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SLOPE AND G-SET CHARACTERIZATION OF SET-VALUED
FUNCTIONS AND APPLICATIONS TO NON-DIFFERENTIABLE

OPTIMIZATION PROBLEMS∗

OTMAR SCHERZER† , WOTAO YIN‡ , AND STANLEY OSHER§

Abstract. In this paper we derive a generalizing concept of G-norms, which we call G-sets,
which is used to characterize minimizers of non-differentiable regularization functionals. Moreover,
the concept is closely related to the definition of slopes as published in a recent book by Ambrosio,
Gigli, Savaré. A paradigm of regularization models fitting in this framework is robust bounded
variation regularization. Two essential properties of this regularization technique are documented in
the literature and it is shown that these properties can also be achieved with metric regularization
techniques.
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1. Introduction
In this work we are concerned with characterization of the minimizers of the robust

regularization functional

F(u) :=
∫

|u−f |+α‖Du‖ , (1.1)

and the quantile regularization functional

Fβ(u) :=
∫

Sβ(u)+α‖Du‖ ,

where

Sβ(v) :=

{
(1−β)(f −v) if f ≥v ,

β(v−f) if f ≤v

with 0<β <1 and ‖Du‖ denoting the total variation semi-norm.
The functional F(u) has been analyzed by Alliney and Nikolova [1, 6, 8, 7]. Recent

attempts in characterizing properties of the minimizers of F have been made by Chan
& Esedoglu [3] and in [9]. In the latter work we characterized minimizers of (1.1)
using the G-norm introduced by Y. Meyer [5]. The results essentially apply if the
zeros of uα−f are sparse, where uα denotes a minimizer of the robust regularization
functional. This limits the applicability of the results. In this work we derive a general
characterization of the minimizing elements. For this purpose we develop the concepts
of G-sets and G-values, which is a generalization of Y. Meyer’s G-norm to set valued
functions. In general, for the functional (1.1) the characterization of minimizers is no
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480 SLOPE AND G-SET CHARACTERIZATION

longer possible by the G-norm as for instance for the Rudin-Osher-Fatemi model [10]
(cf. Meyer [5]).

Moreover, we show a relation between G-values and slopes as introduced recently
in [2].

The results of this paper allow us to characterize minimizers of F in a functional
analytical framework, and as a byproduct we can generalize the results of Chan &
Esedoglu [3]. Moreover, some of the results can easily be extended to a wider class of
metrical regularization techniques.

2. Basic Facts on Minimizers and Notation
It is relatively easy to show that there exists a minimizer uα of F in BV, the space

of functions of bounded variation (cf. Evans & Gariepy [4]), i.e., the space of functions
in L1 with finite total variation.

Note that the minimizing elements do not have to be unique since the functional
is not strictly convex.

For v∈BV we let

ψv(x) =

{
sgn(v(x)−f(x)) if v(x)−f(x) 6=0

0 if v(x)−f(x)=0
∈

Ψv = {ζ ∈L∞ :
ζ(x)=sgn(v(x)−f(x)) if v(x) 6=f(x),ζ(x)∈ [−1,1] else} .

(2.1)

Moreover, let

η :R×BV×BV→R .

(t,v,h)→
∫

(|v+ th−f |−|v−f |− tψvh).
(2.2)

Lemma 2.1. Assume that v,h∈BV, then

lim
t→0

η(t,v,h)
|t|

=
∫
{v=f}

|h| . (2.3)

Proof. The definition of η implies that∣∣∣∣∣η(t,v,h)
|t|

−
∫
{v=f}

|h|

∣∣∣∣∣≤2
∫
{0<|v−f |≤|th|}

|h| .

The family of functions g|t|(x) := |h(x)|χ{0<|v−f |≤|t||h|}(x) is monotonically decreasing
in |t| and thus by the monotone convergence theorem

lim
|t|→0

∫
g|t|(x)=

∫
|h(x)| lim

|t|→0
χ0<|v−f |≤|th|(x)

=
∫

|h(x)|χM0(x)

=0 ,

where M0 is a set of measure 0. This gives the assertion.

