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ASYMPTOTIC HIGH-ORDER SCHEMES FOR
INTEGRO-DIFFERENTIAL PROBLEMS ARISING IN MARKETS
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Abstract. In this paper we deal with the numerical approximation of integro-differential equa-
tions arising in financial applications in which jump processes act as the underlying stochastic pro-
cesses. Our aim is to find finite differences schemes which are high-order accurate for large time
regimes. Therefore, we study the asymptotic time behavior of such equations and we define as
asymptotic high-order schemes those schemes that are consistent with this behavior. Numerical
tests are presented to investigate the efficiency and the accuracy of such approximations.
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1. Introduction
It is common sense that the choice of approximation schemes of a differential

problem depends on the qualitative analysis that we make of the problem, however
rudimentary. If we expect, for example, to have solutions which are uniformly bounded
in time, we will try to find methods which preserve this property. This is not always
easy, also due to the problem of obtaining a fine “qualitative analysis” of the solutions,
in particular for nonlinear problems.
In this paper we are concerned with time dependent integro-differential problems
which arise in some option pricing problems described by pure jump markets. For
these problems, we shall introduce some schemes which are increasingly accurate for
large times, with respect to the asymptotic behavior of solutions. This property of
accuracy is required in order to get better results for large time simulations when
computing perturbations of nonconstant stable states.

Given a family of stable asymptotic states for a given evolutionary problem, we
say that a numerical scheme is Asymptotic High Order. In the following we simply
write AHO, if it is high-order accurate, with respect to the local truncation error,
when restricted to every element of this family.

A similar approach has been first introduced by Roe [17] for hyperbolic conserva-
tion laws with source term. The author proposed the upwinding of the source term,
giving a first example of a first order monotone scheme, which is second order on
all steady states. In the same context, the difficulties on the numerical treatment
of the source term gave origin to a large series of works dealing with the derivation
and properties of the so-called “well-balanced” solvers. Well-balanced schemes have
been introduced by Bermudez and Vazquez [2], Greenberg and LeRoux [9], and then
further developed by Gosse and LeRoux [8], LeVeque [13], Jin [10], Botchorishvili,
Perthame and Vasseur [3], and Perthame and Simeoni [15]. See the book [4] and
references therein for more references and comments.
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Here we focus our attention on the numerical solution to the Cauchy problem





∂u

∂t
+a

∂u

∂x
=γ (K ∗u−u),

u(x,0)=u0(x),

(1.1)

where the convolution kernel verifies

[K1] K≥0,
∫ +∞

−∞
K(x)dx=1, K(−x)=K(x),

and u0(x) is an integrable function.
The interest in such models can be motivated by their applications in mathemat-

ical finance in which the pure jump process acts as the underlying stochastic process,
see for instance [16, 5, 7]. Another interesting application is when considering Asian
options with jumps, where at least one space direction has no diffusion term, and so
we are faced again with a pure diffusion process at least in that direction. It is also
worth mentioning that similar equations arise as simplified models for radiating gases,
see [18, 12].
In the context of mathematical finance, direct numerical issues, for the general case
of jump-diffusion processes, were already considered in [1], [14] and in the book by R.
Cont [7]. A first convergence theory for monotone explicit schemes was given for a
general class of integro-differential Cauchy problems in [5]. In [6] the authors proposed
to apply Implicit-Explicit (IMEX) Runge-Kutta methods for the time integration of
those equations, to solve the integral term explicitly, giving schemes with high-order
time-accuracy, and stable under weak time-step restrictions.

In this paper, we focus our attention on semi-discrete finite difference approxima-
tions for the space variable. Our objective is to use the analysis of the time-asymptotic
behavior of the solutions to the Cauchy problem (1.1) to design high-order numerical
schemes for large times. Here we only consider the case where the asymptotic states
are described by stationary solutions. Therefore, we can find schemes that are con-
sistent and monotone, but such that they are high-order accurate when computed on
every stationary solution. In that way, for every given initial condition, the scheme
selects automatically its right asymptotic state, then improving for large times the
accuracy of the scheme for a fixed space mesh.

