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A GENERAL CLASS OF FINITE-DIFFERENCE METHODS FOR
THE LINEAR TRANSPORT EQUATION∗

DANIELE FUNARO† AND GIUSEPPE PONTRELLI‡

Abstract. A wide family of finite-difference methods for the linear advection equation, based
on a six-point stencil, is presented. The family depends on three parameters and includes most of the
classical linear schemes. A stability and consistency analysis is carried out. Numerical examples show
the performance of the different methods according to the choice of the parameters. The problem of
the determination of the parameters providing the “best approximation” is also addressed.
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1. Introduction
The analysis and the numerical approximation of differential equations of hyper-

bolic type is a subject that has been widely investigated, both for the abundance of
applications and for the difficulty of treating appropriately many theoretical prob-
lems. The general theory on hyperbolic equations and conservation laws has already
generated an enormous amount of literature (see for instance [1], [2]). The relevance
of advection-dominated problems is also testified to by a number of recent papers
dealing with a variety of approximating methods and numerical schemes [3–9]. Nev-
ertheless, as we shall see in this paper, new and efficient algorithms for the simple
linear scalar equation can still be proposed, which may result in the development of
effective methods in the case of more advanced applications.

In [13] and in previous papers [11]–[12], the idea of building numerical schemes
based on two grids (the first to represent the solution and the second to collocate the
equation) was assessed and many examples were analyzed, in the field of functional
equations of differential or integral type.

The possibility of varying the collocation points gives more degrees of freedom in
the construction of the approximation methods. First of all, it allows the rediscovery of
old methods and their analysis from a different point of view. Secondly, by establishing
a suitable relationship between the representation and the collocation grids, we now
have the chance to define new methods.

In order to show that the same approach can be successfully used for time-
dependent problems as well, we start with finite-difference approximations of a first-
order scalar hyperbolic equation in one space dimension. The representation grid is
the usual uniform grid of width ∆x and ∆t in the space-time plane. The approx-
imating equations are built on the discrete values of the solution, assumed to be
computed over a classical six-point stencil of the representation grid, after collocation
at a certain new point inside the same stencil.

The position of the collocation point characterizes the approximation scheme,
which now depends on two parameters, i.e. the local coordinates of such a point,
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called s and r. There will actually be three parameters after introducing another
coefficient ν related to numerical viscosity. For special choices of s, r and ν, most
of the classical schemes can be recovered; however, the interesting issue is that an
infinite number of other schemes, displaying an extended range of properties, can
be generated in this way. We discuss those that, in our opinion, are particularly
significant.

For the linear transport equation we provide a general analysis of stability and
consistency. Moreover, we give a series of comparative numerical experiments, with
the aim of studying the behavior of the approximate solutions depending on the values
of the parameters. In order to show that the idea can be adapted to more complicated
problems, we also discuss some experiments for the nonlinear Burgers equation.

2. Preliminary definitions
We shall mainly deal with the linear hyperbolic scalar equation:

L(u)=ut +cux =0 (2.1)

being c a positive constant. Initial conditions and inflow boundary conditions are
provided in the usual way, so that the solution of (2.1) turns out to be a travelling
wave preserving its shape. Generalizations of this problem will be analyzed later in
section 6. However, the numerical method we are going to present here for the simple
linear case will be significant enough to enable many interesting conclusions to be
drawn.

Besides (2.1) we consider the advection–diffusion equation:

L̂(u)=ut +cux−νuxx =0 (2.2)

where ν >0 is the diffusion coefficient. Since the solution of (2.1) can be suitably
interpreted as the limit for ν→0 of the solution of (2.2), the introduction of the
viscosity term is taken very often as a starting point to construct approximation
schemes for nonlinear equations, due to the stabilizing effect of ν. We shall consider
later the possible links between the straightforward discretizations of (2.1) and the
discretizations of (2.2), using the constant ν as an extra-parameter, which will also
be allowed to be negative.

Throughout the paper, we will only consider finite-differences approximations of
(2.1) based on a six-point stencil (see figure 2.1), although generalizations to higher
order methods (based on a larger stencil) could, in principle, also be taken into ac-
count.

Thus, in the (x,t) plane, we take a uniform grid of width h=∆x and a constant
time-step ∆t. The generic point of the grid is denoted by (xj ,tk) for some integer
indices j and k. We denote by P (2,1) the space of polynomials of degree 2 in the
variable x and of degree 1 in the variable t. Then, for any fixed j and k, we introduce
a Lagrange basis with respect to the six points of the stencil shown in figure (2.1).
This is given by the six polynomials Li(x)Gm(t)∈P (2,1), 0≤ i≤2, 0≤m≤1, where:

L0(x)=
1

2h2
(x−xj)(x−xj+1),

L1(x)=
−1
h2

(x−xj−1)(x−xj+1),

L2(x)=
1

2h2
(x−xj−1)(x−xj),

G0(t)=
−1
∆t

(t− tk), G1(t)=
1

∆t
(t− tk−1). (2.3)
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Fig. 2.1. The six-point stencil.

Therefore, for any p∈P (2,1), one has:

p(x,t)=
2∑

i=0

1∑
m=0

pk+m−1
j+i−1 Li(x)Gm(t) (2.4)

where, to simplify the notation, we set pk
j =p(xj ,tk).

