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UPSCALING OF A CLASS OF NONLINEAR PARABOLIC
EQUATIONS FOR THE FLOW TRANSPORT IN HETEROGENEOUS

POROUS MEDIA∗

ZHIMING CHEN† , WEIBING DENG‡ , AND HUANG YE§

Abstract. We develop an upscaling method for the nonlinear parabolic equation

∂tb(uε)−∇·(gε(x,uε)+aε(x,uε)∇uε)=f(x,t),

which stems from the applications of the flow transport in porous media. Our direct motivation is
the Richards equation which models the flow transport in unsaturated porous media. We provide
a detailed convergence analysis of the method under the assumption that the oscillating coefficients
are periodic. While such a simplifying assumption is not required by our method, it allows us to use
homogenization theory to obtain the asymptotic structure of the solutions. Numerical experiments
are carried out for the Richards equation of exponential model with periodic and randomly generated
log-normal permeability to demonstrate the efficiency and accuracy of the proposed method.
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1. Introduction
Over the past three decades a significant amount of research effort has been

devoted to determining what are known as effective parameters in the modelling of
subsurface flow and transport. The central difficulty is the accounting for the spatial
variability in the parameters used to characterize the relevant physical properties of
the natural porous media. In realistic situations, it is impossible to account explicitly
for the spatial variability at all scales, due to computational resource limitations
and/or the lack of data. Thus sophisticated geological and geostatistical modelling
tools are used in practice to generate highly detailed medium parameters based on
some site-specific measurements and experience from other sites. There exists a vast
literature on the upscaling or homogenization techniques that lump the small-scale
details of the medium into a few representative macroscopic parameters or effective
parameters on a coarse scale which preserve the large-scale behavior of the medium
and are more appropriate for reservoir simulations. We refer to the book of Christakos
[6] for more information on the random field modeling of the natural porous medium
parameters and the recent review papers [27, 32] on the existent upscaling techniques
in the engineering literature.
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494 UPSCALING OF NONLINEAR PARABOLIC EQUATIONS

The motivation of this paper is to solve the Richards equation (see, e.g., [1]),
which models the flow transport in unsaturated porous media

∂θ

∂t
− ∂K

∂x3
−∇·(K∇u)=f,

where θ is volumetric water content, K is the absolute permeability tensor, u is
the fluid pressure, x3 denotes the vertical coordinate in the medium, and f stands
for possible sources/sinks. The sources of nonlinearity of Richards equation come
from the moisture retention function θ(u) and relative hydraulic conductivity function
K(θ), respectively. Based on experimental results, many different functional relations
have been proposed in the literature through various combinations of the dependent
variables θ, u and K, and a certain number of fitting parameters (e.g., [3, 15, 17,
18, 19]). There are several widely known formulations of the constitutive relations
such as the van Genuchten-Mualem model [18, 25], the Garder model [17], and the
Haverkamp model [19]. For example, in the Garder model, also called the exponential
model,

θ(u)=θr +(θs−θr)e−β|u|, K(u)=Kse
−α|u|,

where θr and θs represent the residual water content and saturated water content
respectively, Ks is the saturated hydraulic conductivity, and α,β are parameters of
the porous media. The Garder model has been widely used in the stochastic analysis
of unsaturated flow in heterogeneous soils (see [24, 35]).

Recently a number of multiscale numerical methods, such as multiscale finite
element method (MsFEM) [11], heterogeneous multiscale method (HMM) [10], and
numerical homogenization method [13] have been proposed to solve the nonlinear
problems. Originally, MsFEM is proposed for linear equations and its central idea is to
incorporate the local small scale information of the leading order differential operator
into the finite element bases. The common feature of the studies in [11] and [13] is that
the computational complexity is proportional to the number of nodes of the fine-scale
mesh which resolves the small scale spatial variability. However, the computational
complexity can be significantly reduced if the homogenized fluxes are computed on
the fly and these values can be stored and re-used if needed [11], [13]. Computation on
the fly has advantages, especially if the fluxes depend on the gradients of the solution,
because it only computes the selected values of the “homogenized fluxes”.

The purpose of this paper is to develop a complete coarse grid algorithm for a
class of nonlinear parabolic equations based on an upscaling procedure. The key idea
is that we upscale the nonlinear constitutive relations such as the relationship between
hydraulic conductivity versus pressure before we solve the nonlinear problems. We
stress that the real significance of the method lies in its ability to solve the problems
in coarse meshes. This is particularly advantageous when multiple simulations or
realizations are necessary due to changes of boundary conditions or source functions
for certain given fine micro-structures of the highly heterogeneous permeability of
the porous media. Based on the homogenization theory, a sharp error estimate of
the method can be established under the periodicity assumption. This assumption
allows us to use the homogenization theory to obtain the asymptotic structure of the
solutions. We emphasize that as pointed out in [9], the spatial periodicity assumption
does not a priori restrict the applicability of the results only to media which do exhibit
such strict repetitive spatial ordering in the properties of interest. The numerical
experiments in §5 indicate that our method works fine for the well-accepted random
log-normal permeability models in the engineering literature.
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Another new feature of our method is the way by which we deal with the nonlinear
convection term. Our numerical procedure, as we show in the paper, shares a common
element with the other multiscale methods, that is, the local information is coupled
in the global formulation. The difference is the coupling method we use. Our local
problem does not involve the convection term which is different from the MsFEM and
the numerical homogenization approach introduced in [11, 13]. This idea has been
introduced in a previous paper for the solute transport model in [4].

The outline of the paper is as follows. In Section 2 we introduce the upscaling
method for the model problem. In Section 3 we review the homogenization results
for the nonlinear parabolic problems with periodic coefficients. These results are
the basis of our convergence analysis. Some error estimates for the homogenization
equation are established in this section. In Section 4 we prove the error estimate
for the upscaling method. In Section 5, we present some numerical examples for the
Richards equation of the exponential model for both periodic and random log-normal
coefficients to demonstrate the accuracy and efficiency of the method.

