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WELL-POSEDNESS OF AN INVERSE PROBLEM OF A
TIME-DEPENDENT GINZBURG-LANDAU MODEL FOR
SUPERCONDUCTIVITY*

JISHAN FANT AND SONG JIANGH

Abstract. In this paper we prove the existence and uniqueness of solutions to an inverse
problem of a time-dependent Ginzburg-Landau model for superconductivity in the case of integral
overdetermination.
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1. Introduction
We shall study the following Ginzburg-Landau equations for superconductivity:

kY (Y + AP (02— 1) =0, (1)

A, —|—V¢>+cur12A—|—Re{ <Zv¢+¢A> 1;} =curlH in Qx (0,T), (1.2)

with boundary and initial conditions

Vi-n=0, A-n=0, curlAxn=H xn on 9Qx(0,7T), (1.3)
77[}('70):7/}07 A(vo):AO in Q (14)

and the condition of integral overdetermination

Ai(z,t)w(x)de=g'(t), 0<t<T. (1.5)
Q

Here Q CR? is a bounded domain with smooth boundary 99 , n is the unit outward
normal vector of 9Q; 1€ C, A€R? and ¢ €R denote the order parameter, the mag-
netic potential and the electric potential, respectively; H := f(t)h(x,t) is the applied
magnetic field where the vector h(x,t) € R? is known in advance, while the unknown
scalar coefficient f€R is sought (here we may interpret h as the applied magnetic
field, while f is just the scalar coefficient.);  and k are the Ginzburg-Landau positive
constants; i = /—1, ¢ denotes the complex conjugate of 1, Revr = (v +1) /2, [¢|> =)
is the density of superconducting carriers, T is a given positive number. w(z) € R?
and g(t) €R are known functions. In (1.1)-(1.5), the unknown functions are 1, A,¢

and f(t).
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For the reader’s convenience, we give the definition of a curl operator:

042 04 _ (99 _0¢
curlA:= o 9y andcurl¢:= (&y’ 83:)

when A€R? and ¢ €R in a two dimensional domain.

It is well-known that the Ginzburg-Landau equations are gauge invariant, that
is, if (1, A,) is a solution of (1.1)-(1.4), then there exists a function y such that
(e A+ Vx,¢—x;) is also a solution of (1.1)-(1.4). So, in order to obtain the well-
posedness of the problem, we need to impose the gauge condition. From the physical
point of view, one usually has three types of the gauge condition:

1. Coulomb gauge: divA=0in Q, [,¢dzr=0
2. Lorentz gauge: ¢ =—divA in ()
3. Temporal gauge:¢=0 in Q

For initial data g€ H(Q)NL>(Q), Ag€ H!(Q), Chen, Elliott, Tang and Du
[1, 2, 10, 4] proved the existence and uniqueness of global strong solutions to (1.1)-
(1.4) in the case of the Coulomb and Lorentz as well as Temporal gauges.

In 1995, Tang and Wang [11] studied the Coulomb gauge case and proved the
existence of global weak solutions with initial data (g, Ag) € L?(2) x L?(Q) in the
two dimensional case, and Fan [5] showed the existence and uniqueness of global weak
solutions and the existence of the maximal and exponential attractors with (g, Ag) €
L?(Q2) x L*(2) in the case of the Lorentz gauge. Recently, Fan and Jiang [6] proved
the existence of global weak solutions when Q CR? and (¢, Ag) € L*(Q) x L?(2) in
the case of Coulomb gauge or Lorentz gauge, which answers an open problem in [11].

In this paper, our aim is to study the nonlinear inverse problem which consists
of finding a set of the functions {1, A,¢, f} satisfying (1.1)-(1.5) which is related to
the optimal control problem studied by Z.M.Chen and K.H.Hoffmann [3]. However,
to our best knowledge, there is no article in the literature which investigates inverse
problems of (1.1)-(1.5). We shall use the contraction mapping principle to prove our
result, Theorem 1.3. The difficulty in the proof is to show that the nonlinear operator
maps a bounded closed convex set into itself in a suitable space, and thus, this requires
that 7" must be small enough. Unfortunately, we are not able to give an existence
result with large T for general data here.

