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RELAXATION APPROXIMATION OF SOME NONLINEAR
MAXWELL INITIAL-BOUNDARY VALUE PROBLEM∗

GILLES CARBOU† AND BERNARD HANOUZET‡

Abstract. Two nonlinear Maxwell systems are considered: Kerr model exhibiting an instanta-
neous response of the medium, Kerr-Debye model which contains some delay term and is a relaxation
approximation of the first one. In one space dimension, we prove that the limit of the solution to
the ingoing wave condition for Kerr-Debye model is a solution to the Kerr model.
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1. Introduction
Nonlinear Maxwell’s equations are used for modelling nonlinear optical phenom-

ena. The wave propagation in an isotropic medium is described by Maxwell’s system:

∂tD−curlH =0,
∂tB+curlE =0,
divD=divB =0.

The field quantities E and H represent the electric and magnetic fields, D and B
the electric and magnetic displacements. We consider the constitutive relations for a
nonlinear Kerr medium:

B =µ0H,
D =ε0E +P,

where P is the nonlinear polarization.
If the medium exhibits an instantaneous response we have a Kerr model:

P =PK =ε0εr|E|2E.

If the medium exhibits a finite response time τ we have a Kerr-Debye model:

P =PKD =ε0χE,

where

∂tχ+
1
τ

χ=
1
τ

εr|E|2

(see for example [15] or [20]).

So the Kerr-Debye model is a relaxation approximation of the Kerr model and
τ is the relaxation parameter (for a general presentation of relaxation problems, see
[13]). Formally, when τ tends to 0, χ converges to εr|E|2 and PKD converges to PK .
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332 RELAXATION FOR A NONLINEAR MAXWELL EQUATION

Recently for the Cauchy problem with regular initial data, the convergence result
was obtained in [7] and [8] using the general framework given in [17]. This study is
based on a precise description of the boundary layer in time.

For the modelling of realistic physical situations it is more convenient to take into
account boundary value conditions. In particular we consider the impedance boundary
value problem. For the Kerr-Debye model in two space dimension, numerical studies
were proposed for the Dirichlet condition on the magnetic field in [19] and for the
ingoing boundary condition in [8].

The aim of this paper is to prove convergence results in the case of a impedance
initial-boundary value problem for the Kerr-Debye model in one space dimension.

2. The one space dimension models
Let us suppose that

D(x,y,z)=(0,d(x),0),
H(x,y,z)=(0,0,h(x)).

Then Maxwell’s system can be rewritten as

∂td+∂xh=0,
∂th+∂xe=0,

for (t,x)∈ ([0,+∞])2.

Once nondimensionalized the Kerr model, denoted by (K), becomes:




∂td+∂xh=0,

∂th+∂xe=0,

d=(1+e2)e,

(2.1)

for (t,x)∈ (R+)2.

We suppose that the initial data vanishes

d(0,x)=h(0,x)=0 for x∈R+, (2.2)

and that we have the boundary condition

h(t,0)+ae(t,0)=g(t) for t∈R+, (2.3)

where a is a non negative constant.

The system (K) is quasi-linear hyperbolic. It is a p-system where p is the re-
ciproque function of e 7→ (1+e2)e, and it is strictly hyperbolic with eigenvalues

λ1 =−
√

p′(d)<0<λ2 =
√

p′(d).

The energy density EK given by

EK(e,h)=
1
2
(e2 +h2 +

3
2
e4) (2.4)
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is a strictly convex entropy. In the entropic variable (e,h), system (K) writes in the
symmetric form:

(
1+3e2 0

0 1

)
∂t

(
e
h

)
+

(
0 1
1 0

)
∂x

(
e
h

)
=0. (2.5)

The boundary {x=0} is non characteristic. We can verify that the boundary condition
(2.3) is an ingoing wave condition and is maximal dissipative (since a≥0). Therefore
classical existence results of a regular solution for the (K) boundary value problem
(2.1)-(2.2)-(2.3) apply.

