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FINITE MOMENT PROBLEMS AND APPLICATIONS TO
MULTIPHASE COMPUTATIONS IN GEOMETRIC OPTICS∗

LAURENT GOSSE† AND OLOF RUNBORG‡

Abstract. Recovering a function out of a finite number of moments is generally an ill-posed
inverse problem. We focus on two special cases arising from applications to multiphase geometric
optics computations where this problem can be carried out in a restricted class of given densities.
More precisely, we present a simple algorithm for the inversion of Markov’s moment problem which
appears in the treatment of Brenier and Corrias’ “K-multibranch solutions” and study Stieltje’s
algorithm in order to process moment systems arising from a Wigner analysis. Numerical results are
provided for moderately intricate wave-fields.
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1. Introduction

1.1. Preliminaries: WKB ansatz for Schrödinger equation. We are
interested in computing efficiently the high frequency asymptotics of the Cauchy prob-
lem for the following linear Schrödinger equation:

iε∂tψ+
ε2

2
∂xxψ=0, ψ(t=0,.)=ψ0; x∈R. (1.1)

The (small) dimensionless parameter ε>0 is usually called the scaled Planck constant
and measures somehow the difference of magnitude between the characterisitic lengths
of the physical process and the one of the quantum description of matter. In order to
study the wave-particle transition (or classical limit), one is especially interested in a
class of initial data of the WKB1 (or monokinetic) type:

ψ(t=0,x)=A0(x)exp(iϕ0(x)/ε); x∈R. (1.2)

The slowly-varying quantities A0≥0 and ϕ0 appearing in this last expression are
called respectively the amplitude and the phase of the wave ψ0 which “looks like”
a plane wave aexp(ibx/ε) on a finer scale o(1). Data of the form (1.2) with A0

compactly supported are usually called wave packets. WKB expansions are based on
the assumption that for any value of the scaled Planck constant ε below a certain
threshold, the solution of (1.1)–(1.2) is well approximated by an ansatz,

ψ(t,x)'A(t,x)exp(iϕ(t,x)/ε), t>0. (1.3)

Interference phenomena generally require A and ϕ to be multivalued beyond some
“breakup time”. In this paper, we ignore phase shifts coming from Maslov indices
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produced by caustic crossing, in order to keep A and ϕ in R. Plugging this ansatz
and splitting between real and imaginary parts inside (1.1) leads to:

∂tϕ+
1
2
(∂xϕ)2 =

ε2

2A
∂xxA, ∂t(A2)+∂x(A2∂xϕ)=0. (1.4)

The classical WKB system is formally obtained by letting ε2

2A∂xxA→0 when ε→0;
see [18, 49] for details on this dispersive limit. Let us also recall that for small
time, this kind of asymptotics are fully justified, see [26]. A survey is also given by
Keller [33] and [4] proposes an interesting application to Quantum-Classical Molecular
Dynamics (QCMD). In the limit, system (1.4) becomes weakly coupled as the eikonal
equation decouples and can be solved independently; of course, one must give up
the idea of solving in the context of viscosity solutions, [22, 37]. If one introduces
a velocity variable u=∂xϕ, then the eikonal equation becomes the classical Burgers’
equation

∂tu+u∂xu=0, u0 =∂xϕ0, (1.5)

for which the multivalued (or geometric) solution is to be sought through the rays,
[9, 30]. If one can complete this program, then the intensity A2(t,x) can be easily
recovered; indeed, in the homogeneous case and for any time t>0, one gets:

A2(t,x)=A2
0(y)

∣∣∣∣∂y∂x
∣∣∣∣ , x=y+ tu0(y)=y+ tu(t,x).

Hence a convenient and accurate way to derive the intensity follows from

∣∣∣∣∂y∂x
∣∣∣∣=
∣∣∣∣∂x∂y

∣∣∣∣
−1

=
1

|1+ tu′0(y)|
⇒ A2(t,x)=

A0(y)2

|1+ tu′0(y)|
. (1.6)

It has already been observed in [9] that the geometric solution to (1.5) when u0≥0
is given exactly by one of the free transport equations

∂tf+ξ∂xf =0, f(t=0,x,ξ)=H(u0(x)−ξ)H(ξ), (1.7)

where H stands for the Heaviside function. But, as soon as u0 is not everywhere
increasing, folds develop after some (finite) time and a correct expression for f reads:

f(t,x,ξ)=
K(t)∑
k=1

(−1)k−1H(uk(t,x)−ξ), uk>uk+1, (1.8)

whereK(t) is the number of branches uk showing up in u. The remarkable observation
in [10, 11] is that in case K(t)≤K ∈N, the exact solution of (1.7) can be recovered
at any time t>0 from a K×K hyperbolic moment system. Relying on an entropy
minimization principle, it is theoretically possible to express the K+1th moment
knowing the K preceding ones.

