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A RESULT OF L2-WELL POSEDNESS CONCERNING THE SYSTEM
OF LINEAR ELASTICITY IN 2D∗

ALESSANDRO MORANDO† AND DENIS SERRE‡

Abstract. We give an L2-well posedness result concerning an initial boundary value problem
for the system of linear elasticity either in the half-plane or in a two dimensional bounded domain.
Under the necessary uniform Kreiss Lopatinskii condition we construct here a dissipative Kreiss
symmetrizer of our problem; actually, due to the characteristic boundary and the lack of a technical
assumption given by T. Ohkubo, the main difficulty consists of building the dissipative symmetrizer
near some special “boundary points”.
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1. Introduction
We are concerned with the system of linear elasticity in two space dimension (2D).

This system reads as follows

∂tF +∇z=0,
∂tz+divT =0, (1.1)

where F (x,t)∈M2×2(R), z(x,t)∈R2 (for x=(x1,x2)∈R2 and t>0) are the unknowns
and we set

T :=λ(F +FT )+µ(TrF )I2, (1.2)

with I2 the identity matrix of order 2. The vector field z represents the opposite
of the material velocity, while the stress tensor T is an isotropic function of the
infinitesimal deformation tensor F and λ,µ are given positive constants (the so-called
Lamé coefficients). A thorough analysis of the elasticity model can be found in the
books of P. Ciarlet [2] and C. Dafermos [3]. Since in (1.1) the skew-symmetric part
F1,2−F2,1 decouples from the rest, we may restrict to the system describing the
evolution of z and the symmetric part of F . Since the system admits a quadratic
energy

1
2
|z|2 +

λ

4
|F +FT |2 +

µ

2
(TrF )2, (1.3)

it is Friedrichs symmetrizable. Setting cP :=
√

2λ+µ (the velocity of pressure waves),
the choice of variables

u := (2
√
λ(λ+µ)F1,1,cP

√
λ(F1,2 +F2,1),c2PF2,2 +µF1,1,cP z1,cP z2)T (1.4)

puts the system (1.1) in the symmetric form

Lu :=
∂u

∂t
+

2∑
α=1

Aα
∂u

∂xα
=0, (1.5)
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318 L2-WELL POSEDNESS OF THE 2D LINEAR ELASTICITY

where the matrix A(ξ) :=
∑2
α=1A

αξα has the form

A(ξ)=
(

0 a2,1(η)T

a2,1(η) a2(η)+ξ2a2

)
, ξ=(η,ξ2). (1.6)

In particular, we have

a2(η)+ξ2a2 :=
(

02 b(ξ)
b(ξ)T 02

)
, b(ξ) :=

(
ξ2
√
λ η

√
λ

ηµ
cP

ξ2cP

)
, (1.7)

where 02 is the zero squared matrix of order 2 and a2,1(η)T =(0,0,2η
√
λ(λ+µ)/cP ,0).

We are interested in the well posedness of an initial boundary value problem (ibvp)
such as

Lu(x1,x2,t)=f(x1,x2,t), x1∈R, x2,t>0,
Bu(x1,0,t)=g(x1,t), x1∈R, t>0,
u(x1,x2,0)=a(x1,x2), x1∈R, x2>0.

(1.8)

The domain of the problem is the half-plane R2
+ :={x=(x1,x2)∈R2;x2>0} (so that

the boundary ∂(R2
+)={(x1,0);x1∈R} will be identified with R); the data f,g,a are

given smooth functions and B is a given matrix in M2×5(R) with rankB=2. Here-
after, for every integer n≥2, we will write 0n for the zero n×1 matrix. Since

A2 =
(

0 0T4
04 a

2

)
, a2 :=


0 0

√
λ 0

0 0 0 cP√
λ 0 0 0

0 cP 0 0

 ,
we immediately compute rankA2 =4 so that the ibvp (1.8) is characteristic. In [5],
A. Majda and S. Osher develop a general theory for uniformly characteristic ibvps
including the foregoing 2D system (1.8). However, our work differs from Majda-
Osher’s paper for we provide explicitly an everywhere smooth symmetrizer of (1.8),
whereas the symbolic symmetrizer constructed in [5] may display some singularities
(cf. [5], Part II, Section 6). It must be even pointed out that the approach presented
here turns out to be workable for the three dimensional (3D) linear elasticity as well,
although some further technical difficulties might occur in this case. Applying our
method to the 3D linear elasticity system will be rather interesting, since the latter
system is no longer covered by Majda-Osher’s theory; indeed the 3D counterpart
of the symmetric system (1.5)-(1.7) does not obey a technical hypothesis needed in
Majda-Osher’s analysis (cf. Assumption 1.1. of [5]). The 3D linear elasticity will be
studied in a next paper, by adapting the same procedure explained here. To carry out
the announced symmetrizer’s construction, we require that KerA2 =R×{04}⊂KerB,
which yields B=(02,B2) for B2∈M2×4(R). This last assumption, called reflexivity
in [7], is natural for characteristic ibvps, since for L2 solutions u the best control of
boundary terms that we expect is that of A2u; as a matter of fact, this restriction is
also justified by Majda and Osher in [5]. It is well-known that the ibvp (1.8) is strongly
L2-well posed (see [1] for the notion of strong well posedness in a general framework)
when the boundary condition Bu=g is maximal strictly dissipative for the operator
L. This means that the quadratic form w 7→w∗A2w is non positive on KerB and
its restriction to KerB vanishes only on KerA2; moreover KerB must be maximal
with respect to the aforesaid property. We are interested here in the strong L2-well
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posedness of (1.8) with general boundary condition Bu=g, satisfying the weaker but
necessary uniform Kreiss-Lopatinskii condition (UKL). Recall that the characteristic
ibvp (1.8) is said to fulfill the (UKL) condition provided that there exists a positive
constant C for which the estimate below

|A2V |≤C|BV |, V ∈E−(τ,η)

holds true for all pairs (τ,η)∈C×R with <τ >0; for any (τ,η) as before, we mean by
E−(τ,η) the stable subspace of the system

(τI5 + iA1η)V +A2 dV

dx2
=0,

obtained by taking the Fourier-Laplace transform of (1.5) with respect to (x1,t). The
reader is referred to [4] (see also [8] Chapter 14) for an exhaustive presentation of the
(UKL) condition. According to notations (1.4)-(1.7), the main result of the paper
may be stated as follows.

Theorem 1.1. Let us consider the ibvp (1.8); let the boundary matrix B∈M2×5(R)
satisfy the (UKL) condition. Then for every data f ∈L2(R2

+×(0,T )), g∈L2(R×
(0,T )) and a∈L2(R2

+), with arbitrary T >0, there exists one, and only one, solution
u∈L2(R2

+×(0,T )) of (1.8) such that:
a. u∈C([0,T ];L2(R2

+));
b. A2u admits a trace γ0A

2u on the boundary of R2
+ of class L2(R×(0,T )).

