
functional framework. Straightforward computations lead to the following expression
for the derivative of the electron-electron collision operator Qe at F

[DQe(F )(f)]n(v) =
∑

m,r,s

∫

(R2)3
βnmrsδeδvF ′rF

′
s,1(1−ηFn)(1−ηFm,1)

[h′r +h′s,1−hn−hm,1]dv1dv′dv′1 ,

(3.13)

with F =Fµ,T the Fermi-Dirac distribution function and

hn(v) :=
fn(v)

Fn(v)(1−ηFn(v))
.

This leads to

〈DQe(F )(f),g〉 = −1
4

∑
n,m,r,s

∫

(R2)4
βnmrsδeδvF ′rF

′
s,1(1−ηFn)(1−ηFm,1)

[h′r +h′s,1−hn−hm,1][g′r +g′s,1−gn−gm,1]dvdv1dv′dv′1.
(3.14)
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Let us now define the Hilbert space

L2
F :=

{
f =(fn)n∈N,

+∞∑
n=1

∫

R2
|fn(v)|2 1

Fn(1−ηFn)
dv <+∞

}
,

provided with the weighted scalar product

〈f,g〉F :=
∑

n∈N∗

∫

R2
fngn

1
Fn(1−ηFn)

dv .

Moreover let us shortly denote by De the derivative operator DQe(F ) and let Q :=
Q0 +De. Then we have

Proposition 3.19. Under Hypothesis 1 and 2, the operators Q0 and De satisfy the
following properties:
(i) The operators Q0 and De are bounded, symmetric, non-positive operators on L2

F .
(ii) The kernel of Q is given by

Ker(Q)=
{

f ∈L2
F ; fn(v)=G(εn +

|v|2
2

) with G∈Span{F (1−ηF ),F (1−ηF )ε}
}

.

(iii) Let P :L2
F →Ker(Q) be the orthogonal projection on Ker(Q), then we have the

coercivity inequality with a constant C >0,

−〈Qf,f〉F ≥C||f−Pf ||2F , ∀f ∈L2
F .

(iv) The range of Q is closed and we have

R(Q)=Ker(Q)⊥=

{
f ∈L2

F /
∑

n∈N∗

∫

R2
fn(v)

(
1
en

)
dv =0

}
.

Proof. Item (i) is immediate by using Hypothesis 1 and 2. To prove item (ii),
let f belong to Ker(Q). This implies 〈(Q0 +De)(f),f〉F =0, and as Q0 and De are
non-positive operators, we obtain thus

〈Q0f,f〉F =0 ; 〈Def,f〉F =0 .

From the first equality we deduce the existence of an energy dependent function
G(t,x,ε) such that

fn(t,x,v)=G(t,x,εn +
|v|2
2

).

From the second equality we deduce

Gn

Fn(1−ηFn)
+

Gm,1

Fm,1(1−ηFm,1)
=

G′r
F ′r(1−ηF ′r)

+
G′s,1

F ′s,1(1−ηF ′s,1)
,

for all (n,m,r,s)∈N4 and (v,v1,v
′,v′1)∈ (R2)4 with





v+v1 =v′+v′1 ,

εn + |v|2
2 +εm + |v1|2

2 =εr + |v′|2
2 +εs + |v′1|2

2 .
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Similar arguments as in the proof of Proposition 3.17 imply that the function G
F (1−ηF )

is an affine function of the energy variable ε, such that we can write with some
functions a(t,x) and b(t,x)

G(t,x,ε)=F (t,x,ε)(1−ηF (t,x,ε))(a(t,x)ε+b(t,x)).