As a consequence of the above lemma we have that if {v =f} has Lebesgue mea-
sure 0, then

|η(t,v,h)|
|t|

→0 . (2.4)
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The G-norm of a measureable function h is defined as the minimum of all values
λ≥0 satisfying ∣∣∣∣∫ vh

∣∣∣∣≤λ

∫
|∇v| , where v∈C∞

0 . (2.5)

Using (2.4), we can reinterpret the results in [9], which read as follows:

Theorem 2.2.
1. Let {0=f} have Lebesgue measure 0. Then ‖ψ0‖G ≤α if and only if uα ≡0.

Here ‖·‖
G

denotes the G-norm of ψ0.
2. Let {uα =f} have Lebesgue measure 0. If ‖ψ0‖G >α, then

‖ψuα‖G =α and −
∫

ψuαuα = α‖Duα‖ .

In the following we generalize the result of Theorem 2.2 and neglect the assump-
tion that {uα =f} has Lebesgue measure zero.

3. Slopes
Let φ :B→ (−∞,∞] be an extended real functional on a real Banach space B with

proper domain

D(φ) :={v∈B :φ(v)<∞} 6=∅.

A metric on B is denoted by d(·,·).
In [2] the following definitions have been given:
1. Local slope:

|∂φ|(v) := limsup
w→v

(φ(v)−φ(w))+

d(v,w)
.

2. Global slope:

Iφ(v) := sup
w 6=v

(φ(v)−φ(w))+

d(v,w)
.

The following result from [2, Proposition 1.4.4] is used afterward:

Theorem 3.1. Let φ :B→ (−∞,∞] be a convex and lower semi continuous functional.
Then

|∂φ|(v)=min{‖ζ‖B∗ : ζ ∈∂φ(v)}=Iφ(v),

where

∂φ(v)={ζ ∈B∗ :φ(h)−φ(v)−〈ζ,h−v〉≥0 for all h∈B},

is the sub-gradient (here 〈·,·〉 denotes the dual pairing) of φ at v and B∗ is the dual
of B.

The dual of the Sobolev space B :=W 1,1
0,λ , of absolutely integrable functions with

absolute integrable derivatives, is denoted by B∗; the intuitive metric on B is

d(v,h) :=
∫

|∇v−∇h|+λ

∫
|v−h|;.
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The functional

φ :B→ [0,∞]

v→
∫

|v|

is convex and lower semi continuous. Note that in order to be able to define the slope
via the minimum, |·| has to be lower semi continuous, which is guaranteed if λ>0.

Note, we do not notationally distinguish between sub-differential of functions and
operators. We also emphasize that a-priori we do not assume that ∂φ(v) 6=∅. We
define

D(∂φ) :={v∈B :∂φ(v) 6=∅} .

Since by definition C∞
0 is dense in W 1,1

0,λ with respect to ‖·‖
λ

we therefore have

|∂φ|(v)= inf
ζ∈∂φ(v)

sup
{h∈C∞

0 :‖h‖
λ
≤1}

∫
ζh .

From Proposition 1.4.4. in [2] it follows that

|∂φ|(v)=I|·|(v) := sup
v 6=h∈B

(∫
|v|−

∫
|h|

)+

d(v,h)
. (3.1)

We have that

I|·|(v)= |∂φ|(v)

≥ inf
ζ∈∂φ(v)

sup
{h∈C∞

0 :‖h‖
λ
=1}

∫
{v 6=0}

sgn(v)h+
∫
{v=0}

ζh

≥ sup
{h∈C∞

0 :‖h‖
λ
=1}

(∣∣∣∣∣
∫
{v 6=0}

sgn(v)h

∣∣∣∣∣−
∫
{v=0}

|h|

)+

=:Gλ(∂ |v|) .