2. Model problem and upscaling formulation
Let Ω⊂Rd,d=2,3 be a bounded polyhedral domain with boundary ∂Ω. We

set QT =Ω×(0,T ), ST =∂Ω×(0,T ) for 0<T <∞. Consider the following parabolic
equation

∂tb(uε)−∇·(gε(x,uε)+aε(x,uε)∇uε)=f(x,t) in QT ,

uε(x,t)=0 on ST ,

uε(x,0)=u0(x) in Ω, (2.1)

where aε(x,uε)=(aε
ij(x,uε)) is a symmetric, positive definite, bounded tensor:

λ|ξ|2≤aε
ij(x,s)ξiξj≤Λ|ξ|2 ∀ξ∈Rd, x∈ Ω̄, s∈R (2.2)

for some positive constants λ and Λ, and gε(x,uε)=(gε
i (x,uε)) is a bounded vector.

ε is the characteristic length representing the small scale variability of the media. We
also assume that ∂

∂saε
ij(x,s), ∂

∂sgε
i (x,s) are uniformly bounded and b(s) satisfies

0<b1≤ b′(s)≤ b2 <∞, b′′(s)<C ∀s∈R. (2.3)

Define the space

W={u :u∈L2(0,T ;H1
0 (Ω)),u∈H1(0,T ;H−1(Ω))}.

The variational problem of (2.1) is to seek uε(x,t)∈W, for almost every t∈ (0,T ),
uε(·,t)∈H1

0 (Ω) such that uε(x,0)=u0(x) in Ω, and

(∂tb(uε),w)+(gε(x,uε)+aε(x,uε)∇uε,∇w)=(f,w) ∀w∈H1
0 (Ω). (2.4)

Here and henceforth, (·,·) stands for the inner product of L2(Ω) or the duality pairing
between H−1(Ω) and H1

0 (Ω).
Instead of solving (2.4) on a fine mesh with a mesh size resolving the small scale

variability ε, the basic idea of the upscaling methods is to solve the homogenized or
upscaled equation

(∂tb(u),w)+(g∗(x,u)+a∗(x,u)∇u,∇w)=(f,w) ∀w∈H1
0 (Ω).



496 UPSCALING OF NONLINEAR PARABOLIC EQUATIONS

The homogenized coefficients a∗(x,s), g∗(x,s), for s∈R, can be computed analytically
from aε, gε if they are periodic with respect to the second variable (see Section 3
below). Unfortunately, for practical natural porous media, such analytical formulae
do not exist. In the following we shall develop a way to compute the nonlinear relations
a∗(x,·), g∗(x,·) numerically.

Let Mh be a regular triangulation of Ω with mesh size h and τ =T/N be the
time step length, tn =nτ , n=0,1,··· ,N . Further, let Wh be the standard conforming
linear finite element space over Mh and W 0

h =Wh∩H1
0 (Ω). For any K ∈Mh, denote

〈·〉K =
1
|K|

∫

K

(·)dx

as the volume average over K.
Set v = b(u). For n=1,··· ,N , our discrete problem is to seek vn

h ∈W 0
h , the ap-

proximate solution of v at time t= tn, such that

(
vn

h−vn−1
h

τ
,wh

)
+(g̃(x,ũn)+ ã(x,ũn)∇ũn,∇wh)=(f̄n,wh) ∀wh∈W 0

h , (2.5)

where ũn = b−1(vn
h), v0

h = b(u0) and f̄n = τ−1
∫ tn

tn−1 f(x,t)dt. For any s∈R, the nonlin-
ear functions ã(x,s) and g̃(x,s) are piecewise constant over Mh defined as follows.

For any K ∈Mh, s∈R, let pε
i ,i=1,2,··· ,d, be the solution of the problem

−∇·(aε(x,s)∇pε
i )=0 in K,

pε
i =xi on ∂K. (2.6)

Then, on K, ã is a constant tensor determined by the following system

ã〈∇pε
i 〉K = 〈aε(x,s)∇pε

i 〉K , i=1,2,··· ,d. (2.7)

It is well-defined since by using Green’s formula

〈∇pε
i 〉K =

1
|K|

∫

∂K

xindσ =ei, (2.8)

where ei is the unit vector in the ith direction. Similar to the argument in [4, 34]
for the linear case, we know that ã is symmetric, bounded, and positive definite.
Moreover,

ei ·(ãej)= 〈∇pε
i ·(aε(x,s)∇pε

j)〉K . (2.9)

Further, g̃(x,s) is a constant vector in K determined by

g̃i(x,s)= 〈gε(x,s) ·∇pε
i 〉K , i=1,2,··· ,d. (2.10)

It is easy to show |g̃i(x,s)|≤C.
The existence and uniqueness of the solution of problem (2.5) can be obtained by

the standard method (see, e.g. [30, Chapter 13]).
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3. Homogenization theory
In this section, we assume that aε(x,uε) has the form a(uε,x/ε) and gε(x,uε) has

the form g(uε,x/ε), where aij(s,y),gi(s,y)∈C1(R;C1
p(Rd)). Here C1

p(Rd) stands for
the collection of all C1(Rd) periodic functions with respect to the unit cube Y . It
is shown that under these assumptions ( cf. [2, 21, 26]), uε converges in a suitable
topology to the solution of the homogenized equation

∂tb(u)−∇·(g∗(u)+a∗(u)∇u)=f(x,t) in QT ,

u=0 on ST ,

u(x,0)=u0(x) in Ω, (3.1)

where

a∗ij(s)=
1
|Y |

∫

Y

aik(s,y)
(

δkj +
∂χj

∂yk
(s,y)

)
dy. (3.2)

χj(s,y) is the periodic solution of

−∇y ·(a(s,y)∇yχj(s,y))=∇y ·(a(s,y)ej), j =1,··· ,d (3.3)

with zero mean, i.e.,
∫

Y
χjdy =0, where ej is the unit vector in the jth direction.

Further,

g∗i (s)=
1
|Y |

∫

Y

(
gi(s,y)+aik

∂η

∂yk
(s,y)

)
dy, (3.4)

where η is the periodic solution of

−∇y ·(a(s,y)∇yη(s,y))=∇y ·(g(s,y)) (3.5)

with zero mean, i.e.,
∫

Y
ηdy =0.