The paper is organized as follows. Section 2 is devoted to some background. In
Section 3 we consider AHO schemes for a simpler model problem, a linear hyperbolic
purely differential equation, obtaining a fourth-order scheme in the steady state. In
Section 4 we investigate the asymptotic behavior of the solution to the Cauchy problem
(1.1). The asymptotic behavior for this problem has been studied in [11] and in [18]
as a reduced case of a more general theory for a hyperbolic-elliptic coupled system.
Starting from these results we obtain the decay rate of the solution and its derivatives
for suitable initial data. Applying the results of Section 4, in Section 5 we give a
rigorous result about the accuracy of AHO schemes, and in Section 6 we present two
such schemes. Section 7 is devoted to numerical tests.

2. Notations and Background
In the following, we shall consider problems of the form

{
∂u

∂t
=L(u) (x,t)∈R×R+,

u(x,0)=u0(x),
(2.1)
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where the operator L(·) involves the partial derivatives of u in the space variable and
the convolution term; L does not involve t explicitly and we shall assume that L is
an homogeneous linear operator.

Our finite difference approximation will be defined on a uniform mesh, with the
time interval ∆t constant. The discrete region Ωh⊂R is covered by a mesh which we
shall assume has uniform spacing h. Individual values at mesh points will be denoted
by Un

j , with j∈Jh ={1,...,J}, and values of U at all such points on time level n
will be denoted by Un :={Un

j ,j∈Jh}. We shall denote by un
j the mesh values of the

function u(x,t) which will usually be the point values u(xj ,tn). Then, as for the mesh
point values Un

j above, we define un :={un
j ,j∈Jh}. We shall consider the discrete l2

norm, defined as

‖Un
j ‖l2 :=

(
h

∑

j∈Jh

|Un
j |2

)1/2

. (2.2)

The general form of two times level difference scheme we shall consider will be
written as

S1U
n+1 =S0U

n, (2.3)

where the difference operators S0, S1 are independent of n. Since we are most inter-
ested in the space approximation, we shall often use a simple forward-time approxi-
mation,

S1 =
1

∆t
, S0 =

1
∆t

− S̃0,
Un+1−Un

∆t
+ S̃0U

n =0, (2.4)

where at each point j∈Jh, the linear difference operator S̃0 is written in the form of
a sum over near neighbors N (j) of j,

(S̃0U
n)j =

∑

l∈N (j)

αj,lU
n
l , ∀j∈Jh. (2.5)

The notation αj,l denotes the fact that the coefficients may depend on j as well as l,
to enable us to incorporate the numerical boundary conditions in (2.5), so that values
of U at all points outside Ωh can be eliminated. The truncation error of the whole
scheme (2.3) is defined in terms of the exact solution u as

T n(·,u) :=S1u
n+1−S0u

n, (2.6)

and consistency of the difference scheme (2.3) with the problem (2.1) as

T n
j →0 as ∆t(h)→0 ∀j∈Jh

for all sufficiently smooth solutions u of (2.1). We mean by ∆t(h)→0 that ∆t may
tend to zero at a rate determined by h. Moreover, if p and q are the largest integers
for which

|T n
j |≤C[hp +(∆t)q], as ∆t(h)→0 ∀j∈Jh,

for sufficiently smooth u, the scheme is said to have an order of accuracy p in x and
q in t.
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We shall assume that operator (2.5) represents the differential operator L(·) in
the limit h→0, and we define the truncation error for the space approximation in
terms of the steady state solution w of L(w)=0, as

T̃ (·,w) := S̃0w. (2.7)

Dealing with the evaluation of the integral term, we shall first consider a finite in-
tegration interval instead of the whole real line, choosing only those points for which
the density K has a significant non zero values. This choice would not introduce
significant errors and we can then neglect its contribution on subsequent error evalu-
ations (see [5] for more details).
We shall use standard quadrature rules and, by the symmetry of K, we shall write

(K ∗u)(xj ,tn)≈ (K∗Un)j :=h

N∑

i=−N

βiKiU
n
i+j , ∀j∈Jh (2.8)

for some coefficients βi such that
∑N

i=−N βi =2N , Ki :=K(xi) and K :={βiKi,i=
−N,...,N}. In the numerical test we shall use the following classical fourth-order rule

{β−N ,β−N+1,...,βN−1,βN}={3/8,7/6,23/24,1,...,1,23/24,7/6,3/8}. (2.9)

3. An Asymptotic 4-Order scheme for linear hyperbolic equations with
a source term

We start our discussion on AHO schemes by first considering a simple model,
namely problem (1.1) with K≡0. In other terms, we look at the following linear
hyperbolic conservation law with the source term,