For every h∈C∞
0∫

(|v|−|h|)=
∫
{v 6=0}

|v|−
∫
{v 6=0}

|h|−
∫
{v=0}

|v−h|

≤
∫
{v 6=0}

|v|−
∫
{v 6=0}

sgn(v)h−
∫
{v=0}

|v−h|

≤

(∫
{v 6=0}

sgn(v)(v−h)−
∫
{v=0}

|v−h|

)+

≤Gλ(∂ |v|)
(∫

|∇(v−h)|+λ

∫
|v−h|

)
.

This shows that I|·|(v)≤α=Gλ(∂ |v|). Combination of the two inequalities above
shows that

I|·|(v)= sup
v 6=h∈B

(∫
|v|−

∫
|h|

)+

d(v,h)

= sup
{h∈C∞

0 :‖h‖
λ
=1}

(∣∣∣∣∣
∫
{v 6=0}

sgn(v)h

∣∣∣∣∣−
∫
{v=0}

|h|

)+

=Gλ(∂ |v|), (3.2)
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or in other words the slope of |·| equals the Gλ value of ∂ |·|.
We apply Theorem 3.1 to the functional

φ̃ :L1→ [0,∞],
u→‖Du‖

where ‖Du‖ is the total variation semi-norm of u if u∈BV and +∞ else. We use the
metric induced by the L1-norm. In this case we have∣∣∣∂φ̃

∣∣∣(v)=min{‖ζ‖
L∞ : ζ ∈∂φ̃(v)} .

ζ ∈∂φ̃(v) satisfies

φ̃(u)− φ̃(v)−〈ζ,u−v〉≥0,

where 〈·,·〉 is the dual pairing between L∞ =L1∗ and L1. Formally, the inequality
reads as follows

φ̃(u)− φ̃(v)+
∫

∇·
(

∇v

|∇v|

)
(u−v)≥0 .

Note, that the sub-gradient could be empty, if there does not exist ζ ∈L∞ =L1∗ which
formally satisfies ζ =−∇·

(
∇v
|∇v|

)
.

Since the functional φ̃ is weakly lower semi-continuous (cf. Evans & Gariepy [4]),
according to Proposition 1.4.4. in [2]

Iφ̃(v) :=sup
(‖Dv‖−‖Dh‖)+∫

|v−h|
=

∣∣∣∂φ̃
∣∣∣(v) . (3.3)

In the following we use directional derivatives of a function φ :B→ (−∞,∞] and
define

|∂φ|(v,h) := lim
t→0+

(φ(v)−φ(v+ th))+

t
,

provided the limit exists.

Example 3.2. From Lemma 2.1 it follows that for φ(·−f)= |·−f |

lim
t→0+

(φ(v)−φ(v+ th))+

t
=

(
−

∫
ψvh−

∫
{v=f}

|h|

)+

= |∂φ|(v,h) .

For Sβ, 0<β <1 as in the quantile regularization model we define

ψβ
v (x) =


β if v(x)−f(x)>0,

β−1 if v(x)−f(x)<0,

0 if v(x)−f(x)=0.

(3.4)

We have

ψβ
v ∈Ψβ

v :=
{

ζ ∈L∞ : ζ(x)=β−χv<f (x) if v(x) 6=f(x)

and ζ(x)∈ [β−1,β] if v(x)=f(x)
}

.
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In a similar manner, we can prove that the directional slope of Sβ at v in direction h
is (

−
∫

ψβ
v h−

∫
{v=f}

β(h)h

)+

,

where

β(h)=
{

β if h>0
(β−1) if h<0 .

4. G-Values
The following generalizing concepts of the G-norm are relevant for our paper:

Definition 4.1. Let Ψ:Rn →2R be a set-valued function (here, as usual 2R denotes
the power set of R) and let

Ψ:={ψ :Rn →R is measurable and ψ(x)∈Ψ(x) almost everywhere} 6=∅ .