Moreover, it is shown in [16, Lemma 2.6] that a∗(s) satisfies

λ|ξ|2≤a∗ij(s)ξiξj≤Λ|ξ|2 ∀ξ∈Rd, s∈R

with some positive constants λ and Λ.
We remark that s plays the role of a parameter in (3.2)–(3.5). Since aij(s,y) and

gi(s,y) are differentiable in s, we can easily show that a∗ij(s), g∗i (s), χj(s,y) and η(s,y)
are also differentiable in s. Moreover, χj ,η∈C1(R;C1

p(Rd)) (see [23]).
The variational problem of (3.1) is to seek u(x,t)∈W, for almost every t∈ (0,T ),

u(·,t)∈H1
0 (Ω) such that u(x,0)=u0(x) in Ω,

(∂tb(u),v)+(g∗(u)+a∗(u)∇u,∇v)=(f,v) ∀v∈H1
0 (Ω). (3.6)

In the following, we will always assume that

u∈W 2,1
2 (QT ),∇u∈L∞(QT ),∇ut∈L2(QT ). (3.7)

Set

u1(x,t,x/ε)=χj(u,x/ε)
∂u

∂xj
+η(u,x/ε), (3.8)
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and denote uε
1(x,t)=u(x,t)+εu1(x,t,x/ε). Let θε be the boundary corrector

b′(uε
1 +εθε)∂tθε−∇·(a(uε,x/ε)∇θε)=0 in QT ,

θε =−u1(x,t,x/ε) on ST , θε(x,0)=−u1(x,0,x/ε) in Ω. (3.9)

By the Maximum Principle, we have

‖θε‖L∞(QT )≤C(‖∇u‖L∞(QT ) +‖u0‖1,∞,Ω). (3.10)

Lemma 3.1. Assume that (3.7) holds. Then there exists a constant C independent of
ε,Ω such that

‖εθε‖L∞(0,T ;L2(Ω))≤Cε, ‖ε∇θε‖L2(QT )≤C
√

ε. (3.11)

Proof. The first inequality follows from (3.10). To show the second inequality,
denote Ωε :={x,dist{x,∂Ω}≥ε}. Let ξ∈C∞0 (Ω) be the cut-off function such that
0≤ ξ≤1 in Rd, ξ≡1 in Ω\Ωε/2, ξ =0 in Ωε and |∇ξ|≤ Ĉ/ε in Ω with Ĉ independent
of ε and Ω. Define d(x,t)=1/b′(uε

1 +εθε). Taking (θε−ξu1(x,t,x/ε))d(x,t) as the
test function of (3.9) yields

(∂tθε,θε)+(a(uε,x/ε)∇θε,∇(d(x,t)θε))
=(∂tθε,ξu1)+(a(uε,x/ε)∇θε,∇(d(x,t)ξu1)). (3.12)

It is clear that

(a(uε,x/ε)∇θε,d(x,t)∇θε)≥ λ

b2
‖∇θε‖20,Ω. (3.13)

A simple calculation shows

|∇d(x,t)|≤C|∇(uε
1 +εθε)|≤C(1+ |∇u|)+Cε(|D2u|+ |∇θε|).

Thus, we have

|(a(uε,x/ε)∇θε,θε∇d(x,t))|
≤ C‖∇θε‖0,Ω(‖θε‖0,Ω +ε(‖D2u‖0,Ω +‖∇θε‖0,Ω))

≤ Cε‖∇θε‖20,Ω +
λ

8b2
‖∇θε‖20,Ω +C‖u‖22,Ω +C‖θε‖20,Ω. (3.14)

Here we have used the assumption (3.7) and (3.10). Further, it is easy to show that

‖∇(ξu1)‖0,Ω =‖∇(ξu1)‖0,Ω\Ωε

≤C(1+‖∇u‖0,∞,Ω)
√
|∂Ω|ε/ε+C‖u‖2,Ω

≤Cε−1/2 +C‖u‖2,Ω. (3.15)

Hence

‖∇(d(x,t)ξu1)‖0,Ω≤‖∇d(x,t)‖0,Ω‖ξu1‖0,∞,Ω

+‖d(x,t)‖0,∞,Ω‖∇(ξu1)‖0,Ω

≤Cε‖∇θε‖0,Ω +C‖u‖2,Ω +Cε−1/2. (3.16)
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Then, we have

(a(uε,x/ε)∇θε,∇(d(x,t)ξu1))≤Cε‖∇θε‖20,Ω +
λ

8b2
‖∇θε‖20,Ω

+C‖u‖22,Ω +Cε−1. (3.17)

Further, by using the Poincare inequality, integration by parts gives
∣∣∣∣
∫ t

0

(∂tθε,ξu1)ds

∣∣∣∣=
∣∣∣∣(θε,ξu1)

∣∣t
0
−

∫ t

0

(θε,ξ∂tu1)ds

∣∣∣∣

≤C +C

∫ t

0

(‖θε‖20,Ω +‖∂tu1‖20,Ω

)
ds. (3.18)

Note here we have used (3.10) and |∫
Ω

θ2
ε(x,0)dx|≤C‖∇u0‖20,Ω. By integrating (3.12)

over (0,t), it follows from (3.14)–(3.18) that
∫

Ω

θ2
ε(t)dx+

∫ t

0

∫

Ω

|∇θε|2dxds≤C

∫

Ω

θ2
ε(x,0)dx+Cε−1 +C

∫ t

0

‖θε‖20,Ωds. (3.19)

This completes the proof upon using the Gronwall inequality.

Theorem 3.2. Let uε and u be the solutions of (2.1) and (3.1) respectively. Assume
that (3.7) holds. Then there exists a constant C independent of ε,Ω such that

‖b(uε)−b(uε
1 +εθε)‖L∞(0,T ;L2(Ω)) +‖∇(uε−(uε

1 +εθε))‖L2(QT )≤C
√

ε.

Proof. By the simple calculations, we get

aij(uε,x/ε)
∂(u+εχk(u,x/ε)∂u/∂xk)

∂xj
−a∗ij(u)

∂u

∂xj

= (aij(uε,x/ε)−aij(u,x/ε))
(

δkj +
∂χk

∂yj
(u,x/ε)

)
∂u

∂xk

+Gk
i (u,x/ε)

∂u

∂xk
+εaij(uε,x/ε)χk(u,x/ε)

∂2u

∂xj∂xk

+εaij(uε,x/ε)
∂χk

∂s
(u,x/ε)

∂u

∂xk

∂u

∂xj
, (3.20)

where

Gk
i (s,y)=aij(s,y)

(
δkj +

∂χk

∂yj
(s,y)

)
−a∗ik(s).

From the definitions of a∗ik and χk, it follows that
∫

Y

Gk
i (s,y)dy =0 and

∂Gk
i (s,y)
∂yi

=0.