{
ut +aux =−u, ∀(x,t)∈R×R+,
u(x,0)=u0(x), ∀x∈R,

(3.1)

where constant a>0. By using the fact that the solution is explicitly given by

u(x,t)=e−tu0(x−at),

or just using Fourier transform methods, it is easy to show that, if u0∈L2(R), then
the solution u(t) tends to zero in the L2-norm as t tends to infinity, with a rate e−t,
that is:

‖u‖2 =e−t‖u0‖2. (3.2)

Assuming enough regularity on the initial data, the same result holds true for higher
derivatives ∂ru/∂tr. Moreover, for every steady state w of (3.1), such that u0−w∈
L2(R), it holds trivially

‖u−w‖2 =e−t‖u0−w‖2.
Now, we would use this result to construct AHO schemes. Then, we focus on the
numerical approximation of (3.1) coupled with its steady state equation

awx =−w. (3.3)

Starting from a general three-point scheme for (3.1)

dUj

dt
+α−1Uj−1 +α0Uj +α1Uj+1 =0, j∈Z, (3.4)



MAYA BRIANI AND ROBERTO NATALINI 85

we shall define the coefficients αi to get a AHOp scheme, that is a scheme of p-order
when computed on the solution w of (3.3). We remark, that in this simple case, this
is equivalent to constructing a two-step p-order finite difference scheme for the ODE
(3.3).
First of all, notice that the scheme (3.4) is consistent with equation (3.1) if, for every
h small enough,

α−1 +α0 +α1 =1+c0h, −α−1 +α1 =
a

h
+c1, (3.5)

for some constants or infinitesimal functions of h, c0(h) and c1(h).
Let now Th(x,u(x,t)) be the local truncation error introduced by the semi-
discretization (3.4),

Th(x,u(x,t))=
du(x,t)

dt
+α−1u(x−h,t)+α0u(x,t)+α1u(x+h,t), (x,t)∈R×R+.

(3.6)
To get an AHOp method, we need, for all x∈R,

T̃h(x,w)=α−1w(x−h)+α0w(x)+α1w(x+h)=O(hp), as h→0, (3.7)

where w is a smooth solution of equation (3.3). By Taylor expansion and by using
equation (3.3), the AHO condition (3.7) becomes, for all x∈R

[
α−1 +α0 +α1 +

p∑
n=1

1
n!

(h

a

)n(
(−1)nα−1 +α1

)]
w(x)=O(hp), as h→0. (3.8)

Let us fix p=4. We shall take into account consistency conditions (3.5), by also using
the fact that the coefficient α0 can be written as the sum of a singular part, which
comes from the derivative approximation, and a bounded part, namely

α0 =
αs

0

h
+αc

0, αs
0, αc

0∈R. (3.9)

Therefore, relation (3.8) becomes, for all x

[
h
(
c0− c1

a
− αs

0

2a2

)
+

h2

a2

(1
3
− αc

0

2
)
+

h3

a2

(c0

2
− c1

6a
− αs

0

4!a2

)

+
h4

4!a4

(4
5
−αc

0

)
+

h5

4!a4

(
c0− c1

5a

)]
w(x)=O(hp), as h→0. (3.10)

We can choose the values of the constants αs
0, αc

0, c0 and c1 in such a way that
all of the expression between round parentheses vanishes. It is clear that in this way
we can get at least a fourth order approximation. In that case, the solution is given,
for every fixed value of the parameter c1, by

αc
0 =

2
3
, c0 =

c1

5a
, αs

0 =−8a

5
c1, (3.11)

while, using (3.5), the coefficients α1 and α−1 are given by

α1 =
1
2
(1−a0−c0h+

a

h
+c1), α−1 =

1
2
(1−a0−c0h− a

h
−c1). (3.12)
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Then, we have constructed a class, depending on the parameter c1, of semi-discrete
schemes for (3.1), of fourth-order approximations to the equation awx +w=0, namely

dUj

dt
+

a

2h
(Uj+1−Uj−1)+

1
6

(Uj+1 +4Uj +Uj−1)+
4a

5h
c1 (Uj+1−2Uj +Uj−1)

+
c1

2
(Uj+1−Uj−1)+

h

10a
c1 (Uj+1 +Uj−1)=0. (3.13)

Remark 3.1. Notice that a scheme which is a second-order approximation to the
steady equation (3.3), was introduced by Roe in [17]. It corresponds to the special
choice

c0 =0, c1 =−1
2
, αs

0 =a, αc
0 =

1
2
. (3.14)

3.1. Monotonicity. Let us now consider a forward-time approximation to
(3.4). To preserve the monotonicity, we should have

α−1≤0, α1≤0 and (1−∆tα0)≥0. (3.15)

Thanks to (3.11) and (3.12), we conclude that we have monotonicity if and only if

c1≤−5/8.