The one dimensional Kerr-Debye model, denoted by (KD) system, writes:





∂tdε +∂xhε =0,

∂thε +∂xeε =0,

∂tχε =
1
ε
(e2

ε−χε),

dε =(1+χε)eε,

(2.6)

for (t,x)∈ (R+)2, with initial data

dε(0,x)=hε(0,x)=χε(0,x)=0 for x∈R+ (2.7)

and with boundary condition

hε(t,0)+aeε(t,0)=g(t) for t∈R+. (2.8)

Using the third equation in (2.6) and (2.7) we remark that

χε(t,x)≥0. (2.9)

The system (KD) is quasi-linear strictly hyperbolic with eigenvalues

λ1 =(1+χε)−
1
2 <λ2 =0<λ3 =(1+χε)−

1
2 .

The energy density EKD given by

EKD(d,h,χ)=
1
2
(1+χ)−1d2 +

1
2
h2 +

1
4
χ2

is a strictly convex entropy in {χ≥0}, so the system (KD) is symmetrizable.
Using the entropy variables given by





∂dEKD(d,h,χ)=(1+χ)−1d :=e,

∂hEKD(d,h,χ)=h,

∂χEKD(d,h,χ)=−1
2
(1+χ)−2d2 +

1
2
χ=

1
2
(χ−e2) :=v,
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system (KD) takes the symmetric form





(1+3e2
ε +2vε)∂teε +2eε∂tvε +∂xhε =0,

∂thε +∂xeε =0,

2eε∂teε +2∂tvε =−2
ε
vε.

If we use the following notations:

Wε =(Uε,vε) with Uε =(eε,hε),

A0(Wε)=




1+3e2
ε +2vε 0 2eε

0 1 0
2eε 0 2


, A1 =




0 1 0
1 0 0
0 0 0


,

Q(Wε)=




0
0
vε


,

we obtain

A0(Wε)∂tWε +A1∂xWε =−2
ε
Q(Wε). (2.10)

The matrix A0(Wε) is definite positive because χε =e2
ε +2vε≥0 by (2.9). The

matrix A1 is singular with a one dimensional kernel, so the boundary {x=0} is
characteristic of constant multiplicity. In addition, the boundary condition (2.8) is an
ingoing wave boundary condition and is maximally dissipative. Therefore the general
results of [5] apply to obtain an existence result of regular solutions for the (KD)
boundary value problem (2.6)-(2.8).

Now let us specify the assumptions on the source term g in the boundary condition
(2.3) or (2.8). For the modelling of realistic physical situations we can assume that g
is compactly supported in [0,+∞]. We denote by Hs the classical Sobolev space and
we suppose that g belongs to Hs(R) for s great enough. So the boundary condition
and the null initial data match each other and we obtain smooth solutions.

In order to obtain a homogeneous boundary condition we replace the magnetic
field h with h(t,x)+g(t)η(x) where η is a smooth function, compactly supported in
R+, equal to 1 in the neighborhood of 0. We rewrite the (K) boundary value problem
in the entropic variables





(
1+3e2 0

0 1

)
∂t

(
e
h

)
+

(
0 1
1 0

)
∂x

(
e
h

)
=

(
g1

g2

)
for (t,x)∈ (R+)2,

e(0,x)=h(0,x)=0 for x∈R+,

h(t,0)+ae(t,0)=0 for t∈R+,

(2.11)

where g1(t,x)=−g(t)η′(x) and g2(t,x)=−g′(t)η(x), and we consider a regular solu-
tion of this problem.
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Proposition 2.1. There exists T ∗>0 and a unique regular solution U =(e,h) for
the (K) boundary value problem (2.11) defined in [0,T ∗]×R+ and such that

∂i
tU ∈C0([0,T ∗];H2−i(R+)) for i=0,1,2.

In the same way we rewrite the (KD) boundary value problem with the entropic
variables





A0(Wε)∂tWε +A1∂xWε =−2
ε
Q(Wε)+G(t,x) for (t,x)∈ (R+)2,

Wε(0,x)=0 for x∈R+,

hε(t,0)+aeε(t,0)=0 for t∈R+,

(2.12)

where G= t(g1,g2,0).
For fixed ε>0, using the results in [5] we consider a regular local solution of this

problem.

Proposition 2.2. There exists T ∗ε >0 and a unique regular solution Wε =(Uε,vε)
for the (KD) boundary value problem (2.12) defined on [0,T ∗ε ]×R+ and such that

∂i
tWε∈C0([0,T ∗ε ];H2−i(R+)),i=0,1,2.