Finally, for every positive number γ, the following a priori estimate holds true:

e−2γT ‖u(T )‖2L2 +‖u‖2γ,T ≤C
(
‖a‖2L2 +

∫ T

0

e−2γt

(
1
γ
‖f(t)‖2L2 +‖g(t)‖2L2

)
dt

)
, (1.9)

where the constant C>0 does not depend on f,g,a and γ,T . In (1.9) ‖.‖L2 denotes
the norm in either L2(R2

+) or L2(R); moreover we have set

‖u‖2γ,T :=
∫ T

0

∫
R

e−2γt|(γ0A
2u)(x1,t)|2dx1dt+γ

∫ T

0

∫
R2

+

e−2γt|u(x1,x2,t)|2dx1dx2dt.

(1.10)
In order to prove Theorem 1.1, we look for the existence of a dissipative Kreiss

symmetrizer of (1.8) (cf. [1], [4], [6]).
Let us recall that a dissipative symmetrizer consists of a matrix-valued C∞

bounded function (τ,η) 7→K(τ,η)∈M5×5(C) defined on {(τ,η)∈C×R;<τ ≥0, |τ |+
|η| 6=0}, fulfilling the following assumptions:

i. Σ(τ,η) :=K(τ,η)A2 is Hermitian;
ii. Σ(τ,η) must be non positive on KerB and its restriction to KerB vanishes

only on KerA2, uniformly in (τ,η);
iii. For P (τ,η) :=K(τ,η)(τI5 + iA(η,0)), there exists a positive number c0 such

that

<P ≥ c0(<τ)I5, ∀(τ,η) :<τ ≥0, |τ |+ |η| 6=0. (1.11)

As in the case of a non-characteristic ibvp, a dissipative symmetrizer K(τ,η) turns out
to be a fundamental tool in order to investigate the property of the well posedness.
The existence of such a symmetrizer for a general characteristic Friedrichs symmetric
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ibvp fulfilling the (UKL) condition has been recently proved by D. Serre (see [1], §6.2),
under an auxiliary assumption due to T. Ohkubo. Namely Ohkubo considers in [7]
a Friedrichs symmetric system (1.5) for which the matrix a2(η) involved in (1.6) is
identically zero. In fact the assumption made by Ohkubo is slightly more general and
it is satisfied by many relevant physical examples such as the curl operator, Maxwell
system and the shallow water equations. However the system of linear elasticity does
not fall into the Ohkubo’s case; indeed from (1.7) we derive the nontrivial a2(η)

a2(η)=


0 0 0 η

√
λ

0 0 η µ
cP

0
0 η µ

cP
0 0

η
√
λ 0 0 0

.
Analogously to the non-characteristic case, we are led to find a Kreiss symmetrizer
K(τ,η) which is a homogeneous function of degree zero with respect to (τ,η); so it
will be enough to build K(τ,η) in the unit hemi-sphere defined as the set of pairs
(τ,η) such that <τ ≥0 and |τ |2 +η2 =1. By a compactness argument, we still reduce
to define the matrix K(τ,η), with properties i.-iii., locally in a neighborhood of each
point of the unit hemi-sphere. An inspection of the proof given in [1] for the Ohkubo’s
case shows that the same arguments, applied there, may be straightforwardly repeated
to build a dissipative symmetrizer of the elasticity system near the “interior points”
(τ,η), with <τ >0, and the “boundary points” (τ,η), with <τ =0 and τ 6=0. However,
the main difficulty is to make a dissipative symmetrizer of (1.8) in a neighborhood
of the “central points” (0,η) for η 6=0; indeed it is near these central points that the
Ohkubo’s assumption a2(η)≡04 plays a fundamental role in the construction of such
a symmetrizer shown in [1]. In the next section 2, we will construct a dissipative
symmetrizer of (1.8) in the vicinity of the critical points (0,η), η 6=0, by following an
approach which does not involve the Ohkubo’s hypothesis; then the proof of Theorem
1.1 will be achieved by making use of standard a priori estimates. In section 3, we
study the ibvp (1.8) in an open bounded domain. An analogy of Theorem 1.1 will be
proved by extending the analysis of section 2; the key point consists of reducing the
original problem into a finite family of variable coefficient problems in the half-plane,
by introducing a smooth partition of unity and local changes of coordinates.

2. Construction of a Kreiss symmetyrizer at points (0,η), η∈R\{0}
Throughout this section, we will assume that the boundary condition Bu=g in

the ibvp (1.8) satisfies the (UKL) assumption. Let us recall that we are looking for a
C∞ map (τ,η) 7→K(τ,η)∈M5×5(C), defined in an open neighborhood of each point
(0,η0), η0 6=0, displaying assumptions i.-iii. in the previous section. As we already
noticed, by a homogeneity argument, we may restrict our construction near the points
(0,±1) on the unit hemi-sphere defined by the equation |τ |2 +η2 =1 with <τ ≥0. Let
us recall also that the explicit expressions of the matrices A2 and τI5 + iA(η,0) are
respectively

A2 =


0 0 0 0 0
0 0 0

√
λ 0

0 0 0 0 cP
0
√
λ 0 0 0

0 0 cP 0 0

 (2.1)
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and

τI5 + iA(η,0)=


τ 0 0 iΘη 0
0 τ 0 0 i

√
λη

0 0 τ i µcP
η 0

iΘη 0 i µcP
η τ 0

0 i
√
λη 0 0 τ

 (2.2)

where Θ :=2
√
λ(λ+µ)

cP
. Requiring the matrix Σ=KA2 is Hermitian immediately yields

for K(τ,η) the following expression

K=
(
k1,1 0T4
k1 K2

)
, (2.3)

where k1,1 =k1,1(τ,η)∈C,k1 =k1(τ,η)∈M4×1(C) and K2 =K2(τ,η)∈M4×4(C) are
smooth functions; consequently, Σ reduces to

Σ=
(

0 0T4
04 Σ2

)
, (2.4)

where Σ2 :=K2a
2 must be Hermitian too. From this last condition, the next equalities

involving the terms ki,j =ki,j(τ,η) (i,j=2, . . . ,5) of K2 are plainly derived.

k2,4,k3,5,k4,2,k5,3∈R,√
λk3,4 = cP k̄2,5, cP k4,5 =

√
λk̄3,2,√

λk5,2 = cP k̄4,3, k5,5 = k̄3,3,

k4,4 = k̄2,2,
√
λk5,4 = cP k̄2,3.

(2.5)

On the other hand, in view of KerA2⊂KerB, the assumption ii. about Σ translates
into the existence of a positive constant ε0 such that

Σ2|KerB2 ≤−ε0I4, (2.6)

for all (τ,η), with <τ ≥0, in a neighborhood of (0,±1) on the hemi-sphere. According
to (2.5) and setting also k1 =(k2,1,k3,1,k4,1,k5,1)T we find

(z′)∗Σ2z
′=
√
λk2,4|z2|2 +cP k3,5|z3|2 +

√
λk4,2|z4|2 +cP k5,3|z5|2

+2<(cP k2,5z̄2z3)+2<(
√
λk2,2z̄2z4)+2<(cP k2,3z̄2z5)