Clearly, we have:

pt(x,t)=
2∑

i=0

1∑
m=0

pk+m−1
j+i−1 Li(x)G′m(t), px(x,t)=

2∑

i=0

1∑
m=0

pk+m−1
j+i−1 L′i(x)Gm(t).

We now apply the operator L̂ defined in (2.2) to p, in order to compute the
residual:

R(x,t)=(L̂p)(x,t)=
1

∆t

2∑

i=0

pk
j+i−1Li(x)− 1

∆t

2∑

i=0

pk−1
j+i−1Li(x)+

c
[
pk

j−1(2x−xj−xj+1)−2pk
j (2x−xj−1−xj+1)+ pk

j+1(2x−xj−xj−1)
] t− tk−1

2h2∆t
−

c
[
pk−1

j−1 (2x−xj−xj+1)−2pk−1
j (2x−xj−1−xj+1)+ pk−1

j+1 (2x−xj−xj−1)
] t− tk
2h2∆t

−

ν
[
pk

j−1−2pk
j +pk

j+1

] t− tk−1

h2∆t
+ν

[
pk−1

j−1−2pk−1
j +pk−1

j+1

] t− tk
h2∆t

. (2.5)

The numerical scheme will be obtained by requiring the residual R to vanish at some
point (ξ,τ), suitably defined inside the stencil, as shown in figure (2.1). By varying
the position of this collocation point, several well-known schemes are recovered, and
many others can be generated.

3. Construction of the numerical scheme
Let us choose a point (ξ,τ) inside the rectangle of vertices (xj−1,tk), (xj+1,tk),

(xj+1,tk−1), (xj−1,tk−1). Such a point may also belong to the boundary of the stencil.
Then, let us collocate (2.5) at (ξ,τ):

R(ξ,τ)=0. (3.1)

This amounts to writing a suitable finite-difference scheme involving the values pk
j for

all the possible choices of k and j, with the standard precautions regarding the grid
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Fig. 3.1. The reference stencil.

points associated with boundary or initial conditions. In this way, we will get a large
family of schemes depending on the position of (ξ,τ) inside the six-points stencil. For
the sake of simplicity, in a preliminary analysis, the collocation point will not depend
on k and j. This confines us to the study of the properties of finite-difference schemes
depending only on the two parameters ξ and τ .

If the position of the collocation point does not depend on k and j, we can actually
work in a reference stencil (like the one shown in figure 3.1) and further simplify the
notation as follows:

s=xj−ξ and r = τ− tk−1 (3.2)

with

−h≤s≤h, 0≤ r≤∆t,

so that one has:

(ξ−xj)(ξ−xj+1)=s(s+h), (ξ−xj−1)(ξ−xj+1)=s2−h2,

(ξ−xj−1)(ξ−xj)=s(s−h), τ− tk = r−∆t. (3.3)

Note that, when s grows, the point shifts to the left.
Therefore, after substitution in (2.5), (3.1) yields:

[
pk

j−1s(s+h)−2pk
j (s2−h2)+pk

j+1s(s−h)
]−

[
pk−1

j−1s(s+h)−2pk−1
j (s2−h2)+pk−1

j+1s(s−h)
]
+

{
c
[
pk

j−1(−h−2s)−2pk
j (−2s)+pk

j+1(h−2s)
]−2ν

[
pk

j−1−2pk
j +pk

j+1

]}
r−

{
c
[
pk−1

j−1 (−h−2s)−2pk−1
j (−2s)+pk−1

j+1 (h−2s)
]−

2ν
[
pk−1

j−1−2pk−1
j +pk−1

j+1

]}
(r−∆t)=0. (3.4)

The set of linear equations in (3.4), supplemented with the set of initial and
boundary conditions, can be solved to determine the unknowns {pk

j }. With very few
exceptions, (3.4) will be of implicit type. The implementation issues will be discussed
later in section 6.
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For a fixed ν, the computed values pk
j , depending upon the choice of the param-

eters s and r, can be regarded, for h and ∆t small, as approximations of the values
u(xj ,tk), u being the solution of (2.2). However, since we are concerned instead with
the approximation of the solution u of (2.1), we consider the finite-difference scheme
(3.4) as depending on the three parameters s, r and ν. Clearly, we will achieve con-
vergence only if we require that ν =ν(h,∆t) converges to zero as the discretization
parameters h and ∆t tend to zero. We will also allow ν to assume nonpositive values,
although, at first sight, this may sound unphysical.

Our claim is that most of the known linear finite-difference schemes for the ap-
proximation of the equation (2.1) can be obtained by specific choices of the three
parameters. We will soon be able to discuss some celebrated examples, but, first of
all, let us rewrite (3.4) in a more appropriate fashion.