The goal of this paper is to analyse the behaviour of the regular solutions for the
(KD) boundary value problem when the relaxation parameter ε tends to 0. By energy
estimates we first obtain a uniform bound of Wε in the following theorem.

Theorem 2.3. Let Wε and T ∗ε be given by Proposition 2.2. There exist T̃ >0 and
a constant K >0 such that for all ε>0, T ∗ε ≥ T̃ and the solution Wε =(Uε,vε) of the
(KD) boundary value problem (2.12) satisfies





‖∂i
tUε‖C0([0,T̃ ];H2−i(R+))≤K for i=0,1,2,

1
ε
‖vε‖C0([0,T̃ ];H1(R+))≤K,

‖∂i
tvε‖C0([0,T̃ ];H2−i(R+))≤K for i=0,1,2.

Theorem 2.3 shows the strong convergence of vε =
1
2
(χε−e2

ε) to zero. The conver-

gence of Uε to the solution of the boundary value problem (2.11) for (K) is contained
in the following statement.

Theorem 2.4. Let U and T ∗ be given by Proposition 2.1, let Uε and T̃ be given by
Theorem 2.3. For T ≤ T̃ and T <T ∗, there exists a constant K >0 such that for all
ε>0,

‖Uε−U‖C0([0,T ];L2(R+))≤Kε. (2.13)



336 RELAXATION FOR A NONLINEAR MAXWELL EQUATION

So we have proven that the regular solutions for the (KD) boundary value prob-
lem tend to the solution for the (K) boundary value problem when the relaxation
parameter tends to zero.

In our study we remark that no boundary layer appears in the time variable
because the null initial data belongs to the equilibrium manifold defined by

V=
{
(d,h,χ) such that χ−(1+χ)−2d2 =2v =0

}
.

For the space variable, we have the same boundary condition for the system (K)
and for the system (KD), so no space boundary layer appears again.

In the case of non characteristic boundary conditions, a general study of boundary
conditions for hyperbolic relaxation systems is given in [16].

To our knowledge general convergence results are not available for hyperbolic
relaxation systems in domains with boundary in the literature.

A special well investigated problem is the semilinear relaxation approximation to
the boundary value problem for a scalar quasilinear equation, see [11, 14, 10, 12], and
[4, 1] for related numerical considerations.

For the strong solutions of the (KD) boundary value problem with the entropic
variables, we obtain a symmetric hyperbolic system endowed with a flat equilibrium
manifold. This basic structure of numerous relaxation systems is explained and used
for the global existence of smooth solutions in [6] and for asymptotic behavior in [2].
For connected works see also [18, 9].

The study of the three-dimensional case is the subject of a work in progress [3].
In this case the previous properties are still valid: there is no boundary layer and
with the entropic variables, the equilibrium manifold is flat. On the other hand, the
boundary is characteristic for both problems, with a two-dimensional kernel for the
Kerr problem, and a three-dimensional kernel for the Kerr-Debye problem. We must
then take into account the nonlinear conservation equations divD =divB =0, which
is irrelevant for the one-dimensional case.

Section 3 is devoted to the proof of Theorem 2.3. Using energy estimates, we
bound the time derivatives of Wε. The boundary is characteristic so we cannot directly
obtain the bounds for the space derivatives. Since Ker A1 =R(0,0,1) with the first
two equations, we can express and estimate the space derivatives for Uε. Estimates
for vε are obtained solving the third equation by the Duhamel formula.

We prove Theorem 2.4 in Section 4.

3. Proof of Theorem 2.3
Proof. We denote by · the canonical scalar product on R3 and by |.| the associated

Euclidean norm.
For the convenience of the reader, we rewrite System (2.12) omitting the depen-

dance on ε. Let W be a solution to the problem




A0(W )∂tW +A1∂xW =−2
ε
Q(W )+G on [0,T ∗ε ]×R+,

W (0,x)=0 on R+,

(h+ae)(t,0)=0 on [0,T ∗ε ].

(3.1)

Here we denote by T ∗ε ∈ [0,+∞] the lifespan of W given by [5]. We prove the
result when

‖W‖L∞(0,T∗ε ×R+) =+∞.
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If this assumption is not satisfied, we use the extension Theorem in [5] with analogous
arguments as below.