A feasible route for computing moderately intricate WKB ansatz in a one-
dimensional framework is to solve

∂t ~m+∂xFK(~m)=0, (1.9)
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where

~m=



m1

...
mK


, FK(~m)=




m2

...
mK+1


, mj =

∫ X

0

ξj−1f(t,x,ξ)dξ=
1
j

K∑
k=1

(−1)k−1uj
k.

(1.10)
for some X>u1. This follows from multiplying (1.7) by ξj , integrating in ξ over [0,X]
and using the closure assumption (1.8). It is generally impossible to derive a closed
form expression for the last component of FK in terms of ~m when K>4 (see however
[46] in case K≤4); a convenient way out is thus to invert the mapping ~u 7→ ~m and
then take advantage of the preceding expressions. This paper focuses therefore on
computational aspects of the (inverse) moment problems in the context of densities
(1.8).

The presentation here follows computations of semiclassical approximations to
Schrödinger’s equation (1.1); however, adapting to other geometric optics frameworks
is merely straightforward as the recovery of the uk’s from the mk’s in (1.10) opens
the way to computing any nonlinear function F̃K(~m) , see for instance the example
in [24].

1.2. Classical results on the infinite moment problem. The general
form is Hausdorff’s one; namely, let m1,m2,... be an infinite sequence of real numbers.
When is there a positive bounded measure µ∈M+(0,1) such that:

mj =
∫ 1

0

ξj−1.µ(dξ), j∈N ? (1.11)

The solution of this classical problem goes as follows: let ∆tj
def
= tj+1− tj stand for

the forward difference operator. One defines the infinite triangular array:

si,j =(−1)i−j

(
i
j

)
∆i−jmj ,

(
i
j

)
=

i!
j!(i−j)! , (1.12)

j≤ i∈N, ∆0mj =mj and ∆i+1mj =∆imj+1−∆imj . From [15], we state:

Theorem 1.1. Let (mk)k∈N be a given sequence and define the auxiliary array
(1.12). There exists a positive measure µ on [0,1] such that (1.11) holds if and only
if (si,j)i≥j ∈R

+; moreover µ is unique.

The Markov’s moment problem is the restriction to positive measures having
uniformly bounded densities: µ(dξ)=f(ξ).dξ, with |f(ξ)|≤C ∈R

+.

Theorem 1.2. Let C ∈R
+ and (mk)k∈N. There exists a µ∈M+(0,1) such that

(i) (1.11) holds,
(ii) µ is absolutely continuous,
(iii) |dµ/dξ|≤C almost everywhere,

if and only if for all i≥ j, 0≤si,j≤ C
i+1 ; moreover µ is unique.

These results state existence and uniqueness of the solution in case one has an
infinite number of moment values as an input. However, this situation is not common
in practical problems. Hence some investigations have been devoted to the inversion of
finite problems; for instance, [50] proposes an algorithm to treat Hausdorff’s problem
with n∈{1,2,...,2K} (see also [28, 29]). A common approach to restore stability in
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Markov’s problem is via entropy optimization; consult e.g. [5, 6, 39, 43]. We refer to
[15, 38] for some historical background.

The paper is organized as follows: §2 summarizes several results on the finite
Markov problem. §3 is devoted to the study of a rather simple inversion algorithm
for those problems. §4 deals briefly with a more singular closure based on Wigner
analysis and §5 is concerned with numerical experiments.

2. Several variants of Markov’s moment problem
In this section, we enumerate several ways to solve the finite Markov moment

problem for a kinetic density 0≤f(ξ)≤1, including the classical entropy minimization
process, and state equivalence results. This will allow us to choose among them an
efficient algorithm for our numerical purposes.

We follow [47] and recall a definition of the Markov’s moment problem on the
smallest interval of R

+ denoted hereafter by [0,X], X ∈R
+. We assume that we are

given a collection of values ~m=(mk)k=1,...,K ∈R
K and seek a bounded measurable

density function such that:∫
R+
ξk−1f(ξ).H(X−ξ).dξ=mk, ∀k=1,...,K, (2.1)

whereH stands for the classical Heaviside function. Of course, one necessary condition
for such a solution to exist is for the moments mk’s to be realizable (one also speaks
about extendable vectors of R

K), i.e. that ∃f ∈L∞ such that (2.1) holds.
Generally, the finite set of conditions (2.1) alone do not determine uniquely a

kinetic density f and we will now go through several ways to augment the problem
in order to have a unique and computable solution.

2.1. The min-power problem on R
+. The min-power version of Markov’s

moment problem is given by the following definition:

Definition 2.1. (Sklyar, Fardigola, [47]) Let K ∈N; a pair (f,X)∈L∞×R
+ is a

solution of the min-power problem (2.1) if and only if the following three conditions
hold:

(i) for (f,X), the equalities (2.1) are valid,
(ii) |f(ξ)|=1 almost everywhere on ]0,X[,
(iii) f has no more than K−1 discontinuity points inside ]0,X[.