+2<(
√
λk3,2z̄3z4)+2<(cP k3,3z̄3z5)+2<(cP k4,3z̄4z5),

(2.7)

z∗Pz= τk11|z1|2 +(τk2,1 + iΘηk2,4)z̄2z1 +(τk3,1 + iΘ cP√
λ
ηk̄2,5)z̄3z1

+(τk4,1 + iΘηk̄2,2)z̄4z1 +(τk5,1 + iΘ cP√
λ
ηk̄2,3)z̄5z1 +(τk2,2 + i

√
ληk2,5)|z2|2

+(τk3,2 + i
√
ληk3,5)z̄3z2 +(τk4,2 + i λcP

ηk̄3,2)z̄4z2 +(τ cP√
λ
k̄4,3 + i

√
ληk̄3,3)z̄5z2

+(τk2,3 + i µcP
ηk2,4)z̄2z3 +(τk3,3 + i µ√

λ
ηk̄2,5)|z3|2 +(τk4,3 + i µcP

ηk̄2,2)z̄4z3
+(τk5,3 + i µ√

λ
ηk̄2,3)z̄5z3 + iΘηk1,1z̄1z4 +(iΘηk2,1 + i µcP

ηk2,3 +τk2,4)z̄2z4
+(iΘηk3,1 + i µcP

ηk3,3 +τ cP√
λ
k̄2,5)z̄3z4 +(iΘηk4,1 + i µcP

ηk4,3 +τ k̄2,2)|z4|2
+(iΘηk5,1 + i µcP

ηk5,3 +τ cP√
λ
k̄2,3)z̄5z4 +(i

√
ληk2,2 +τk2,5)z̄2z5

+(i
√
ληk3,2 +τk3,5)z̄3z5 +(i

√
ληk4,2 +τ

√
λ

cP
k̄3,2)z̄4z5 +(icP ηk̄4,3 +τ k̄3,3)|z5|2,

(2.8)
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for any z′=(z2,z3,z4,z5)T ∈C4 and z=(z1,z′)T . We now specialize the values of the
elements ki,j (i,j=1, . . . ,5) of K(τ,η); precisely for any τ =γ+ iρ, with γ≥0, and real
η such that |τ |2 +η2 =1, |τ | is sufficiently small and η ranges in a small neighborhood
V of ±1, we set

kj,j =h+χτ̄ , j=1,2,3;
k2,1 =k3,1 =k5,1 =γη, k4,1 =−iMη;
k2,3 =k2,5 =−

√
λργ

ΘcP
, k2,4 =−ργ

Θ ;
k3,2 =0, k3,5 =− µργ√

λΘcP
;

k4,2 =−A, k4,3 = iNη, k5,3 =−
√
λcP

µ A.

(2.9)

Here h,χ,A,M,N are positive constants that will be chosen later on in a suitable way.
The elements ki,j which are not listed above will be determined by positions (2.9)
themselves, according to (2.5). Replacing (2.9) into (2.7) gives

(z′)∗Σ2z
′=Φ(z′)−AQ(z′)+Rχ(z′), (2.10)

where

Φ(z′)=−
√
λργ
Θ |z2|2− µργ√

λΘ
|z3|2 +2<

(
−
√
λργ
Θ z̄2z3

)
+2<(

√
λhz̄2z4)

+2<
(
−
√
λργ
Θ z̄2z5

)
+2<(cPhz̄3z5)+2<(icPNηz̄4z5),

(2.11)

Q(z′)=
√
λ|z4|2 +

√
λc2P
µ

|z5|2, (2.12)

and

Rχ(z′)=2<(χ
√
λτ̄ z̄2z4)+2<(cPχτ̄ z̄3z5). (2.13)

As in the Ohkubo’s case treated in [1], let us introduce for every η 6=0 the vector space

H(η) :=
∑

ξ∈R(η,0)T +ReT
2

ξ 6=02

KerA(ξ),

where, hereafter, e1 =(1,0), e2 =(0,1). Concerning a 2D Friedrichs symmetric system
like (1.5), we see that, for any η 6=0, H(η) is an isotropic subspace of all matrices A(ξ)
and actually it does not depend on η (however these two properties would be false
in space dimension larger than 2); since in particular rankA2 =4, the dimension of
H(η) is not larger than 3. Since H(η) contains KerA2 =R×{04}, for any η 6=0 it
can be split as R×H1(η), where H1(η) is an isotropic subspace for both a2 and a2(η)
of dimension not larger than 2. In the case of the linear elasticity system a direct
computation shows that H(η)=H(e1)=R3×{02}, for η 6=0. Moreover we may check
that for any η 6=0 there is no vector U ∈H(η)⊥ other than U =05 such that

A((η,0)T +ξ2eT2 )U ∈H(η)⊥,

for non real ξ2 =−iσ. In view of the preceding properties, it can be shown that a
boundary matrix B=(02,B2) satisfies the (UKL) condition near the central points
(0,η), η 6=0, if, and only if,

C4 =KerB2⊕H1(η), (2.14)
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where H1(η) denotes both the real space and its complexification. We refer to [1]
(see Proposition 6.6 there) for the proof of (2.14) in the framework of a general
Friedrichs symmetric ibvp with characteristic boundary. Under the Ohkubo’s assump-
tion a2(η)≡04, we might also prove that H1(η)=Ker(a2,1(η)T ) as η 6=0 (see again
[1], §6.1.4 and Proposition 6.7); hence, because of Ker(a2,1(η)T )⊕⊥R(a2,1(η))=C4,
we should conclude that KerB2 may be represented as the set KerB2 ={p+q; p=
Dq, q∈R(a2,1(η))}, where D=D(η) is a given linear operator from R(a2,1(η)) to
Ker(a2,1(η)T ), depending smoothly and boundedly on η

|η| . Nevertheless, when the
Ohkubo’s assumption is removed, generally H1(η) becomes a proper subspace of
Ker(a2,1(η)T ); when η 6=0, for the elasticity system in the symmetric form (1.5) we
easily compute

Ker(a2,1(η)T )={(z2,z3,0,z5)T ; zj ∈C, j=2,3,5},
while

H1(η)={(z2,z3,0,0)T ; zj ∈C, j=2,3}.
Mimicking the analysis performed in [1] for the Ohkubo’s case and denoting byH1(η)⊥

the subspace of Ker(a2,1(η)T ) orthogonal to H1(η), we now provide the following
decomposition.

C4 =H1(η)⊕⊥H1(η)⊥⊕⊥R(a2,1(η)).

Therefore, in view of (2.14), for a boundary matrix B=(02,B2) satisfying the (UKL)
condition we get

KerB2 ={r+Dr; r∈H1(η)⊥⊕⊥R(a2,1(η))},
where D=D(η) is a given linear operator from H1(η)⊥⊕⊥R(a2,1(η)) to H1(η), de-
pending smoothly and boundedly on η

|η| . Coming back to the elasticity case, we have
H⊥

1 (η)={(0,0,0,z5); z5∈C}, so that KerB2 may be characterized as the set of vectors
of the form r+Dr, for r=(0,0,z4,z5)T spanning {02}×C2 and D=D(η) taking its
values in C2×{02}={(z2,z3,0,0)T , zj ∈C, j=2,3}. This allows us to conclude that
the quadratic form Q in (2.12) is positive definite in KerB2; indeed Q(z′)≥0 for
every z′, moreover for z′= r+Dr with r=(0,0,z4,z5), Q(z′)=0 implies r=0 then
z′= r+Dr=0. Thus there exists a positive constant ε such that

Q(z′)≥ ε|z′|2, z′∈KerB2. (2.15)

The constant ε may be chosen independent of η, for η belonging to a small neighbor-
hood V of ±1. On the other hand, the quadratic form Φ in (2.11) can be estimated
from above as