The proof of item (iii) is similar as in [3]. The operator De can be written in the form

(Def)n(v)=−νnfn +
∑

i

∫

R2
Ki,n(u,v)

fi(u)
Fi(u)(1−ηFi(u))

du=(Υf)n(v)+(Kf)n(v),

with

νn(v) :=
∑

m,r,s

∫

(R2)3
βnmrsδeδvF ′rF

′
s,1(1−ηFn)(1−ηFm,1)

1
Fn(1−ηFn)

dv1dv′dv′1 ,

and

Ki,n(u,v) := 2
∑

l,j

∫

(R2)2
βnlijδ(en(v)+el(v1)−ei(u)−ej(v′1))δ(v+v1−u−v′1)

Fi(u)Fj(v′1)(1−ηFn(v))(1−ηFl(v1))dv1dv′1−
−

∑

l,j

∫

(R2)2
βniljδ(en(v)+ei(u)−el(v′)−ej(v′1))δ(v+u−v′−v′1)

Fl(v′)Fj(v′1)(1−ηFn(v))(1−ηFi(u))dv′dv′1 .

Using the boundedness property of the cross sections βnmrs, it can be shown that
0<%1≤νn≤%2 with %1 and %2 independent on n, v, x and t, such that the spectrum
of the self-adjoint operator Υ :L2

F →L2
F satisfies

σ(Υ)⊂ [−%2,−%1].

Moreover, the operator K :L2
F →L2

F is shown to be a Hilbert-Schmidt operator and
thus compact, implying with Weyl’s theorem σess(De)=σess(Υ). Here we have de-
noted by σess the essential spectrum of an operator. As furthermore De is self-adjoint
and non-positive, we have σ(De)⊂ (−∞,0]. Hence

σ(De)⊂]−∞,−%3]∪{0} with %3 >0.

Denoting by Pe :L2
F →kerDe the orthogonal projection on kerDe, we have proven

thus, that

−〈Def,f〉F ≥%3||f−Pef ||2F ∀f ∈L2
F .

The rest of the proof is identical to the proof in [3].
Finally, Item (iv) is a simple consequence of items (iii) and (ii).

We can now pass to the resolution of the equation (3.6), which reads Q(f1)=g,
with

gn(v) :=v ·∇xf0
n−∇xεn ·∇vf0

n .

According to (3.12), g can be rewritten as g =v ·∇xF , where

∇xF (t,x,ε)=−F (1−ηF )
[
ε∇x

(
1
T

)
−∇x

( µ

T

)]
.
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The solvability condition g∈Ker(Q)⊥ is obviously satisfied and we obtain

Proposition 3.20. Equation (3.6) admits a unique solution f1∈Ker(Q)⊥, which
can be written in the form

f1 =−∇x

( µ

T

)
·Ψ1 +∇x

(
1
T

)
·Ψ2 , (3.15)

with Ψ1 and Ψ2 unique solutions in Ker(Q)⊥ of

(Q(Ψ1))n(v) = −vFn(1−ηFn),

(Q(Ψ2))n(v) = −envFn(1−ηFn).
(3.16)

Finally we have to solve the last equation (3.7). The solvability condition reads

∑

n∈N∗

∫

R2
(∂tf

0
n +v ·∇xf1

n−∇xεn ·∇vf1
n)

(
1
en

)
dv =0 , (3.17)

where we have used the fact, that

∑

n∈N∗

∫

R2
D2Qe(F )(f1,f1)n

(
1
en

)
dv =0 . (3.18)

Indeed, (3.9) is valid for all f ∈L2
F , such that differentiating twice at F leads to (3.18).

Let us now analyze (3.17) term by term. The first condition gives

•
∑

n∈N∗

∫

R2
∂t(F (t,x,εn +

|v|2
2

))dv =∂t

( ∑

n∈N∗

∫

R2
F (t,x,εn +

|v|2
2

)dv

)
,

•
∑

n∈N∗

∫

R2
∇x ·(vf1

n)dv=−∇x ·
∑

n∈N∗

∫

R2
v

[
∇x

( µ

T

)
·Ψ1

n−∇x

(
1
T

)
·Ψ2

n

]
dv

=−∇x ·
∑

n∈N∗

∫

R2

[
(v⊗Ψ1

n) ·∇x

( µ

T

)
−(v⊗Ψ2

n) ·∇x

(
1
T

)]
dv

=−∇x ·
{ ∑

n∈N∗

(∫

R2
v⊗Ψ1

ndv

)
·∇x

( µ

T

)
−

∑

n∈N∗

(∫

R2
v⊗Ψ2

ndv

)
·∇x

(
1
T

)}
,

•
∑

n∈N∗

∫

R2
∇v ·(f1

n∇xεn)dv =0 .