For this problem it has been proposed in [47] a constructive proof of the existence of a
solution (f,X) of (2.1) satisfying (i)–(iii) under some mild assumptions on the values
mk’s. The authors state also that the solution built in this way is unique; it reads

f(ξ)=α

K∑
k=1

(−1)k+1
(
H(ξ−xk−1)−H(ξ−xk)

)
, (2.2)

where α=±1 and 0=x0≤x1≤ ...≤xK =X. It can be noted this solution f has
at most K discontinuity points on R

+. The construction also leads to a “density
function” taking values inside {−1,0,1}.

The recursive algorithm proposed in [47] to compute {uj} is, however, not suitable
for direct numerical implementation. In the next section we will discuss a way to
simplify it in order to use it together with a PDE solver for (1.9).
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2.2. Entropy minimization criterion on R
+. A common way to restore

uniqueness in the inverse problem (2.1) is to minimize a strictly convex entropy func-
tion φ(f):

JK
φ (~m)= inf

f

{∫
R+
φ(f)(ξ).dξ;

∫
R+
ξk−1f(ξ).dξ=mk, k=1,...,K

}
. (2.3)

Classical results on this problem in statistical mechanics involve for instance Boltz-
mann, Shannon or Fermi-Dirac’s ones; consult [6]. A formal argument to solve (2.3)
relying on Lagrange’s multipliers goes as follows: we introduce the K multipliers λk

for the constraints (2.1) and rewrite (2.3) as

JK
φ (~m)= inf

f

{∫
R+
φ(f)(ξ).dξ−

K∑
k=1

λk

(∫
R+
ξk−1f(ξ).dξ−mk

)}
.

In case φ is strictly convex, φ′ is invertible and one may “differentiate” with respect
to f in order to derive, for some h(ξ),

∫
R+

(
φ′(f)(ξ)−

K∑
k=1

λkξ
k−1
)
h(ξ).dξ,

which leads to the well-known expression f(ξ)=(φ′)−1
(∑K

k=1λkξ
k−1
)
. Indeed, this

result has been obtained rigorously by the authors of [6] relying on Fenchel’s duality
theory. Notice a difference with the min-power problem since the moment equalities
(2.1) represent only a constraint in the convex programming problem (2.3).

In their paper [11], Brenier and Corrias set up a similar program to derive the
so-called “K-branch Maxwellian” to be used in their kinetic formulation of “K-
multibranch solutions” of Burgers’ equation. They consider a set of linear entropies
inside (2.3). More precisely,

φθ(f)(ξ)=θ(ξ).f(ξ); α≤∂K
ξ θ(ξ)≤

1
α
, α∈R

+
∗ . (2.4)

This choice is well-suited for the derivation of kinetic formulations via BGK approxi-
mation. We remark that the set of entropies can also be made nonlinear by including

the constraint by means of φ∞(f)=
{

0 if 0≤f ≤1
+∞ otherwise.

Using again Fenchel’s duality theorem, they established existence and uniqueness
of the solution of (2.3) in this context; moreover it does not depend on the choice of
θ. We can see that our former (formal) argument leaves us with

JK
θ (~m)= inf

f

{∫
R+

(
θ(ξ)−

K∑
k=1

λkξ
k−1
)
f(ξ).dξ+

K∑
k=1

λkmk

}
. (2.5)

Since f ≥0, in order to achieve a minimum of this functional, the optimal f can be
expected to be supported only on the intervals of R

+ where the polynomial function
ξK−∑K

k=1λkξ
k−1 is negative. This is indeed the case and we can now recall part of

the main result in [11]:

Theorem 2.1. (Brenier & Corrias, [11]) Let K ∈N and ~m=(mk)k=1,...,K be a se-
quence of realizable moments; there exists a unique f solution of (2.3)–(2.4) for all
admissible functions θ and characterized by the equivalent properties:
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(i) for at least one θ, there exist (λk)k=1,...,K ∈R
K such that f(ξ)=

H
(
−θ(ξ)+

∑K
k=1λkξ

k−1
)
,

(ii) for each admissible θ, there exist such a vector (λk)k=1,...,K ∈R
K and (2.3)–

(2.4) is equivalent to the finite dimensional dual problem:

JK
θ (~m)= sup

~λ∈RK

{
K∑

k=1

λkmk−
∫

R+
max

(
0,θ(ξ)−

K∑
k=1

λkξ
k−1
)
.dξ

}
.

If all the uk’s are real, one can write f(ξ)=H
(
−∏K

k=1(ξ−uk)
)
∈{0,1}. In order

to compare with (2.2), let us have a closer look at this unique solution to (2.3)–(2.4):
• (i) says exactly that f is the characteristic function of a collection of inter-

vals [uk+1,uk] where the uk’s are roots of ξK−∑K
k=1λkξ

k−1 =0, with the
convention uk+1<uk for k=1,...,K.

• f has the same structure as the solution of (2.1) in the sense of Def. 2.1 on
the interval ]0,u1[ (i.e. X=u1 in (2.1)) and it has K discontinuity points on
R

+. It is not known whether (2.2) optimizes a certain entropy function.