To study the inverse problem of (1.1)-(1.5), we assume throughout this paper that

(H1) w0 € HY(Q), [do] < 1,40 € L2(2), Ag-n =0 on 9

(H2) h(x,t)€ L>(0,T;L*(Q));

(H3) w(z)€ H?(Q), divw=0in Q, w-n=0 and curlw xn=0 on 9Q;
(H4)

H4) g(t)e H'(0,T);
(H5) / h(z,t)curlwdz = ho(t) € L*=(0,T") with |ho(t)| > h(T) > 0.
Q

First, we state an existence and uniqueness result to the direct problem (1.1)-(1.4).
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THEOREM 1.1. Let (H1)-(H2) be satisfied and f(t) € L*(0,T). Then, for the Coulomb
gauge, there exists a unique solution (¥, A,d) satisfying

Y e L=(0,T; H (Q))NL2(0,T; H*(Q)), ¢y € L2(Q2 % (0,T)), |1| <1 in Q x (0,T),
A€ L>=(0,T;L*(Q))NL*(0,T; H(Q)), A, € L*(0,T; H1(Q)),
divA=0 in Qx (0,T), ¢ € L*(0,T; H*(Q)).

REMARK 1.1. When (g, Ag) € L?(Q) x L?(Q), the existence is proved in [11], while
the uniqueness is obtained in [7]. Hence, the proof of Theorem 1.1 is omitted here.
Next, we derive necessary a priori estimates and give a stability result with respect
to f(t) which will be used in the proof of the main result in Section 3.

Based on Theorem 1.1, we can define the nonlinear operator

B: L*(0,T)— L*(0,T)

acting in accordance with the rule

(Bf)(t):= hio {g'(t) +/Q {AcurlszrwRe <;V¢+¢A) Jj} d:z:} ,

where (1, A) has been already found as the unique solution of the system (1.1)-(1.4).
We proceed to study the operator equation of the second kind over the space
L?(0,T) :

f=BF. (1.6)

An interrelation between the inverse problem (1.1)-(1.5) and the nonlinear equa-
tion (1.6) from the viewpoint of their solvability is revealed in the following assertion.

THEOREM 1.2. Let (H1)-(H5) be satisfied, then the inverse problem (1.1)-(1.5) is
solvable if and only if the equation (1.6) has a solution.

Proof. The proof is the same as that of [9, pp.257-259], however, for the reader’s
convenience, we present the proof.

We first prove the if part. Let the inverse problem (1.1)-(1.5) possess a solution,
say {9, A,¢,f}. Now multiplying (1.2) by w and integrating by parts we arrive at

Aywda + / wVdz + / weurl? Adz + / wRe<2V¢+¢A> b
Q Q Q Q k
:f(t)/wcurlhdx (1.7)
Q

using (H3) we know that

/wv¢dm:0 (1.8)
Q

/Q curl (curl A— f(t)h) -wda = /

(curl A — f(t)h)curlwdx :/ Acurl®*wdz — f(t)ho(t).
Q Q

(1.9)
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Inserting (1.8)(1.9) into (1.7) and using (1.5) we conclude that f solves the equation
(1.6).

We prove the only if part. We suppose that equation (1.6) possesses a solution,
say f€L?(0,T). By Theorem 1.1 on the unique solvability of the direct problem we
are able to recover {1, A,¢} as the solution of (1.1)-(1.4) associated with f, so that
it remains to be shown that the function A satisfies the overdetermination condition
(1.5), which follows from (1.6)(1.7)(1.8)(1.9) immediately. This provides support for
the view that {1, A,¢, f} is just a solution of the inverse problem (1.1)-(1.5). O

REMARK 1.2. In [9], the condition of integral overdetermination is given by

/A(xi)w(;v)dm:g(t),/Ao(x)w(x)dx:g(O) (1.10)
Q Q

Here instead of (1.10), we use (1.5) as the condition of integral overdetermination.
The reason is that in our opinion the condition (1.5) is easier to be measured in
practice. Moreover, it is not difficult to see from the proof that Theorem 1.2 still holds
when (1.5) is replaced by (1.10).

Now we are in a position to state our MAIN THEOREM:

THEOREM 1.3. Let (H1)-(H5) be satisfied and T be small enough, then, there exists
a unique solution {1, A,p, f} to the inverse problem (1.1)-(1.5) with f(t) € D, where

_ 2011 -9
p={weroryls-L <}

and R is a positive constant determined in Lemma 3.1 in Section 3.

REMARK 1.3. %) The conditions divw=0 in Q, w-n=0 on 0Q in (H3) do not need if
o € H?(Q) with some tedious calculations, we do not consider this problem for sim-
plicity.