Then there exist skew-symmetric matrices (see [22, p.6]) αk(s,y)=(αk
ij(s,y)) such

that

Gk
i (s,y)=

∂

∂yl
(αk

li(s,y)),
∫

Y

αk
li(s,y)dy =0.
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With this notation, we can rewrite

Gk
i (u,x/ε)

∂u

∂xk
=ε

∂

∂xl

(
αk

li(u,x/ε)
∂u

∂xk

)
−εαk

li(u,x/ε)
∂2u

∂xl∂xk

−ε
∂αk

li

∂s
(u,x/ε)

∂u

∂xl

∂u

∂xk
.

On the other hand, by the simple calculations, we get

aij(uε,x/ε)
ε∂η(u,x/ε)

∂xj
+gi(uε,x/ε)−g∗i (u)

= (aij(uε,x/ε)−aij(u,x/ε))
∂η

∂yj
(u,x/ε)

+εaij(uε,x/ε)
∂η

∂s
(u,x/ε)

∂u

∂xj
+gi(uε,x/ε)−gi(u,x/ε)

+Hi(u,x/ε), (3.21)

where

Hi(s,y)=gi(s,y)+aij(s,y)
∂η

∂yj
(s,y)−g∗i (s).

From the definitions of g∗i and η, it follows that
∫

Y

Hi(s,y)dy =0 and
∂Hi(s,y)

∂yi
=0.

Then there exists a skew-symmetric matrix (see [22, p.6]) β(s,y)=(βij(s,y)) such that

Hi(s,y)=
∂

∂yl
(βli(s,y)),

∫

Y

βli(s,y)dy =0.

With this notation, we can rewrite

Hi(u,x/ε)=ε
∂

∂xl
(βli(u,x/ε))−ε

∂βli

∂s
(u,x/ε)

∂u

∂xl
.

From (2.4) and (3.6), for any v∈H1
0 (Ω), we have

(∂t(b(uε)−b(u)),v)+(a(uε,x/ε)∇uε +g(uε,x/ε)−a∗(u)∇u−g∗(u),∇v)=0.

Thus, in view of (3.20) and (3.21), we obtain

(∂t(b(uε)−b(uε
1 +εθε)),v)+(a(uε,x/ε)∇(uε−(uε

1 +εθε)),∇v)
= −(b′(uε

1 +εθε)∂t(u+εu1)−b′(u)∂tu,v)
−(R1,∇v)−(R2,∇v)−ε(ζi,∂v/∂xi)

:= I1 + ···+I4, (3.22)

where

Ri
1 =(aij(uε,x/ε)−aij(u,x/ε))

[(
δkj +

∂χk

∂yj
(u,x/ε)

)
∂u

∂xk
+

∂η

∂yj
(u,x/ε)

]
,
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and

Ri
2 =gi(uε,x/ε)−gi(u,x/ε),

and

ζi =aij(uε,x/ε)
(

χk(u,x/ε)
∂2u

∂xj∂xk
+

∂χk

∂s
(u,x/ε)

∂u

∂xj

∂u

∂xk
+

∂η

∂s
(u,x/ε)

∂u

∂xj

)

+αk
ij(u,x/ε)

∂2u

∂xj∂xk
+

∂αk
ij

∂s
(u,x/ε)

∂u

∂xj

∂u

∂xk
+

∂βij

∂s
(u,x/ε)

∂u

∂xj
.

Notice here we have used the fact ∂
∂xj

(
αk

ij(u,x/ε) ∂u
∂xk

)
and ∂

∂xj
(βij(u,x/ε)) are di-

vergence free.
Set v = b(uε)−b(uε

1 +εθε). It is obvious that

∇v = b′(uε)∇(uε−(uε
1 +εθε))+(b′(uε)−b′(uε

1 +εθε))∇(uε
1 +εθε), (3.23)

and

(b′(uε) −b′ (uε
1 +εθε))

∂(uε
1 +εθε)
∂xi

= (b′(uε)−b′(uε
1 +εθε))

(
∂u

∂xi
+

∂χj

∂yi

∂u

∂xj
+

∂η

∂yi

)

+ε(b′(uε)−b′(uε
1 +εθε))

(
χj ∂2u

∂xj∂xi

+
∂χj

∂s

∂u

∂xi

∂u

∂xj
+

∂η

∂s

∂u

∂xi
+

∂θε

∂xi

)
. (3.24)

Hence, in view of (2.3) and by use of the coercive condition and Young’s inequality,
we obtain

(a (uε, x/ε)∇(uε−(uε
1 +εθε)),∇v)

≥ λb1

2
‖∇(uε−(uε

1 +εθε))‖20,Ω−Cε2(‖u‖22,Ω +‖∇θε‖20,Ω)

−C‖b(uε)−b(uε
1 +εθε)‖20,Ω, (3.25)

and

‖∇v‖20,Ω ≤ C‖∇(uε−(uε
1 +εθε))‖20,Ω +Cε2(‖u‖22,Ω +‖∇θε‖20,Ω)

+C‖b(uε)−b(uε
1 +εθε)‖20,Ω. (3.26)

Now we give the estimates of the terms I1,··· ,I4. It is clear that

|I1|= |ε(b′(uε
1 +εθε)∂tu1,v)+(b′(uε

1 +εθε)−b′(u))∂tu,v)|
≤Cε(‖∂tu1‖0,Ω +‖u1 +θε‖0,∞,Ω‖∂tu‖0,Ω)‖v‖0,Ω

≤Cε2(‖∇ut‖20,Ω +‖ut‖20,Ω)+C‖b(uε)−b(uε
1 +εθε)‖20,Ω, (3.27)

and

|I4|≤Cε2(‖u‖22,Ω +1)+C‖∇v‖20,Ω. (3.28)
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Further, since

|aij(uε,x/ε)−aij(u,x/ε)|
≤ |aij(uε,x/ε)−aij(uε

1 +εθε,x/ε)|+ |aij(uε
1 +εθε,x/ε)−aij(u,x/ε)|

≤C|b(uε)−b(uε
1 +εθε)|+Cε|u1 +θε|,

it follows that

|I2|≤Cε2(‖u‖21,Ω +‖θε‖20,Ω)+C‖b(uε)−b(uε
1 +εθε)‖20,Ω +C‖∇v‖20,Ω. (3.29)

Similarly, we can show that

|I3|≤Cε2(‖u‖21,Ω +‖θε‖20,Ω)+C‖b(uε)−b(uε
1 +εθε)‖20,Ω +C‖∇v‖20,Ω. (3.30)

Finally, integrating (3.22) over (0,t), it follows from (3.25)–(3.30) that

1
2

∫

Ω

(b(uε)−b(uε
1 +εθε))2dx+

λb1

8

∫ t

0

∫

Ω

|∇(uε−(uε
1 +εθε))|2dxds

≤Cε2 +Cε2

∫ t

0

‖∇θε‖20,Ωds+C

∫ t

0

‖b(uε)−b(uε
1 +εθε)‖20,Ωds. (3.31)

Note here we have used ‖b(u0)−b(u0 +ε(ξ−1)u1(x,0))‖0,Ω≤Cε‖∇u0‖0,Ω. Thus,
in view of Lemma 3.1, by using Gronwall’s inequality we complete the proof.