Φ(z′)≤ c∗|z′|2, (2.16)

where c∗>0 depends only on the constants h and N involved in (2.9), when |τ | is
sufficiently small and η ranges over V. More explicitly, assuming without loss of
generality 0≤γ,|ρ|,|η|≤1, we may choose c∗=max{3√λ/Θ+

√
λh,(µ+λ)/(

√
λΘ)+

cPh,
√
λh+cPN,

√
λ/Θ+cPh+cPN}. Finally we compute that

Rχ(z′)≤C1χ|τ ||z′|2,
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for C1 =max{cP ,
√
λ}. By adding the preceding estimates, we find that

(z′)∗Σ2z
′≤ (c∗−εA+C1χ|τ |)|z′|2, z′∈KerB2. (2.17)

For given positive constants h,N and δ∗, we may always find A>0 sufficiently large
so that c∗−εA<−δ∗; it is also clear that for any χ>0 we obtain c∗−εA+C1χ|τ |<
−δ∗+C1χ|τ |<− δ∗

2 , provided that |τ | is taken sufficiently small (that is |τ |<σ∗, for
a suitable threshold σ∗=σ∗(χ)). At this step we have so proved the following

Lemma 2.1. For given h,N,δ∗>0 there exists a constant A>0 such that for every
χ>0 there exists σ∗=σ∗(χ)>0 for which

(z′)∗Σ2z
′≤−δ

∗

2
|z′|2, z′∈KerB2, η∈V, |τ |<σ∗. (2.18)

The next step will be to make a useful choice of the constants h,N (and M) in (2.9)
in order that the corresponding K(τ,η) will satisfy an estimate such as (1.11). To this
end, we replace in (2.8) the expressions of ki,j given by (2.9) and take the real part
of z∗Pz, for an arbitrary vector z∈C5. First of all we observe that k1,1 =k2,2 =k3,3

(cf. (2.9)) yields

<(iΘηk̄2,2z̄4z1)+<(iΘηk1,1z4z̄1)=0,
<(i

√
ληk̄3,3z̄5z2)+<(i

√
ληk2,2z5z̄2)=0,

<(iµ/cP ηk̄2,2z̄4z3)+<(iµ/cP ηk3,3z4z̄3)=0.

From (2.9) we derive directly
√
λk3,5 = µ

cP
k2,4 and µ

cP
k5,3 =

√
λk4,2; hence we get also

<(i
√
ληk3,5z̄3z2)+<(iµ/cP ηk2,4z3z̄2)=0,

<(i
√
ληk4,2z̄4z5)+<(iµ/cP ηk5,3z4z̄5)=0.

Let us now evaluate the remaining terms of <(z∗Pz), arising from (2.8), and apply
repeatedly the Cauchy-Schwarz and Young inequalities. We have

<(τk1,1|z1|2)=(hγ+χ|τ |2)|z1|2;

<((τk2,1 + iΘηk2,4)z̄2z1)≥−1
2
γ2|η|(|z1|2 + |z2|2)

and analogously

<((τk3,1 + iΘ cP√
λ
ηk̄2,5)z̄3z1)≥− 1

2γ
2|η|(|z1|2 + |z3|2),

<((τk5,1 + iΘ cP√
λ
ηk̄2,3)z̄5z1)≥− 1

2γ
2|η|(|z1|2 + |z5|2);

<(τk4,1z̄4z1)≥−M2 |η|(χ1|τ |2|z1|2 +
1
χ1
|z4|2),

where χ1 is a given positive constant that will be suitably fixed later on. By similar
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computations we get also

<((τk2,2 + i
√
ληk2,5)|z2|2)=(hγ+χ|τ |2)|z2|2;

<((τk4,2z̄4z2)≥−A
2 (χ2|τ |2|z2|2 + 1

χ2
|z4|2);

<(τ cP√
λ
k̄4,3z̄5z2)≥− 1

2
cPN |η|√

λ
(χ3|τ |2|z2|2 + 1

χ3
|z5|2);

<(τk2,3z̄2z3)≥− 1
2

√
λ|ρ|γ
ΘcP

|τ |(|z2|2 + |z3|2);
<((τk3,3 + i µ√

λ
ηk̄2,5)|z3|2)=(hγ+χ|τ |2)|z3|2;

<(τk4,3z̄4z3)≥− 1
2N |η|(χ4|τ |2|z3|2 + 1

χ4
|z4|2);

<((τk5,3 + i µ√
λ
ηk̄2,3)z̄5z3)≥− 1

2

√
λcPA
µ (χ5|τ |2|z3|2 + 1

χ5
|z5|2)− 1

2
µ|ρ|γ
ΘcP

|η|(|z3|2 + |z5|2);
<((iΘηk2,1 + i µcP

ηk2,3 +τk2,4)z̄2z4)≥− 1
2Θη2(γ2|z2|2 + |z4|2)

− 1
2

√
λµ|ρ|γ
Θc2P

|η|(|z2|2 + |z4|2)− 1
2
|ρ|γ
Θ |τ |(|z2|2 + |z4|2);

<((iΘηk3,1 +τ cP√
λ
k̄2,5)z̄3z4)≥− 1

2Θη2(γ2|z3|2 + |z4|2)− 1
2
|ρ|γ
Θ |τ |(|z3|2 + |z4|2);

<((iΘηk4,1 + i µcP
ηk4,3 +τ k̄2,2)|z4|2 =[(ΘM− µ

cP
N)η2 +hγ+χ(γ2−ρ2)]|z4|2;

<(iΘηk5,1 +τ cP√
λ
k̄2,3)z̄5z4)≥− 1

2Θγη2(|z4|2 + |z5|2)− 1
2
|ρ|γ
Θ |τ |(|z4|2 + |z5|2);

<(τk2,5z̄2z5)≥− 1
2

√
λ|ρ|γ
ΘcP

|τ |(|z2|2 + |z5|2);
<(τk3,5z̄3z5)≥− 1

2
µ|ρ|γ√
λcP Θ

|τ |(|z3|2 + |z5|2);
<((icP ηk̄4,3 +τ k̄3,3)|z5|2)=(cPNη2 +hγ+χ(γ2−ρ2))|z5|2.

In the estimates listed above, χ2,χ3,χ4,χ5 are positive constants, to be precised later,
with the same meaning as χ1. This leads to

<(z∗Pz)≥ c1|z1|2 +c2|z2|2 +c3|z3|2 +c4|z4|2 +c5|z5|2, (2.19)

where cj = cj(τ,η) (j=1, . . . ,5) are determined as follows

c1(τ,η)=hγ+χ|τ |2− 3
2
γ2|η|− 1

2
χ1M |η||τ |2; (2.20)

c2(τ,η)=hγ+χ|τ |2− 1
2γ

2|η|− 1
2Aχ2|τ |2− 1

2
cPNχ3|η|√

λ
|τ |2−

√
λ|ρ|γ
ΘcP

|τ |
− 1

2Θη2γ2− 1
2

√
λµ|ρ|γ
Θc2P

|η|− 1
2
|ρ|γ
Θ |τ |;