2.3. L∞ moment problem on an interval. A third way to invert the set
of K equations (2.1) in a unique and stable way is to try to minimize the L∞ norm of
f ; this is the approach developed in [40, 44]. Namely, one completes (2.1) as follows,
for some given X ∈R

+,

IK
∞(~m)= inf

f

{
‖f‖L∞ , f ≥0,

∫ X

0

ξk−1f(ξ).dξ=mk, k=1,...,K

}
. (2.6)

This problem may also be treated including convenient lattice bounds, namely α(ξ)≤
f(ξ)≤β(ξ), see [44]. In this context, the Lagrange multipliers technique does not
make sense at all since the L∞ norm is not differentiable. However, it has been shown
in [44] that (2.6) is equivalent to the linear problem:

IK
∞(~m)= inf

f,q

{
q, (f,q)∈L∞×R

+, 0≤f ≤ q,
∫ X

0

ξk−1f(ξ).dξ=mk, k=1,...,K

}
.

(2.7)
Chapter 4 of [44] is devoted to a proof of existence and uniqueness of the optimal
solution to (2.7) using again Fenchel’s duality theory. This means also that the optimal
solution to (2.6) matches the one of (2.7). Moreover, the optimal f has the following
form:

f(ξ)=‖f‖L∞H

(
K∑

k=1

λkξ
k−1

)
=‖f‖L∞H

(
a

K∏
k=2

(ξ−uk)

)
; λk ∈R

K , a∈R.

So in case ‖f‖L∞ =1, by uniqueness it matches the “K-branch Maxwellian” in case
X=u1. Our main interest in this approach is that the linear programming problem
(2.7) can be easily implemented via the standard Simplex method. However, we found
that even if linear programming can represent a very reliable technique to compute the
last component of FK(~m) (1.10), it is generally unstable for the computation of the K
values u1,...,uK . This is illustrated on the elementary caseK=3 while considering the
equation (1.5) on x∈ [0,2π] with initial data u0(x)= 1

2 (0.5+exp(−2(x−π/2)2)); see
Fig.2.1. We stress that in order to produce these results, inverting Markov moments



LAURENT GOSSE AND OLOF RUNBORG 379

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7
−4

10

−3
10

−2
10

−1
10

0 1 2 3 4 5 6 7
−5

10

−4
10

−3
10

−2
10

−1
10

0
10

1
10

Fig. 2.1. Comparison between 3-branch solutions (top, solid line is exact solution) and the
absolute error on the 4th moment (bottom) for the Simplex method at t=1 (left) and t=6 (right).

(1.10) inside each computational cell, in each timestep, is necessary, hence the need
to perform this task in the most stable way.

Another important point in [40], is a very strong stability result, the so–called
“superresolution” of Markov’s moment problem:

Theorem 2.2. (Lewis, [40]) Suppose f(ξ)=H
(∑K

k=1λkξ
k−1
)

for some ~λ∈R
K with∑K

k=1λkξ
k−1 6=0 a.e. Then for any sequence of measurable functions fε : [0,X] 7→ [0,1],

if ∫ X

0

ξk−1fε(ξ).dξ→mk, k=1,...,K,

then it follows that ‖fε−f‖L1(0,X)→0. Under mild additional assumptions, an error
estimate is furthermore derived:

‖fε−f‖L1(0,X)≤O(1)

∥∥∥∥∥
∫ X

0

(1 ξ ... ξK−1)T fε(ξ).dξ− ~m

∥∥∥∥∥
1
2

.

(See also [46], Sec. 3.1 for a similar result.) This suggests that even if the linear pro-
gramming approach does not work well, hopefully another numerical method could
allow us to invert Markov’s moments since the problem is shown to be strongly stable
in the sense that the errors in {uk} will be of the same order as the errors in the mo-
ments {mk}. Typically, errors generated by numerical approximations of hyperbolic
systems are of the order

√
∆x, where ∆x is the grid size, see [20, 46].
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3. An efficient algorithm to invert Markov’s moments
In this section, we recall briefly the algorithm originally introduced in [34, 47, 48]

in order to invert the min-power Markov moment problem. The original algorithm
is not directly suitable for computational purposes, having too high complexity and
unclear stability properties. We propose here a simplification which leads subsequently
to a much lighter version, involving the solution of a well-conditioned triangular linear
system of equations and a generalized eigenvalue problem. In a forthcoming paper
[25] we shall give a direct proof that the simplified algorithm works, and discuss its
stability.

3.1. The original Korobov-Sklyar algorithm for K ∈2N. Recall first the
expressions (1.10). The goal is to extract {uk} given {mk}, k=1,...,K. We show now
the original algorithm, modified to the case when f ∈{0,1} rather than f ∈{−1,1}.