This yields a sub-class of forward-time monotone AHO4 schemes approximating (3.1).
As a special case, for c1 =−5/8 and αs

0 =a, it gives the upwinding of the space deriva-
tive,

Un+1
j −Un

j

∆t
+

a

h

(
Un

j −Un
j−1

)
+

1
6

(
Un

j+1 +4Uj +Un
j−1

)

− 5
16

(
Un

j+1−Un
j−1

)− h

16a

(
Un

j+1 +Un
j−1

)
=0, (3.16)

under the CFL condition

∆t≤ h

(a+2/3h)
.

3.2. Asymptotic accuracy. As is well-known, monotonicity, joint to con-
sistency, yields a result of convergence for the scheme (3.16). We emphasize that
this scheme is globally accurate for order 1, but it has the property of improving its
accuracy as time increases. For the truncation error (3.6), we can actually write

Th(x,u(x,t))=
du(x,t)

dt
+α−1 [u(x−h,t)−w(x−h)]+α0 [u(x,t)−w(x)]

+α1 [u(x+h,t)−w(x+h)]+ T̃h(x,w), (3.17)

where w is the steady state and T̃h(x,w) has been defined in (3.7). Computing the
local L2(Ωh)-norm and using monotonicity, we get

‖Th(u)‖L2(Ωh)≤‖ut‖L2(Ωh) +(|α−1|+ |α0|+ |α1|)‖u−w‖L2(Ωh)

+‖T̃h(w)‖L2(Ωh). (3.18)
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By construction of the scheme (3.8)-(3.11),
∥∥∥T̃h(xj ,wj)

∥∥∥
L2(Ωh)

=
h4

180a4
‖w‖L2(Ωh) +O(h5),

and for small values of h, (|α−1|+ |α0|+ |α1|)=O(1/h).
We now apply relation (3.2) and subsequent remarks to get

‖Th(xj ,u(xj ,t))‖L2(Ωh)≤C1e
−t +C2

e−t

h
+

h4

180a4
‖w‖L2(Ωh) ,

where C1 and C2 are positive constants. Therefore, for fixed h, as t≥ lnCh−5, for
some constant C, the accuracy of the scheme increases up to the order of consistency
with the stationary solution, here for example to the order 4, since the term e−t

h is
dominated by aO(h5). Numerical evidence of this improved accuracy will be discussed
in Section 7.1.

4. L2-decay properties for the integro-differential problem
In this section we shall investigate the asymptotic behavior of the solution to the

Cauchy problem (1.1). The asymptotic behavior for this problem has been studied
in [11] and in [18] as a reduced case of a more general theory of hyperbolic-elliptic
coupled systems. Starting from these results we shall focus on the decay rate of
the solution and its derivatives, in the case u0∈L1∩L2(R). Notice that, all the
following results also hold true in the case of non-constant stationary solution w
such that u0−w∈L1∩L2(R), and we shall use them to study the order properties
of numerical schemes for problems where the initial data u0 is a perturbation of a
stationary solution.

We shall denote by K the operator Ku=K ∗u−u and, for the Fourier transform
K̂ :=−m(ξ)û, where m(ξ)=1−K̂(ξ), we shall assume

[K2] m(ξ) is real, non-negative, even and increasing on R+, and 1≥m(ξ)≥
ωmin(1,ξ2) for some positive constant ω.

Then, the following results for the decay rate of the solution u and its space derivatives
hold.

Proposition 4.1. [18] Under the assumptions [K2], given an initial data u0∈L1∩
L2(R), the weak solution of (1.1) decays in L2 with

‖u(t)‖2
‖u0‖1 ≤Ct−1/4 +O(t−1/2), (4.1)

where the constant C depends on the kernel K.

Proposition 4.2. [11] Under the assumptions [K2], given an initial data u0∈L1∩
H1(R), we have the estimate

‖∂xu‖2≤Ce−ct‖∂xu0‖2 +C(1+ t)−3/4‖u0‖1, (4.2)

where the constant C depends on the kernel K. Now, we would like to study the
decay rate of ∂tu. Notice that, assuming strong regularity conditions on the initial
data u0, it is easy to see that all subsequent time-derivatives of u decay at worst as
u.