(2.21)

c3(τ,η)=hγ+χ|τ |2− 1
2γ

2|η|− 1
2

√
λ|ρ|γ
ΘcP

|τ |− 1
2Nχ4|η||τ |2− 1

2

√
λcPAχ5
µ |τ |2

− 1
2
µ|ρ|γ
ΘcP

|η|− 1
2Θη2γ2− 1

2
|ρ|γ
Θ |τ |− 1

2
µ|ρ|γ√
λcP Θ

|τ |; (2.22)

c4(τ,η)=(ΘM− µ
cP
N)η2 +hγ+χ(γ2−ρ2)− 1

2
M
χ1
|η|− 1

2
A
χ2
− 1

2
N
χ4
|η|

−Θη2− 1
2

√
λµ|ρ|γ
Θc2P

|η|− 3
2
|ρ|γ
Θ |τ |− 1

2Θη2γ;
(2.23)

c5(τ,η)= cPNη
2 +hγ+χ(γ2−ρ2)− 1

2γ
2|η|− 1

2
cPN |η|√
λχ3

− 1
2

√
λcPA
µχ5

− 1
2
µ|ρ|γ
ΘcP

|η|
− 1

2Θη2γ− 1
2
|ρ|γ
Θ |τ |− 1

2

√
λ|ρ|γ
ΘcP

|τ |− 1
2
µ|ρ|γ√
λcP Θ

|τ |.
(2.24)

We derive now suitable estimates of cj(τ,η), j=1,...5, for η belonging to a small neigh-
borhood V of ±1 and |τ | sufficiently small such that |τ |2 +η2 =1; actually, evaluating
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cj(τ,±1) for j=1, . . . ,5 will be enough, in view of the continuity of the expressions
(2.20)-(2.24). Remembering that γ≥0, we obtain for c4, c5

c4(τ,±1)≥ (ΘM− µ
cP
N)−Θ− 1

2
M
χ1
− 1

2
A
χ2
− 1

2
N
χ4

+χ(γ2−ρ2)− 1
2

√
λµ|ρ|γ
Θc2P

− 3
2
|ρ|γ
Θ |τ |− 1

2Θγ;
(2.25)

c5(τ,±1)≥ cPN− 1
2
cPN√
λχ3

− 1
2

√
λcPA
µχ5

+χ(γ2−ρ2)− 1
2γ

2− 1
2
µ|ρ|γ
ΘcP

− 1
2Θγ

− 1
2
|ρ|γ
Θ |τ |− 1

2

√
λ|ρ|γ
ΘcP

|τ |− 1
2
µ|ρ|γ√
λcP Θ

|τ |.
(2.26)

Inequality (2.25) leads us to choose the constants M,N >0 so that

C̃ :=Θ(M−1)− µ

cP
N >0. (2.27)

Once M,N have been fixed, for given h>0 and δ∗>0 we may also find a positive
constant A so that estimate (2.18) of Lemma 2.1 is fulfilled by Σ2 for any χ>0,
provided |τ | is small enough. Next, we can choose χj , j=1,...5, large enough so that

ν4 :=2C̃− M
χ1
− A
χ2
− N
χ4
>0,

ν5 :=2cPN− cPN√
λχ3

−
√
λcPA
µχ5

>0.
(2.28)

In this way we get for c4(τ,±1),c5(τ,±1)

c4(τ,±1)≥ ν4
2 +χ(γ2−ρ2)− 1

2

√
λµ|ρ|γ
Θc2P

− 3
2
|ρ|γ
Θ |τ |− 1

2Θγ,

c5(τ,±1)≥ ν5
2 +χ(γ2−ρ2)− 1

2γ
2− 1

2
µ|ρ|γ
ΘcP

− 1
2Θγ− 1

2
|ρ|γ
Θ − 1

2

√
λ|ρ|γ
ΘcP

|τ |− 1
2
µ|ρ|γ√
λcP Θ

|τ |;
(2.29)

since all the terms different from ν4/2,ν5/2, involved in the right-hand sides of (2.29),
are O(|τ |) we may conclude that

c4(τ,±1)>
ν4
4
, c5(τ,±1)>

ν5
4
, (2.30)

whatever is χ>0, provided that |τ | is sufficiently small. We now turn to the coeffi-
cients cj , j=1,2,3, for which the following estimates may be obtained

c1(τ,±1)≥γ(h− 3
2
γ)+(χ− 1

2
χ1M)|τ |2; (2.31)

c2(τ,±1)≥ (h− 1
2γ−

√
λ|ρ|

ΘcP
|τ |− 1

2Θγ− 1
2

√
λµ|ρ|
Θc2P

− 1
2
|ρ|
Θ |τ |)γ

+(χ− 1
2Aχ2− 1

2
cPNχ3√

λ
)|τ |2; (2.32)

c3(τ,±1)≥ (h− 1
2γ− 1

2

√
λ|ρ|

ΘcP
|τ |− 1

2
µ|ρ|
ΘcP

− 1
2Θγ− 1

2
|ρ|
Θ |τ |− 1

2
µ|ρ|√
λcP Θ

|τ |)γ
+(χ− 1

2Nχ4− 1
2

√
λcPAχ5
µ )|τ |2.

(2.33)

Thus if we choose a positive χ such that

χ>
1
2

max

{
χ1M,Aχ2 +

cPNχ3√
λ

,Nχ4 +

√
λcPAχ5

µ

}
, (2.34)
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provided that γ and |ρ| (that is |τ |) are sufficiently small, we get

cj(τ,±1)>
h

2
γ, j=1,2,3. (2.35)

Therefore from (2.19) we obtain

<(z∗Pz)>
h

2
γ(|z1|2 + |z2|2 + |z3|2)+

ν4
4
|z4|2 +

ν5
4
|z5|2>C∗γ|z|2, (2.36)

for every z∈C5 and (τ,η) in a small neighborhood of (0,±1) on the unit hemi-sphere
|τ |2 +η2 =1, <τ =γ≥0; here C∗ :=min{h2 , ν44 , ν54 }>0 is independent of γ,ρ,η. This
last estimate just gives inequality (1.11). To be more clear, let us summarize the basic
steps in the choice of the constants h,χ,A,M,N appearing in (2.9).

• Firstly, we choose the positive constants M,N in such a way that (2.27) is
satisfied.

• Chosen also δ∗,h>0, we find a constant A>0 for which c∗−εA<−δ∗ holds;
here the constant c∗, involved in (2.16), is a known positive function of the
previously fixed constants N and h, while ε, involved in (2.15), depends only
on µ, λ when η runs through a small neighborhood of ±1.

• After estimating <(z∗Pz) by means of (2.19), we choose the positive numbers
χj , j=1,...5, involved in (2.20)-(2.24), in such a way that inequalities (2.28),
and consequently (2.29), are true.

• After giving estimates (2.31)-(2.33), we take χ fulfilling (2.34).
• Lastly, by suitably restricting γ, |ρ| (that is |τ |) and also, if necessary, the

neighborhood of ±1 which η belongs to, we obtain (2.18) of Lemma 2.1;
moreover we find the inequalities (2.30) and (2.35), giving, together with
(2.19), the estimate (1.11).