Start by defining the polynomials

Uk(u)=uk−kmk, Vk(u)=uk +kmk,

and set P1 =U1, Q1 =V1. Then compute repeatedly for k=2,...,K,

Pk(u)=
1
k

(
Uk(u)−

k−1∑
`=1

U`(u)Pk−`(u)

)
, Qk(u)=

1
k

(
Vk(u)−

k−1∑
`=1

V`(u)Qk−`(u)

)
.

(3.1)
Afterwards, the following (polynomial) matrices are built:

P(u)=




P2 P3 ... P1+ K
2

P3 P4 ... P2+ K
2

...
...

. . .
...

P1+ K
2
P2+ K

2
... PK


 , Q(u)=




Q2 Q3 ... Q1+ K
2

Q3 Q4 ... Q2+ K
2

...
...

. . .
...

Q1+ K
2
Q2+ K

2
... QK


 .

They finally generate the polynomial Π(u)=det(P)(u) ·det(Q)(u); the largest root of
Π is the largest value among the {uk}, thus u1. Next, the moments are modified by
subtracting off the term involving u1, letting m̃j =mj−uj

1/j. The procedure is then
applied to m̃j , and repeated recursively until all values are found.

3.2. The simplified algorithm: even case (K ∈2N). Our first observation
is that the roots of Π(u) are in fact precisely the values that we are looking for.
Moreover, the Pk and Qk previously defined are just first degree polynomials as we
show now. For notational simplicity, we redefine the moments mk as follows:

mj =
K∑

k=1

(−1)k−1uj
k. (3.2)

Lemma 3.1. The polynomials Pk,Qk, (3.1) belong to P1(R) for k=1,...,K ∈2N:

Pk(u)=ak−1u−ak with ak =

1
k

k∑
`=1

m`ak−`, a0 =1,

Qk(u)= bk−1u−bk with bk =−1
k

k∑
`=1

m`bk−`, b0 =1.
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Proof. We proceed by induction; the property is clearly true for k=1 since P1(u)=
V1(u)=u−m1. Let us suppose that the formulas hold for all k up to some k=n∈N.
We then get for k=n+1,

Pn+1(u)

=
1

n+1

(
Un+1(u)−

n∑
k=1

Uk(u)Pn+1−k(u)

)

=
1

n+1

(
un+1−mn+1−

n∑
k=1

(uk−mk)(an−ku−an+1−k)

)

=
1

n+1

(
un+1−mn+1−

n∑
k=1

an−ku
k+1−an+1−ku

k−mkan−ku+mkan+1−k

)

=
1

n+1

(
un+1−mn+1−a0u

n+1 +anu+
n∑

k=1

(mkan−ku−mkan+1−k)

)

(because a0 =1)

=
1

n+1

((
an +

n∑
k=1

mkan−k

)
u−
(
mn+1 +

n∑
k=1

mkan+1−k

))

=anu− 1
n+1

n+1∑
k=1

mkan+1−k,

and one identifies

an+1 =
1

n+1

n+1∑
k=1

mkan+1−k.

The procedure also applies for

Qn+1(u)

=
1

n+1

(
Vn+1(u)−

n∑
k=1

Vk(u)Qn+1−k(u)

)

=
1

n+1

(
un+1 +mn+1−

n∑
k=1

(uk +mk)(bn−ku−bn+1−k)

)

=
1

n+1

(
un+1 +mn+1−

n∑
k=1

bn−ku
k+1−bn+1−ku

k +mkbn−ku−mkbn+1−k

)

=
1

n+1

(
un+1 +mn+1−b0un+1 +bnu−

n∑
k=1

(mkbn−ku−mkbn+1−k)

)

(because b0 =1)

=
1

n+1

((
bn−

n∑
k=1

mkbn−k

)
u+

(
mn+1 +

n∑
k=1

mkbn+1−k

))

= bnu+
1

n+1

n+1∑
k=1

mkbn+1−k,
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which leads to:

bn+1 =− 1
n+1

n+1∑
k=1

mkbn+1−k.

By induction the formulas hold for all k=1,...,K.

Lemma 3.1 is the key to derive the simplified algorithm in the even case. Let
~a=(a1,a2,...,aK)T , ~b=(b1,b2,...,bK)T ; they satisfy the triangular linear systems of
equations A~a= ~m, B~b=−~m, where

A=




1 0 ···
−m1 2 0 ···
−m2 −m1 3 0

...
...

. . . . . .
−mK−1 −mK−2 ··· −m1 K


 , B=




1 0 ···
m1 2 0 ···
m2 m1 3 0
...

...
. . . . . .

mK−1 mK−2 ··· m1 K


 . (3.3)

Note that these matrices are well-conditioned with bounded positive diagonal elements
and can be easily solved by standard back substitution. From ~a one next builds the
halfsize matrix P(u)=A1u−A2∈R

K/2×K/2 with

A1 =




a1 a2 ··· aK/2

a2 a3 ··· a1+K/2

...
...