Proposition 4.3. Assuming conditions [K2], given an initial data u0∈L1∩H1(R),
it holds that

‖ut‖2≤Ct−1/2. (4.3)



88 ASYMPTOTIC HIGH-ORDER SCHEMES FOR INTEGRO-DIFFERENTIAL PROBLEM

Proof. First, we show that this result holds true for v(y,t)=u(x,t) with y =x−at.
The function v solves the following ordinary differential equation

vt(y,t)=K ∗v(y,t)−v(y,t). (4.4)

By Fourier transform,

v̂(ξ,t)= v̂0(ξ)e−m(ξ)t, (4.5)

and, for 0≤m(ξ)≤1,

‖vt‖2≤‖v‖2. (4.6)

Let us set g(t) :=‖v̂t‖22. Then, for every t>0, g(t) is a non negative and continuous
function of t. Moreover, we can prove that g(t) is an integrable function. In fact,
multiplying equation (4.4) by the complex conjugate ¯̂v, it holds

∂t‖v̂‖22 +2‖v̂t‖22≤0,

and integrating in t yields
∫ +∞

0

‖v̂t‖22dt<+∞.

From (4.5) we also get that g(t) is monotone decreasing, since multiplying by the
complex conjugate ¯̂vt, and deriving in time, we obtain

∂t|v̂t|2 =−2m(ξ)3|v̂0|2e−2m(ξ)t.

This yields

∂t

∫
|v̂t|2dξ =−2

∫
m(ξ)3|v̂0|2e−2m(ξ)tdξ≤0.

Then, for the function g(t) it holds

g(t)t≤
∫ t

0

g(s)ds≤
∫ +∞

0

g(s)ds :=C <+∞,

which gives

‖vt‖2≤Ct−1/2.

Now, coming back to the function u, we have,

vt =ut +aux,

then

‖ut‖2≤‖vt‖2 + |a|‖ux‖2. (4.7)

By Proposition 4.2, the slowest term in (4.7) is ‖vt‖2 and so we can conclude the
proof.
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5. Asymptotic high-order schemes. consistency and accuracy
Starting from the asymptotic analysis given in the previous section, we would

like to generalize the accuracy result obtained in Subsection 3.2 for the hyperbolic
equation. Let us consider the general problem (2.1) coupled with its steady equation
L(w)=0. By relations (2.3)-(2.7), the local truncation error (2.6) may be written as

T (xj ,u
n
j ) =

un+1
j −un

j

∆t
+ S̃0(un

j −wj)+ T̃ (xj ,wj), ∀j∈Jh,∀n. (5.1)

From that, we have the following estimate

‖T (xj ,u
n
j )‖l2(Ωh) ≤

∥∥∥
un+1

j −un
j

∆t

∥∥∥
l2(Ωh)

+
∥∥∥S̃0(un

j −wj)
∥∥∥

l2(Ωh)
+

∥∥∥T̃ (xj ,wj)
∥∥∥

l2(Ωh)
.

(5.2)
Using (2.5) and the Cauchy inequality (

∑
akbk)2≤ (

∑
a2

k)(
∑

b2
k), the second term on

the right may be estimated by
∣∣∣S̃0(un

j −wj)
∣∣∣
2

=
∣∣∣

∑

l∈N (j)

αj,l(un
l −wl)

∣∣∣
2

≤
( ∑

l∈N (j)

α2
j,l

)( ∑

l∈N (j)

(un
l −wl)2

)
.

If A is the J×J coefficients matrix, A=(αj,l)j=1,...,J,l=1,...,J , where αj,l =0 ∀l /∈N (j),
it is

∑

l∈N (j)

α2
j,l≤

( ∑

l∈N (j)

|αj,l|
)2

≤
(

max
j∈Jh

∑

l∈N (j)

|αj,l|
)2

=‖A‖2∞.

Moreover, since ∀j card(N (j))≤ card(Jh),
∑

l∈N (j)

(un
l −wl)2≤

∑

l∈Jh

(un
l −wl)2 =‖un−w‖2l2(Ωh).

Then, we obtain

‖T (xj ,u
n
j )‖l2(Ωh)≤

∥∥∥
un+1

j −un
j

∆t

∥∥∥
l2(Ωh)

+ card(Jh)‖A‖∞‖un
l −wl‖l2(Ωh)

+
∥∥∥T̃ (xj ,wj)

∥∥∥
l2(Ωh)

, (5.3)

where card(Jh)=J = |Ωh|/h.