The matrix valued function K(τ,η) that we have built near the central points (0,±1)
on the unit hemi-sphere |τ |2 +η2 =1, <τ ≥0 takes the following form

K(τ,η)=


h+χτ̄ 0 0 0 0
γη h+χτ̄ −

√
λργ

ΘcP
−ργ

Θ −
√
λργ

ΘcP

γη 0 h+χτ̄ −ργ
Θ − µργ√

λΘcP−iMη −A iNη h+χτ 0
γη − cP√

λ
iNη −

√
λcPA
µ −ργ

Θ h+χτ

,

where h,χ,A,M,N are positive constants to be fixed as was previously explained.
Once a Kreiss symmetrizer K(τ,η) of (1.8) has been made, by usual computations
(for which we address to [1], Chapter 4), we find that any function u∈C∞(R2×R),
with compact support in R

2

+×R, satisfies for every T ∈R and γ>0

e−2γT ‖u(T )‖L2 +γ
∫ ∫
R2

+×R

e−2γt|u(x1,x2,t)|2dx1dx2dt+
∫ ∫
R×R

e−2γt|A2u(x1,0,t)|2dx1dt

≤C
 1
γ

∫ ∫
R2

+×R

e−2γt|Lu(x1,x2,t)|2dx1dx2dt+
∫ ∫
R×R

e−2γt|Bu(x1,0,t)|2dx1dt

 ,
(2.37)

where the constant C does not depend on γ,T and u. By a duality argument relying
on the previous estimates for an “adjoint” ibvp, one shows the existence of a solution
to the ibvp (1.8) in the weighted space L2

γ(R
2
+×R) for every γ >0. Let us recall that,
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for a given positive γ, L2
γ(R

2
+×R) is the space of all measurable functions u(x1,x2,t)

for which the norm ‖u‖2γ :=
∫ ∫

R2
+×R

e−2γt|u(x1,x2,t)|2dx1dx2dt is finite. The unique-

ness of the solution into the space L2(R2
+×(0,T )), for a finite T >0, then follows by

arguing directly on estimates (2.37). Finally, the a priori estimates (1.9) are derived
from (2.37) themselves, by a density argument. We refer to [1] (see Chapter 4, §4
there) for a detailed proof of the analogous to Theorem 1.1 in the non-characteristic
case.
As a concluding remark, let us observe that Ohkubo also studied in [7] the Sobolev
regularity of solutions to an L2-well posed symmetric ibvp, with characteristic bound-
ary, under the aforementioned assumption a2(η)≡0 (cf. Theorem 2 in [7]); in the case
treated here, it is not clear whether (and under what additional assumptions) an anal-
ogous regularity result might be still valid.

3. The linear elasticity system in a bounded domain
Let Ω be a bounded open subset of R2 lying (locally) on one side of its smooth

boundary ∂Ω=Γ. We consider the initial boundary value problem (ibvp)

Lu(x,t)=f(x,t), x∈Ω,t>0 (3.1)

Bu(x,t)=g(x,t), x∈Γ,t>0, (3.2)

u(x,0)=a(x), x∈Ω, (3.3)

where L is the linear partial differential operator defined by (1.5)-(1.7), while
f(x,t),g(x,t) and a(x) are given smooth functions. Let us denote by ν(x)=
(ν1(x),ν2(x))T the unit outward normal vector to any point x of the boundary
Γ. In view of (1.6), (1.7) an explicit computation gives that A(ξ) has eigenval-
ues 0,±cP |ξ|,±

√
λ|ξ|, for every ξ. Since |ν(x)|=1 for all x∈Γ, it follows that the

boundary matrix A(ν(x)) has real eigenvalues 0,±cP ,±
√
λ; hence the boundary Γ is

characteristic with constant rank, namely

rankA(ν(x))=4, x∈Γ. (3.4)

Note that, since the eigenvalues of A(ξ) depend on ξ only through its norm, actually
the boundary Γ is uniformly characteristic in the sense of Majda-Osher [5]; indeed,
by considering an extension of the unit outward normal ν(x) to a C1 unit vector
field defined in a neighborhood of Γ, the eigenvalues of A(ν(x)) are constant near Γ.
In the boundary condition (3.2), B=B(ν(x)) is assumed to be a 2×5 real matrix,
smoothly dependent on the unit outward normal ν(x), such that rankB(ν(x))=2 for
all boundary points x∈Γ (2 is the number of incoming characteristics of (3.1)). As
in section 2, we assume the reflexivity property

KerA(ν(x))⊂KerB(ν(x)), (3.5)

for every x∈Γ. Lastly, we require that the boundary matrix B satisfies the (UKL)
condition. The following counterpart of Theorem 1.1 will be proved here.

Theorem 3.1. Let us consider the ibvp (3.1)-(3.3); let the boundary matrix B=B(ν)
satisfy the (UKL) condition. Then for every data f ∈L2(Ω×(0,T )), g∈L2(Γ×(0,T ))
and a∈L2(Ω), with arbitrary T >0, there exists one, and only one, solution u∈L2(Ω×
(0,T )) of (3.1)-(3.3) such that:
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a. u∈C([0,T ];L2(Ω));
b. A(ν)u admits a trace γ0A(ν)u on the boundary Γ of Ω which is of class
L2(Γ×(0,T )).

Finally, for any positive real number γ sufficiently large, the following a priori estimate
holds true

e−2γT ‖u(T )‖2L2 +‖u‖2γ,T ≤C
(
‖a‖2L2 +

∫ T

0

e−2γt

(
1
γ
‖f(t)‖2L2 +‖g(t)‖2L2

)
dt

)
, (3.6)

where the constant C>0 does not depend on f,g,a and γ,T . In (3.6) ‖.‖L2 denotes
the norm in either L2(Ω) or L2(Γ) and

‖u‖2γ,T :=
∫ T

0

∫
Γ

e−2γt|γ0A(ν)u(x,t)|2dxdt+γ
∫ T

0

∫
Ω

e−2γt|u(x,t)|2dxdt. (3.7)

We follow here the usual approach consisting of reducing the original ibvp into a
finite number of ibvps on the half-plane, by use of a smooth partition of unity and
local changes of coordinates.
Before starting to reduce our problem, it is convenient to focus on some relevant
invariance properties displayed by the linear elasticity system (3.1). Actually, this
system is invariant under translations of R2. It is even worthwhile to remark that
(3.1) is invariant under rotations of R2, provided that a rotation is coupled with an
appropriate linear change of unknowns. In order to see that, for every unit vector
ζ=(ζ1,ζ2)T let U =U(ζ) be a real orthogonal matrix such that

U

(
ξ

|ξ|
)∗
A(ξ)U

(
ξ

|ξ|
)

= |ξ|diag(0,+
√
λ,−

√
λ,+cP ,−cP ), ξ 6=0; (3.8)

in the right-hand side of (3.8) diag(0,+
√
λ,−√λ,+cP ,−cP ) stands, as usual, for the

diagonal matrix with diagonal entries equal to 0,±√λ,±cP respectively. Observing
that A2 =A((0,1)T ), from (3.8) we straightforwardly derive

|ξ|T
(
ξ

|ξ|
)
A2T

(
ξ

|ξ|
)∗

=A(ξ), ξ 6=0, (3.9)

where for every unit vector ζ we have set

T (ζ) :=U(ζ)U((0,1)T )∗. (3.10)