By collecting the various terms in a different way, we get:

{s(s+h)−r[c(h+2s)+2ν]}pk
j−1−2

{
(s2−h2)−r[2cs+2ν]

}
pk

j +

{s(s−h)−r[c(2s−h)+2ν]}pk
j+1

={s(s+h)+(∆t−r)[c(h+2s)+2ν]}pk−1
j−1−2

{
s2−h2 +(∆t−r)[2cs+2ν]

}
pk−1

j +

{s(s−h)+(∆t−r)[c(2s−h)+2ν]}pk−1
j+1 (3.5)

or, equivalently:

pk
j +A(pk

j+1−2pk
j +pk

j−1)+B(pk
j+1−pk

j−1)=

pk−1
j +C(pk−1

j+1 −2pk−1
j +pk−1

j−1 )+D(pk−1
j+1 −pk−1

j−1 ) (3.6)

with

A=
s2−2r(cs+ν)

2h2
, B =

−s+cr

2h
,

C =
s2 +2(∆t−r)(cs+ν)

2h2
, D =

−s−c(∆t−r)
2h

. (3.7)

It is worth noting that D≤0 and that the implicit part of three-points difference
equation (3.6) has symmetric coefficients when B =0 and, similarly, the explicit part
of (3.6) has symmetric coefficients when D =0.

We soon observe that the following scheme (see [14]):

pk
j =pk−1

j +
c∆t

2h+c∆t
(pk

j−1−pk−1
j+1 ), (3.8)

cannot be produced by our approach. We will discuss this exception further in section
5. By the way, several classical schemes can be recognized in the general formulation
(3.6). We start by requiring the method to be explicit. Hence, we must impose the
condition A=B =0, which implies:

s= cr, ν =−c2r

2
. (3.9)

Therefore, the number of free parameters reduces from 3 to 1. Note that ν≤0 and
that the collocation point is strictly inside the stencil only if ∆t<h/c, which is exactly
the CFL condition. By substitution in (3.7), we obtain:

C =
c2r∆t

2h2
, D =−c∆t

2h
. (3.10)
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Hence, the generic explicit method takes the following form:

pk
j =pk−1

j −c∆t

(
pk−1

j+1 −pk−1
j−1

2h

)
+

c2r∆t

2

(
pk−1

j+1 −2pk−1
j +pk−1

j−1

h2

)
,

where the coefficient r, up to a multiplicative constant, now plays the role of numerical
diffusion. Herewith some specific cases:

1. For r =0 (thus s=ν =0), corresponding to the collocation point (xj ,tk−1),
we get the following scheme, which is known to be unstable:

pk
j =pk−1

j −c∆t

(
pk−1

j+1 −pk−1
j−1

2h

)
. (3.11)

2. For r =∆t we get the Lax-Wendroff scheme, which is stable and second-order
accurate in x:

pk
j =pk−1

j −c∆t

(
pk−1

j+1 −pk−1
j−1

2h

)
+c2∆t2

(
pk−1

j+1 −2pk−1
j +pk−1

j−1

2h2

)
. (3.12)

3. For r =h/c (thus s=h), we get the upwind scheme, which is only first-order
accurate in x:

pk
i =pk−1

j −c∆t

(
pk−1

j −pk−1
j−1

h

)
. (3.13)

4. For r =
h2

c2∆t
we get the Lax-Friedrichs scheme, which is also first-order ac-

curate in x:

pk
j =

pk−1
j+1 +pk−1

j−1

2
−c∆t

(
pk−1

j+1 −pk−1
j−1

2h

)
. (3.14)

Let us note that, for all the schemes, except the first one (which is unstable), the
parameter ν is different from zero.

The class of implicit methods is much wider (3 degrees of freedom), since no
restrictions on the coefficient A e B are required. Therefore, many stable schemes
generated with ν =0 will also be possible (in other words, we do not need to pass
through the viscous problem (2.2) in order to construct such schemes). Herewith
some examples:

5. For ν =s=0 and r =∆t, corresponding to the collocation point (xj ,tk), we
get the following implicit centered scheme:

pk
j =pk−1

j −c∆t

(
pk

j+1−pk
j−1

2h

)
. (3.15)

6. For ν =s=0 and r =
∆t

2
(in this case the collocation point is located at the

center of the stencil), we get the Crank-Nicolson scheme, which turns out to
be second-order accurate in both x and t:

pk
j =pk−1

j − c∆t

2

[(
pk

j+1−pk
j−1

2h

)
+

(
pk−1

j+1 −pk−1
j−1

2h

)]
. (3.16)
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7. For ν =s=0 and
1
2
≤θ =

r

∆t
≤1 we get the θ-method:

pk
j =pk−1

j − c∆t

2

[
θ

(
pk

j+1−pk
j−1

2h

)
+(1−θ)

(
pk−1

j+1 −pk−1
j−1

2h

)]
. (3.17)

8. For s=
√

3h

3
, r =

∆t

2
+
√

3h

3c
and ν =−

√
3ch

3
=−cs we get the so-called im-

proved Crank-Nicolson scheme (see [15], p. 74), subject to the condition:

h≤
√

3c∆t

2
:

1
6
pk

j+1 +
2
3
pk

j +
1
6
pk

j−1 +
c∆t

4h

(
pk

j+1−pk
j−1

)
=

1
6
pk−1

j+1 +
2
3
pk−1

j +
1
6
pk−1

j−1−
c∆t

4h

(
pk−1

j+1 −pk−1
j−1

)
. (3.18)

Note that schemes (5, 6, 7) are unconditionally stable, as follows from the stability
analysis that will be developed in the following section.

4. Stability analysis
We carry out a Von Neumann stability analysis for the scheme (3.6). As usual,

we set pk
j =ρkeijγ , where i is the imaginary unit. Substituting in (3.6) one easily gets:

ρ[1+2A(cosγ−1)+2B i sinγ]=1+2C(cosγ−1)+2Di sinγ.

