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MULTIPLE TIME SCALE DYNAMICS IN COUPLED
GINZBURG-LANDAU EQUATIONS*

FANGHUA LINT AND TAI-CHIA LIN#

Abstract. Using a rather simple model of coupled, time-dependent Ginzburg-Landau equations
with two order parameters, we demonstrate that the total Hamiltonian energy of the system contains
at least three levels describing point vortices, domain walls and configurations. The global in time
dynamics contain then also at least three different time scales for nontrivial motions of domain
walls, boundaries of domain walls (fractional degree vortices) and paired vortices. In particular, we
rigorously show, after an initial time period of adjusting, the domain walls start to move according
the motion by the mean-curvature that straighten out the domain walls while the boundaries of such
domain walls are essentially fixed. After this motion is completed, the fractional degree vortices
begin to move at the next time scale. The motion is relatively simple as it is of constant speed and
toward each other to form vortex pairs. Finally, these vortex pairs may move in the final time scale
very much like the ordinary vortices in a single time-dependent Ginzburg-Landau equation.

1. Introduction
In this paper, we study a simple model problem for the time-dependent, coupled
Ginzburg-Landau equations with two complex order-parameters. More precisely, we
consider
)\e gut A’U,—F (1 - |u|2)u—£(u U)Uv
(1.1)
)\e Evt A’U+ (]‘ - |v|2)v—§(u-v)u,
with the Neumann boundary conditions
Ou=0,v=0 (1.2)

on the boundary 952, where € is a bounded smooth domain in R?, and u and v
are complex-valued functions. Hereafter, (a - b) is defined as (a*b + ab*) for all
a,b € [, where the asterisk denotes the complex conjugate. We shall always assume
that parameters € and ¢ satisfy:

1
1<<£<<10g; (1.3)

Also Ac¢ > 0 is a proper scaling parameter which will be chosen in various cases.
The system (1.1) can be written as

40 O0FE ¢(u,v)
12 = et )
ce (v 3(u, v)
that is, a gradient flow of the energy functional E. ¢ defined by
1
Bocluw) = [ 5 [19uf + 7o) (1.4)
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672 MULTIPLE TIME SCALE DYNAMICS

Our study of (1.1) with the Hamiltonian energy given by (1.4) is motivated by physics
literature (cf. [5], [22]) for two superconducting phases in zero field that may contain
many interesting new effects and phenomena. In the absence of magnetic fields, the
free energy for such superconductors takes the form

F(ni,me2) = /Q Ki(|0x m[* + [0y n2|?) + K2(102 12| + 10y m[*) + fpot (1, m2)
+K3 (0p 0y m2 + c.c.) + K4 (0 50y m + c.c.) dz dy,,

(1.5)
for n; and n, are complex-valued order parameters, where K;,j =1,--- ,4 are mate-
rial constants and the asterisk denotes the complex conjugate. Besides,

fpor(mym2) = —ao (Im|* + [n2l?) + a1 (Im|* + [n2]*)? (1.6)

+az (nfn2 — mn3)? + as|m? |n2]?

Y

where o;’s are constants. In a simple situation with two component order parameters
ni,t = 1,2, the expression (1.5) from traditional Ginzburg-Landau theory agrees quite
well with that constructed from an another group-theoretic argument (cf. [19] pp.277).

To capture some new interesting phenomena described by (1.5) and its associated
flow, we assume in this paper that K1 = Ko = K = %, Ks = Ky =0, a9 =
ﬁ, ap = ﬁ, g = %f, a3 = 4as — 2a;. Under these particular choices of material
constants, we lead to (1.1). Even with such specific choices of material constants,
we would like to point out that our choices of parameters remain to verify as > 0,
ag < das, 4(a; — a) + a3 > 0. It is apparently important that these parameters
stay in the region so-called time-reversal symmetry breaking state which leads to
many phenomena unconventional to traditional superconductors. In conventional
superconductors, the phase winding around a vortex center is an integer multiple of 27,
and the winding numbers of vortices are integers. However, vortices with a fractional
winding number % have been predicted to occur in heavy-fermion superconductors (cf.
[6]) and have recently been identified in high-T, superconducting rings on tricrystal
substrate geometries (cf. [9]). It is known to physicists, vortices for unconventional
superconductors generically have a non-universal flux quantum due to the structure of
domain walls. Such a structure often makes vortices become fractional degree vortices,
and the winding number of each vortex is a multiple of a half, see e.g. [18] and [[19],
pp. 285-287].

