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MULTI–CLASS TRAFFIC MODELS ON ROAD NETWORKS∗

M. HERTY† , C. KIRCHNER‡ , AND S. MOUTARI§

Abstract. We consider a multi–class (resp. source–destination) model for traffic flow as intro-
duced in [10]. We propose a reformulation and discuss the extension of this model to road networks by
proposing criteria for solving Riemann problems at a road intersection. We present some numerical
simulations for the derived conditions.
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1. Introduction
Traffic flow on a single road has been studied throughout the last 50 years and

a first macroscopic model is due to Lighthill and Whitham [23] and Richards [25]
(LWR-model). Various modifications and extensions to this basic model have been
studied and discussed, cf. [24, 1, 11, 8, 2]. Today, fluid dynamic models for traffic
flow are appropriate to describe traffic phenomena as for example congestion and
stop-and-go waves [17, 12, 19]. Recently, there has been intensive research on traffic
flow for road networks in the mathematical [5, 9, 16, 14, 10, 15] as well as in the
engineering community [21, 22].

We are interested in multi–class traffic flow models, i.e., models containing two or
more car species, e.g. cars having different destinations, cf. [10]. Such models have
been proposed for example in [3, 4, 27, 28, 26] and in [10]. The latter publication intro-
duces a source–destination model based on the LWR equation for a road network and
analyzes its mathematical properties [10]. We consider a reformulation of this model,
which then can also be seen as a particular case of the multi–class model introduced
and discussed for example in [27, 26], see below for the details. The reformulation of
the multi–class or source–destination model of [10] allows for an alternative extension
to road networks. In particular, the discussion of suitable coupling conditions for this
model at road intersections has to be adapted to the reformulation and we introduce
a different modeling of the coupling conditions, cf. Section 3. Similar to the approach
in [16, 15, 5], existence of solutions is granted by an analysis of the arising (half-) Rie-
mann problems. Moreover, we identify supply and demand functions [21, 7, 8] in this
context and present some numerical examples.

The paper is organized as follows. In Section 2 we recall the multi–class or source–
destination model, respectively, and state some analytical properties. In Section 3 we
present the (half-) Riemann problems and their solution. We give numerical examples
in Section 4.

∗Received: March 30, 2006; accepted (in revised version): July 7, 2006. Communicted by Lorenzo
Pareschi.

†Fachbereich Mathematik, TU Kaiserslautern, D-67653 Kaiserslautern, Germany (herty@
mathematik.uni-kl.de).

‡Fachbereich Mathematik, TU Kaiserslautern, D-67653 Kaiserslautern, Germany (kirchner@
mathematik.uni-kl.de).
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2. Preliminary Discussion
We derive the source–destination model of [10] by starting from the multi–class

model of [27, 26]. The relation between both models is given below in Remark 2.1.
A multi-class (or multi–population) model based on the LWR equation for differ-

ent car classes has been introduced in [27, 26, 4]. They consider a continuum model
for traffic flow with heterogeneous m media. Therein, ρj is the density of the jth

class and the velocity field vj of the jth class is assumed to be a function of all den-
sities {ρj}m

j=1. Then, the mass conservation for the jth class yields the multi–class
LWR–type model:

∂tρj +∂x(ρjvj)=0, j =1,... ,m. (2.1)

The velocity fields vj are required to satisfy additional conditions to obtain a
hyperbolic system and we refer the reader to [27] and [4] for more details. A particular
choice for the velocity fields is given by

vj((ρj)m
j=1)=vj(

m∑

j=1

ρj)=vf
j ·

(
1−

∑
j ρj

ρmax

)
, j =1,.. .,m, (2.2)

where vf
j is the constant class dependent free flow velocity and ρmax is the maximal

density for the total (car-)density

ρ :=
∑

j

ρj . (2.3)

In this case and for m=1 equations (2.1) and (2.2) obviously reduce to the stan-
dard LWR traffic flow model:

∂tρ+∂x(ρv(ρ))=0. (2.4)

Note that if vf
j is the same for all cars, i.e. car species have the same fundamental

diagram (ρj ,ρjv(ρ)), then, the model (2.1,2.2) can be interpreted as a model for a
car species j having properties which are independent of the dynamics of the actual
class j. For instance, one can think of classes of cars having different destinations dj .
A model for classes of cars with different source–destination pairings has been recently
introduced in [10]. We recall this model in Remark 2.1 and show its relation to the
multi–class model stated above.

Remark 2.1. In [10] a source–destination model for road networks is considered.
They introduce functions πj ,j =1,.. .,m which specify the amount of car density ρ
going from a specific source sj to a destination dj. The dynamics for the car density
are governed by the LWR equation and, therefore, the following system for a single
road is derived:

∂tρ+∂x(ρv(ρ))=0, (2.5a)
∂tπ

j +v(ρ)∂xπj =0, j =1,... ,m, (2.5b)∑

j

πj =1. (2.5c)
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If we define

ρj :=πjρ, (2.6)

then at least formally,

∂tρj =πj∂tρ+ρ∂tπ
j =−∂x(ρjv(ρ)), (2.7)

i.e., we recover the multi–class model (2.1) for the particular velocity fields

vj ≡ v, j =1,... ,m. (2.8)

In [10] the extension of (2.5) to networks is performed by defining coupling con-
ditions at road intersections. Here, and in contrast to the work of [10], we discuss
the extension of the reformulation (2.1),(2.8) to networks and present numerical re-
sults. This allows for an alternative view on the coupling conditions and induces in
particular the possibility to define class–specific distribution rates of cars at junctions.