Stability is obtained by imposing:

|ρ|= |1+2C(cosγ−1)+2Di sinγ|
|1+2A(cosγ−1)+2B i sinγ| ≤1, (4.1)

for any γ. Straightforward computations bring us to the inequality:

(B2−D2−A2 +C2)cosγ+(A2−C2 +B2−D2 +C−A)≥0, (4.2)

requiring that a certain segment must be positive for all the values of cosγ. It is
sufficient to check the positiveness for cosγ =±1, thereby obtaining the two following
inequalities:

2A2−2C2 +C−A≥0, (4.3)
2B2−2D2 +C−A≥0. (4.4)

At this point, we note that:

B =D+
c∆t

2h
, A=C− (cs+ν)∆t

h2
.

Therefore, (4.4) yields:

2D
c∆t

h
+

c2∆t2

2h2
+

(cs+ν)∆t

h2
≥0. (4.5)

Using the expression of D given in (3.7), we get:

r≥ ∆t

2
− ν

c2
, (4.6)
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while (4.3) gives the following condition on s:

cs+ν

h2

[
s(s+c(∆t−2r))+ν(∆t−2r)− h2

2

]
≤0. (4.7)

If we impose ν to be zero, the region of a stability for s>0 is obtained by solving
(4.7) with respect to s, which yields:

0≤s≤ c(2r−∆t)+
√

c2(2r−∆t)2 +2h2

2
with

∆t

2
≤ r≤∆t. (4.8)

An example of stability region is shown in figure (4.1). Unconditional stability is
obtained by requiring (4.8) to be satisfied for any ∆t. It is easily verified that, if ν =0
and (s,r) is taken in the rectangle:

0≤s≤
√

2h

2
,

∆t

2
≤ r≤∆t, (4.9)

then (4.7) is satisfied for any ∆t, and this defines the subregion where unconditional
stability is achieved. Again for ν =0, outside the rectangle given by (4.9) we can find
regions of instability or conditional stability (i.e., stability conditioned by the fact
that ∆t must be less than a constant multiplied by h). We refer to the captions of
figure (4.2) for more information. Note that the schemes (3.15), (3.16), (3.17) are
based on collocation points (r,s) belonging to the boundary of the stability region.

In principle, there should be collocation points with s<0 for which the stability
condition (4.1) is also satisfied. However, since c>0, these collocation nodes are not
of upwind type, and therefore we do not take them into consideration, although some
interesting scheme could be also generated in this circumstance. Furthermore, the
collocation point may also be located outside the rectangle defined by the stencil.
However, we did not investigate such a possibility, because it seems quite unrealistic.

Finally, a special case is when ν is negative and ν =−cs. Then, (4.7) is trivially
satisfied and from (4.6) we get: r≥ 1

2∆t+s/c. This also implies A=C, which means
that in (3.6) the artificial viscosity has the same size both for the implicit and the
explicit part. Note that scheme (3.18) satisfies this property.

5. Analysis of consistency
In order to study the consistency properties of scheme (3.6), we examine the

Taylor expansion of a function v up to the fourth-order term. We get:

vk−1
j =v(xj ,tk−1)=v+svx−rvt +

1
2

(
s2vxx−2rsvxt +r2vtt

)
+

1
6

(
s3vxxx−3rs2vxxt +3r2svxtt−r3vttt

)
+

1
24

(
s4vxxxx−4rs3vxxxt+

6r2s2vxxtt−4r3svxttt +r4vtttt

)
+O(s5,r5)

where, at the right-hand side, v and its derivatives have to be computed in (ξ,τ).
Similar expansions can be obtained for v evaluated at the other points of the stencil
of figure (2.1), i.e.: vk

j−1, vk
j vk

j+1, vk−1
j−1 , vk−1

j+1 . We now take the difference between
the discrete operator defined by:

Ldv =
1

∆t

[
vk

j +A(vk
j+1−2vk

j +vk
j−1)+B(vk

j+1−vk
j−1)−

vk−1
j −C(vk−1

j+1 −2vk−1
j +vk−1

j−1 )−D(vk−1
j+1 −vk−1

j−1 )
]
, (5.1)
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(0,0)(−h,0)

(0,∆t)(−h,∆t)

G

Fig. 4.1. Stability region defined by the inequality (4.8) and ν =0, for h=0.01 and
∆t=0.004. Point G has coordinates: (−√2h/2,∆t/2). In particular, the grey region is of
unconditional stability, according to (4.9).

where the coefficients A, B, C, D are given in (3.7), and the exact operator L applied
to v. In this way, we get:

E =Ldv−(Lv)(ξ,τ)=
[
(
∆t

2
−r)vtt−νvxx

]
+

1
6

[
(∆t2−3r∆t+3r2)vttt +(3cr∆t−3cr2)vxtt +(ch2−3cs2−6νs)vxxx

]
+

1
24

[
(∆t3−4r∆t2 +6r2∆t−4r3)vtttt +(4cr∆t2−12cr2∆t+8cr3)vxttt+

12νr(r−∆t)vxxtt +(4s3−4sh2)vxxxt+
(2csh2−8cs3−2ν(h2 +6s2))vxxxx

]
+O(s5,r5) (5.2)

all the derivatives of v being evaluated at (ξ,τ). Therefore, when ν =0, the method is
at least first-order accurate in time and second-order accurate in space. This is due
to the fact that E =0 whenever v∈P (2,1). All the implicit schemes (3.15), (3.16) and
(3.17) possess such a property. Viceversa, scheme (3.8) cannot be generated by our
approach, due to the fact that the expression of its local truncation error contains the
extra term vxt.