From [17], domain walls occupied with strongly pinned fractional degree vortices,
represent efficient barriers for vortex motion and thus prevent relaxation towards equi-
librium. However, the interaction of the motion of domain walls and the dynamical
law of fractional degree vortices is still unclear. The main purpose of this paper is
to present rigorous proofs (even though they could be at a rather simple and specific
situation) how such domain walls and fractional degree vortices can be formed, and
how they evolve in time according to the system (1.1) at the asymptotic limits when
parameters 1 << £ << log % We derive three time scales for the motion of domain
walls and fractional degree vortices. In the first time scale of order O (\/Z), curved
domain walls do a motion by the mean curvature while fractional degree vortices
located at the boundaries of domain walls are essentially static. This is consistent
with the experimental observation of [4]. Then in the second time scale of order
0] ((1og %) / \/E), domain walls have become line segments and fractional degree vor-
tices start to move toward each other in pairs. Eventually, in the third time scale of
order O (log %), fractional degree vortices have recombined in pairs and behave like
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conventional vortices. Such a new dynamical phenomenon is different from recombin-
ing fractional degree vortices which is forced by growing density of vortices close to
the domain wall (cf. [17] Section 3.2).

The paper is described as follows. In section 2, we consider minimum energy
configurations (naturally we should consider the Dirichlet boundary conditions for
order parameters in this case) with the coupling constant £ fixed while e — 0. This
can be viewed as a relatively weak coupling situation. We establish the minimal
energy asymptotics in terms of scalar parameters € and £&. Here we see the minimal
energy has three levels (so long as ¢ is suitably large) : O(1), O(v/€) and O(log %)
This fact is responsible for the multiple time scales involved in the global dynamics
of (1.1). In order to understand sharp domain walls and fractional degree vortices
(which one should be able to see approximately when ¢ is suitably large) on the
boundaries of such domain walls, we consider another asymptotic in section 3. If we
first let ¢ — 07 while keeping ¢ fixed, and then let £ — 400, we can examine the
behavior of domain walls as well as degree % vortices at the boundaries of these domain
walls. If the boundaries of domain walls are fixed, we show the domain walls have to
become straight line segments. Various simple analyses are also carried out for the
case 1 << € << log %, and £ — oo. In general, the limiting configuration can not have
domain walls except those due directly to the boundary conditions, and all vortices
form pairs (those extra ones presumably go to the boundary of the physical sample).
Section 4 is denoted to study dynamics. Vortex dynamics is now well understood for
conventional superconductors described by a single Ginzburg-Landau equation (see
[11], [12]). Generally speaking, vortices are essentially static in O(1) time scale but
vortices have a well-defined motion law (given by an explicitly O.D.E. system) in the
time scale of O(log 1). In other words, it takes exactly O(log <) time to move a vortex
by an appreciable distance O(1). For unconventional superconductors, the situation
is much more complex. For the system (1.1) with suitably chosen initial data (or
after an initial O(1) time period of adjusting data), when the parameters £ and e
satisfy 1 << € << log %, one first sees curved domain walls do a motion by the mean
curvature while the boundaries of domain walls are essentially static in the time scale
of order O(v/€). After this dynamic is over, all domain walls become straight (line
segments) with boundaries of domain walls being those degree % vortices. Then in
the next time scale of order O((log 1)/1/€) which by our assumption is much larger
than O(v/€), these fractional degree vortices at the boundary of straight domain walls
move at a constant speed toward each other to reduce the length of domain walls, and
to form vortex pairs. Finally, if these vortex pairs are not at the optimal positions
(critical to a function involving only the locations of vortices) at the end of time
scale O((log 1)/+/€), then these pairs would undergo a simple motion governed by
an explicit O.D.E. in the time scale O(log %) which is very much like a single time-
dependent Ginzburg-Landau equation.