Note, that notationally we do not distinguish between the set Ψ and the function Ψ.
We define the G-value of Ψ as follows:

G(Ψ) := sup
{h∈C∞

0 :
R
|∇h|=1}

− sup
ψ∈Ψ

∫
ψh

= sup
{h∈C∞

0 :
R
|∇h|=1}

inf
ψ∈Ψ

∫
(−ψ)(−h) .

(4.1)

Note that for the later identity we have used that for h∈C∞
0 satisfying

∫
|∇h|=1 also

−h satisfies these properties.

Note, that if Ψ is single valued and measurable then G(Ψ) is the G-norm of Ψ.
The G-norm is the norm of the dual of the space W 1,1

0 , which is the closure of C∞
0

with respect to the norm u→
∫
|∇u|. The concept can be modified when the closure

of C∞
0 is taken with respect to the norm

‖u‖
λ
:=

∫
(|∇u|+λ |u|) ,

where λ>0.

Definition 4.2. The Gλ-values of Ψ are defined as

Gλ(Ψ) := sup
{h∈C∞

0 :‖h‖
λ
=1}

− sup
ψ∈Ψ

∫
ψh . (4.2)

We have proven that for λ>0 the slope and Gλ values are identical (cf. (3.2)).
For λ=0 the definition of slopes is not applicable, since ‖un−u‖

L1 is not lower semi-
continuous: Meyer [5] has given an example of a function u /∈L1 satisfying ‖Du‖<∞.

From Theorem 3.1 it follows that

|∂φ|(v)= min
ζ∈∂φ(v)

sup
{h∈C∞

0 :‖h‖
λ
=1}

∫
ζh

= sup
{h∈C∞

0 :‖h‖
λ
=1}

inf
ψ∈Ψ

∫
ψh

=Gλ(∂ |v|).
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This essentially shows that in the definition of slopes and Gλ values the sequence of
supremum and infimum is reversed.

For our application the most important example of a set-valued function is

∂ |g| :=

{
sgn(g) if g 6=0,

[−1,1] if g =0 .

In the following we derive some G-value properties of ∂ |g|.

Lemma 4.3. For g∈L1, G(∂ |g|)≤α if and only if(∣∣∣∣∣
∫
{g 6=0}

sgn(g)h

∣∣∣∣∣−
∫
{g=0}

|h|

)+

≤α‖Dh‖ for all h∈BV . (4.3)

Moreover,

G(∂ |g|)= sup
{h∈BV:‖Dh‖=1}

− sup
ψ∈Ψ

∫
ψh .

Proof. Since h∈BV can be approximated by a sequence of functions hn ∈C∞
0

satisfying hn →h in L1 and
∫
|∇hn|→‖Dh‖ it follows that∣∣∣∣∣

∫
{g 6=0}

sgn(g)hn

∣∣∣∣∣−
∫
{g=0}

|hn|→

∣∣∣∣∣
∫
{g 6=0}

sgn(g)h

∣∣∣∣∣−
∫
{g=0}

|h| .

Therefore (4.3) holds for all h∈BV if it holds for all h∈C∞
0 .

For h∈C∞
0 let

ψh :=sgn(h)χg=0−sgn(g)χg 6=0∈∂ |g| .

Therefore,∫
ψhh=−

∫
{g 6=0}

sgn(g)h+
∫
{g=0}

|h|≥−
∫
{g 6=0}

sgn(g)h+
∫
{g=0}

ψh

for all ψ∈∂ |g|. Therefore

G(∂ |g|)= sup
{h∈C∞

0 :
R
|∇h|=1}

(∫
{g 6=0}

sgn(g)h−
∫
{g=0}

|h|

)+

= sup
{h∈C∞

0 :
R
|∇h|=1}

max

(∫
{g 6=0}

sgn(g)(±h)−
∫
{g=0}

|h|

)+

= sup
{h∈C∞

0 :
R
|∇h|=1}

(∣∣∣∣∣
∫
{g 6=0}

sgn(g)h

∣∣∣∣∣−
∫
{g=0}

|h|

)+

.