. . .
...

aK/2 a1+K/2 ··· aK−1


 , A2 =




a2 a3 ··· a1+K/2

a3 a4 ··· a2+K/2

...
...

. . .
...

a1+K/2 a2+K/2 ··· aK


 .

Similarly, one constructs Q(u)=B1u−B2 from~b. Finally, Π(u)=det(P) ·det(Q)(u)=
0 as soon as

det(A1u−A2)=0, or det(B1u−B2)=0.

In other words, ~u is the set of eigenvalues of A−1
1 A2 and B−1

1 B2. Those can be
computed in stable fashion with the QZ-algorithm, available in e.g. the MatLab or
SciLab packages.

3.3. The odd case: K ∈2N+1. The algorithm presented in §3.2 is very con-
venient to solve Markov’s moment problem in case K ∈2N; unfortunately, geometric
optics computations ask more for the opposite case K ∈2N+1. It turns out that the
aforementioned procedure extends to the odd case with minor modifications as we
show now.

We first recall that mk =
∑K

`=1(−1)`−1uk
` . Here we let x` represent the odd u`-

values and y` the even ones. Since we assume that K ∈2N+1, we get

mk =
n∑

`=1

xk
` −

n−1∑
`=1

yk
` , k=1,2, . . . ,K=2n−1.

As previously in (3.3), we solve B~b=−~m to get ~b∈R
K and we construct the (n−1)×

(n−1) matrices:

B1 =



b2 b3 ··· bn
b3 b4 ··· b1+n

...
...

. . .
...

bn b1+n ··· b2n−2


 , B2 =




b3 b4 ··· b1+n

b4 b5 ··· b2+n

...
...

. . .
...

b1+n b2+n ··· b2n−1


.
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Then ~y∈R
n−1 is the set of eigenvalues of B−1

1 B2. Now, a set of 2n modified moments
can be computed:

m̃0 =n, m̃i =mi +
n−1∑
`=1

yi
` =

n∑
`=1

xi
`, i=1, . . . ,K=2n−1.

One can now construct the two n×n matrices,

A1 =




m̃0 m̃1 ··· m̃n−1

m̃1 m̃2 ··· m̃n

...
...

. . .
...

m̃n−1 m̃n ··· m̃2n−2


, A2 =



m̃1 m̃2 ··· m̃n

m̃2 m̃3 ··· m̃1+n

...
...

. . .
...

m̃n m̃1+n ··· m̃2n−1




and ~x∈R
n will be the set of eigenvalues of A−1

1 A2. Finally, ~u=~x∪~y.
4. About Wigner measures and Haussdorf’s moment problem

4.1. Wigner transforms and semiclassical limit ε→0. A convenient tool
to investigate theoretically high-frequency asymptotics is the Wigner transform, [41];
in the context of (1.1), it reads

W ε(ψ)(t,x,ξ)=
∫

R

ψ
(
t,x+

εy

2

)
ψ
(
t,x− εy

2

)
exp(−iξy).dy,

and solves the well-known Wigner equation for all ε≥0:

∂tW
ε +ξ∂xW

ε =0. (4.1)

If the initial data W ε(ψ0) is given by (1.2) then it converges weakly as a measure
towards w(0,x,ξ)=A2

0(x)δ(ξ−u0(x)) (δ(·) the Dirac measure, u0 =∂xϕ0) when ε→0.
The limiting solution w(t,x,ξ) also satisfies (4.1). At this level, a classical computation
by bicharacteristics implies that (in general), the solution w(t,x,ξ) will split into
several branches

w(t,x,ξ)=
K(t)∑
k=1

ρk(t,x)δ(ξ−uk(t,x)),
K(t)∑
k=1

ρk(t,x)=A2(t,x), (4.2)

where A2 is the weak limit of |ψ|2(t,x) as ε→0. When there is only one branch,
K(t)=1, then A2 =A2, with A being the amplitude of the WKB signal (1.2) in the
ε=0 limit. This is also consistent with a stationary phase analysis for (1.1)-(1.2) as
shown in [21].

Following the ideas of [11, 17, 23, 31, 46, 49], one can consider the moments of
the free transport equation satisfied by w(t,x,ξ) with the closure assumption (4.2)
for some fixed value K(t)≡K ∈N. The resulting moment systems are 2K×2K and
much more singular (“weakly hyperbolic” in the terminology of [31]):

∂t~p+∂xGK(~p)=0,

where

~p=



p1

...
pK


, GK(~m)=




p2

...
pK+1


, pj =

∫
R

ξj−1w(t,x,ξ)dξ=
K∑

k=1

ρku
j−1
k .
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As in Sec. 1.1 these equations follow from multiplying (4.1) by ξj , integrating in ξ
over R and using the closure assumption (4.2). Also in this case, there is no closed
form expression for the last component of GK(~p) in terms of ~p, except for small values
of K, [23, 31, 46]. In order to evaluate GK one is instead led to first solving a delicate
moment inversion problem

find (~ρ,~u)∈R
K
+ ×R

K such that
K∑

k=1

ρku
i
k =pi+1; i=0, . . . ,2K−1 (4.3)

and then compute the last component as (GK)2K =
∑K

k=1ρku
2K
k .