Proposition 5.1. Assume that w is a steady state of (2.1) and consider the solution
u associated to an initial data u0 which differs from w by an integral disturbance, (u0−
w)∈L1∩H1(R). Then, for the truncation error generated by a consistent scheme of
the form (2.3)-(2.5), it holds that

‖T (x,u)‖l2(Ωh) =C1t
−1/2 +C2

t−1/4

h2
+‖T̃ (x,w)‖l2(Ωh), (5.4)

Proof. For the consistency assumption on scheme (2.3)-(2.5), the operator (2.5)
represents the integro-differential operator L(·) in the limit h→0 and hence ‖A‖∞=
O(1/h). Moreover,

un+1
j −un

j

∆t
≈ [ut(ξ)]

n
j .
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Since the discrete l2-norm approximates the integral L2-norm, applying estimates
(4.3) and (4.1) to the first and the second term on (5.3) respectively, we obtain the
required relation (5.4), where t=n∆t.

This proposition allows us to conclude that increasing the time of the simulation,
the order of the scheme may increase up to the order of the space approximation. In
fact, for the pure differential case, for fixed h we can choose t large enough to have
t≥ (‖T̃ (x,w)‖h2)−4, and so obtain

lim
t→+∞

‖T (x,u)‖l2(Ωh)(t)=‖T̃ (x,w)‖l2(Ωh).

6. Some asymptotic p-order schemes for the linear integro-differential
equation

Let us now deal with our objective problem,

ut +aux =γ (K ∗u−u). (6.1)

We should construct a scheme of high order on the steady state w solution of

awx =γ (K ∗w−w). (6.2)

We write the general scheme (2.4) as

Un+1
j −Un

j

∆t
+α−1Uj−1 +α0Uj +α1Uj+1−γ(K∗U)j

+h(α′α′α′ ∗U)j +h2(α′′α′′α′′ ∗U)j + ...=0, (6.3)

where the added terms α′α′α′(
′′) =(α′(

′′)
−N ,...,α′(

′′)
N )T and

(α′α′α′(
′′) ∗U)j =

∑N
i=−N α′(

′′)
i Ui+j , may help us to get high-order accuracy.

First of all, the consistency property is assured if coefficients α−1, α0, α1 verify

α−1 +α0 +α1 =γ+c0h, −α−1 +α1 =
a

h
+c1, (6.4)

for some constants or infinitesimal function of h, c0(h) and c1(h).
Then, to get an AHO scheme of order p we need, as h→0,

α−1wj−1 +α0wj +α1wj+1−γ(K∗w)j +h(α′α′α′ ∗w)j +h2(α′′α′′α′′ ∗w)j + ...=O(hp). (6.5)

As done in the hyperbolic case, we define α0 =αs
0/h+αc

0 and we write the Taylor
expansion for wj ,

wj±1 =wj±hwx(xj)+
h2

2
wxx(xj)± h3

6
wxxx(xj)+O(h4) (6.6)

where derivatives may be computed by using equation (6.2),

awx =γ (K ∗w−w), awxx =γ
(
Kx ∗w− γ

a
(K ∗w−w)

)
, ... (6.7)
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Substituting expressions (3.5), (3.9), (6.6) and (6.7) in (6.5) and, for simplicity, stop-
ping up to order p=3, we get for all j

h(α′α′α′ ∗w)j +h2(α′′α′′α′′ ∗w)j +
h

2
γ

a
αs

0(Kx ∗w)j +
h2

6
γ(Kxx ∗w)j

+h
(
c1 +

γ

2a
αs

0

)γ

a
(K∗w)j +h

(
c0−c1

γ

a
− γ2

2a2
αs

0

)
wj

+h2 γ

2a

(−αc
0 +

2γ

3
)
(Kx ∗w)j−h2 γ2

2a2

(−αc
0 +

2γ

3
)
(K∗w)j

+
h2

2
γ2

a2

(−αc
0 +

2γ

3
)
wj =O(h3). (6.8)

Notice that in the algebraic manipulation we used the relation (Kx ∗w)(·)≈
−(Kx ∗w), obtained from expression (2.8).
Solving the round brackets in (6.8) in a suitable way, we obtain that second-order
asymptotic schemes may be defined by

c0 =0, c1 =− γ

2a
αs

0, α′j =− γ

2a
αs

0(Kx)j , (6.9)

while third-order ones by

c0 =0, c1 =− γ

2a
αs

0, αc
0 =

2
3
γ, α′j =− γ

2a
αs

0(Kx)j , α′′j =−γ

6
(Kxx)j . (6.10)