The definition of G-values implies also that for every function h∈C∞
0

inf
ψ∈Ψ

∫
ψh=− sup

ψ∈Ψ
−

∫
ψh≤G(Ψ)‖D(−h)‖=G(Ψ)‖Dh‖ . (4.4)
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We introduce the definition of G-sets, which is most relevant for our work:

Definition 4.4. Assume f ∈L1 and u∈BV. We define the G-set as

Gu(∂ |u−f |) :={α∈ [0,∞] :α satisfies (4.6)} . (4.5)

Here for every h∈BV

−
∫
{u 6=f}

sgn(u−f)h−
∫
{u=f}

|h|≤α(‖D(u+h)‖−‖Du‖) . (4.6)

Note that for α∈Gu(∂ |u−f |) it follows that for every h∈BV∣∣∣∣∣
∫
{u 6=f}

sgn(u−f)h

∣∣∣∣∣−
∫
{u=f}

|h|≤α‖Dh‖ ,

and thus

G(∂(u−f))≤α . (4.7)

We also note that (4.6) is equivalent to

−
∫
{u 6=f}

sgn(u−f)(v−u)−
∫
{u=f}

|v−u|≤α(‖Dv‖−‖Du‖) ,

for all v∈BV.
Since any function v∈BV can be approximated by a sequence of functions vn ∈C∞

0

it can be approximated in such a way that

vn →v in L1 and ‖Dvn‖→‖Dv‖ .

Therefore, we have proven the following lemma:

Lemma 4.5. Assume f ∈L1 and u∈BV. Then α∈Gu(∂ |u−f |) if and only if for every
v∈C∞

0

−
∫
{u 6=f}

sgn(u−f)(v−u)−
∫
{u=f}

|v−u|≤α(‖Dv‖−‖Du‖) . (4.8)

5. Properties of Minimizers
In the following we prove a similar result to (3.1).

Theorem 5.1. Assume that f ∈L1 and α>0. Then u=uα is a minimizer of F if
and only if u∈BV and α∈Gu(∂ |u−f |).

Proof. Since uα minimizes F it follows that for all h∈BV and ε>0 that∫
|uα−f |+α‖Duα‖

≤
∫

|uα +εh−f |+α‖D(uα +εh)‖

≤
∫

|uα−f |+ε

∫
{uα 6=f}

sgn(uα−f)h+η(ε,uα,h)+α‖D(uα +εh)‖ . (5.1)
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This shows that for every h∈BV

−
∫
{uα 6=f}

sgn(uα−f)h−
∫
{uα=f}

|h|

≤α
‖D(uα +εh)‖−‖Duα‖

ε
+

(
η(ε,uα,h)−

∫
{uα=f}

|h|

)
.

Since ‖Du‖ is convex the one dimensional function

g(ε) :=‖D(uα +εh)‖

is convex in ε (and by Rademacher’s theorem differentiable almost everywhere), and
thus

liminf
ε→0+

g(ε)−g(0)
ε

=liminf
ε→0+

‖D(uα +εh)‖−‖Duα‖
ε

≤‖D(uα +h)‖−‖Duα‖
=g(1)−g(0) .

The argument can be illustrated with the following drawing cf. Figure 5.1. Since
η(ε,uα,h)→

∫
{uα=f} |h| for ε→0, we find that

−
∫
{uα 6=f}

sgn(uα−f)h−
∫
{uα=f}

|h| ≤α(‖D(uα +h)‖−‖Duα‖) ,

or in other words α∈Guα(∂ |uα−f |).

g(1)

g(0)

Fig. 5.1. The directional derivative is below the line connecting g(1) and g(0) in the graph.

To prove the converse direction we note that from α∈Gu(∂(u−f)) and the con-
vexity of

∫
|u−f | it follows that∫

|u+h−f | + α‖D(u+h)‖

≥
∫

|u−f | + α‖Du‖ +
∫
{u 6=f}

sgn(u−f)h +
∫
{u=f}

|h|

+ α(‖D(u+h)‖−‖Du‖)

≥
∫

|u−f | + α‖Du‖ .