2. Minimization of Two-component Order Parameter

In this section, we let € — 0+ and fix £ as any positive constant, and we consider
minimization of the energy functional F. ¢ defined in (1.4) for u,v € H'(Q;T) with
Dirichlet boundary conditions

u=g1, v=gy on 0, (2.1)

where g; : 9Q — S! are smooth maps with degree d; € N for j = 1,2. Now we state
our main result on such a minimizing problem as follows:
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Theorem 1. Fiz £ as any positive constant. Let (v1,e,v2,¢) be the minimizer of the
energy functional E. ¢ defined in (1.4) on the function space {(vi,v2) : v; € H;j (Q; @),
j =1, 2}, where g; : 92 — S' is a smooth map with degree d; € N for j =1,2. Then

(1)  wvje has d; degree-one vortices in Q, j =1,2.
(ii) vj,e converges to v (up to a subsequence) strongly in L2(%2)
and weakly in Hll(,C(Q\{a{, e ,ailj}) , where v} is defined by

z—al .
vi(z) = bethad() vzeq, (2.2)
w1 12— ay,
and hg;’s satisfy
A(hal + ha2) = n Q,
A(hgt — hg2) = —=€8in[2(O41 — Op2 + hgr — he2)]  in Q,
(2.3)
dj o — ‘ ‘
where ©,; ZZarg ) and o/ = (a],--- ,a), ) € Q% .
— |Z _ ai' 7
. 2 1 2
(i) Ee(vie,vae) = Z d; log - + Wyl .90 (a',a?) +Z d;jy+oc(1)
j=1 j=1

as € — 04, where v > 0 is a universal constant. Here Wy, 4, is the
renormalized energy defined by

Wy, g2 (a* = lim / Z—|ij|2—|— & (wy - wo) —de log

—0+
P Pj 1

where Q, = Q\ U7_, UZLl Bp(ai), (w1, ws) is the energy minimizer
of the energy functional

/ Z 1T+ 26 (0 v’
Qp Jj=1
forvj € HL (Q\{a],--- ,aflj}; S1) satisfying
vilan = g; and deg(vj;aBpo(ai)) =1 forj=1,2,k=1,---,d;,

where pg is a positive constant.
(iv) (a',a?) € Q4 x Q% s a global minimizer of W, 4,(b%,b%) for
b = (b{,---,bfij)eQdJ‘,jzl,z

As € = 0, (2.3) implies that h,;’s are harmonic functions and can be uniquely
determined by the boundary conditions. Moreover, Wy, 4, (a',a? Z W, (@
However, if £ > 0, (2.3) can be written as

Ad; =0  inQ, (2.4
Ady = —£sin[2 (04 — Oy2 + P3)] in Q, (2.5

~ ~—
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where ®1 = hgi + hg2 and &5 = hy — hee. It is remarkable that (2.4) is a Poisson
equation and (2.5) is an elliptic sine-Gordon equation. As £ goes to infinity, the
standard theorem of singular perturbation problems implies that the equation (2.5)
may have a solution with an interface in 2. Such an interface is called a domain
wall(cf. [20]). In Section 3, we will study the structure of a domain wall.

To prove Theorem I, we need three propositions as follows:

Proposition I. Let v, be the energy minimizer of the energy functional / e.(v) on

1(0. ) 1 .
H;(Q; @), where g : 92 — S* is a smooth map with degree d € N, and

ec(v) = 5IVo + 75 (1~ o) (2.6)

N~

Then

(i) Ve has d degree-one vortices in 2,
1
(ii) / ec(e) =mdlog —+O(1) as e — 0+.
[¢) €

(iii) e converges to v, (up to a subsequence) in Clléa (N\{a1, - ,aq}),
for 0 < a <1, where v, is a canonical harmonic map defined by

d
ve(2) = H £ etha®  vreq, (2.7)

and hg is a real-valued harmonic function.