Since we assume that b′(s)≥ b1 >0, the following theorem follows from Theorem
3.2 and Lemma 3.1.

Theorem 3.3. Let uε and u be the solutions of (2.1) and (3.1) respectively. Assume
that (3.7) holds. Then there exists a constant C independent of ε,Ω such that

‖uε−u−εu1‖L∞(0,T ;L2(Ω)) +‖∇(uε−u−εu1)‖L2(QT )≤C
√

ε.

4. Error estimate for the periodic medium
We now study the accuracy of the upscaling method given in Section 2. Note

here we assume that aε and gε have the periodic forms.
For the local problem (2.6), it is easy to check that

pε
i =xi +εχi(s,x/ε)−εθε

i , (4.1)

where χi(s,y) is defined by (3.3) and θε
i is the solution of

−∇·(a(s,x/ε)∇θε
i )=0 in K,

θε
i =χi(s,x/ε) on ∂K.

(4.2)

It is obvious that

‖∇pε
i‖0,K ≤C‖ei‖0,K ≤Chd/2, (4.3)

and, for θε
i we have (cf. [20] or [5, Theorem 3.1])

‖θε
i ‖0,K ≤Chd/2, ‖∇θε

i ‖0,K ≤Ch(d−1)/2ε−1/2. (4.4)
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Lemma 4.1. Given domain K with diam(K)=h, let Φ(s,y) defined in Y be a Y -
periodic function in y, where Y is a unit cube and s∈R is fixed. Furthermore, assume
‖Φ(s,y)‖L∞(Y )≤ Ĉ, where Ĉ is independent of h, ε and s. Then, we have

∣∣∣∣
1
|Y |

∫

Y

Φ(s,y)dy−〈Φ(s,x/ε)〉K
∣∣∣∣≤Cεh−1,

where C is independent of ε,h and s.

Proof. Let Yi⊂K be a rescaled Y of size ε. Denote K ′=∪Ki⊂KYi. We have
∣∣∣∣

1
|Y |

∫

Y

Φ(s,y)dy−〈Φ(s,x/ε)〉K
∣∣∣∣

≤
∣∣∣∣∣

1
|Y |

∫

Y

Φ(s,y)dy− ε

|K|
∑

Yi⊂K′

∫

Y

Φ(s,y)dy

∣∣∣∣∣+
∣∣∣∣∣

1
|K|

∫

K\K′
Φ(s,x/ε)dx

∣∣∣∣∣

≤C
|K|−|K ′|
|K| ≤Cεh−1.

Note here we have used
∑

Yi⊂K′ = |K ′|/(ε|Y |).
Lemma 4.2. In each K ∈Mh, for any s∈R, we have

∣∣a∗ij(s)− ãij(s)
∣∣≤Cεh−1, (4.5)

where C is independent of ε,h and s.

Proof. Similar proof can be found in [34]. For the convenience of the reader, we
sketch the proof here. Denote wi =ei +∇yχi(s,y). By the integration by parts, it
follows from (3.2) and (3.3) that

a∗ij(s)=
1
|Y |

∫

Y

wi ·(a(s,y)wj)dy, (4.6)

and

∇y ·(a(s,y)wj)=0. (4.7)

It follows from (4.1) that ∇pε
i =wi−ε∇θε

i . Hence, from (2.9), we have

a∗ij(s)− ãij(s) =
(

1
|Y |

∫

Y

wi ·(a(s,y)wj)dy−〈wi ·(a(s,x/ε)wj)〉K
)

+ε〈wi ·(a(s,x/ε)∇θε
j )〉K +ε〈∇θε

i ·(a(s,x/ε)wj)〉K
−ε2〈∇θε

i ·(a(s,x/ε)∇θε
j )〉K

:= II1 +II2 +II3 +II4. (4.8)

By Lemma 4.1, we have |II1|≤Cεh−1. Further, by (4.4) and the Cauchy-Schwartz
inequality, we also have |II4|≤Cεh−1. For the term II3, since a(s,x/ε)wj is divergence
free, integration by parts gives

∣∣∣∣
∫

K

∇θε
i ·(a(s,x/ε)wj)dx

∣∣∣∣=
∣∣∣∣
∫

∂K

θε
i n ·(a(s,x/ε)wj)dσ

∣∣∣∣

=
∣∣∣∣
∫

∂K

(χin ·(awj))(s,x/ε)dσ

∣∣∣∣≤Chd−1. (4.9)
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II2 can be estimated similarly since a is symmetric. The proof now is completed.
Let φε be the solution of the problem

−∇·(a(s,x/ε)∇φε)=∇·g(s,x/ε) in K,

φε =0 on ∂K.
(4.10)

For problem (4.10), it is easy to check that

φε =εη(s,x/ε)−εθε
η, (4.11)

where η(s,y) is defined by (3.5) and θε
η is the solution of

∇·(a(s,x/ε)∇θε
η)=0 in K,

θε
η =η(s,x/ε) on ∂K.

(4.12)

It is obvious that

‖∇θε
η‖0,K ≤Ch(d−1)/2ε−1/2. (4.13)

To estimate the error between g̃ and g∗, we need the following lemma (see also [14]).

Lemma 4.3. We have

g∗i (s)=
1
|Y |

∫

Y

gk(s,y)
(

δik +
∂χi

∂yk
(s,y)

)
dy, i=1,··· ,d. (4.14)

Proof. Choosing χj as the test function in the variational formula of (3.5), we
obtain

−(g(s,y),∇yχj(s,y))Y =(a(s,y)∇yη(s,y),∇yχj(s,y))Y

=−(a(s,y)ej ,∇yη(s,y))Y . (4.15)

Note in the second step here that we have used the variational formula of (3.3) with
η(s,y) as the test function. Thus, we have

∫

Y

g(s,y) ·∇yχj(s,y)dy =
∫

Y

a(s,y)∇yη(s,y) ·ejdy,

which follows the results from (3.4) immediately.