Let M be a positive constant large enough with respect to the L∞-norm of the
initial data. Consider the regular solution W =(U,v) to problem (3.1), as given by
Proposition 2.2. Define Tε >0 as

Tε =max{T ≤T ∗ε ,‖W‖L∞([0,T ]×R+) <M}, (3.2)

that is Tε is the first time such that the L∞-norm of W reaches the given bound M .
We recall that the solution W =(U,v) satisfies:

∂i
tW ∈C0([0,Tε];H2−i(R+)) for i=0,1,2. (3.3)

Furthermore we recall that

e2 +2v≥0 on [0,Tε]×R+. (3.4)

From (3.2) and (3.4), by definition of A0 we have

∀ ξ∈R3, A0(W )ξ ·ξ≥ 1
M2 +2

|ξ|2. (3.5)

We measure the boundary value lifting G by the quantities γ and Γ defined by:

γ(t)=
(
‖G(t)‖2L2(R+) +‖∂tG(t)‖2L2(R+) +‖∂ttG(t)‖2L2(R+) +‖∂xG(t)‖2L2(R+)

) 1
2
, (3.6)

and

Γ(t)= sup
s∈[0,t]

γ(s). (3.7)

For t∈ [0,Tε] we define ϕ and Φ by

ϕ(t)=
(
‖W (t)‖2L2(R+) +‖∂tW (t)‖2L2(R+) +‖∂ttW (t)‖2L2(R+)

) 1
2
, (3.8)

Φ(t)= sup
s∈[0,t]

ϕ(s). (3.9)

We first prove the following result.

Lemma 3.1. There exists a constant K1, independent of M , such that

∀ε>0, ∀ t∈ [0,Tε], Φ(t)2≤K1(2+M2)
∫ t

0

(
1+ (Φ(s))5 +(Γ(s))5

)
ds. (3.10)

Proof. First step: L2 estimate
We take the inner product of Equation (3.1) with W and we obtain

1
2

d

dt

∫

R+
A0(W )W ·Wdx+

2
ε

∫

R+
|v|2dx+a|e(t,0)|2

=
∫

R+
G ·W +

1
2

∫

R+
∂t(A0(W ))W ·Wdx,
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where

∂t(A0(W ))=




6e∂te+2∂tv 0 2∂te
0 0 0

2∂te 0 0


. (3.11)

We have
∣∣∣∣
∫

R+
∂t(A0(W ))W ·Wdx

∣∣∣∣

≤ ‖∂t(A0(W ))‖L∞(R+)‖W‖2L2(R+)

≤ C(1+‖e‖L∞(R+))
(‖∂te‖L∞(R+) +‖∂tv‖L∞(R+)

)‖W‖2L2(R+),

thus we obtain

1
2

d

dt

∫

R+
A0(W )W ·Wdx+

2
ε

∫

R+
|v|2dx+a|e(t,0)|2≤‖G‖L2(R+)‖W‖L2(R+)

+C(1+‖e‖L∞(R+))(‖∂te‖L∞(R+) +‖∂tv‖L∞(R+))‖W‖2L2(R+).

(3.12)

Second step: estimate on ∂tW
We can derivate the system (3.1) with respect to t. We obtain





A0(W )∂ttW +∂t(A0(W ))∂tW +A1∂txW =−2
ε
Q(∂tW )+∂tG on [0,Tε]×R+,

∂tW (0,x)=0 on R+,

(∂th+a∂te)(t,0)=0 on [0,Tε].
(3.13)

Taking the inner product of (3.13) with ∂tW , we obtain

1
2

d

dt

∫

R+
A0(W )∂tW ·∂tWdx+

2
ε

∫

R+
|∂tv|2dx+ a|∂te(t,0)|2 =

∫

R+
∂tG ·∂tW

−1
2

∫

R+
∂t(A0(W ))∂tW ·∂tWdx,

and thus there exists a constant C such that

1
2

d

dt

∫

R+
A0(W )∂tW ·∂tWdx+

2
ε

∫

R+
|∂tv|2dx+a|∂te(t,0)|2

≤‖∂tG‖L2(R+)‖∂tW‖L2(R+)

+C(1+‖e‖L∞(R+))
(‖∂te‖L∞(R+) +‖∂tv‖L∞(R+)