Proposition II. Suppose v, € Hg1 (Q; @) such that

1
/ee(ve)gﬂ'dlog——i—Co as € — 0+, (2.8)
Q €

where Cy is a positive constant independent of €. Then, by taking a subsequence if
necessary, we have as € — 0+ that:

ec(ve) dx dy
da; ; 2.9
wd log = Z I (2:9)
as Radon measures. Here aj,j =1,---,d are d distinct points inside Q such that

min{|a; — a;, dist(a;, 00) 14,5 =1,--- ,d,i #j} > Jo(2,92,Co) >0

and ve converges (up to a subsequence) to a map of the form

d
H Z—a? eiha(z) (210)

strongly in L*(Q) and weakly in H} (Q\{a1, - ,aq}) as e — 0+. Moreover,

hallr @) < C(Co,2,9).
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Proposition III. Under the same assumptions of Proposition II, the linear mo-
mentum p(ve) = ive - Vo, is uniformly bounded in L}, (), and up to a subsequence
if mecessary:

p(ve) = VO, + Vhy, (2.11)
d z —a;
in L}, .(Qa), where Q, = Q\{a1,- -+ ,aq} and O, = Z arg( s aJ» ). Moreover,
=1 ’
2Jac(ve) dx dy = curl(p(ve)) dzdy — 0, (2.12)

in the sense of bounded measures M(Q,), where Ju.(v.) is the Jacobian of ve.

One may find the proof of Proposition I in [3] and [11]. Proposition II and III
were proved in [13] and [14], respectively. Now we prove Theorem I as follows:
Let (v1,e, v2,¢) be the minimizer of the energy functional E. ¢ defined in (1.4) on the

function space {(vl,vg) tvj € Hglj(Q;(If),j = 1,2}, where g; : 99 — S! is a smooth

map with degree d; € N. From the standard Direct method, it is easy to obtain the
existence of the energy minimizer (vi,c,v2,c). Let w; . be the energy minimizer of the

- 1 1
energy functional F.(w) = /Q §|Vw|2 + P(l — |w|?)? on Hglj (©; @). From [3], the

quantitative properties of wj ’s are well-known. It is obvious that

1
E (wje) = md; log; +0(1), j=1,2, (2.13)
where O(1) is a bounded quantity independent of €. By energy comparison, we have
1
/ ee(vje) =mdjlog— +O(1), (2.14)
0 €
where e (w) = 2|Vw|? + (1 — |w|*)2. Then by Proposition II, III and (2.14), we
may complete the proof of Theorem I except (2.3). To prove (2.3), we consider the
Euler-Lagrange equations of vj.,j = 1,2 given by
1 ) .
Avy ¢ + = (1 — |v1,¢| ) Vie =& V1, - V2,e) V2 In €, (2.15)
1 .
A’UQ76 + 6_2 (1 — |’U27€|2) UQ,e = g (Ul,e . ’U27€) Ul,e n Q . (216)
From (2.15) and (2.16), we have
/ (Avl,e : Z‘vl,e) w - 5 / (Ul,e : U2,e) (UQ,e : ivl,e) 1/)7 (217)
Q Q
and

/ (AUQ,e : in,e) Y= / ('Ul,e : U2,e) (Ul,e : iv?,e) v, (218)
Q Q

for any test function ¢ € C§°(€;R). Using integration by parts and Proposition II,
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we may obtain
/ p(v1,e) Vip = —/ (Avy e -ivie) 9 (integration by parts)
Q Q
= / (V16 - Vo) (V2,e - v1e) ¥ (by (2.17))
_ —f/ i(©,1+h ei(®az+haz)}
[ (@ 2+h 2) . ei(@a,1+ha1):| dx + 06(1) (by (22))7

ie.