Lemma 4.4. In each K ∈Mh, for any s∈R, we have

|g∗i (s)− g̃i(s)|≤Cεh−1, (4.16)

where C is independent of ε,h and s.

Proof. We still denote wi =ei +∇yχi(s,y). From Lemma 4.3, we have

g∗i (s)=
1
|Y |

∫

Y

g(s,y) ·widy. (4.17)

Hence, it follows from ∇pε
i =wi−ε∇θε

i that

g∗i (s)− g̃i(s)=
(

1
|Y |

∫

Y

g(s,y) ·widy−〈g(s,x/ε) ·wi〉K
)

+ε〈g(s,x/ε) ·∇θε
i 〉K . (4.18)
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By Lemma 4.1, we know that the first part of r.h.s of (4.18) is bounded by Cεh−1. For
the second part, in view of that fact

∫
K

a∇φε ·∇θε
i dx=0 and ∇φε =∇yη(x/ε)−ε∇θε

η,
we have ∫

K

g(s,x/ε) ·∇θε
i dx =

∫

K

(g+a∇yη)(s,x/ε) ·∇θε
i dx

−ε

∫

K

a(s,x/ε)∇θε
η ·∇θε

i dx

:= III1 +III2. (4.19)

From (4.4), (4.13) and the Cauchy-Schwartz inequality, we have |III2|≤Chd−1. For
the term III1, in view of ∇y ·(g+a∇yη)=0, integration by parts gives

∣∣∣∣
∫

K

(g+a∇yη)(s,x/ε) ·∇θε
i dx

∣∣∣∣=
∣∣∣∣
∫

∂K

θε
i n ·(g+a∇yη)(s,x/ε)dσ

∣∣∣∣
≤Chd−1.

Thus, we obtain |ε〈g(s,x/ε) ·∇θε
i 〉K |≤Cεh−1. The proof now is completed.

Theorem 4.5. For n=1,··· ,N , let un and vn
h be the solution of (3.6) and (2.5)

respectively. Denote vn = b(un). Then

‖vm−vm
h ‖0,Ω +

(
m∑
1

τ‖∇(vn−vn
h)‖20,Ω

)1/2

≤C(u)
(
τ +h+

ε

h

)
∀m=1,··· ,N, (4.20)

where C(u) depends on ‖u‖W 1,2
2 (QT ),‖∇ut‖L2(QT ),‖∇u‖L∞(QT ), but not on h,τ and

ε.

Proof. Setting v = b(u) in (3.6) and integrating from tn−1 to tn yields
(

vn−vn−1

τ
,w

)
+

(
1
τ

∫ tn

tn−1
(g∗(u)+a∗(u)∇u)dt,∇w

)
=(f̄n,w). (4.21)

Denote δn = Ihvn−vn
h , where Ih :H1

0 (Ω)→W 0
h is the usual Clemént interpolation op-

erator, which satisfies the following estimates ([7])

‖v−Ihv‖Hj(Ω)≤Chm−j‖v‖Hm(Ω)

∀v∈Hm(Ω)∩H1
0 (Ω), j =0,1,··· ,m, m=1,2.

(4.22)

Subtracting (2.5) from (4.21) yields
(

δn−δn−1

τ
,wh

)
+

(
ã(ũn)
b′(ũn)

∇δn,∇wh

)

=−
(

vn−vn−1

τ
− Ihvn−Ihvn−1

τ
,wh

)

−
(

1
τ

∫ tn

tn−1

a∗(u)
b′(u)

∇vdt− ã(ũn)
b′(ũn)

∇Ihvn,∇wh

)

−
(

1
τ

∫ tn

tn−1
g∗(u)dt− g̃(ũn),∇wh

)

:= IV1 + ···+IV3. (4.23)



506 UPSCALING OF NONLINEAR PARABOLIC EQUATIONS

Recall that ũn = b−1(vn
h). Set wh = τδn. It is clear that

|IV1|≤
∣∣∣∣∣
∫

Ω

∫ tn

tn−1
(∂tb(u)−Ih∂tb(u))dtδndx

∣∣∣∣∣

≤Ch2

∫ tn

tn−1
‖∇ut‖20,Ωdt+Cτ‖δn‖20,Ω.

Furthermore, it is obvious that

IV2 =−
(∫ tn

tn−1

(
a∗(u)
b′(u)

− ã(ũn)
b′(ũn)

)
∇vdt,∇δn

)

−
(∫ tn

tn−1

ã(ũn)
b′(ũn)

∇(v−Ihvn)dt,∇δn

)
. (4.24)

By Lemma 4.2 and the Lipschitz continuity of a∗ and b′, we know that
∣∣∣∣
a∗(u)
b′(u)

− ã(ũn)
b′(ũn)

∣∣∣∣

≤ |a
∗(u)−a∗(ũn)|
|b′(u)| +

|a∗(ũn)− ã(ũn)|
|b′(u)| +

∣∣∣∣
1

b′(u)
− 1

b′(ũn)

∣∣∣∣ |ã(ũn)|

≤C|u− ũn|+C(h+εh−1)

=C|b−1(v)−b−1(vn
h)|+C(h+εh−1)

≤C|v− ṽn|+C(h+εh−1).

Noticing that ‖∇v‖L∞ ≤C‖∇b(u)‖L∞ ≤C, we obtain

|IV2|≤C

∫ tn

tn−1
(‖v−vn

h‖0,Ω +‖∇(v−Ihvn)‖0,Ω +h+εh−1)dt‖∇δn‖0,Ω

≤ λ

4
τ‖∇δn‖20,Ω +Cτ‖δn‖20,Ω +Cτ(h+εh−1)2

+C(h2 +τ2)
∫ tn

tn−1
(‖u‖22,Ω +‖∇ut‖20,Ω +‖ut‖20,Ω)dt.

Similarly, we have

|IV3|≤ λ

4
τ‖∇δn‖20,Ω +Cτ‖δn‖20,Ω +Cτ(h+εh−1)2

+C(h2 +τ2)
∫ tn

tn−1

(‖ut‖20,Ω +‖∇un‖20,Ω

)
dt.