By an explicit computation, we find for |ζ|=1

T (ζ)=


ζ2
2 − µ

c2P
ζ2
1

Θ√
λ
ζ1ζ2

Θ
cP
ζ2
1 0 0

− Θ√
λ
ζ1ζ2 ζ2

2 −ζ2
1

2
√
λ

cP
ζ1ζ2 0 0

Θ
cP
ζ2
1 − 2

√
λ

cP
ζ1ζ2 ζ

2
2 + µ

c2P
ζ2
1 0 0

0 0 0 ζ2 ζ1
0 0 0 −ζ1 ζ2

 . (3.11)

Moreover, for every nonzero ξ=(η,ξ2)T we compute that

|ξ|T
(
ξ

|ξ|
)
A1T

(
ξ

|ξ|
)∗

=A((ξ2,−η)T )= ξ2A1−ηA2. (3.12)
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Let us also remark that for every unit vector ζ=(ζ1,ζ2)T we get T (ζ1,ζ2)∗=
T (−ζ1,ζ2). Now we come back to the ibvp (3.1)-(3.3) and take an arbitrary rota-
tion of R2; in fact, due to the translation invariance of the problem, we may always
assume that the origin of R2 is the center of the rotation. Thus the equations of the
rotation become (

X1

X2

)
=
(
θ̃2 −θ̃1
θ̃1 θ̃2

)(
x1

x2

)
(3.13)

where the real numbers θ̃1, θ̃2 satisfy θ̃21 + θ̃22 =1. Let us set θ̃=(θ̃1, θ̃2)T , θ̃⊥ :=
(θ̃2,−θ̃1)T ; if u=u(x,t) solves (3.1)-(3.3), then U(X,t) :=u(R̃∗X,t) must solve the
differential system in the rotated space variables X=(X1,X2)T

∂U

∂t
+A(θ̃⊥)

∂U

∂X1
+A(θ̃)

∂U

∂X2
= f̃(X,t), X ∈ Ω̃,t>0, (3.14)

together with the new boundary and initial conditions

B(ν(R̃∗X))U(X,t)= g̃(X,t), x∈ Γ̃,t>0,
U(X,0)= ã(X), X ∈ Ω̃;

(3.15)

here we have set for brevity

R̃ :=
(
θ̃2 −θ̃1
θ̃1 θ̃2

)
,

f̃(X,t) :=f(R̃∗X,t), g̃(X,t) :=g(R̃∗X,t), ã(X) :=a(R̃∗X), while Ω̃ := R̃(Ω) and Γ̃=
R̃(Γ) are the rotated open bounded domain and its boundary respectively. Since
from (3.12) and (3.9) we derive respectively

T (θ̃)∗A(θ̃⊥)T (θ̃)=A1

T (θ̃)∗A(θ̃)T (θ̃)=A2,

multiplying (3.14) on the left by T (θ̃)∗ yields that the new function V (X,t)=
T (θ̃)∗U(X,t) must solve the original system (3.1) in the new space variables X, that
is

∂V

∂t
+A1

∂V

∂X1
+A2

∂V

∂X2
=T (θ̃)∗f̃(X,t), X ∈ Ω̃,t>0. (3.16)

The corresponding boundary and initial conditions for V become respectively

B(ν(R̃∗X))T (θ̃)V (X,t)= g̃(X,t), X ∈ Γ̃,t>0 (3.17)

and

V (X,0)=T (θ̃)∗ã(X), X ∈ Ω̃. (3.18)

The resulting ibvp (3.16)-(3.18) keeps the main features of the original one (3.1)-
(3.3). Firstly, let us remark that the unit outward normal vector ν̃(X) to the rotated
boundary Γ̃, at the point X= R̃x, can be expressed in terms of the outward normal
ν to the original boundary Γ by formula

ν̃(X)= R̃ν(R̃∗X). (3.19)
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Then the matrix involved in the boundary condition (3.17) can be rewritten as

B(ν(R̃∗X))T (θ̃)= B̃(ν̃(X)), (3.20)

where B̃(.) :=B(R̃∗.)T (θ̃) is smoothly dependent on ν̃; moreover, it is clear that the
rank of B̃(ν̃(X)) is maximal, for anyX ∈ Γ̃, since T (θ̃) is an orthogonal matrix. Lastly,
using (3.19) we compute

A(ν̃(X))=T (θ̃)∗A(ν(R̃∗X))T (θ̃); (3.21)

hence (3.4) and (3.5) easily imply

rankA(ν̃(X))=4,
KerA(ν̃(X))=KerA(ν(R̃∗X))T (θ̃)⊂KerB̃(ν̃(X)),

(3.22)

for every X ∈ Γ̃.
Let us fix now an arbitrary point x̄ of Γ and choose a small neighborhood W of x̄;
due to the assumptions made about the boundary Γ itself, Γ∩W can be represented
by an equation x2 =γ(x1) for some smooth function γ, and we may assume that
x2>γ(x1) holds true in Ω∩W. We may always assume that γ(0)=γ′(0)=0; indeed,
denoting by ν̄=(ν̄1, ν̄2)T the unit outward normal to Γ at x̄, this can be obtained by
translating the origin of R2 in x̄, then performing a rotation around x̄ that changes the
orthonormal basis {(−ν̄2, ν̄1)T ,(−ν̄1,−ν̄2)T } into the canonical basis {(1,0)T ,(0,1)T }
and passing to the corresponding problem (3.16)-(3.18) (where now θ̃ is −(ν̄1, ν̄2)T );
however, later on we will always identify the starting ibvp (3.1)-(3.3) with the one
obtained under the aforesaid rotation. Let V be a small neighborhood of the origin
in R2; we define a transformation x=ψ(y) on V by setting

ψ1(y1,y2)=y1−ν1(y1,γ(y1))y2,
ψ2(y1,y2)=γ(y1)−ν2(y1,γ(y1))y2. (3.23)

For y1 sufficiently small, the outward normal vector ν((y1,γ(y1))) to the point
(y1,γ(y1)) is explicitly given by

ν((y1,γ(y1)))=ν(y1)=
1

(1+γ′(y1)2)
1
2

(γ′(y1),−1)T . (3.24)

Let us observe also that ψ(0)=0. Since the Jacobian of ψ, evaluated at 0, is equal to
1 provided that V is taken sufficiently small, ψ defines a diffeomorphism from V onto
an open set ψ(V)=:U ⊆W; let us denote by φ the inverse transformation of ψ. We
check that φ(Γ∩U)={y2 =0}∩V and φ(Ω∩U)={y2>0}∩V.
We are now able to transform the ibvp (3.1)-(3.3) into a family of problems in the
half-plane. Due to the compactness, we can cover Ω by a finite family of open sets
{Uj}lj=0 such that Uj ∩Γ 6=∅, j=1,...,l and U0⊂Ω. Next, we choose a partition of

unity {χj}lj=0, subordinated to the covering {Uj}lj=0, such that
l∑

j=0

χj =1 over Ω and

χj≥0, j=0,...,l. For every j=1,...,l, let ψj =(ψj1,ψ
j
2) be the diffeomorphism from

{y2≥0}∩V onto Ω∩Uj defined by equations (3.23) (where the equation x2 =γ(x1)
has been replaced with the equation x2 =γj(x1) of the piece of boundary Γ∩Uj) and
φj =(φj1,φ

j
2) the inverse transformation. For the sake of convenience, we denote also
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by φ0 a translation of R2 mapping U0 into φ0(U0)⊆V0 :={y : y1>δ,|y|< 1
δ }, for some

small δ>0, with inverse map ψ0.
Hereafter, we will set ṽ(y)=v(ψj(y)) for any fixed j=0,...,l and all functions v=v(x)
defined on Ω∩Uj . Let u=u(x,t) be a solution to (3.1)-(3.3); for every j=0,...,l, we
set

uj =uj(y,t)= χ̃ju(y,t). (3.25)

We have that suppuj⊂{y2≥0}∩V, j=1,...,l, and suppu0⊂V0.
For each index j=1,...,l we find that uj must solve an ibvp in the half-plane such as

Ljuj(y,t)=f j(y,t), y1∈R, y2,t>0,
Bjuj(y1,0,t)=gj(y1,t), y1∈R, t>0,
uj(y,0)=aj(y), y1∈R, y2>0.