488 SLOPE AND G-SET CHARACTERIZATION

Thus u is a global minimizer.

The following consequences can be derived from Theorem 5.1:

Remark 5.2.
• From α∈Gu(∂ |u−f |) it follows by taking in (4.8) (with v =0 and v =2u) that∫

{u 6=f}
sgn(u−f)u−

∫
{u=f}

|f |≤−α‖Du‖

and

−
∫
{u 6=f}

sgn(u−f)u−
∫
{u=f}

|f |≤α‖Du‖ ,

which shows that

‖Du‖ ∈

{
−

∫
{u 6=f}

ψu :ψ∈∂ |u−f |

}
.

• α∈G0(∂ |f |) if and only if for all h∈BV

−
∫
{f 6=0}

sgn(f)h−
∫
{f=0}

|h|≤α‖Dh‖ .

Therefore α≥G(∂ |f |). In this case

inf{α :α∈G0(∂ |f |)}=G(∂ |f |) .

• Together with (4.7) it follows that

G(∂(uα−f))≤α .

In particular, if f ∈BV and we take h=uα−f , it follows then that∫
|uα−f |≤α‖D(uα−f)‖ . (5.2)

• Moreover, from Theorem 5.1 it follows that uα =f ∈BV if and only if α∈
Gf (∂ |0|). Moreover, α∈Gf (∂ |0|) is equivalent to

−
∫

|h|≤α(‖D(f +h)‖−‖Df‖) for all h∈BV . (5.3)

This in turn is equivalent to Iφ̃(f)=
∣∣∣∂φ̃

∣∣∣(f)≤ 1
α (cf. (3.3)).

From (5.3) it follows that for all c∈R\{0}

−
∫

|ch|≤α(‖D(cf +ch)‖−‖D(cf)‖) for all h∈BV ,

or equivalently

−
∫

|h|≤α(‖D(cf +h)‖−‖D(cf)‖) for all h∈BV .

This shows that α∈Gcf (∂ |0|).
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The G value and the G set are different concepts: If uα =f , what happens if
α∈Gf (∂ |0|), then G(∂ |0|)=0.

A similar result to Theorem 5.1 also applies to the β-quantile regularization:

Theorem 5.3. Assume that f ∈L1 and α>0. Then u=uα is a minimizer of Fβ if
and only if u∈BV and α∈Gu(∂Sβ(u)).

We note that

Gu(∂Sβ(u)) :={α∈ [0,∞] :α satisfies (5.5)} . (5.4)

Here for every h∈BV

−β

∫
{u>f}

h−(β−1)
∫
{u<f}

h−
∫
{u=f}

β(h)h≤α(‖D(u+h)‖−‖Du‖) . (5.5)

6. Relation to the Literature
Chan & Esedoglu [3] characterized minimizers of the functional (1.1) when f =χΩ

under the assumptions that

‖Df‖=
∫

f∇·~φ for some ~φ∈C1
0 satisfying

∣∣∣~φ(x)
∣∣∣≤1 and

∣∣∣∇·~φ(x)
∣∣∣≤C .

In this case we have for all u∈L1

‖Df‖−‖Du‖∫
|u−f |

≤
∫

(f −u)∇· ~φ∫
|u−f |

≤C .

That is
∣∣∣∂φ̃

∣∣∣(f)≤C, and consequently, if C ≤ 1
α , then uα =f .

In particular if f =χΩ∈BV we have uα ≡0 if and only if for every h∈BV∫
Ω

h−
∫

Rn\Ω
|h|≤α‖Dh‖ .

Taking h=χΩ, we find that

meas(Ω)
Per(Ω)

≤α .