For the second condition we get

•
∑

n∈N∗

∫

R2
∂t(F (t,x,εn +

|v|2
2

))endv =

=∂t

( ∑

n∈N∗

∫

R2
F (t,x,en)endv

)
−

∑

n∈N∗
∂tεn

∫

R2
F (t,x,en) dv ,
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•
∑

n∈N∗

∫

R2
∇x ·(vf1

n)endv =∇x ·
∑

n∈N∗

(∫

R2
vf1

nendv

)
−

∑

n∈N∗

(∫

R2
f1

nv ·∇xεndv

)

=−∇x ·
∑

n∈N∗

∫

R2
v

[
∇x

( µ

T

)
·Ψ1

n−∇x

(
1
T

)
·Ψ2

n

]
endv−

∑

n∈N∗

(∫

R2
f1

nv ·∇xεndv

)

=−∇x ·
{ ∑

n∈N∗

(∫

R2
(v⊗Ψ1

n)endv

)
·∇x

( µ

T

)
−

∑

n∈N∗

(∫

R2
(v⊗Ψ2

n)endv

)
·∇x

(
1
T

)}

−
∑

n∈N∗

(∫

R2
f1

nv ·∇xεndv

)
,

• −
∑

n∈N∗

∫

R2
∇xεn ·∇vf1

nendv=−
∑

n∈N∗

∫

R2
∇v ·(∇xεnf1

nen)dv+
∑

n∈N∗

∫

R2
f1

n∇xεn ·vdv

=
∑

n∈N∗

∫

R2
f1

n∇xεn ·vdv .

Let us denote by ρ and ρE the charge density respectively the energy associated to
the Fermi-Dirac distribution function Fµ,T

ρ(µ,T ) :=
∑

n∈N∗

∫

R2
Fµ,T (t,x,εn +

|v|2
2

)dv ; ρE(µ,T ) :=
∑

n∈N∗

∫

R2
Fµ,T (t,x,en)endv .

(3.19)
The diffusion matrices are given by

D1j :=
∑

n∈N∗

(∫

R2
v⊗Ψj

ndv

)
; D2j :=

∑

n∈N∗

(∫

R2
(v⊗Ψj

n)endv

)
, j =1,2,

(3.20)
where Ψ1, Ψ2 are solutions of (3.16). Then we can state the main theorem of this
section:

Theorem 3.21. (Formal diffusion limit). The system of equations (3.5)-(3.7) is
solvable if and only if f0 and f1 are determined by (3.12), respectively (3.15), and if
moreover the functions µ(t,x) and T (t,x), associated to the Fermi-Dirac distribution
function Fµ,T , which is given by

Fµ,T (t,x,ε) :=
1

η+exp ε−µ(t,x)
T (t,x)

,

satisfy the following system

∂tρ(µ,T )+∇x ·Jρ =0 , (3.21)

∂t(ρE)(µ,T )−
∑

n∈N∗
∂tεn

∫

R2
Fµ,T (t,x,en)dv+∇x ·JE =0 (3.22)

where the particle respectively energy currents Jρ and JE are defined as

Jρ(µ,T ) := −D11 ·∇x

( µ

T

)
+D12 ·∇x

(
1
T

)

JE(µ,T ) := −D21 ·∇x

( µ

T

)
+D22 ·∇x

(
1
T

)
,

(3.23)
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and where ρ, ρE are given in (3.19)-(3.20).

The Energy-Transport model (3.21)-(3.23) is constituted of two continuity equations
for the charge density and energy, completed by two relations for the charge and
energy fluxes. The temperature of the particles is a variable of the problem, which is
not the case for the Drift-Diffusion model, where the electron temperature coincides
with that of the lattice. The parabolicity of the ET model is proven by the following:

Lemma 3.22. The composed diffusion matrix

D :=
(

D11 D12

D21 D22

)
,

is a symmetric, positive definite matrix.