/ (vlew_—g/ i(©a1tha1) . e'(@az+haz)}

‘ (2.19)
|: (@ 2th 2) . iel(@"'1+h"’1):| wdl' + 06(]—) )
for any test function ¢ € C§°(2;R). Similarly, we have
/ (U25 v,ll) — _é— / @ 1+h,1 ) .ei(®a2+ha2):|
(2.20)

[ (O +h,) i(eaz+haz)} ¥ dz + 0c(1),

for any test function ¢ € C§°(Q;R). Therefore by (2.19), (2.20) and Proposition III,
we may obtain (2.3) and we complete the proof of Theorem I.

3. Domain Wall of Phase Functions
To see the effect of strong coupling of phase functions, we study the minimization
problem of the energy functional (1.4) given by

1 1
Ee¢(u,v) = /Q ~|Vul? + e (1 — |u|*)? dz dy

1 2 1 (3.1)
/ =|Vou|® 4+ (1—|v|) dx dy + f/ (u-v)? dzdy,

for u and v € H'(Q; @) with Dirichlet boundary conditions having the same degree
d. Hereafter, we assume that £ > 1 is a large constant independent of . Then the

phase functions of u and v have been strongly coupled by the term %5 / (u- v)2 .

As € goes to zero and fix £ as any constant, Theorem I implies the energyﬂminimizer
(ue, ve) satisfying that up to a subsequence, u,. converges to u. and v, converges to
v, strongly in L?(Q) and weakly in H! (Q\{a1,---,aq}) and H} (Q\{b1, -+ ,ba}),
respectively. Here u, and v, are defined by

d
Z— 0k ;4(z
d
ve(2) = H ﬂem(z) Vz e (3.3)
) = — b ! ! '
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where ¢ and @ satisfy

Al +2) =0 in 2,
{A(¢—‘I’) = —¢sin[2(0,— Oy +¢— )] in Q, (3.4)

d d
z — ag z— by
where O, = ar , Oy = ar < >,anda: ai, -+ ,aq) €
; g(|Z—ak|) ; 7 b (@ )
Q4 b= (by, - ,bg) € Q. Then the renormalized energy can be written as

1 1 1
g/ —— |[VH* +=\/€cos? (0, — O, + H dmdy—i—/ — |Vh|?> + W (a,b, ¢y, ®o),
fﬂ4\/zl | > ( ) 94| | ( )
(3.5)
where H=¢—® , h=¢+ P, ¢loa = ¢o, Plaa = Do, and
W (a, b, do, Po) lim/ 1|V@ |2+1|ve) 1> — 27dlo !
pr— —_ a —_ — 7'[' p—
5 U, P05 0 el Q, 9 9 b gp

+/ 000704 + $g 050y,
90

where Q, = Q\UL_, B,(ax)UB,(by), and 9; is the normal derivative on the boundary
0f). Here the boundary conditions ¢y and ®3 come from the Dirichlet boundary
conditions. Now we define the energy density

1 1
Pe(Hiab) = =5 [VH|? + 5V/€ cos® (0a — Oy + H) (3.6)
and the energy functional
Pg(H;a,b):/pg(H;a,b)dxdy, for He H'(Q;R), and a,be Q. (3.7)
Q

As £ goes to infinity, the leading terms of the renormalized energy (3.5) are \/EP¢(H; a,b) .
As a = b, the energy density

pe(Hia,0) = 1= [VHP + 5 V/E cos? (1) (3.8)

is independent of a. For the minimization of P, we have

Proposition IV. Assume (H¢, ae,be) is the energy minimizer of Pe(H;a,b) for
He HY(Q;R),a,b € Q4. Then ag = be and He = 7/2 (mod ) is a constant function.