1) When h(z,t)=curlw,curlAxn=hxn=0. We can easily prove that T could be
taken T =+o00 in Theorem 1.3. However, it is difficult to generalize this global result.
i) In the three-dimensional case, i.e., QCR3, if, in addition, we assume g€
HY(Q)NL>®(Q),Ag € HY(Q) and study the equation (1.6) in H'(0,T). Then, we can
obtain the same result. However, for simplicity, we treat here only the two-dimensional
case.

i) If one chooses the Lorentz or Temporal gauge, the same result can be obtained
without essential changes in arguments.

In Section 2, we give some preliminaries to the proof of Theorem 1.3 which is
given in Section 3.

2. Preliminaries
In this section we derive necessary estimates which are needed in the proof of
Theorem 1.3.

LEMMA 2.1.

727/91”2‘5“/;/9 2dff+/OT/Q(IwI2—1)2dxdt+/OT/Q|¢|2dxdt

AR (21)
Q

i
%Vz/J—H/JA

<1 in Qx(0,7). (2.2)
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Proof. Multiplying (1.1) by v and integrating over € x (0,7'), and then taking the
real part on both sides of the resulting equation, we obtain (2.1). The proof of (2.2)
can be found in [1, 2, 10, 4]. d

In the proof of the following lemmas, we will repeatedly use the following inequal-
ity [8]:

lul[<er(fldivel| + [leurlul]) (2:3)

forue H:(Q):={ue H*(Q)|u'n=0 on 0Q}.

LEMMA 2.2.

T
/AQda:—l—/ /|Cur1A|2da:dt
Q 0o Ja

T . 9 T
g/AgdzHc%/ /’%V¢+¢A’ d:cdt+2||h\|%oc(0_T;L2(Q))/ Ft. (24)
Q 0 Q / 0

Proof. Multiplying (1.2) by A in L?(Q) and integrating by parts, we have

1d 2 2
P 1

i A‘ A 1A
g/ﬂ’kww | |dx—|—/ﬂ|cur || fhldz

< [ w+va feurt ] et Al 7n)
1 i 2
§§|\cur1A||2+c§ FVY+pA + I fR2.
Integration of the above inequality gives (2.4). O

The following lemma gives an estimate on V¢ and can be found in [6].

LEMMA 2.3. ¢ satisfies

—A¢:divRe{(;vw+wA>z/Z} in Qx(0,7), (2.5)
Vo-n=0 on 90Qx(0,T). (2.6)

Moreover,

VL2 (ax0.1)) < Héwﬂm‘

. 2.7
L2(Q2x(0,T)) 2.7)

In the calculations follow, the following Gagliardo-Nirenberg inequalities will
frequently be used:

1A £ o) < Ca| A2 [leurl A2,
IV9llzae) < Csl| V9| 2|| Ag||/2.

~—~
DN
o

NN
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We proceed to derive bounds on derivatives of 1.

LEMMA 2.4. There exist positive constants Cy and Cs, such that

IV (0,752 (2)) < Ca(L+ L") exp(Cs]I £1%), (2.10)
129112 0x (0,7)) < Ca(L+ | FIIP) exp(Cs]| £1]).- (2.11)

Proof. Multiplying (1.1) by —A4) in L? and integrating by parts, taking then the
real part, we find that

th/ |w|2dx+—/ |Ap|*da

<RIVl + Al IV e A+ AN A +20 T2

<HRIVSITYI + 2 CoCs | A ewrl A2 [T 2] e 2
+CE | AlllewrL Al | A+ 21|V

< S| AU+ k6] [V + PR CACH AP feurt AP [Ty
K2 CH| Al leurl A2 +2] T,

which gives
G [werdes o [ pvpacs (5424 Lrciolaplcutal ) [vul?

k k C3
+5|IV¢||2+TQI\AllzllcuﬂAH?- (2.12)

Applying Gronwall’s inequality to the above inequality, one infers
k202 T
+ T2HAH2/ Jeurl A[?dt
0

k.o 2.1 r
X eXp <2T+nT+n28kQC§C§|A||2/ ||cur1A||2dt>
0

2

IVe* < (IIWJoII2 vw+wA

L2(Q2x(0,T))

ko
S{HVT/J0H2+* (F ol +12IT)