The main difference between these equations and the equations in Sec. 1.1 is that
the intensity A2 is now directly computed through the ρk variables as shown in (4.2),
instead of via the formula (1.6).

4.2. Stieltje’s algorithm for the Dirac closure. The inverse problem
(4.3) is well-known and related to Gauss’ quadrature rules, [19]; it has been studied by
several authors after Chebyshev and Markov, among them we quote [50, 28, 29, 43, 39].
As explained in e.g. [28, 43], the inversion problem (4.3) can be explicitly solved by
means of the so–called Stieltje’s algorithm which we briefly explain here.

Let us suppose that the moment vector ~p is given. For any polynomial q(x) of
degree n less than 2K we define P(q) as follows

P(q)=
n∑

i=0

cipi+1, q(x)=
n∑

i=0

cix
i.

We set q−1(x)=0, q0(x)=1 and then compute recursively for k=1,...,K−1,

qk+1(x)=(x−αk)qk(x)−βk−1qk−1(x), (4.4)

where

αk =
P(xq2k)
P(q2k)

, βk =
P(q2k+1)
P(q2k)

.

From these numbers we form the tridiagonal matrix J ∈R
K×K ,

J =




α0

√
β0√

β0 α1

√
β1

. . . . . . . . .√
βK−3 αK−2

√
βK−2√

βK−2 αK−1


.

The unknowns {uk} are now given as the eigenvalues of J , and if ~vk =(vk,1,...,vk,K)T

is a normalized eigenvector corresponding to uk, then ρk is given by the formula

ρk =p1v
2
k,1.

Unfortunately, the Stieltje’s algorithm is known to be unstable when the {uk}
get close to each other: uk≈u` for some k,`. This is a common situation in the
semiclassical compuations, e.g. happening when the solution has fewer branches than
the PDE supports. The stability for the full problem of computing (GK)2K is better,
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but noise coming from the (big) truncation errors inherent in the discretization of
the weakly hyperbolic moment systems, [8, 31], may still be sufficiently amplified to
destabilize the numerical process. At this point some new ideas on regularization of
the inversion seem necessary if the method should be used for large K. (See below
for an example with K=3 though.)

5. Application of Markov’s and Stieltje’s inversion to WKB computa-
tions

Following [12], we tried to check out a weak consistency of our WKB approxima-
tions as ε→0 by looking at the antiderivative of the difference of the position densities
(the first quadratic observable); thus we shall study the function

x 7→
∫ x

0

(
ρWKB(T,s)−|ψε(T,s)|2

)
.ds, (5.1)

which can be expected to flatten as ε is decreased. ρWKB stands for the position
density obtained from the WKB ansatz (1.2); Lemma 2.1 in [12] ensures that the L1

norm of (5.1) going to zero is equivalent to the weak convergence of ρWKB.
We also wish to make precise the way one can reconstruct a single valued quadratic

observable starting from the R
K vectors ~u, and ~µ (we drop the space-time variables

for clarity). This is explained in [24] for K=3, but more complex cases may arise
now. So one can start with some K-branch solution ~u∈R

K and look for “jumps” in
the k variable, i.e. values k̃ such that,

uk̃−1−uk̃>η
u1−uK

K
, η=

5
2
.

(The value 5/2 being arbitrary.) Obviously, the set KJ of indices k̃ is included in
{2,...,K} and the density ρWKB reads:

ρWKB =
|KJ |∑
j=1

k̃j∑
`=k̃j−1

µ`

k̃j− k̃j−1

, k̃0 =1.

Finally, we initialize the K phases as explained in [20, 24]; we observed that in
the mono-valued regions, the thickness (u1−uK)/K does depend much more on the
numerical viscosity on the selected scheme than on its initialization.

5.1. The double cusp interaction: K=5. This is the first case for which
the exact formulas of [46] don’t apply any more. One important point to check is
whether the inversion algorithm in §3.3 remains stable despite the noise generated by
the truncation errors in the discretization of the moment systems. The initial data
are:

u0(x)=sin3(x), µ0(x)=
1
π

exp(−(x−π)2), x∈ [0,2π]. (5.2)