A similar procedure may be followed to get higher orders.
In both relations (6.9) and (6.10) is left a degree of freedom, that we may define to
preserve the monotonicity. As a special case we shall consider the following monotone
asymptotic second-order scheme (AHO2),

Un+1
j −Un

j

∆t
+a

Un
j −Un

j−1

h
+γ

Un
j +Un

j−1

2
−γ(K∗Un)j− hγ

2
(Kx ∗Un)j =0, (6.11)

under the CFL condition ∆t≤h/(a+h/2), h≤2a, and the following monotone asymp-
totic third-order scheme (AHO3),

Un+1
j −Un

j

∆t
+a

Un
j −Un

j−1

h
+

γ

12
(
5Un

j−1 +8Un
j −Un

j+1

)−γ(K∗Un)j

− hγ

2
(Kx ∗Un)j−h2 γ

6a
(Kxx ∗Un)j =0, (6.12)

under the CFL condition ∆t≤h/(a+2/3h), h≤12/5a. Notice that for (6.11) we get
the upwinding of the source term u as in the Roe scheme, see Remark 3.1.

7. Numerical tests
Now, our aim is to show how, for large time simulations, AHO schemes give

better numerical results than standard approximations. Therefore, we shall focus our
attention on the numerical error as a function of time: for all tests, we shall fix the
grid steps h and ∆t and we will plot the difference

e(n∆t)=‖Un−un‖l2 , (7.1)

increasing time t=n∆t. For tests on the hyperbolic problem, the function u will
be the exact solution, while for tests on the integro-differential model, it will be the
asymptotic function w.
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Fig. 7.1. Linear hyperbolic example, subsection (7.1). In figure (a) and (b) we plot the solution
to the upwind scheme (7.4) and to the AHO4 scheme (3.16) for problem (7.2)-(7.7) coupled with
the exact solution (7.3). In (a) we show that after few time iterations the initial perturbation is
still dominant and the schemes have the same accuracy, while in (b), increasing time, the initial
perturbation vanishes and the numerical solution using upwind looses the steady state while not using
AHO4. To make this more clear, in figure (c) we fix h=0.05 and we compare the l2-error (7.1)
using upwind, AHO2, AHO4 schemes, and while the increasing time. Then, it is evident that, once
the steady state has been reached, the AHO2-error (o) decays rapidly to its order of accuracy, as
well as AHO4-error (∗) gains more and more accuracy. Moreover, to confirm the order of accuracy
of the AHO4 scheme, we test the three schemes upwind, AHO2, AHO4 on the steady state solution
(7.6) and in figure (d) we plot the resulting errors. As we expected, we gain accuracy using the
AHO4 scheme, and we can affirm that, the scheme produces no time evolution on steady state data.

7.1. A numerical test for the hyperbolic problem. Let us consider the
scalar equation

ut +aux =−u (x,t)∈R+×R+ (7.2)

with data u(x,0)=u0(x) and u(0,t)=1, ∀ (x,t)∈R+×R+. The general solution is

u(x,t)=
{

u0(x−at)e−t x≥at
e−

x
a x<at.

(7.3)

Then, the function w(x)=e−x/a is the time-asymptotic state of u and solves the
steady equation awx +w=0.
In Figure 7.1, we shall compare the AHO4 scheme (3.16) with the standard first-order
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upwind scheme, that is actually an AHO1 scheme,

Un+1
j −Un

j

∆t
+

Uj−Uj−1

h
+Uj =0, (7.4)

and with the AHO2 scheme introduced by Roe [17],

Un+1
j −Un

j

∆t
+a

Uj−Uj−1

h
+

Uj +Uj−1

2
=0. (7.5)

We shall consider the solution to problem (7.2) with a=1 and with two different
initial data,

u0(x)=e−x, (7.6)

and

u0(x)=e−x−
[
8
(
e−

1
4 − 1

3
e−

3
4
)
x2−(

6e−
1
4 − 2

3
e−

3
4
)
x
]
χ[1/4,3/4]. (7.7)