Having the previous remark in mind, we consider the reformulated version of the
source–destination (resp. multi–class) model. In this study, we restrict ourselves to
the case m=2. The proofs following are limited to this case only. For a discussion
of hyperbolicity and properties of the set of equations in the case m>2 for a single
road, we refer to the publications of Zhang et. al., and in particular to [27].

We normalize the total density ρmax =1 and set the free flow velocities vf
1 =vf

2 = c,
c>0 constant. Hence, we might allow different total free flow velocities on different
parts of the road network. Finally, we obtain the following system for the evolution
of a two–class model on a single road x∈ [a,b],t>0,

∂

∂t

(
ρ1

ρ2

)
+

∂

∂x

(
ρ1v(ρ)
ρ2v(ρ)

)
=

(
0
0

)
, (2.9)

where ρ=ρ1 +ρ2 and (cf. (2.2)),

v(ρ)=v(ρ1 +ρ2)= c(1−(ρ1 +ρ2)). (2.10)

For the discussion of suitable coupling conditions at a road intersection, we need
to recall the following properties of the hyperbolic system (2.9). Let U =(ρ1,ρ2).
Then [27], the eigenvalues are

λ1(U)= c ·(1−2(ρ1 +ρ2)) ≤ λ2(U)= c ·(1−(ρ1 +ρ2)). (2.11)

Hence, away from the vacuum U =(0,0), the system is strictly hyperbolic. The eigen-
vectors corresponding to λ1 and λ2 are respectively

r1(U)=
( ρ1

ρ2

1

)
, r2(U)=

(−1
1

)
(2.12)

and the characteristic family associated with the first eigenvalue is genuinely nonlinear
(GNL) whereas the second characteristic family is linearly degenerate (LD). The
Riemann invariants in the sense of Lax (RI-Lax) are

w(U)= log
(

ρ1

ρ2

)
and z(U)= c ·(1−(ρ1 +ρ2))=v(U), (2.13)
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respectively. Next, we state the elementary waves [6] of (2.9).
An arbitrary left state U−=(ρ−1 ,ρ−2 )>0 can be connected to a state U+ by a

1-rarefaction wave, iff U+ =U(ξ) for 0<ξ≤ρ−1 and where ξ→U(ξ) is the following
parametrization of the 1-rarefaction wave curve:

U(ξ)=

(
1

ρ−2
ρ−1

)
ξ, 0<ξ≤ρ−1 . (2.14)

Therefore, in the phase plane (ρ1,ρ2), the 1-rarefaction curve is a straight line of slope
ρ−2
ρ−1

as depicted in Figure 2.1.

Next, we consider the 1-(Lax)-shock waves: A left state U−=(ρ−1 ,ρ−2 )>0 can be
connected to any other state U+ =(ρ+

1 ,ρ+
2 )>0 by a 1-shock wave, iff U+ =U(ξ) for

some ξ where ξ→U(ξ)=(ρ1(ξ),ρ2(ξ)) is a parametrization of the 1-shock wave curve:

U(ξ)=

(
1

ρ−2
ρ−1

)
ξ, ρ−1 ≤ ξ≤ ρ−1

ρ−1 +ρ−2
. (2.15)

The shock speed s1 is given by

s1 = c
(
1−(ρ1(ξ)+ρ2(ξ)+ρ−)

)
, (2.16)

and for system (2.9), the 1–rarefaction and 1–shock wave curves coincide, cf. Fi-
gure 2.1. In fact, equation (2.9) is a Temple system.

U?

U−

0 0.2 0.4

0

0.1

0.2

0.3

0.4

ρ1

ρ2

Fig. 2.1. The 1-rarefaction and 1-shock curves in the phase plane (ρ1,ρ2).

It remains to discuss the 2-contact discontinuities. A left state U−=(ρ−1 ,ρ−2 ) can
be connected to U+ =(ρ+

1 ,ρ+
2 ), iff U+ =U(ξ) where U(ξ) is given by

U(ξ)=
(

1
−1

)
·ξ+

(
0

ρ−

)
0≤ ξ≤ρ−. (2.17)
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Of course, v(U+)=v(U(ξ))=v(U−) for all 0≤ ξ≤ρ− and in the phase plane the
2–contact wave curve is a straight line through U− with slope −1.

Now, a Riemann problem for (2.9) is a Cauchy problem for (2.9) with the piecewise
constant initial data

U0(x)=
(

U− x<0
U+ x>0

)
. (2.18)

From the above discussion, we obtain that the Riemann problem with data U−

and U+ and such that 0<ρ−≤1 and 0<ρ+≤1, always admits a weak entropy solu-
tion [20]. In general, a solution is a composition of a 1-(Lax-)shock or 1–rarefaction
wave connecting U− to U∗,

U∗ :=
ρ+

ρ−

(
ρ−1
ρ−2

)
, (2.19)

and a 2–contact discontinuity connecting U∗ with U+, see Figure 2. Hence, we call
initial data U =(ρ1,ρ2) admissible, if it satisfies 0<ρ1 +ρ2≤1.