The ray geometry is displayed in Fig. 5.1; it shows the superposition of two cusp
singularities around t'1.5. In Fig. 5.2, we present the outcome of a “local Lax-
Friedrichs” scheme called the Rusanov scheme in [7] (as already used in [23, 24]) with
K=5 at time t=3. A comparison with a direct Fourier computation on Schrödinger
equation with 4096 modes is also presented for both ε=1/150 and ε=1/450. The
parameters were given by ∆x=2π/1024 and a CFL number 1; the results can be
considered as quite satisfying.
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Fig. 5.1. Ray geometry for (5.2) with t∈ [0,3].
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Fig. 5.2. 5-branch solutions and related intensities for (5.2) at t=3 (top, solid line is exact
solution); comparison of position densities for ε=1/150,1/450 (bottom, left to right).
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Fig. 5.3. Ray geometry for (5.3) with t∈ [0,4].
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Fig. 5.4. 7-branch solutions and related intensities for (5.3) at t=4 (top); comparison of
position densities for ε=1/150,1/450 (bottom).
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The standard CFL condition is based on the fastest waves and creates an excessive
numerical dissipation on the slower ones which carry higher intensity (as discussed in
[7] pp.32–33). Such a phenomenon clearly induces a bottleneck of performance when
trying to reproduce more intricate signals as the dimension of the moment systems
K×K grows, despite our inversion algorithm remaining stable.

In Fig. 5.8 the same problem was solved with the Delta-closure equations and
the Stieltje’s algorithm. Here only K=3 was used to get a stable solution. Then
the equations cannot capture all the intricate details of the real wave field, but the
qualitative result is correct, including the location of the outermost caustics.

5.2. The triple cusp interaction: K=7. We move on to more intricate
wave phenomena with the interaction of three cusp singularities: initial data are:

u0(x)=cos(x)sin(2x), µ0(x)=
1
π

exp(−(x−π)2), x∈ [0,2π]. (5.3)

The rays show up on Fig.5.3. Our objective is to investigate the reliability of the
“K-branch solutions” obtained by means of the inversion algorithm presented in §3.3
for K moderately big and to compare the first quadratic observable (the position
density in the context of Schrödinger equation (1.1)) deduced this way with the one
coming out of a direct Fourier computation. The present test case aims at exploiting
the K=7 closure; the numerical results are presented on Fig.5.4. One can see a very
satisfying picture, since the velocities are well rendered and the approximation of the
position densities are very acceptable except for the caustics.
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Fig. 5.5. Ray geometry for (5.4) with t∈ [0,4].

5.3. Four superimposing cusps: K=7 or K=9 ? We now study what
happens for many cusp interactions as time increases:

u0(x)=sin2(2x)sin(x), µ0(x)=
1
π

exp(−(x−π)2), x∈ [0,2π]. (5.4)
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Fig. 5.6. 9-branch solutions and related intensities for (5.4) at t=4 (top); comparison of
position densities for ε=1/450 and evolution of the L1 norm of (5.1) as ε→0 (bottom).

At time t=4, the choice K=9 appears to be necessary and one observes a general
numerical discrepancy in the whole computational domain since many phases come
into play. The comparison with a direct Schrödinger result is less significant; this is
a consequence of the numerical viscosity of the marching schemes we used for solving
the moment system as explained in §5.1. The use of more sophisticated algorithms,
like e.g. [1, 2, 14] provided only marginal improvements in this context, with a lower
CFL number whereas the HLL or kinetic solvers written in [7] led to better results.

Looking at Fig.5.6, one may think that discarding the multivaluations close to
x=π can be a reasonable choice and decide to work out (5.4) with the K=7 closure;
the outcome is shown in Fig.5.7. Despite the fact it does not seem too different
compared to Fig.5.6, it contains a compressive Lax shock and this should create an
intensity concentration in x=π. Of course, the errors as measured with the L1 norm
of (5.1) as ε→0 are bigger when compared to the ones of the 9-branch computation,
see Fig.5.6. It would also be possible in this context to exploit the ”symmetry trick”
with the K=5 closure as introduced in [20], but it is not our purpose here.

6. Conclusion and outlook
This work is merely a first step towards the development of efficient moment-based

algorithms to treat one-dimensional or two-dimensional paraxial geometric optics and
semiclassical limits in a general multivalued context. We restricted ourselves to the
free Schrödinger equation (1.1) for simplicity only, but external potentials can be
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Fig. 5.7. 7-branch solutions and related intensities for (5.4) at t=4 (top); comparison of
position densities for ε=1/450 and decay of the L1 norm of (5.1) as ε→0 (bottom).
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Fig. 5.8. 3-valued solutions and related intensities for (5.2) at t=3 computed with the Delta
equations and Stieltje’s algorithm.

included, as in [20, 23]. Applications to solid-state physics, where an oscillating
potential has to be taken care of, is possible following the ideas of [24]. Trigonometric
moment problems have to be tackled when considering geometric optics problems,
following [46, 20, 22] and the techniques of [13, 35, 48].

Most of all, it appeared that an important step will be the development of efficient
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numerical schemes for the simulation of the nonstrictly hyperbolic moment systems
(1.10) which can render the slow (and more energetic!) waves in a correct way. Up
to now, it does not seem that usual discretizations can achieve this goal. See [7] for a
recent summary. At last, we emphasize that inverting moments of the type (1.10) is
a task which has to be achieved inside each computational cell, since it is necessary
in order to compute any kind of numerical flux; it is somehow part of the derivation
of these numerical fluxes.
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