)‖∂tW‖2L2(R+). (3.14)

Third step: estimate on ∂ttW
We can derivate System (3.13) with respect to t. We obtain

1
2

d

dt

∫

R+
A0(W )∂ttW ·∂ttWdx+

2
ε

∫

R+
|∂ttv|2dx+a|∂tte(t,0)|2 =

∫

R+
∂ttG ·∂ttW

−3
2

∫

R+
∂t(A0(W ))∂ttW ·∂ttWdx−

∫

R+
∂tt(A0(W ))∂tW ·∂ttW.
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Now we have:

∂tt(A0(W ))=




6(∂te)2 +6e∂tte+2∂ttv 0 2∂tte
0 0 0

2∂tte 0 0


,

thus

‖∂tt(A0(W ))∂tW‖L2(R+)

≤ C(1+‖e‖L∞(R+))
(‖∂te‖L∞(R+) +‖∂tv‖L∞(R+)

)‖∂ttW‖L2(R+)

+C‖∂te‖2L∞(R+)‖∂te‖L2(R+).

Therefore

1
2

d

dt

∫

R+
A0(W )∂ttW ·∂ttWdx+

2
ε

∫

R+
|∂ttv|2dx+a|∂tte(t,0)|2

≤‖∂ttG‖L2(R+)‖∂ttW‖L2(R+)

+C(1+‖e‖L∞(R+))
(‖∂te‖L∞(R+) +‖∂tv‖L∞(R+)

)‖∂ttW‖2L2(R+)

+C‖∂te‖2L∞(R+)‖∂te‖L2(R+)‖∂ttW‖L2(R+). (3.15)

Fourth step: L∞ estimates for ∂te and ∂tv
We recall the equations satisfied by W =(e,h,v):

(3e2 +2v+1)∂te+2e∂tv+∂xh=g1, (3.16)

∂th+∂xe=g2, (3.17)

e∂te+∂tv =−1
ε
v. (3.18)

From (3.17) we have

‖∂xe‖L2(R+)≤ϕ+‖G‖L2(R+)≤ϕ+γ, (3.19)

where ϕ is defined by (3.8) and γ is defined by (3.6). Thus

‖e‖H1(R+)≤2ϕ+γ, (3.20)

and by Sobolev injection

‖e‖L∞(R+)≤C(ϕ+γ). (3.21)

Derivating (3.17) with respect to t we obtain that

‖∂x∂te‖L2(R+)≤ϕ+‖∂tG‖L2(R+),

so

‖∂te‖H1(R+)≤2ϕ+‖∂tG‖L2(R+), (3.22)
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and by Sobolev injections there exists a constant C such that

‖∂te‖L∞(R+)≤C(ϕ+γ). (3.23)

Now we solve Equation (3.18) with the Duhamel formula:

v(t,x)=−
∫ t

0

exp(
s− t

ε
)e(s,x)∂te(s,x)ds,

so

‖v(t,.)‖L∞(R+)≤
∫ t

0

exp(
s− t

ε
)‖e(s,.)‖L∞(R+)‖∂te(s,.)‖L∞(R+)ds

≤ C

∫ t

0

exp(
s− t

ε
)(ϕ(s)+γ(s))2ds

≤ C(Φ(t)+Γ(t))2ε,

where Φ is defined in (3.9) and Γ is defined by (3.7). Using Equation (3.18) we obtain
then that

‖∂tv‖L∞(R+)≤
1
ε
‖v‖L∞(R+) +‖e∂te‖L∞(R+)

≤ C(Φ(t)+Γ(t))2.
(3.24)

Fifth step: end of the proof of Lemma 3.1
We sum up inequalities (3.12), (3.14) and (3.15). Using (3.23) and (3.24) we obtain
that there exists a constant K1 independent of ε, M and t∈ [0,Tε] such that

1
2

d

dt

∫

R+

(
A0(W )W ·Wdx+ A0(W )∂tW ·∂tWdx+A0(W )∂ttW ·∂ttW

)
dx

+
2
ε

∫

R+

(
|v|2dx+ |∂tv|2dx+ |∂ttv|2

)
dx+a

(
|e(t,0)|2 + |∂te(t,0)|2 + |∂tte(t,0)|2

)

≤Cγϕ+C(1+ϕ+γ)
(
ϕ+γ+(Φ+Γ)2

)
ϕ2 +C(ϕ+γ)2ϕ2

≤K1

(
1+Φ5 +Γ5

)
.