Proposition 2.1. Consider admissible initial data U− and U+. Then, the Riemann
problem for equation (2.9) admits a unique weak entropy solution U(x,t).

U−

U?

U+

0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

ρ1

ρ2

U
−

U
?

U
+

-2 0 2
0

1

2

3

x

t

Fig. 2.2. The solution to a Riemann problem in the phase plane (right), in the (x,t) plane (left).

Before we discuss the extensions of the above model to the network, we introduce
the notion of supply and demand functions, cf. [21, 7]. This will be used later to
determine the range of admissible states at a junction, see below. The supply and
demand functions are defined in the (ρ,ρv)-plane with ρ=ρ1 +ρ2 and ρv being the
total flux. Recalling Remark 2.1 (and [10], respectively), it is not surprising, that the
1– and 2–wave curves, allow for a particular simple characterization in the (ρ,ρv)-
plane.

Proposition 2.2. Consider an admissible left state U−=(ρ−1 ,ρ−2 ). Then, there
exists a one–to–one correspondence between the states U+ =(ρ+

1 ,ρ+
2 ), which can be

connected by either a 1–rarefaction or 1–shock wave to U−, and the points (η,ηv(η)),
0 < η ≤ 1, of the (ρ,ρv)−plane, such that η =ρ+

1 +ρ+
2 holds.

Here, v(η)= c(1−η) is as in (2.10).
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Proof. A state U+ can be connected by a 1–rarefaction or 1–shock wave to U−,
iff U+ =U(ξ) and U(ξ) is given by either (2.14) or (2.15), i.e.,

U(ξ)=
(

1
ρ−2 /ρ−1

)
ξ, 0<ξ≤ ρ−1

ρ−1 +ρ−2
. (2.20)

Therefore, ρ(ξ)=ρ1(ξ)+ρ2(ξ)= ξ(1+ρ−2 /ρ−1 ) and satisfies 0<η :=ρ(ξ)≤1.

The mapping η→ηv(η) is usually referred to as a fundamental diagram. Similarly,
we obtain the following assertion for the states U+ which can be connected to U− by
a wave of the second family:

Proposition 2.3. Consider an admissible left state U−=(ρ−1 ,ρ−2 ). Then, the set of
all states U+ which can be connected to U− by a wave of the second family is mapped
to the single point (η,η v(η)), η =ρ−1 +ρ−2 , in the (ρ,ρv)−plane.

Proof. This is immediate since U+ =U(ξ) with U(ξ) given by equation (2.17) and
hence satisfies ρ(ξ)=ρ−.

As in [15, 21], we introduce the demand and supply functions defined in the
(ρ,ρv)−plane: The demand function η→d(η) and the supply function η→s(η) are
the non-decreasing (see Figure 2.3) and the non-increasing (see Figure 2.4) parts of
the curve η→ηv(η) in the (ρ,ρv)-plane, respectively.

ρv(ρ)
d(ρ)

0 0.5 1
0

0.1

0.2

0.3

ρ

ρv

Fig. 2.3. Demand function in the (ρ,ρv)
plane.

ρv(ρ)
s(ρ)

0 0.5 1
0

0.1

0.2

0.3

ρ

ρv

Fig. 2.4. Supply function in the
(ρ,ρv) plane.

This finishes the characterization of states U± on the 1– and 2–wave curves. We
will reconsider the supply and demand notion when defining solutions to a network
problem.

3. Extension to a network
As in [16], we model a road network as a finite direct graph (I,N ) with |I|= I

and |N |=N. Each arc i corresponds to a road and each vertex n to a junction. For a
fixed junction n, we denote by δ−n the set of all its incoming roads whereas δ+

n is the
set of all its outgoing roads. We parameterize each road i by an interval [ai,bi] with
possibly ai =−∞ or bi =∞. At a fixed vertex n, we set xk

n = bk if k∈ δ−n and xk
n =ak,

if k∈ δ+
n .

We use upper indices to index the arc and on each road i we consider system (3.1)
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∂t

(
ρi
1

ρi
2

)
+∂x

((
ρi
1

ρi
2

)
vi(ρi)

)
=0, x∈ [ai,bi], t>0, (3.1)

where as before

U i := (ρi
1,ρ

i
2), ρi =ρi

1 +ρi
2,v

i(ρi)= ci(1−ρi), (3.2)

and for notational convenience F i(U)=(ρ1,ρ2)vi(U). Note, that we explicitly allow
for different velocity profiles on different roads (modeled by arc dependent constants
ci).