Utilizing the above estimations and summing over n from 1 to m yield

‖δm‖20,Ω +
m∑
1

τ‖∇δn‖20,Ω

≤ c(u)(h+τ +εh−1)2 +cτ
m∑
1

‖δn‖20,Ω, (4.25)
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where c(u) depends on ‖u‖W 1,2
2 (QT ),‖∇ut‖L2(QT ),‖∇u‖L∞(QT ). Thus, if τ is small

enough, by using the Gronwall inequality we obtain

‖δm‖20,Ω +
m∑
1

τ‖∇δn‖20,Ω≤C(τ +h+εh−1)2, (4.26)

where C depends on T , c(u), not on h,τ and ε. Finally, we obtain the result by the
standard interpolation theory and the triangle inequality.

Theorem 4.6. For n=1,··· ,N , let un and vn
h be the solution of (3.6) and (2.5)

respectively. Set ũn = b−1(vn
h). Then

‖um− ũm‖0,Ω +

(
m∑
1

τ‖∇(un− ũn)‖20,Ω

)1/2

≤C(u)
(
τ +h+

ε

h

)
∀m=1,··· ,N, (4.27)

where C(u) depends on ‖u‖W 1,2
2 (QT ),‖∇ut‖L2(QT ),‖∇u‖L∞(QT ), not on h,τ and ε.

Proof. The result can be obtained by the following facts:

‖um− ũm‖0,Ω =‖b−1(vm)−b−1(vm
h )‖0,Ω≤C‖vm−vm

h ‖0,Ω (4.28)

and

‖∇ (un− ũn)‖0,Ω =‖∇(un−b−1(vn
h))‖0,Ω

≤C‖((b−1)′(vn)−(b−1)′(vn
h))∇vn‖0,Ω +‖(b−1)′(vn

h)∇(vn−vn
h)‖0,Ω

≤C‖vn−vn
h‖1,Ω. (4.29)

This completes the proof.

5. Numerical results
In this section, we present several numerical examples carried out for periodic and

random log-normal permeabilities to demonstrate the ability of the coarse-grid models
presented in Section 2. The coarse-grid models are compared with the fine-scale model
solved on a fine mesh. We have employed the linear approximation scheme in [29] to
solve the fine-scale equations.

From the assumptions, it follows that the problems considered in our paper satisfy
the maximum principle. So, the range of unknown can be obtained by the initial value
and boundary values. For example, the unknown of the example in this Section lies
between 0 and −10. In our method, we compute the effective constitutive relations in
each coarse mesh element for the discrete values in the range. It seems very expensive,
but it is a pre-processing procedure which can be done completely parallel. Note that
the effective parameters can also be computed on the fly as in [11], [13] (i.e. the
effective parameters are computed whenever they are needed) instead of being done
in advance. This is the approach used in this paper to avoid the expensive computation
to build up a database for the effective parameters. We emphasize again that the real
significance of the upscaling method lies in its ability to solve the problems in coarse
meshes. This is particularly advantageous when multiple simulations or realizations
are necessary due to changes of boundary conditions or source functions for certain
given fine micro-structures of the highly heterogeneous permeability of the porous
media. In practical applications, one may build up the database of the effective
parameters completely parallel in advance or on the fly.
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5.1. Exponential model with periodic coefficients. Consider the follow-
ing Richards equation,

∂tθ(u)−∇·(K(x,u)∇(u+x3))=0 (5.1)

where x3 denotes the vertical coordinate in the medium. For the exponential model
(see [31] or [15] for more details), we have θ(u)=θse

βu, K(x,u)=Ks(x)eα(x)u. Choos-
ing θs =1, β =0.1. The heterogeneity comes from Ks(x) and α(x).

For the convenience of the reader, we sketch the linear approximation scheme
here. The time discretization is based on the backward Euler method. The concept
behind the linear approximation is a clever relaxation scheme for solving a nonlinear
elliptic BVP at each time point of the time partitioning.

Let us denote the time step τ >0 and the space V :={v∈H1(Ω) : v|Γtop =
0,v|Γbottom

=0}. The approximate solution ui≈u(ti) at a given time point ti = iτ
is obtained in an iteration process with respect to the relaxation parameter κ. The
linearized scheme for a fixed i∈{1,··· ,n} and running κ=1,2,··· reads as

ui,0 =ui−1

L

τ
(ui,κ,ϕ)+(K(ui−1)∇ui,κ,∇ϕ)=−(K(ui−1)e3,∇ϕ)+

L

τ
(ui,κ−1,ϕ)

−1
τ

(θ(ui,κ−1),ϕ)+
1
τ

(θ(ui−1),ϕ)

for all ϕ∈V . Here L is the Lipschitz constant of the function θ and e2 =(0,1)T . The
iteration process stops when the following condition is satisfied

‖ui,κ−ui,κ−1‖0,Ω≤Cdτ
d,

where Cd >0,d>1 are fixed constants. After stopping the iterations at κ=κi,last, we
denote ui :=uκi,last and switch to the next step.

First, we solve (5.1) in the domain Ω=(0,1)×(0,1), and assume that Ks(x) and
α(x) have the following periodic form

Kε(x1,x3)= 1/[2+1.8sin(2π(2x3−x1)/ε)]/117.4, (5.2)

and

αε(x1,x3)= 1/[2+1.8sin(2π(2x3−x1)/ε)]/11.74. (5.3)

Here we fix ε=1/16. Thus, we have Ks =0.01, and α=0.1.
The corresponding boundary conditions read as follows:

u=0 on Γtop, u=−10 on Γbottom,

−K(x,u)∇(u+x3) ·n=0 on ΓLR,
(5.4)

where Γtop ={(x1,x3) :x1∈ (0,1),x3 =1}, Γbottom ={(x1,x3) :x1∈ (0,1),x3 =0}, and
ΓLR ={(x1,x3) :x1 =0 or 1,x3∈ (0,1)}. We impose the following initial condition

u(x,0)=−10 in Ω. (5.5)