Since in (5.2) the coefficient of vtt does not depend on s, by taking:

r =
∆t

2
, (5.3)

one gets a family of second-order methods in time (see for instance (3.16)).
In the special case in which v =u is the solution of (2.1) (i.e.: ut =−cux), we can

also use the following relationships, obtained by differentiating the equation (2.1):

utt = c2uxx uxtt = c2uxxx uttt =−cuxtt =−c3uxxx

uxttt =−c3uxxxx utttt = c4uxxxx uxxtt = c2uxxxx uxxxt =−cuxxxx.(5.4)

With these assumptions, the special schemes (explicit or implicit) considered in section
3, give the following expressions for E (see also [1], p. 278):

1. E =
1
24

c
[
12c∆tuxx +(4h2−4c2∆t2)uxxx +c3∆t3uxxxx)

]
+O(h4,∆t4);
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(0,0)(−h,0)

(0,∆t)(−h,∆t)

Fig. 4.2. Depending on the position of the collocation node in the stencil, we may have
stability or not. For ν =0 and h fixed, unconditionally stable schemes (i.e., ∆t is allowed
to take any value) are obtained for collocation points, with s>0, taken inside the crossed
region; unconditionally unstable schemes (i.e., no values of ∆t can provide a stable scheme)
are obtained for collocation points taken in the circled region. The remaining white part
includes points where stability is achieved only by imposing conditions on ∆t in relation to
h.

2. E =
1
24

c(c2∆t2−h2)[−4uxxx−7c∆tuxxxx]+O(h4,∆t4);

3. E =
1
24

c(c∆t−h)
[
12uxx−4(c∆t−5h)uxxx +(c2∆t2−7c∆th+17h2)uxxxx)

]

+O(h4,∆t4);

4. E =
1

24∆t

(
1− h2

c2∆t2

)[
12c2∆t2uxx−4(c3∆t3−6c∆th2)uxxx

+(c4∆t4−7c2∆t2h2 +24h4)uxxxx

]
+O(h4,∆t4);

5. E =− 1
24

c
[
12c∆tuxx +4(c2∆t2−h2)uxxx +c3∆t3uxxxx

]
+O(h4,∆t4);

6. E =
1
12

c
(
c2∆t2 +2h2

)
uxxx +O(h4,∆t4);

7. E =
1
24

c
[
12c∆t(1−2θ)uxx−4(c2∆t2(1−6θ+6θ2)−h2)uxxx

+c3∆t3(1−8θ+18θ2−12θ3)uxxxx

]
+O(h4,∆t4);

8. E =
1
36

c3∆t2
[
3uxxx +2

√
3huxxxx

]
+O(h4,∆t4).

Again using (5.4), we now take ν = c2

(
∆t

2
−r

)
, so that all the second derivatives
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in (5.2) disappear. Furthermore, we can choose s=0 and r =θ∆t, for
1
2

<θ <1. This
gives us the scheme:

pk
j =pk−1

j − c∆t

2

[
θ

(
pk

j+1−pk
j−1

2h

)
+(1−θ)

(
pk−1

j+1 −pk−1
j−1

2h

)]
+

c2∆t2
(

1
2
−θ

)[
θ

(
pk

j+1−2pk
j +pk

j−1

h2

)
+(1−θ)

(
pk−1

j+1 −2pk−1
j +pk−1

j−1

h2

)]
.

By analyzing the corresponding error E we have:

E =
1
24

c
[−4(c2∆t2(1−6θ+6θ2)−h2)uxxx−

c∆t(2θ−1)(c2∆t2(1−12θ+12θ2)−h2)
]
. (5.5)

Therefore, we are able to eliminate all the derivatives up to the third order by tak-

ing θ as a root of c2∆t2(1−6θ+6θ2)−h2 =0, which yields: θ =
1
2

+
1
6

√
3+

6h2

c2∆t2
.

Nevertheless, although the pair (−s,r) lies in the region of unconditional stability,
numerical experiments indicate that the method, with this choice of θ, performs quite
badly.