As in [16], we call a set of functions {U i}i∈I a weak solution of system (3.1), if it
satisfies

∑

i∈I

∫ ∞

0

∫ bi

ai

U i ·∂tφ
i +F i(U i) ·∂xφidxdt=0, (3.3)

for all families of test functions {φi}i∈I where each function φi :R+× [ai,bi]→R2 is
compactly supported in (0,∞)× [ai,bi] and is smooth across a vertex n: φk(xk

n,t)=
φj(xj

n,t) for k∈ δ−n and j∈ δ+
n .

From (3.3) we derive the Rankine–Hugoniot conditions (3.4) as coupling condi-
tions at a vertex n :

∑

k∈δ−n

ρk
i vk(ρk)(xk

n,t)=
∑

j∈δ+
n

ρj
iv

j(ρj)(xj
n,t), t>0, i=1,2. (3.4)

The conditions (3.4) state the conservation of each class of cars through the
intersection. Frequently, we will call ρk

i vk(ρk), the i-th moment. Depending on the
degree of the vertex, additional conditions have to be imposed to obtain a unique
solution.

A major step in the construction of a solution is the consideration of half-Riemann
problems at a junction. A half-Riemann problem at a vertex n∈N is obtained by
considering |δn| Riemann problems, one on each arc j∈ δn, and each arc considered
as extended to (−∞,∞). Depending whether the arc is in– or outgoing to the vertex,
either the left or the right data is given by the initial data Uk,0, i.e., we consider the
Riemann problems:

∂

∂t
Uk +

∂

∂x
F k(Uk)=0, (3.5a)

Uk(x,0)=
{

U− x < xk
n,

U+ x > xk
n,

(3.5b)

where for k∈ δ−n , only the data U− is given by the initial data, and for k∈ δ+
n only

the data U+ is given by the initial data Uk,0 =Uk(x,0).
Below, in proposition 3.1 and 3.2 we identify possible states U+ and U−, respec-

tively, such that the waves in the solution to (3.5) have either non–positive (k∈ δ−n )
or non–negative speed (k∈ δ+

n ). It turns out that the simplest way to describe the
admissible states U± employs the notion of supply and demand function, cf. the
discussion in the previous section. In the sequel, we drop the index k whenever the
intention is clear.
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3.1. Admissible Riemann data for in- and outgoing roads. First, we
consider the case of k∈ δ−n , i.e., an ingoing road to a vertex. Here the initial data U−

for (3.5) is given (U−=Uk,0) and we determine all states U+, such that the solution
U(x,t) to (3.5) is either a constant or contains waves of negative speed, only. We
call such states U+ admissible for the incoming road. For the same reasoning as
in [16], we excluded stationary shocks. Since the wave speed of waves of the second
family is v(U)≥0, the only states U+ which can be connected to U− have to be on
the 1–wave curve through U−. More precisely, we have:

Proposition 3.1. Let U−=(ρ−1 ,ρ−2 ) be an admissible initial value (i.e. U− 6= 0,
ρ−1 +ρ−2 ≤1) on an incoming road k. Then, for any given flux q∈R, such that

0<q≤d(ρ−), (3.6)

there exists exactly one state U+ which is admissible for the incoming road and satisfies
ρ+v(ρ+)= q.

Proof. Since we neglect stationary shocks, we set U+≡U− in the case q =d(ρ−).
Assume now η <d(ρ−). Due to Proposition 2.2, we find for each state U+ a uniquely
determined state (ρ̄, ρ̄v̄) in the (ρ,ρv)−plane such that ρ̄=ρ+

1 +ρ+
2 . Next, we prove

that also the wave speed of a 1–wave can be obtained by considering the data in the
(ρ,ρv)−plane.

If U+ =(ρ+
1 ,ρ+

2 ) is connected to U− by a 1–rarefaction wave, the corresponding
wave speed is given by

λ1(U)= c(1−2(ρ1 +ρ2))=∂η (ηv(η))η=ρ1+ρ2
. (3.7)

If U+ is connected to U− by a 1–shock, the corresponding shock speed is given
by equation (2.16), i.e.,

s1 = c(1−ρ+
1 −ρ+

2 −ρ−1 −ρ−2 )=
(ηv(η))η=ρ+−(ηv(η))η=ρ−

ρ+−ρ−
=

[ηv(η)]
[η]

. (3.8)

Therefore, the wave speeds of the solution to a Riemann problem with initial data
U− and U+ can also be obtained from the fundamental diagram in the (ρ,ρv)−plane.
Hence, we can equivalently discuss a Riemann problem for the first–order LWR model
∂tη+∂x(ηv(η))=0 with left Riemann data given by η− for η−=ρ−1 +ρ−2 . Then, the
assertion of the proposition is immediate, see e.g. [16, 15].

Similarly, we obtain a result for admissible states for an outgoing road k∈ δ+
n . In

this case the initial data U+ for (3.5) is given (U+ =Uk,0) and we determine all states
U−, such that the solution U(x,t) to (3.5) is either a constant or contains waves of
positive speed, only. Again, we call such states U− admissible for the outgoing
road and exclude stationary shocks and the vacuum from the discussion.