To demonstrate the effectiveness of our upscaling method, we solve (5.1), (5.4),
and (5.5) in a 256×256 mesh. The obtained solution uε

h is considered as the fine-
scale solution to compare with the upscaled solution. The coarse-grid model uses
8×8, 16×16, 32×32 mesh respectively.
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Fig. 5.1. The contour plots of uε
h and ũh at t=1 (left) and t=10 (right). The solid line stands

for uε
h and the dash line stands for ũh in mesh 8×8. Periodic case (ε=1/16).
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Fig. 5.2. The contour plots of uε
h and ũh at t=1 (left) and t=10 (right). The solid line stands

for uε
h and the dash line stands for ũh in mesh 16×16. Periodic case (ε=1/16).
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Fig. 5.3. The contour plots of uε
h and ũh at t=1 (left) and t=10 (right). The solid line stands

for uε
h and the dash line stands for ũh in mesh 32×32. Periodic case (ε=1/16).
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Fig. 5.4. The average solutions over the horizontal direction at t=1 (left) and t=10 (right).
The solid line stands for the averaged uε

h in a mesh 256×256, the + line stands for the averaged
ũh in a mesh 8×8. Periodic case (ε=1/16).
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Fig. 5.5. The average solutions over the horizontal direction at t=1 (left) and t=10 (right).
The solid line stands for the averaged uε

h in a mesh 256×256, the + line stands for the averaged
ũh in a mesh 16×16. Periodic case (ε=1/16).
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Fig. 5.6. The average solutions over the horizontal direction at t=1 (left) and t=10 (right).
The solid line stands for the averaged uε

h in a mesh 256×256, the + line stands for the averaged
ũh in a mesh 32×32. Periodic case (ε=1/16).
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The contour plots of the water pressure ũh (corresponding uε
h) at times t=1

and t=10 are depicted in Figures 5.1–5.3 for the coarse 8×8, 16×16, 32×32 mesh
respectively. We observe that the upscaled solution on the 8×8 mesh provides the
best agreement with the fine-scale solution. This may be explained by the effect of
resonance error (the term ε/h) in the error estimate in Theorem 4.6.

We note that the problems that we have considered are vertical infiltration on the
porous medium. Hence, it is also useful to compare the averaged water pressure which
is obtained by taking an average over the horizontal direction (x1-axis). The averaged
pressure head curves are depicted in Figure 5.4–5.6 for the coarse 8×8, 16×16, 32×32
mesh respectively. The averaged pressure head is plotted against the depth x3. It
gives excellent agreement between the coarse mesh and fine mesh calculations.

5.2. Exponential model with random coefficients. It has been observed
that the distribution of the hydraulic conductivity Ks and the model parameter α
are log-normal (see [28, 33]). Thus, in this subsection we consider the applications
of our upscaling method to Richards equation with randomly generated log-normal
permeabilities.

For the exponential model, we choose θs =1 and the same boundary conditions
and initial condition as that of periodic case. The heterogeneity comes from Ks(x)
and α(x). We generate the random log-normal permeability fields Ks(x) by using the
moving ellipse average technique [8] with the variance of the logarithm of the perme-
ability σ =1.5, and the correlation lengths l1 = l3 =0.1 (isotropic heterogeneities) in x1

and x3 directions, respectively. We let Ks =0.01, and α(x)=10Ks(x) hence α=0.1
in the realizations. One realization of the resulting permeability field in our numerical
experiments is depicted in Figure 5.7. We also generate the random log-normal per-
meability field Ks(x) (see Figure 5.8 for one realization) with the correlation lengths
l1 =0.1 and l3 =0.01 respectively, which represents the the anisotropic heterogene-
ity. We let Ks =0.1, and α(x)=0.5Ks(x) hence α=0.05 in the realizations. We also
choose β =0.1 and β =0.05 for the isotropic and anisotropic cases respectively. The
fine-scale equation is solved in a 256×256 mesh, while the coarse-grid model uses a
16×16 mesh.
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Fig. 5.7. The random log-normal permeability field Ks(x). The ratio of maximum to minimum
is 4.1323E +04. Case l1 = l3 =0.1.
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Fig. 5.8. The random log-normal permeability field Ks(x). The ratio of maximum to minimum
is 2.9704E +04. Case l1 =0.1,l3 =0.01.

The contour plots of the water pressure ũh (corresponding uε
h) at time t=1 and

t=10 are depicted in Figure 5.9 for the isotropic heterogeneity. We observe that the
upscaled solution captures the macro-behavior effectively.

The contour plots of the water pressure ũh (corresponding uε
h) at time t=0.5,

t=1, t=6 and t=10 are depicted in Figure 5.10 and Figure 5.11 for the anisotropic
heterogeneity. We observe that the upscaled solution does not match the macro-
behavior so well as the isotropic case. One possible way to improve the accuracy
of the upscaling method is to use the over-sampling technique in [12] developed for
linear problems to compute the effective parameters. This is an interesting topic
which deserves further investigation.

We also compare the averaged water pressure which is obtained by taking an
average over the horizontal direction (x1-axis). The averaged pressure head curves
are depicted in Figures 5.12–5.14 for the isotropic and anisotropic heterogeneities
respectively. It gives excellent agreement between the coarse mesh and fine mesh
calculations also.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1

−2.01

−3.01

−4.02

−5.02

−6.03

−7.03

−8.04

−9.04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

Fig. 5.9. The contour plots of uε
h and ũh at time t=1 (left) and t=10 (right). The solid line

stands for uε
h and the dash line stands for ũh in a mesh 16×16. Case l1 = l3 =0.1, σ =1.5.
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Fig. 5.10. The contour plots of uε
h and ũh at time t=0.5 (left) and t=1 (right). The solid line

stands for uε
h and the dash line stands for ũh in a mesh 16×16. Case l1 =0.1,l3 =0.01, σ =1.5.
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Fig. 5.11. The contour plots of uε
h and ũh at time t=6 (left) and t=10 (right). The solid line

stands for uε
h and the dash line stands for ũh in a mesh 16×16. Case l1 =0.1,l3 =0.01, σ =1.5.
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Fig. 5.12. The average solution over the horizontal direction at t=1 (left) and t=10 (right).
The solid line stands for the averaged uε

h in a mesh 256×256, the + line stands for the averaged
ũh in a mesh 16×16. Case l1 = l3 =0.1, σ =1.5.
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Fig. 5.13. The average solution over the horizontal direction at time t=0.5 (left) and t=1
(right). The solid line stands for the averaged uε

h in a mesh 256×256, the + line stands for the
averaged ũh in a mesh 16×16. Case l1 =0.1,l3 =0.01, σ =1.5.
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Fig. 5.14. The average solution over the horizontal direction at time t=6 (left) and t=10
(right). The solid line stands for the averaged uε

h in a mesh 256×256, the + line stands for the
averaged ũh in a mesh 16×16. Case l1 =0.1,l3 =0.01, σ =1.5.
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