Proof. The symmetry is an easy consequence of the self-adjointness of the operator
Q. Indeed

Dkl
ij =−〈QΨi

k,Ψj
l 〉F =−〈Ψi

k,QΨj
l 〉F =−〈QΨj

l ,Ψ
i
k〉F =Dlk

ji .

To prove, that D is positive definite, let ξ =(ξ1
1 ,ξ2

1 ,ξ1
2 ,ξ2

2)∈R4 be arbitrary chosen.
Then, using the non-positivity of Q, we get

ξtDξ =
2∑

l,j=1




2∑

i,k=1

ξk
i Dkl

ij


ξl

j =−
〈
Q




2∑

i,k=1

ξk
i Ψi

k


,

2∑

l,j=1

ξl
jΨ

j
l

〉

F

≥0.

From (3.16) we remark that Ψj
l are linearly independent functions. Thus due to the

coercivity of the operator −Q we have ξtDξ =0 if and only if ξ =0. Hence there exists
even a constant γ >0, such that

ξtDξ≥γ|ξ|2 , ∀ξ 6=0 .

To carry out the rigorous diffusion limit, we have to specify the right functional frame-
work (see [4]) in order to introduce the notion of a weak solution of the Boltzmann
equation (3.1) and to state the properties of the operator Qe +Q0 correctly. Besides,
an entropy dissipation estimate will be needed to prove the convergence of fα towards
a Fermi-Dirac distribution function Fµ,T . This entropy estimate requires a bound for
fα (β≤fα≤1−β , β >0), which is a very strong assumption. Possibilities to avoid
this assumption have to be investigated. And finally, a compactness argument will
permit us to pass to the limit in the weak formulation of (3.1) in order to get the
ET model, which was formally obtained in this paper. Due to its complexity, this
rigorous diffusion limit is deferred to a future work.

4. Conclusion
In the present paper we have investigated two diffusion limits corresponding to

different collision operators. Starting model was a coupled quantum/kinetic sub-
band model, describing the electron evolution in the confinement direction by the
Schrödinger equation and in the transport direction by the Boltzmann equation. In
the limit of a vanishing scaling parameter α→0, we obtained either the adiabatic
Schrödinger/SHE model or the Schrödinger/ET model. By means of this diffusion
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approximation, we were able to derive expressions for the diffusion matrices, which
are even explicitly computable in some simplified cases.
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[9] J.-P. Bourgade, P. Degond, F. Méhats and C. Ringhofer, On quantum extensions to classical
spherical harmonics expansion/Fokker-Planck models, J. Math. Phys., to appear.

[10] P. Degond, Mathematical modelling of microelectronics semiconductor devices, AMS/IP Stud-
ies in Advanced Mathematics, AMS and International Press, 15, 77-110, 2000.

[11] P. Degond, An infinite system of diffusion equations arising in transport theory: the coupled
spherical harmonics expansion model, Math. Models Methods Appl. Sci., 11(5), 903-932,
2001.

[12] P. Degond and A. El Ayyadi, A coupled Schrödinger drift-diffusion model for quantum semi-
conductor device simulations, J. Comp. Phys., to appear.

[13] P. Degond, C. D. Levermore and C. Schmeiser, A note on the energy-transport limit of the
semiconductor Boltzmann equation, in Transport in Transition Regimes, IMA Vol. in Math.
and its Appl., Springer-Verlag, 135, 2004.

[14] P. Degond and S. Mancini, Diffusion driven by collisions with the boundary, Asymp. Anal.,
27(1), 47-73, 2001.

[15] P. Degond, F. Méhats and C. Ringhofer, Quantum energy-transport and drift-diffusion models,
J. Stat. Phys., 118(3-4), 625-665, 2005.
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[22] F. Golse and F. Poupaud, Limite fluide des équations de Boltzmann des semi-conducteurs pour
une statistique de Fermi-Dirac, Asymptotic Anal., 6(2), 135-160, 1992.



650 ADIABATIC QUANTUM-FLUID TRANSPORT MODELS
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