By replacing (5.4) in (5.2) and solving a nonlinear system in the unknowns s,
r and ν, we would eliminate all the derivatives up to the fourth order. We do not
discuss this approach further, since it is quite technical and not easily extendible to
more complicated equations. We also think that working on E by using the expressions
(5.4) is an old-fashioned method which does not lead to the discovery of new significant
algorithms. Therefore, we shall follow another idea. Other possible choices for (s,r)
may be obtained by ignoring (5.4) and by arguing as follows: let us require that the
difference between the exact and the discrete operator, given by equation (5.2), vanish
for the largest set of functions v (note that, by construction, this set automatically
contains the space P (2,1)). Depending on the shape of v 6∈P (2,1), special choices of s
and r will be able on enlarge this kernel. Such a property corresponds to the idea
of superconsistency, introduced for other types of equations and experimented with
success in a lot of documented cases (see [13] and related references for a review). For
example, we can define v to be the element of P (3,2) vanishing at the nodes of the
stencil, i.e.:

v(x,y)=(x−xj−1)(x−xj)(x−xj+1)(t− tk)(t− tk−1). (5.6)

Hence, the discrete operator Ld, defined in (5.1) is zero, since it is only based on the
six values attained by v at the nodes. If we want v to be in the kernel of (5.2) we
must then impose (Lv)(ξ,τ)=0. In the reference stencil this is equivalent to:

s(h2−s2)(2r−∆t)+c(3s2−h2)r(r−∆t)=0. (5.7)

By this approach, the kernel of the operator, resulting from the difference between
the exact and the discretized operator, contains the space of dimension 7, spanned by
P (2,1) and the extra function v in (5.6).

By fixing ∆t/2≤ r≤∆t (see the stability condition (4.8)), we can easily prove
that the roots s of the third degree equation (5.7) are all real, and only one of them
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(0,0)(−h,0)

(0,∆t)(−h,∆t)

Fig. 5.1. The roots of equation (5.7) falling inside the stencil (dashed curve). Not all
of them lie in the stability region (compare with figure 4.1).

is positive. For r =∆t the roots are s=0,±h. The curve in the (−s,r) plane, repre-
senting the solutions of (5.7) with s>0, is shown in figure (5.1). Only part of it lies
in the stability region.

A variety of new schemes are then obtained by specifying the values of r and

s satysfying (5.7). In particular, for s=
√

3h

3
, r =

∆t

2
, ν =0, we get the following

scheme:

pk
j +

(
h−c

√
3∆t

6h

)
(pk

j+1−2pk
j +pk

j−1)+

(
3c∆t−2

√
3h

12h

)
(pk

j+1−pk
j−1)

=pk−1
j +

(
h+c

√
3∆t

6h

)
(pk−1

j+1 −2pk−1
j +pk−1

j−1 )−
(

3c∆t+2
√

3h

12h

)
(pk−1

j+1 −pk−1
j−1 ), (5.8)

which gives very good numerical results, as we shall confirm in section 6. Note that the
collocation point is not directly related to c, and therefore it is not in connection with
the angle of the characteristic lines. Another particular choice of r and s satisfying
equation (5.7) is:

s=
√

2h

2
, r =

c∆t−√2h+
√

c2∆t2 +2h2

2c
ν =0. (5.9)

Alternately, we can use the concept of hyperconsistency also introduced in [13].
The idea is as follows: we would like to have the error E in (5.2) to be as small as
possible for all v belonging to a finite dimensional space strictly containing the space
P (2,1). We take for instance v∈P (3,1) (which is a space of dimension 8) of the form:
v(x,t)=αx3 +βx3t, where α and β are constants. We consider the case ν =0, and we
compute the corresponding E given by (5.2) (we also recall that E is automatically
zero for all the functions in P (2,1)). This yields:

E =(ch2−3cs2)(α+βt)+(s3−sh2)β =k1(α+βt)+k2β. (5.10)

We now introduce the L2 type norm:

‖w‖=

(∫ ∆t

0

(∫ h

−h

w2dx

)
dt

) 1
2

(5.11)
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for some function w. Then, we look for the collocation point (−s,r) in such a way
that the following minimax relation is realized:

Φ=min
s,r

(
max
α,β

‖E‖
‖v‖

)
=

min
s,r


max

α,β

√
7
h6

3(k1α+k2β)2 +3(k1α+k2β)k1β∆t+k2
1β

2∆t2

3α2 +3αβ∆t+β2∆t2


. (5.12)

Numerical experiments show that, for ∆t not too small compared to h, a local

minimum Φ is attained at the point s=
√

3
3

h and is independent of r. By taking

r =∆t/2, this choice leads again to the scheme (5.8).
A more complicated generalization is obtained by requiring that v belongs to

P (3,2) which is a space of dimension 12. In this case, the maximum in (5.12) involves
more degrees of freedom since it has to be taken in a larger space. For the sake of
simplicity, we do not pursue this any farther, although we suspect that the minimax
is reached when s and r are related through an expression similar to (5.7).

We also mention the scheme constructed by taking the collocation point along
the characteristic line going back through the grid-point (xj ,tk). Thus, s and r must
be related through the equation s= c(∆t−r). As a particular case we choose ν =0

and r =
∆t

2
, which yields B =0 in (3.7), obtaining:

pk
j −

c2∆t2

8h2
(pk

j+1−2pk
j +pk

j−1)

=pk−1
j +

3c2∆t2

8h2
(pk−1

j+1 −2pk−1
j +pk−1

j−1 )− c∆t

2h
(pk−1

j+1 −pk−1
j−1 ). (5.13)

Another interesting issue is the minimization of the artificial viscosity. There are
various ways of assigning a numerical viscosity to a given scheme. One way is based on
Fourier analysis and is introduced for instance in [5]. We do not develop this analysis
here; however, this could be a good starting point for the realization of other reliable
schemes based on a suitable collocation.