Proposition 3.2. Consider an admissible initial data U+ =(ρ+
1 ,ρ+

2 ) and an outgoing
road k. Let q∈R be an arbitrary given flux, such that

0<q≤s(ρ+). (3.9)
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Then, a state U−=(ρ−1 ,ρ−2 ) is admissible for the outgoing road, iff ρ−1 +ρ−2 =η−.
Herein, η− is the unique value η−∈ (0,1], such that q =η−v(η−) and such that the
solution to the Riemann problem for the scalar LWR model,

∂tη+∂x(ηv(η))=0,η0(x)=
(

η− x<0
ρ+ x>0

)
, (3.10)

consists of waves of non–negative speed.

Proof. The proof is slightly more involved than in the previous case, since a
solution U(x,t) to (3.5) is in general a composition of waves of the first and second
family. First note, that as in [16, 15], we obtain a unique value η− with the properties
stated above. Now, assume we have a Riemann datum U−=(ρ−1 ,ρ−2 ) which satisfies
η−=ρ−1 +ρ−2 . As in the previous paragraph the Riemann problem (3.5) admits a

solution U(x,t) with possible intermediate state U∗=ρ+/ρ−
(

ρ−1
ρ−2

)
. Obviously, the

2–wave connecting U∗ and U+ has non–negative speed. Moreover, as in the proof of
the previous proposition, the speed of the 1–wave connecting U− to U∗ is given by the
wave speed of the solution to a Riemann problem for the scalar LWR equation (3.10)
with initial data (ρ−,ρ∗). Now, ρ−=η− and due to proposition 2.3, ρ∗=ρ+. Hence,
s(ρ∗)=s(ρ+) and by construction of η−, the solution to (3.10) consists of waves of
non–negative speed.

In proposition 3.2, there is no uniqueness for the admissible states U− given,
only its total density ρ−1 +ρ−2 is uniquely given by η−. Again, propositions 3.1 and 3.2
show the fact, that the proposed model is a reformulation of the LWR model combined
with an additional advection equation. However, in the case of road intersections the
proposed reformulation proves useful, cf. the following discussion.

3.2. The 1–1 junction. We consider a network consisting of just one junction
with degree 2 and construct a weak solution in the sense of (3.3) for constant initial
data U i

0,i=1,2. Note, that the different arcs i=1,2 might have different free flow
velocities ci, cf. (3.2), due to changed road conditions. Let x1

n =x2
n and recall ρi =

ρi
1 +ρi

2.

Proposition 3.3. Let U i
0, i=1,2 be some given admissible initial data, constant on

each arc i=1,2. Then there exists a unique weak solution {U1 =(ρ1
1,ρ

1
2),U

2 =(ρ2
1,ρ

2
2)}

in the sense of (3.3) with the following properties:
1. Both moments are conserved through the junction, i.e., (3.4) holds for t>0.
2. The total flux ρ1v1(ρ1)=ρ2v2(ρ2) is maximal at the interface (x,t)=

(x1
n,t),t>0.

Proof. We define U1− :=U1
0 and U2+ :=U2

0 and consider the following maximiza-
tion problem for the unknown ρ1+

1 ,ρ1+
2 ,ρ2−

1 and ρ2−
2 :

maxρ1+v1(ρ1+) subject to (3.11a)
ρ1+
1 v1(ρ1+)=ρ2−

1 v2(ρ2−), (3.11b)
ρ1+
2 v1(ρ1+)=ρ2−

2 v2(ρ2−), (3.11c)
0<ρ1+v1(ρ1+)≤d(ρ1−), (3.11d)
0<ρ2−v2(ρ2−)≤s(ρ2+). (3.11e)
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Here, s=s2 and d=d1 denote the supply and demand function for the out-
going and incoming road, respectively. Introducing q1 :=ρ1+v1(ρ1+) we obtain
q1 =min{d(ρ1−),s(ρ2+)} to be the maximal total flux at the interface. Due to Proposi-
tion 3.1 we obtain a unique state U1+ =(ρ1+

1 ,ρ1+
2 ), such that ρ1+v1(ρ1+)= q1. Due to

proposition 3.2 we obtain a unique total density (η−=)ρ2− such that ρ2−v2(ρ−)= q1.
Moreover, (3.11b) and (3.11c) then uniquely determine ρ2−

1 and ρ2−
2 , since v2(ρ2−)>0

by (3.11e). Finally, U1 is obtained as a solution to the half–Riemann problem (3.5)
with initial data U− :=U1−≡U1

0 and U+ :=U1+. The solution U2 is obtained as a
solution to (3.5) with initial data U− :=U2− and U+ :=U2+≡U2

0 . Due to Proposition
3.1 and 3.2, U i is a superposition of waves of the first and (for i=2) second family
having only non–positive (resp. non–negative) wave speeds. We have U1(x1

n,t)=U1+

and U2(x2
n,t)=U2− for t>0 and therefore, by construction, the assertions of the

proposition are fulfilled.

Remark 3.1. In the case of ci = c, i=1,2 the junction is artificial and a weak solution
to (3.3) is given by the entropy solution of a standard Riemann problem for (2.9) with

initial data U0 =
(

U1
0 x<x1

n

U2
0 x>x2

n

)
. This solution is the same as obtained by the previous

proposition.