B (1ol +27 (Lol +Io0T) +2 / )]}

2

k T
X exp 5T+ET+528152(13(1;} <||Ao|2+2012 (g||¢0||2+\Q|T)+2/ f2dt||h2>]
0

< a1+ F I exp(C5 ] £11%),

which leads to (2.10).
Integrating (2.12) over (0,7"), we obtain (2.11). This completes the proof. |

The following lemma is concerned with the continuous dependence of solutions
on data and will be used in the proof of the contraction property of the operator B.
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LEMMA 2.5. Let (¢;,A;,¢:) (1=1,2) be the corresponding solutions of the problem
(1.1)-(1.4) with the data f; (i1=1,2), respectively. Then, there exists a positive con-
stant Cg, such that

\|¢1—7/’2||2Loo(ou2(n A1 = Ao[lT e 0,1:22(02))
/ o) — o) Prexp [Co(1+ L1 + fol®)exp (Coll i + fol)] . (2.13)

Proof. From (2.5) and (2.6), we get

1 1
V(1 —2)] < EHV(% — )|+ EH"/JI — 2|l Lal| Vel L4
+2(|11 — || L2 [|Ax s + || A1 — Az (2.14)

On the other hand, from (1.1) and (1.2), it follows that

2o [ n—ap dx+k2/|v o)
<n kll¢1 — 2|l ||t — 2| +EH¢1 — ol || A1 — Az £4]| V)1 || a
2
IV =2)llllr =2l ol Azl o+ 191 =2l | AL — Azl e[| A1+ Azl e (2.15)

and
1d

*f/(Al—AQ) dl‘-i- /|curl(A1—A2)| dzr
2dt /g

1
S*”v(?pl_d@)“||A1_AZH"'E”l/)l_wQ”L“”Al_A2||||V1/)2||L4

1
+2l[v1 = ol sl Ar = Asl[[| Aullzs +[1 A1 = Ao+ SIRIP f2(8) = ()7 (2.16)

Using (2.8) and (2.9), one easily gets (2.13) from (2.14)-(2.16). |

3. Proof of Theorem 1.3
With the help of the estimates in Section 2, we are able to complete the proof of
Theorem 1.3 in this section. We begin with the following lemma:

LeEmMA 3.1. If T >0 is small enough, then there exists a positive constant R, such
that B maps D into itself.

Proof.

/ T . 2
9 2_ —2 i _
||Bf—h—0|| —/0 ho {/Q {AAw+wRe(kV1/)+wA)w] dx} dt
) T ) ) 2
<o | (An A )dt

2T 2 2 n 21712
) Aol +2C3 (1T + 1o |[2) + 4R 1| +2

i
EVMJ—H/}A

< | Aw]|?

1
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2 n
el (12T + Jlwol )

()
< R= sl | AalP+202 (1907 + Jvol?) +2 £
+ sl (1207 + i)
if
L L e

This proves the lemma.

2
IIhQ]

(3.1)

d

LEMMA 3.2. Let (H1)-(H5) and (3.1) be satisfied, then there exists a positive integer

k, such that the operator B* is a contraction mapping in the ball D.

Proof. Let f; and foe€D, and (¢;,A;,¢;) (i=1,2) be the unique solution to
the problem (1.1)-(1.4) with f replaced by fi and fs, respectively. From (2.13) and

Lemma 3.1, we find that

t
1Bi~BRalfso = [ [Bfi~Bhfdr
0

2 t
<2 (|aw]?+3]w]?) / 1A= A2y o o dr
[R(T)] ; Lo (0,7:L3(€2))

6

2 2 2
+7|h(T)\ (||V(¢1 +¥2) Lo (0,522 (0)) ||A2||L°°(O,T;L2(Q))) w7 (02)

t
X/O ||'(/)1_'(/)2||2L°°(077—;L2(Q))d7—
t
<t [ 1= el i

0

which leads to
t 1/2
185~ Bl = (5 [ 1= Rllgnir)
0

By virtue of induction on k, the inequality (3.2) implies

ckTk

1/2
||ka1_ka2||L2(O,T)§( o ) Ilf1 = f2llz20,7)-

Obviously, as k— oo,

ckT*
B

0,

and therefore, there exists a positive integer kg such that

1/2
A R
ko! '

(3.2)
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Thus, by virtue of the estimate (3.3), the operator B*® is a contracting mapping in
the ball D. This proves Lemma 3.2. 0

Finally, Theorem 1.3 follows easily from Lemmas 3.1 and 3.2, and the contraction

mapping theorem. This completes the proof of Theorem 1.3.
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