From Proposition IV, we may conclude that the strong coupling of phase functions
makes vortices of u. and v in pairs. Vortices in pairs form an interesting phenomenon
called vortex confinement which was predicted formally by physicists (cf. [20]). Here
we provide a mathematical proof of such a phenomenon. The proof of Proposition IV
is obvious. It is easy to check that the constant function Hy = 7/2 is one of the
energy minimizers of Pz on H'(Q;R), and P:(Hp;a,a) =0, for all a € . Then the
energy comparison implies that

Pe(He; ag, be) < Pe(Ho, ag, ag) = 0. (3.9)

Hence H¢ is a constant function, a¢ = b¢ , and we complete the proof of Proposition IV.
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Proposition IV shows that vortices of u. and v, would like to come together
in pairs if we ignore the effect of the Dirichlet boundary condition Hl|sq = ¢ —
®y. If we consider the Dirichlet boundary condition Hl|gpa = ¢o — Po, then the
energy minimizer He may have a boundary layer near the boundary 92 to adjust the
boundary condition.

To see the minimizing energy for vortices not in pairs, we fix a ,b € 0 ,a # b, and
minimize the energy functional P (-;a,b) on H'(2;R). Then we have

Theorem II. Assume Q is a smooth and bounded domain in R?. Fiz two distinct
points a,b € Q, such that a and b are independent of £, and the line segment L joining
a and b is located in the interior of Q. Let H¢ be the energy minimizer of Pe(H;a,b)
for H € H'(Q;R) with the Dirichlet boundary condition H = ©) — ©, + 7, or the
Neumann boundary condition 0, H = 0, (0, — O4) on the boundary Q. Then

1
H: - 0, — 0, + §7T(m0d7r) in CE.(Q\L) as & — o0, (3.10)

Pe(Hea,b) = co| L] + o(1), (3.11)

where ¢y is a positive constant independent of £, a and b, |L| is the length of L, and o(1)
is a small quantity tending to zero as & goes to infinity. Hereafter, the convergence is
up to a subsequence, and we denote it as the same sequence for notation convenience.

Remark I1.0. Suppose d = 1. Then by (3.2), (3.3) and (3.10), we have
Uu(z) = 77 (OaFOutamihe) 4 5 (1) w,(z) = e3' (OatOr=dmthe) | (1),

in Q\L as £ — oo, where h¢ is a harmonic function with the admissible boundary
condition. Hence u, and v, have fractional degree 1/2 near a and b, respectively.
Therefore as € | 0,£ T oo, the energy minimizer may have vortices with a fractionally
winding number 1/2 near a and b.

The Euler-Lagrange equation of P¢(-;a,b) is

%AH—F\/_sin[Z(@a—@H—H)]:O in Q. (3.12)
It is remarkable that ©, — O is multi-valued on L which is the line segment joining
a and b. As (z,y) goes to L, O,(z,y) — Op(x,y) may tend to £, and have a 27 gap
on L. Since H the solution of (3.12) is a single valued function, the gap of ©, — O,
on L makes H have a interface around L. Such an interface is called a domain wall
in physical literature(cf. [20]). The domain wall joins vortex centers a and b, and the
associated energy may depend on the distance of a and b.

Proof of Theorem II: Without loss of generality, we may assume a = (a,0),b =
(8,0) € Q, where o and 3 are constants such that o < 3. Besides, we only consider
the Dirichlet boundary condition H = O, — O, + %T(, on the boundary 0. For the
Neumann boundary condition 8, H = 9, (0, — ©,), one may use the similar argument
to prove the theorem. To estimate the upper bound of the energy P:(H¢), we define
a comparison function as follows:

he(y) for (z,y) € I,,5\ (Bp(a) UB,(b)) ,

Ue(oy) = { Lap(®:9) for (z,y) € J,5\ (By(a) U B,(b)) ,

ey Oy — O, + i for (x,y)GQ\(Ip5 J,5 UB,(a) U B,(b))
ha,b(mvy) for (xay) €B ( )U ( )

(3.13)
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where
1 1
Ip,az{(af,y):a+§péxéﬁ—§p7|yl <é1},