We integrate this inequality on [0,t] for t∈ [0,Tε] and we have by (3.5) that

∀ t∈ [0,Tε], ϕ2(t)≤K1(2+M2)
∫ t

0

(
1+Φ(s)5 +Γ(s)5

)
ds.

So we obtain Lemma 3.1.

Lemma 3.1 provides estimates on the time derivatives of W . The space derivatives
can not be obtained by the same method since it is impossible to derivate the system
(KD) with respect to the normal variable x. We deduce estimates on the space
derivatives from the equations as we will see in the following lemma.
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Lemma 3.2. There exists K2 such that for all t<T ∗ε ,

‖U‖H2(R+)≤K2(Γ+Φ+Γ3 +Φ3),

‖v‖H1(R+)≤K2(Γ2 +Φ2)ε,

‖∂tv‖H1(R+)≤K2(Γ2 +Φ2),

‖W‖L∞(R+)≤K2(Γ+Φ+Γ3 +Φ3).

Proof. We recall that

v(t,x)=−
∫ t

0

exp

(
s− t

ε

)
e(s,x)∂te(s,x)ds,

thus

‖v(t,.)‖H1(R+)≤C

∫ t

0

exp

(
s− t

ε

)
‖e(s,.)‖H1(R+)‖∂te(s,.)‖H1(R+)ds,

thus by Estimates (3.22) and (3.20), we have

‖v(t,.)‖H1(R+)≤C(Φ(t)+Γ(t))2ε. (3.25)

From (3.18) we obtain

‖∂tv(t,.)‖H1(R+)≤
1
ε
‖v(t,.)‖H1(R+) +‖e‖H1(R+)‖∂te‖H1(R+),

thus

‖∂tv(t,.)‖H1(R+)≤C(Φ(t)+Γ(t))2. (3.26)

Now from Equation (3.16) we estimate ∂xh in the following way:

‖∂xh‖H1(R+)≤‖g1‖H1(R+) +‖3e2 +2v‖H1(R+)‖∂te‖H1(R+)

+‖∂te‖H1(R+) +2‖e‖H1(R+)‖∂tv‖H1(R+),

and thus there exists a constant C such that

‖h‖H2(R+)≤C(Γ+Φ+Γ3 +Φ3). (3.27)

We derivate (3.17) with respect to x:

∂xxe=∂xg2−∂t∂xh.

Thus

‖∂xxe‖L2(R+) =γ+‖∂t∂xh‖L2(R+).

Derivating (3.16) with respect to t we obtain:
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‖∂t∂xh‖L2(R+)

≤ ‖3e2 +2v+1‖L∞(R+)‖∂tte‖L2(R+) +‖6e∂te+2∂tv‖L2(R+)‖∂te‖L∞(R+)

+2‖∂te‖L∞(R+)‖∂tv‖L2(R+) +2‖∂te‖L∞(R+)‖∂ttv‖L2(R+)

+‖∂tg1‖L2(R+)

≤ C(Γ+Φ+Φ3 +Γ3),

using (3.21), (3.23), (3.24) and (3.25).
So we have obtained

‖e‖H2(R+)≤C(Γ+Φ+Φ3 +Γ3). (3.28)

This concludes the proof of Lemma 3.2.

Proof of Theorem 2.3
We fix M =3K2(Γ∞+Γ3

∞), where K2 is given by Lemma 3.2, and where Γ∞=sup
R+

Γ.

Let us introduce ξ the solution of
{

ξ′=K1(2+M2)
(
1+ξ

5
2 +Γ5

∞
)

,

ξ(0)=0,

defined on the maximal interval [0,T1], where K1 is given by Lemma 3.1. By compar-
ison results, from Estimate (3.10) we have

∀ t∈ [0,min(T1,Tε)], Φ2(t)≤ ξ(t).

From Lemma 3.2 we have then that

‖W‖L∞(R+)≤K2(Γ+ξ
1
2 +Γ3 +ξ

3
2 ).