3.3. The 2–1 and 1–2 junction. First, we consider a network consisting of
three connected arcs i=1,2,3 at a vertex n with |δ−n |=2, i.e., a situation where two
roads merge into one other road (i=3). As before, we consider the case of constant
initial data U i

0,i=1,2,3 and the following proposition guarantees the existence of a
weak solution in the sense of (3.3): In fact, the only relevant change to the previous
discussion is the formulation of a suitable maximization problem to obtain the right
(i=1,2) and left (i=3) initial data for the half-Riemann problems (3.5). In the current
case, we maximize the total incoming flux. We do not obtain a unique solution, since
the maximization does not necessarily possess a unique solution. It is possible to
introduce additional conditions to obtain uniqueness, as for example below, in the
case of a vertex of arbitrary degree. Such conditions are subject to the particular
modeling of the road intersection and have been studied for example in [5, 13, 15].

Proposition 3.4. Let U i
0, i=1,2,3 be some given admissible initial data, constant on

each arc i=1,2,3. Then, there exists a (not necessarily unique!) weak solution {U1 =
(ρ1

1,ρ
1
2),U

2 =(ρ2
1,ρ

2
2),U

3 =(ρ3
1,ρ

3
2)} in the sense of (3.3) with the following properties:

1. The moments are conserved through the junction, i.e., (3.4) holds for t>0.
2. The total flux ρ1v1(ρ1)+ρ2v2(ρ2) is maximal at the interface (x,t)=

(x1
n,t),t>0.

Proof. The proof is analogous to the proof of Proposition 3.3, but instead of
(3.11), we consider the following problem for the unknowns U1+,U2+,U3− and with
given data U1−=U0

1 ,U2−=U0
2 and U3+ =U0

3 ,

maxρ2+v2(ρ2+)+ρ1+v1(ρ1+) subject to (3.12a)
ρ1+
1 v1(ρ1+)+ρ2+

1 v2(ρ2+)=ρ3−
1 v3(ρ3−), (3.12b)

ρ1+
2 v1(ρ1+)+ρ2+

2 v2(ρ2+)=ρ3−
2 v3(ρ3−), (3.12c)

0<ρ1+v1(ρ1+)≤d1(ρ1−), (3.12d)
0<ρ2+v2(ρ2+)≤d2(ρ2−), (3.12e)
0<ρ3−v3(ρ3−)≤s3(ρ3+). (3.12f)
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Assume that s3(ρ3+)≥d1(ρ1−)+d2(ρ2−), then, as in the previous proof, the prob-
lem (3.12) has a unique solution. We refer to [13, 5, 15] for additional constraints
guaranteeing uniqueness in the case s3(ρ3+)≤d1(ρ1−)+d2(ρ2−). For any solution to
(3.12) we proceed as before and obtain a weak solution to (3.3) as a solution to
the three half–Riemann problems (3.5) with initial data U i− and U i+ for i=1, 2, 3,
respectively.

Remark 3.2. In [10] the existence of a unique weak solution at an arbitrary junction
has been proven. This is achieved by introducing additional constraints and a modified
objective function to maximize. We propose a different choice below for a vertex of
arbitrary degree, i.e., an “equal priority rule” as in [15].

Before discussing the general case, we consider a vertex of degree three with two
outgoing roads i=2,3. For this case we propose the following modeling: We introduce
a distribution rate α∈ [0,1] of the total incoming flux ρ(x1

n,t)v1(ρ(x1
n,t)). To be more

precise, we prove existence of a weak solution {U i}3i=1 which satisfies

αρ1
1v

1(ρ1)(x1
n,t)=ρ2

1v
2(ρ2)(x2

n,t), (3.13a)
αρ1

2v
1(ρ1)(x1

n,t)=ρ2
2v

2(ρ2)(x2
n,t), (3.13b)

(1−α)ρ1
1v

1(ρ1)(x1
n,t)=ρ3

1v
3(ρ3)(x3

n,t), (3.13c)
(1−α)ρ1

2v
1(ρ1)(x1

n,t)=ρ3
2v

3(ρ3)(x3
n,t). (3.13d)

Obviously, (3.13) implies (3.4) and we have a distribution as αρ1v1(ρ1)=ρ2v2(ρ2).
Under the additional assumption (3.13), the following result holds true.

Proposition 3.5. Let U i
0, i=1,2,3 be some given admissible initial data, constant

on each arc i=1,2,3, and a distribution rate 0≤α≤1. Then, there exists a unique
weak solution {U1 =(ρ1

1,ρ
1
2),U

2 =(ρ2
1,ρ

2
2),U

3 =(ρ3
1,ρ

3
2)} in the sense of (3.3) with the

following properties:
1. The moments are conserved through the junction, i.e., (3.4) holds for t>0,

and they are distributed according to α, i.e., (3.13) holds.
2. The total flux ρ1v1(ρ1) is maximal at the interface (x,t)=(x1

n,t),t>0.

The proof is similar to the one of the two previous propositions and is therefore
omitted. For later reference, we remark that the maximal flux at the interface x=xi

n

for any time t>0 in the non–trivial case α∈ (0,1), is given by

q(t)= q =min{d1(ρ1),s2(ρ2)/α,s3(ρ3)/(1−α)}, (3.14)

where ρi =ρi
1,0 +ρi

2,0 is given by the initial data.