6. Numerical simulations

6.1. The linear case. In this section we discuss a series of numerical
simulations according to different choices of the collocation point inside the stencil.
We deal with equation (2.1) for x>0 and c>0, where the following discontinuous
initial datum is considered:

u(x,0)=u0(x)=





1 for x=0

0 for x>0
(6.1)

The boundary condition u(0,t)=1, t>0, is imposed at the inflow boundary, so that
the exact solution is:

u(x,t)=





1 for x≤ ct

0 for x>ct
(6.2)
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The discontinuity of the solution provides a challenging test for comparing the per-
formances of different schemes.

Regarding the implementation of the implicit schemes, a tridiagonal linear system
in the unknowns {pk

j }j=0,...,n has to be solved at each time step. We have n−1
collocation points, leading to the same number of equations. Since c is constant
with respect to time, the coefficient matrix does not change with k, hence it can
be factorized once and for all. Moreover, we impose pk

0 =1, since x=0 is the inflow
boundary. To close the system, we impose the Neumann type constraint pk

n−1 =pk
n at

the outflow boundary. For instance, we fix the parameters in the following way:

c=1, and h=∆x=0.01,

while various regimes have been chosen for ∆t, depending on whether the CFL con-
dition is mildly satisfied (which means that the points of the stencil are more or less
distributed along the characteristic lines) or strongly satisfied (∆t is much less than
h/c). Some implicit schemes also allow the CFL condition to be violated. However,
we do not take them into account in the present discussion.

Thanks to the freedom of choosing s, r and ν, the set of possible algorithms is
extremely large, and each scheme has peculiar properties. We shall therefore limit
ourselves to comparing a few known methods with some of the new ones.

In figures (6.1) - (6.7) we present the main results of our experiments for two
different choices of ∆t, i.e.: ∆t=h=0.01 and ∆t=0.001, respectively. The dashed
lines show the evolution of the exact solution at times tk =k/5, with k =1,...,5. The
plots are slightly shifted upwards in order better to display the graphs. The solid
lines show the corresponding approximations.

We start with the Lax-Wendroff scheme (3.12) figure (6.1). As expected, the
method reproduces the exact solution along the characteristic lines, but develops
oscillations when ∆t gets smaller. The next experiment concerns the Lax-Friedrichs
scheme (3.14) figure (6.2). Again, the discrete solution coincides with the exact one
for ∆t=h, but for smaller ∆t the approximation becomes extremely viscous. The
situation is similar for the upwind method (3.13).

As regards the implicit methods, we first give the results obtained with the Crank-
Nicolson scheme (3.16) figure (6.3). They do not vary too much with ∆t, but they
are not particularly accurate either. The same qualitative behavior is also displayed
by the scheme (3.18).

Let us now see what happens when we take nonstandard values of the parameters.
Let us fix ν =0. We first take the collocation point as the center of the rectangle of
unconditional stability of figure (4.1):

s=
√

2h

4
, r =

3∆t

4
. (6.3)

The corresponding experiments are reported in figure (6.4). The approximated solu-
tions look smooth but less viscous compared to previous cases. The situation improves
by using scheme (5.8) figure (6.5), obtaining a sharper approximation near the dis-
continuity. Of the cases tested, scheme (5.8) turns out to be the one we prefer (not
too many oscillations, not too much viscosity). Finally, we present the scheme corre-
sponding to the parameters in (5.9) figure (6.6) and scheme (5.13) figure (6.7), whose
performance is not very relevant.

In table 1, the main properties of the schemes considered here are summarized.
In the last column we give an evaluation based on the performances exhibited by the
different methods in the numerical experiments.
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Fig. 6.1. Numerical solution of the equation (2.1) with the method of Lax-Wendroff (3.12).
Left: ∆t=0.01 - Right: ∆t=0.001.

Fig. 6.2. Numerical solution of equation (2.1) with the method of Lax-Friedrichs (3.14). Left:
∆t=0.01 - Right: ∆t=0.001.

6.2. A nonlinear example. A first extension is to add a right-hand side to
equation (2.1), i.e.:

ut +cux =f. (6.4)

Since the equation is collocated at point (ξ,τ), f has to be also evaluated at this
point. Nevertheless, there may be cases in which f is only available at the grid
points, as, for instance, in the nonlinear equation, where f depends on the unknown
u. In this circumstance, it is reasonable to use an interpolation procedure to recover
the approximated value of f in (ξ,τ). Using linear interpolation in time and second
degree interpolation in space, we can rely on the same six-point stencil and, thanks
to eqn. (2.3), we get:

f(ξ,τ)≈
2∑

i=0

1∑
m=0

f(xj+i−1,tk+m−1)Li(ξ)Gm(τ). (6.5)

In order to test our numerical schemes for a nonlinear equation where the flux
depends on u, we go back to the case f =0 and take into consideration the classical
inviscid Burgers equation:
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Fig. 6.3. Numerical solution of equation (2.1) with the method of Crank-Nicolson (3.16). Left:
∆t=0.01 - Right: ∆t=0.001.

Fig. 6.4. Numerical solution of equation (2.1) when the collocation point is the center of the
rectangle of the unconditional stability region (method defined by the parameters in (6.3)). Left:
∆t=0.01 - Right: ∆t=0.001.

ut +uux =0, 0<x<1, t>0, (6.6)

with the initial value:

u(x,0)=





1−4x for 0≤x≤1/4

0 for x>1/4

and with the boundary condition u(0,t)=1,∀t>0. At time t=1/4 the exact solution
develops a shock which propagates at speed 1/2 (the mean of the upstream and
downstream values).