The map ξ is continuous and ξ(0)=0, thus there exists a time T̃ with 0<T̃ ≤T1

such that

K2(ξ
1
2 (T̃ )+ξ

3
2 (T̃ ))≤M

3
.

For all t≤ T̃ , we then have:

K2(Γ+ξ
1
2 +Γ3 +ξ

3
2 )≤ 2M

3
.

Thus T̃ <Tε because if Tε≤ T̃ then ‖W (t)‖L∞(R+)≤
2M

3
for all t≤Tε, which is con-

tradictory to the fact that ‖W (Tε)‖L∞(R+) =M (see (3.2)).
It remains to obtain uniform H2 estimate on v. We have

v(t,x)=−1
2

∫ t

0

exp

(
s− t

ε

)
∂t(e(s,x)2)ds,
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thus with an integration by parts we obtain

v(t,x)=−1
2

[
exp

(
s− t

ε

)
e(s,x)2

]t

0

+
1
2ε

∫ t

0

exp

(
s− t

ε

)
e(s,x)2ds.

So we obtain that there exists a constant C independent of ε such that for t≤ T̃

‖v(t,.)‖H2(R+)≤C‖e‖2L∞([0,t];H2(R+)).

This concludes the proof of Theorem 2.3.

4. Proof of Theorem 2.4
Proof. Let us consider U =(e,h) the solution of the (K) boundary value problem

(2.11) defined on the time interval [0,T ∗] given by Proposition 2.1. We recall that
we denote by Wε =(Uε,vε) the solution of the (KD) boundary value problem (2.12)
given by Proposition 2.2, with Uε =(eε,hε).

Set Rε =
1
ε
(Uε−U)=(rε,sε). The remainder term Rε satisfies





(3e2
ε +2vε +1)∂trε +∂xsε +3(eε +e)(∂te)rε =−2

ε
eε∂tvε− 2

ε
vε∂te,

∂tsε +∂xrε =0,

(4.1)

with the initial and boundary conditions:




sε =eε =0 for t=0,

sε +arε =0 for x=0.
(4.2)

In order to estimate the right hand side term we recall that from (2.12) we have

1
ε
∂tvε =−∂ttvε−(∂teε)2−eε∂tteε.

Using Theorem 2.3, for all T ≤ T̃ , there exists a constant K independent of ε such
that

‖∂tvε‖L2(R+)≤Kε. (4.3)

We take the inner product of (4.1) with Rε to obtain

1
2

d

dt

∫

R+

(
(3e2

ε +2vε +1)r2
ε +s2

ε

)
+a(sε(t,0))2 =

1
2

∫

R+
(6eε∂teε +2∂tvε)r2

ε

−
∫

R+
3(eε +e)(∂te)r2

ε−
2
ε

∫

R+
eε(∂tvε)rε− 2

ε

∫

R+
vε(∂te)rε.

So, there exists a constant C such that

1
2

d

dt

∫

R+

(
(3e2

ε +2vε +1)r2
ε +s2

ε

)

≤ C
(‖eε‖L∞(R+)‖∂teε‖L∞(R+) +‖∂tvε‖L∞(R+)

)‖rε‖2L2(R+)

+C
(‖eε‖L∞(R+)‖∂te‖L∞(R+) +‖e‖L∞(R+)‖∂te‖L∞(R+)

)‖rε‖2L2(R+)

+
2
ε
‖eε‖L∞(R+)‖∂tvε‖L2(R+)‖rε‖L2(R+) +

2
ε
‖∂te‖L∞(R+)‖vε‖L2(R+)‖rε‖L2(R+).
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From the estimates of Theorem 2.3, from the properties of e (see Proposition 2.1) and
from (4.3), there exists a constant K such that for all T ≤min(T̃ ,T ∗),

1
2

d

dt

∫

R+

(
(3e2

ε +2vε +1)r2
ε +s2

ε

)≤K(1+‖rε‖2L2(R+)).

We integrate this equation from 0 to t and we obtain, using (3.5),

‖rε(t)‖2L2(R+) +‖sε(t)‖2L2(R+)≤K(M2 +2)
∫ t

0

(
1+‖rε(τ)‖2L2(R+)

)
dτ.

We conclude the proof of Theorem 2.4 by the Gronwall Lemma.
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