Datum (7.6) is interesting for testing the effectiveness of the theoretical accuracy
obtained in previous sections, while the second one is interesting for testing the power
of Asymptotic High-Order schemes for large time simulations. In Figure (7.1) we show
that after a few time iterations, until the initial perturbation is still dominant, the
three schemes (7.11)-(6.11)-(6.12), have the same accuracy. While increasing time,
the initial perturbation vanishes and the numerical solution using upwind looses the
steady state. To make this more clear, we compare the error (7.1) for the three
approximations. Then, in figure 7.1-(c) it is evident that, once the steady state
has been reached, the AHO2-error decays rapidly to its order of accuracy, while the
AHO4-error gains more and more accuracy.
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Fig. 7.2. Integro-differential example, subsection (7.2). We consider schemes (7.11), (6.11),
(6.12) to solve problem (7.8)-(7.12). In figure (a) we plot the solutions coupled with the steady state
(7.12), while in figure (b) we compare the quantity (7.1) using the three schemes, for a large time
simulation. As we expected, we gain accuracy using the AHO2 and AHO3 schemes.

7.2. A numerical test for the integro-differential problem. Let us
consider the integro-differential equation

ut +ux =(K ∗u−u). (7.8)
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Fig. 7.3. Integro-differential example, subsection (7.2). We consider schemes (7.11), (6.11),
(6.12) to solve problem (7.8)-(7.13). In figure (a) we plot the three solutions coupled with the initial
data (7.13), after a few time iterations, when the initial perturbation is still dominant, while in
figure (b) we compare the quantity (7.1) using the three schemes, for a large time simulation. Both
figures (a) and (b) show that the schemes have the same accuracy. This is exactly what we expect
when the initial data is a perturbation of a constant state. In fact, by consistency assumptions, all
schemes should be exact when computed on constants.
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Fig. 7.4. Integro-differential example, subsection (7.2). We consider schemes (7.11), (6.11),
(6.12) to solve problem (7.8)-(7.14). In figure (a) we plot the solutions coupled with the initial data
(7.14) after M =100 time iterations, while in figure (b) we compare the quantity (7.1) using the
three schemes, for a large time simulation. It is clear that, once the steady state has been reached,
the AHO2-error (∗) decays rapidly to its high-order of accuracy, while AHO3-error (+) gains more
and more accuracy.

For the simplest model arising in finance, namely if we assume that the price of the
underlying is just moving according to a Poisson process, we can take as a kernel K
the Gaussian probability density

K(x)=
1√
2π

e−x2/2. (7.9)

Notice that, the Gaussian Kernel verifies assumptions [K2]. Then, our test problem
(7.8)-(7.9) has the L2-decay properties introduced in Section 4. With this choice of
K, the steady states of (7.8) are

w(x)= c and w(x)= ceαx, c∈R, (7.10)
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where α≈1.28589 solves the equation α=eα2/2−1. In Figures 7.3-7.2-7.4, we shall
compare the two Asymptotic High-Order schemes AHO2 (6.11) and AHO3 (6.12)
with the following standard explicit approximation,

Un+1
j −Un

j

∆t
+a

Un
j −Un

j−1

h
+Un

j −(K∗Un)j =0. (7.11)

To be consistent with the previous notations we shall call this scheme AHO1.

We first check the accuracy of schemes AHO2 (6.11) and AHO3 (6.12) solving
the equation (7.8) associated with the steady state as initial data,

u0(x)=eαx. (7.12)

Looking at Figure (7.2), it should be clear that we gain accuracy using the AHO2 and
AHO3 schemes.
Secondly, we consider the solution to equation (7.8) associated with the following
initial data

u0(x)=
[
− 4

3
x2 +

x

3

]
χ[0, 1

4 ], (7.13)

where χ[·,·] is the characteristic function of interval [·,·]. We plot the numerical solution
in Figure 7.3, to show that when the initial data is a perturbation of a constant state,
all schemes have the same accuracy. This is actually true because, by the consistency,
all schemes should be exact when computed on constants.
To end, in Figure 7.4 we consider problem (7.8) with initial data

u0(x)=eαx +
[
ax2 +bx+c

]
χ[ 14 , 3

4 ], (7.14)

where a=−b+2(e3α/4−eα/4), b=6eα/4− 2
3e3α/4− 16

3 c and c=−e3α/4. We compare
the quantity (7.1) using the three schemes, for a large time simulation. It is clear
that, once the steady state has been reached, the AHO2-error decays rapidly to its
high-order of accuracy, while AHO3-error gains more and more accuracy.
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