Remark 3.3. The following extension to the single distribution rate α is possible:
We introduce two rates α1 and α2, both in [0,1], and distribute the partial incoming
fluxes ρ1

1v
1(ρ1) and ρ1

2v
1(ρ1) with possibly different rates α1 and α2, i.e., we replace

the equations in (3.13) by

α1 ρ1
1v

1(ρ1)(x1
n,t)=ρ2

1v
2(ρ2)(x2

n,t),
α2 ρ1

1v
1(ρ1)(x1

n,t)=ρ2
2v

2(ρ2)(x2
n,t),

(1−α1)ρ1
1v

1(ρ1)(x1
n,t)=ρ3

1v
3(ρ3)(x3

n,t),
(1−α2)ρ1

1v
1(ρ1)(x1

n,t)=ρ3
2v

3(ρ3)(x3
n,t).
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But, then the maximization problem for the interface flux q does not necessarily
pose a unique solution.

3.4. The general m–n junction. Combining the discussion of the 1–
2 and 2–1 junction, we now state the result for a network with a single ver-
tex with i∈{1,... ,m}= δ−n incoming and i∈{m+1,... ,n+m}= δ+

n outgoing roads.
We need to introduce additional conditions to obtain a unique solution {U i}n+m

i=1

in the sense of (3.3). First and as in [10], we introduce a distribution matrix
A=(αij)ij ∈Mat(Rm,Rn) such that

∑

j∈δ+
n

αij =1, ∀i∈ δ−n . (3.15)

Second, we introduce an equal priority rule as in [15]: If cars (of either class)
coming from more than one incoming road move towards the same outgoing road,
we assume that they enter this road turn by turn. In particular, we model this fact
by looking for weak solutions which additionally satisfy ρivi(ρi)=ρkvk(ρk) for all
i,k∈ δ−n .

Summarizing, we have the following theorem on existence and uniqueness of a
weak solution {U}n+m

i=1 to a piecewise constant initial data.

Theorem 3.1. Consider admissible initial data U i
0 constant on each arc i=1,... ,n+

m= δ−n ∪δ+
n and a flux distribution matrix A∈Mat(Rm,Rn) satisfying (3.15) and

such that
∑

iαij 6=0.

Then, there exists a unique weak solution {U i} to (3.3) which satisfies both (3.4)
and the following additional properties:

1. The moments are distributed according to A, i.e.,

∑

i∈δ−n

αij ρi
lv

i(ρi)(xi
n,t)=ρj

l v
j(ρj)(xj

n,t), l=1,2, j∈ δ+
n ,t>0. (3.16)

2. An equal priority rule holds true, i.e.,

ρivi(ρi)(xi
n,t)=ρjvj(ρj)(xj

n,t), i,j∈ δ−n ,t>0. (3.17)

3. The total incoming flux
∑

i∈δ−n ρivi(ρi)(x,t) is maximal at the interface x=
xi

n,t>0.

Thanks to (3.15) we obtain (3.4) from (3.16). The restriction 0<
∑

iαij has been
imposed to avoid triviality due to an used outgoing road.

Proof. (of Theorem 3.1) We introduce U i−=U i
0,i∈ δ−n and U j+ =U j

0 ,j∈ δ+
n . To

prove the assertion we consider the following maximization problem in the unknowns
(U i+,U j−)i,j for i∈ δ−n and j∈ δ+

n .
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max
∑

i∈δ−n

ρi+vi(ρi+) subject to (3.18a)

∑

i∈δ−n

αij ρi+
l vi(ρi+)=ρj−

l vj(ρj−), l=1,2,j∈ δ+
n , (3.18b)

0<ρi+vi(ρi+)≤di(ρi−), i∈ δ−n , (3.18c)
0<ρj−vj(ρj−)≤sj(ρj+), j∈ δ+

n , (3.18d)
ρi+vi(ρi+)=ρk+vk(ρk+), i,k∈ δ−n . (3.18e)

If we introduce q̃ :=ρi+vi(ρi+)=ρk+vk(ρk+),i,k∈ δ−n , we obtain that q̃∈R is
uniquely determined as

q̃ =min
{

di(ρi−),sj(ρj+)/
∑

i

αij : i∈ δ−n ,j∈ δ+
n

}
. (3.19)

Due to proposition 3.1 we obtain a unique state U i+ =(ρi+
1 ,ρi+

2 ) for every incom-
ing road i∈ δ+

n , such that ρi+vi(ρi+)= q̃. Moreover, U i(x,t) is given as solution to
the half-Riemann problem (3.5) with initial data U i− and U i+ and consists of waves
having non–positive wave speed. Then, due to (3.18b) and proposition 3.2 we ob-
tain a unique state U j−=(ρj−

1 ,ρj−
2 ) for each outgoing road j∈ δ+

n and such that the
solution U j to the half–Riemann problem (3.5) with initial data U j− and U j+ is a
superposition of waves of non–negative speed. Finally, {U i} fulfills (3.16) and (3.17)
by construction.