(3.26)

Here Lj is the first order linear partial differential operator

Lj :=
∂

∂t
+Aj1

∂

∂y1
+Aj2

∂

∂y2
, (3.27)

with variable coefficients

Aji =Aji (y) :=A(˜∇xφ
j
i (y)) i=1,2, (3.28)

where we have set for brevity ∇x :=
(

∂
∂x1

, ∂
∂x2

)T
. Furthermore

Bj =Bj(y1) :=B(ν(ψj(y1,0))) (3.29)

and

f j(y,t) := χ̃jf(y,t)+A(∇̃xχj)ũ(y,t),
gj(y1,t) := χ̃jg(y1,0,t),
aj(y)= χ̃ja(y).

(3.30)

For every j=1,...,l, (3.26) is a characteristic ibvp in the half-plane, since of course
rankAj2(y)=4. From equations (3.23) (with γ replaced by γj) we compute that, for
y2 =0, the Jacobian Jψj (y1,0) of the transformation ψj is equal to (1+γ′j(y1)

2)
1
2 ;

using also (3.24) and the inverse mapping differentiation formulae we get

ν(ψj(y1,0))=−∇̃xφ2(y1,0)=−Jψ(y1,0)∇̃⊥x φ1(y1,0), (3.31)

where ∇⊥x :=
(
− ∂
∂x2

, ∂
∂x1

)T
. In view of (3.31), (3.5) yields the reflexivity property for

(3.26)

KerAj2(y1,0)=KerA(ν(ψj(y1,0)))⊂KerBj(y1). (3.32)

Correspondingly to χ0, we also find that u0 must solve the pure Cauchy problem in
R2

Lu0(y,t)=f0(y,t), y∈R2,t>0,
u0(y,0)=a0(y), y∈R2,

(3.33)
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where L= ∂
∂t +A1

∂
∂y1

+A2
∂
∂y2

is just the differential operator involved in the original
system (3.1), while the data f0 and a0 are defined respectively by

f0(y,t) := χ̃0f(y,t)+A(∇̃xχ0)ũ(y,t), a0(y)= χ̃0a(y). (3.34)

Summing up the preceding computations, by localization and flattening of the bound-
ary Γ of the original ibvp (3.1)-(3.3), we are reduced to solve l characteristic ibvps in
R2

+

Ljv(y,t)=f j(y,t), y1∈R, y2,t>0,
Bjv(y1,0,t)=gj(y1,t), y1∈R, t>0,
v(y,0)=aj(y), y1∈R, y2>0,

(3.35)

with operators Lj ,Bj and data f j ,gj ,aj defined by (3.27)-(3.29) and (3.30) respec-
tively, and the Cauchy problem in R2

Lv(y,t)=f0(y,t) y∈R2,t>0,
v(y,0)=a0(y), y∈R2,

(3.36)

with f0,a0 defined by (3.34).
Actually the above Cauchy problem is strongly L2-well posed (in fact it is well posed
in every Sobolev space Hs, s∈R), due to the strict hyperbolicity of L.
Now we focus on the construction of a symbolic Kreiss symmetrizer for the vari-
able coefficients ibvps (3.35), in order to get an L2-well posedness result for each of
them; this will be done starting from the dissipative symmetrizer that we already
found in the constant coefficient case. For simplicity, hereafter we will drop the index
j from the operators Lj ,Bj and the data f j ,gj ,aj in (3.35). Since the data f,g,a
vanish outside some small neighborhood {y2≥0}∩V, actually we are looking for
a smooth function K̃ :{y2≥0}∩V×{(τ,η)∈C×R : <τ ≥0, |τ |+ |η| 6=0}→M5×5(C),
fulfilling the next properties:

i. for every y∈{y2≥0}∩V, <τ ≥0 and η∈R with |τ |+ |η| 6=0, the matrix
Σ(y,τ,η) :=K(y,τ,η)A2(y) is Hermitian;

ii. Σ(y,τ,η) must be non positive on KerB(y1) and its restriction to KerB(y1)
vanishes only on KerA2(y1,0), uniformly in (y1,τ,η);

iii. For P (y,τ,η) :=K(y,τ,η)(τI5 + iηA1(y)) there exists a positive constant c0
such that:

<P (y,τ,η)≥ c0(<τ)I5, ∀(y,τ,η) : y∈{y2≥0}∩V,<τ ≥0, |τ |+ |η| 6=0,

where <P := 1
2 (P +P ∗).

Since the matrix valued functions A1(y),A2(y) converge to the matrices A1 =
A1(0),A2 =A2(0) respectively, as long as y→0, and putting ξ= ∇̃xφ2 into (3.9) gives

A2(y)= |∇̃xφ2(y)|T̃ (y)A2T̃ (y)∗, (3.37)

where we have set T̃ (y) :=T

(
∇̃xφ2(y)

|∇̃xφ2(y)|

)
, we are led to define

K̃(y,τ,η) :=
1

| ˜∇xφ2(y)|
T̃ (y)K(τ,η)T̃ (y)∗. (3.38)
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Here K=K(τ,η) is the dissipative Kreiss symmetrizer that we have constructed for
the constant coefficient case, taking B(0) as boundary matrix; notice that (3.32)
yields KerA2 =R×{04}⊂KerB(0), thus B(0)=(02,B2) with rankB2 =2. It is clear
that K̃(y,τ,η)A2(y)= T̃ (y)K(τ,η)A2T̃ (y)∗ is Hermitian since the same is true for
K(τ,η)A2. Furthermore the function y 7→ K̃(y,τ,η) is smooth and converges to
K̃(0,τ,η)=K(τ,η) uniformly with respect to τ,η, on the unit hemi-sphere |τ |2 +η2 =1,
<τ ≥0, and then on the whole of {(τ,η)∈C×R;<τ ≥0, |τ |+ |η| 6=0} (recall that
K(τ,η) may be constructed as a homogeneous function of degree 0 in (τ,η)). Since
properties ii, iii are fulfilled by K̃(y,τ,η) at y=0, by shrinking the neighborhood V
(if it is necessary), the same properties hold true in {y2≥0}∩V due to the continuity
of K̃ with respect to y.
Adapting to the present framework the same arguments used in the constant coeffi-
cients case, by use of the above Kreiss symmetrizer and the pseudo-differential calculus
we get the strong L2-well posedness of (3.35). Hence the L2-well posedness of the
original ibvp (3.1)-(3.3) easily follows and the proof of Theorem 3.1 is complete.
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