After collocating the equation at the point (ξ,τ) (see (3.1)), the local flux is
the quantity c=u(ξ,τ) (c=u(−s,r) in the reference stencil of figure (3.1)), which is
not explicitly available. We could use polynomial interpolation in P (2,1) to recover
the value of the unknown at (−s,r), but this would lead us to a nonlinear system
to be solved at each time step. We can get a linearization by arguing as follows:
assuming c>0, we project back the point (−s,r), at the time r =0, by following the
characteristic line of slope 1/c. This gives the point (−s−cr,0). Thus, up to an error
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Fig. 6.5. Numerical solution of equation (2.1) with the method (5.8). Left: ∆t=0.01 - Right:
∆t=0.001.

Fig. 6.6. Numerical solution of equation (2.1) with the method corresponding to the parameters
in (5.9). Left: ∆t=0.01 - Right: ∆t=0.001.

comparable with h and ∆t, the value of the approximated solution in (−s−cr,0) is
equal to c. Afterwards, we compute the approximation of u at the point (−s−cr,0)
by linear interpolation of the values pk−1

j−1 and pk−1
j :

1
h

[
(s+cr)pk−1

j−1 +(h−s−cr)pk−1
j

]≈ c≈u(−s,r).

Therefore, c can be approximated in explicit form as:

c≈ (h−s)pk−1
j +spk−1

j−1

h+r(pk−1
j −pk−1

j−1 )
. (6.7)

An alternative is to use linear interpolation using the values pk−1
j−1 and pk−1

j+1 , which
brings us to the explicit formula:

c≈ (h−s)pk−1
j+1 +(h+s)pk−1

j−1

2h+r(pk−1
j+1 −pk−1

j−1 )
. (6.8)

Another possibility is to take into consideration second degree polynomial interpola-
tion based on the values pk−1

j−1 , pk−1
j and pk−1

j+1 .
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Fig. 6.7. Numerical solution of equation (2.1) with the method (5.13). Left: ∆t=0.01 - Right:
∆t=0.001.

With the aid of (6.7) and (6.9), we are able to linearize locally the problem of
computing the values of the approximated solution at step k. For instance, figure (6.8)
(left) shows the behavior of the approximated solutions when using (6.8) together with
the scheme corresponding to the parameters in (6.3), while figure (6.8) (right) depicts
the approximated solutions combining (6.8) with scheme (5.8). The solution is well
approximated till the shock occurs. Afterwards, the numerical solution travels at the
wrong speed. More precisely, the propagation speed of the approximated solution is
lower than 1/2 in the first experiment and higher than 1/2 in the second one. This
disappointing behavior is in some way related to the location of the collocation point.
We introduce an extra condition: let us assume that the speed given in (6.6) is equal
to the average of the two point-values before and after the shock

(h−s)pk−1
j +spk−1

j−1

h+r(pk−1
j −pk−1

j−1 )
=

pk−1
j−1 +pk−1

j

2
,

that sets a relation between s and r, i.e.:

s=
h−r(pk−1

j−1 +pk−1
j )

2
. (6.9)

For collocation points in the stability region and with the corresponding values of
r and s on the straight-line given by (6.8), we should be able now to follow the
approximated shock at the correct speed. This can be checked in figure (6.9) where
we give the solution obtained for r = 1

2∆t and s given by (6.8). Similar performances
are obtained for other values of r≥ 1

2∆t. We consider these result very satisfactory. If
the collocation point is not on the straight-line defined by (6.8), we observe a speed up
(or a delay) depending on the position of the point with respect to the straight-line.
This explains what was happening in the plots of figure (6.8).

7. Conclusions
We have proposed a way to generate an infinite number of schemes by varying

a set of three parameters. Since a lot of the known and well-experimented methods
are included in this formulation, and many other can be produced (sometimes giving
excellent numerical results), we believe that our approach could be a good starting
point for further theoretical improvements, with the aim of detecting the “right way”
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Fig. 6.8. Numerical solution of the nonlinear equation (6.6) with the method using the parame-
ters in (6.3) (left), and with the method (5.8) (right). The plots refer to the times tk =k/5,k =0,...,5
(h=0.01 and ∆t=0.001). The dashed lines correspond to the exact solution.

Fig. 6.9. Numerical solution of the nonlinear equation (6.6) with the method using r =
∆t

2
and

s given by equation (6.9). The plots refer to the times tk =k/5,k =0,...,5 (h=0.01 and ∆t=0.001).
The approximation of the shock is now excellent.

to choose the parameters. Surely, the question regarding the best choice of the pa-
rameters has not one answer, since it concerns too many different aspects (such as
the elimination of oscillations, the preservation of numerical accuracy far from the
discontinuities, the minimization of artificial viscosity, etc.), each deserving specific
treatment. It is evident from the experiments, however, that the qualitative behav-
ior of the approximated solutions is quite sensitive to the choice of the parameters;
therefore, there is the need to introduce quantitative indicators, in order better to
adapt the discretization scheme to the equation to be approximated. Generalizations
to higher-order methods are also worth considering.
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