4. Numerical results
All the following results have been obtained by a second–order relaxed scheme,

see for example [18]. At the intersection the states are determined as in the previous
section. The results presented are obtained with a discretization of ∆x=1/800.
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Fig. 4.1. Densities ρ1 and ρ2 for two connected roads with equal free flow velocities at time
t=0 and t=1.

First, we consider a situation of a 1–1 intersection. We have to two connected
roads i=1,2 with possibly different free flow velocities ci, cf. equation (3.2). We
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Fig. 4.2. Densities ρ1 and ρ2 for two connected roads with equal free flow velocities.
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Fig. 4.3. Densities ρ1 and ρ2 for two connected roads with different free flow velocities

prescribe initial data U i
0 to show the time–evolution of the solution U i(x,t) obtained

in Section 3.2.
The details are as follows. The intersection is located at x1

n =x2
n =1/2 and the

initial data is

U1
0 =

(
0.2
0.1

)
, U2

0 =
(

0.4
0.1

)
. (4.1)

In the case of the same free flow velocity

c1 = c2 =1, (4.2)

the numerical solution is given in Figure 4.2. The Riemann data chosen is such
that there is a discontinuity of the total density ρ1

0 +ρ2
0 at time t=0 and x=1/2.

We then observe that this discontinuity travels with positive speed and we show the
distribution of this density among the two classes ρ1 and ρ2 at time t=0 and t=1 in
Figure 4.1. The time–evolution of both solutions ρ1(x,t) and ρ2(x,t) is presented in
Figure 4.2. As asserted in the previous section, the solution for each class ρi consists
at most of three connected states which can be nicely seen in the picture. This serves
as a benchmark for the numerical code and shows in particular, that the code resolves
the arising contact discontinuities.

Second, we consider a similar problem as before but for different free flow veloc-
ities on the connected roads. This can be seen as solving a conservation law with
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discontinuous coefficient. The chosen velocities are

c1 =0.8 and c2 =1, (4.3)

and the initial data is given by

U1
0 =

(
0.2
0.1

)
, U2

0 =
(

0.3
0.5

)
. (4.4)

x=x
0

Fig. 4.4. Sketch of the ring road.
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Fig. 4.5. Total density ρ(x,t) on the ring road i=1.

In Figure 4.3 we present the time–evolution of the densities ρi
1 and ρi

2 on both
roads i=1,2. Due to the low inflow ρ1v1(ρ1), the constant state U1

0 is preserved on
the incoming road i=1. On the outgoing road i=2, we observe a composition of a 1–
and a 2–wave. Neither ρ1 nor ρ2 has to be continuous through the intersection, but
(as required by the coupling conditions) this holds true for the flux qi (not shown).
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Fig. 4.6. Densities ρ1(x,t) (top) and ρ2(x,t) (bottom) on the ring road i=1.

Next, we present results on a ring road represented in Figure 4.4, i.e., with two
roads i=1,2.

This ring road has an inflow arc i=2 at x=x0 where we prescribe a time–varying
inflow in both the ρ1 and ρ2. At first this generates waves on the part of the road
x>x0. These waves now travel along the road and reach after some time (∆t≈0.0152)
again the intersection at x=x0. Now, the combined inflow of the circular road (i=1)
and the additional road, exceeds the maximal possible flow. Hence, we observe a
shock wave forming and moving on x<x0. This pattern can be seen in all subsequent
pictures. Moreover, we apply a slightly different condition at the intersection x=
x0: Instead of requiring an equal flux condition (as in theorem 3.1) we propose the
following: If the sum of the demands d1(ρ1(x0+,t))+d(ρ2(x0,t)) does not exceed the
supply s3(ρ1(x0+,t)), then we allow all the flow to pass the intersection. Otherwise,
we impose (3.17). This condition is as in [13] and also allows for a unique solution of
(3.18), see [13, 5].

We depict the numerical results for the circular road only. In this case, the
drawing area is such that x=0 and x=1 correspond to the same point in the network
graph. The intersection is located at x=x0 =1/2 and we set c=1 for all roads. Along
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(x0,t),t<0.0152, we see the influence of inflow of road i=2 leading to increasing and
decreasing total flux. Further, we observe the backwards moving shock wave after
∆t=0.0152. Additionally, we plot the density ρ(x,t) in Figure 4.5 where the shock
wave can be seen also. For completeness, we also give the results on contour plots of
the densities ρ1 and ρ2 on road i=1 in Figure 4.6.

Summary. We extended a multi–class traffic flow model with two different
classes to a network. We proposed coupling conditions by analyzing Riemann prob-
lems at the intersection. We presented some numerical validations of these conditions
on a 1–1 intersection with possibly different free flow velocities and on a ring road
having only one inflow arc. In the latter example the numerical results show that the
coupled dynamics of the two class model yields a complex shock and rarefaction wave
pattern. Further numerical examples will be considered in a forthcoming publication.
Moreover, we are currently working on the extension of the results to Cauchy initial
data. In the same spirit as in [10], this might be achieved by careful TV estimates on
the wave interactions at intersections.
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