Moreover, we have uα ≡f if and only if for every h∈BV

α(Per(Ω)−‖D(χΩ +h)‖)≤
∫

|h| . (6.1)

Note, that for any function h∈W 1,1
0 ‖Dh‖ is the norm of the absolute continuous

part, and ‖D(χΩ)‖ is the singular part of the measure ‖D(χΩ +h)‖; therefore

‖D(χΩ +h)‖=‖D(χΩ)‖+‖Dh‖ .

Therefore, the left hand side of (6.1) is negative and thus (6.1) is satisfied.
If uα =f , then (6.1) provides a restriction on α if ‖Dh‖ is an appropriate singular

measure. Take h=−cχΩ with c∈ [0,1], then from (6.1) it follows that

α≤ meas(Ω)
Per(Ω)

.
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The technique of the proof of Theorem 5.1 is not limited to the L1−BV regulariza-
tion technique. The Rudin-Osher-Fatemi model can be characterized analogously as
follows:

Theorem 6.1. Assume f ∈L2 and α>0. Then u=uα is a minimizer of the func-
tional

1
2

∫
(u−f)2 +α‖Du‖

if and only if u∈L2 with finite total variation and for every h∈L2 with finite total
variation

−
∫

(u−f)h≤α(‖D(u+h)‖−‖Du‖) . (6.2)

More general, if φ(·) is a convex, differentiable, coercive (i.e. it satisfies φ(·)≥|·|p,
p>1) function, then u=uα is a minimizer of the functional∫

φ(u)+α‖Du‖

if and only if u∈Lp with finite total variation and for every h∈Lq with finite total
variation

−
∫

φ′(u)h≤α(‖D(u+h)‖−‖Du‖) .

From (6.2) it follows
1. by taking h=u and h=−u that

−
∫

(u−f)u=α‖Du‖ . (6.3)

2. From the triangle inequality it follows that for every h∈L2 with finite total
variation ∣∣∣∣∫ (u−f)h

∣∣∣∣≤α‖Dh‖ (6.4)

which in particular guarantees that the G-norm of u−f is less or equal α and
together with (6.3) it follows that the G-norm of u−f is α.

If the two items hold, then by taking h=u+ h̃ in (6.4) (actually a W 1,1
0 approximation

of h has to be used, to make the the statement rigorous) it follows that

α‖Du‖−
∫

(u−f)h̃=−
∫

(u−f)(u+ h̃)≤α
∥∥∥D(u+ h̃)

∥∥∥ . (6.5)

This shows that (6.2) holds. Items I and II are the characterization from the book of
Meyer [5]. From a continuously differentiable function φ the corresponding result can
be found in [9].
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7. Metrical regularization
A minimizer uα =f can be guaranteed to be a minimizer of functionals of the

form

d(u,f)+αψ(u),

where d(·,·) is a metric on a Banach space B and ψ(·) :B→ (−∞,∞] is a convex, lower
semi continuous functional. From Proposition 1.4.4 in [2] we know that for f ∈B

|∂ψ|(f)=Tψ(f) :=sup
(ψ(f)−ψ(u))+

d(f,u)
.

This shows that

Corollary 7.1. uα =f if and only if |∂ψ|(f)≤ 1
α .

We have considered already the metric on L1 and the convex functional φ̃(u)=
‖Du‖, which results in the functional F . Another example of a metric is d(f,g)=√∫

|f −g|2. The functional

˜̃φ :L2→ [0,∞],
u→‖Du‖

is convex and lower semi-continuous. Applying Corollary 7.1 gives that uα =f if and
only if

∣∣∣∂ ˜̃
φ
∣∣∣≤ 1

α . Note that in this case uα satisfies the Euler equation

u−f√∫
(u−f)2

∈α∇·
(

∇u

|∇u|

)
.

This is an variant of the Rudin-Osher-Fatemi functional where the minimizer satisfies
similar analytical properties as the minimizers of the functional F . We note, however,
that the functional is strictly convex and thus the minimizer is unique. For the
numerical solution a non-local PDE has to be solved.
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