1 1
Jp,a={(af,y):a+§péxéﬁ—§p751S|y|S52}7

p=¢&E13 6 = 61(z) = 0(6\/— T/—E — L1 0\/0— ) is determined later, and §, =

(log€) /VE. In I, 5, he is defined by he(y) = ho (v€y) , where hg = ho(y) is deter-
mined by

1 1
inf {/ §|h/|2 +cos*(h)dy : h € H-, (R) ,h(—00) = —571',/1(00) = 37‘(‘/2} ,

—0o0

and hg is the unique solution of the ordinary differential equation given by

R’ (y) = —sin[2h(y)] , for y €R, (3.14)
h(—00) = —im ,h(c0) = 3m/2. ’
From the standard theorem of ordinary differential equations,
1 i ly]
ho(y)=—§w+0(e y) as y — —0o, (3.15)
3 iyl
ho(y)=§ﬂ'—|—0(€ y) as y — 00, (3.16)
where x is a positive constant. Moreover,
<1
/ |h’ > 4 cos?(ho) dy < oo. (3.17)
Since
m+0 (log&/et/®)  for a+ip<az<B—3p,y=0a,
Oy — O, = 1/6 1 1
—m+0 (log&/e'/%)  for a+3p<z<B—35p,y=—0a,
then by (3.15) and (3.16), there exists 61 = §1(z) = O (é l‘j/ggg - %log\l/%gg) such that
1 1 1
he (£61(2)) = 5T + (©p — O,) (z,£02) for o+ 2P <z<pB- 2P (3.18)

It is easy to check that \/£61(z) — 0o as € — oo, fora+3p<a < B—1p.In J,s,
we define [, by

Los(z,y) = %W‘F(@b—@a)(x,ég) for (z,y) € Jy5,01 <y < da,
b\ Y 5T+ (0p —04) (v, —02)  for (z,y) € Jy5,—02 <y < —01.
(3.19)
Then
/ ! Vi |2—|—1 €cos? (0, — Op + 1o p) = 0g(1) (3.20)
A /e a,b 5 3 a— Y ab) = O¢ . .
s 4./€ 2

In B,(a) U B,(b), we let hqp be the harmonic function with admissible boundary
conditions that

he on 0 (B,(a) UB,(b))N1,5,
hap = lab on 0 (B,(a)UB,(b)NJ,s,
O, — 0, + %71’ on 0 (B,(a)UB,(b)\ (UpsUdJps) -
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Then

/ |Vha b|2 —l— fCOS2 (0, — 6, + ha,b) = 05(1) . (3.21)
B, (a)UB,(b) 4\/_

By (3.18), (3.19) and the definition of h,p, we have Us € H! (Q;R) . Moreover, by
(3.17), (3.20) and (3.21), we have

Pe(Ugsa,b) = co (B — ) + 0(1),
where c¢g is a positive constant from (3.17). Thus
Pe(He;a,b) < Pe(Ugsa,b) =co (B— ) +0¢(1). (3.22)

By (3.22), we have

1
H: +0, -0, — 57 almost everywhere as £ — 0. (3.23)

Such a convergence may be up to a subsequence. For notation convenience, we may
use the same sequence to denote it in the rest of this paper. Please note that ©, — 0,
is well-defined only in Q\ L, where L = {(z,0) : « < z < (3} is the line segment joining
a and b. We may define He = He + 0, — Oy in Q\L. Then H; satisfies

\/LZ AHe + /€ sin (21515) =0 in Q\L. (3.24)

The equation (3.24) is a standard singular perturbation problem(cf. [1], [15], [21],
etc). Hence by (3.23) and (3.24), we have

1
H:+0,—-0, — 57 exponentially inQ\L as £ — o0, (3.25)

and (3.10) holds. Let H(x,7) = He (z,9/V€) . Then by (3.25), we have

/3

B—o -t 1
Pe(Heia,b) > / / » 4f|v1arg|2+ € cos? (O — O + Hy) dy da
Boo  pl/o
2, L 7\ gn
/ / ) 4|8 H| 5 cos (@a—(ab—i—H) dy dzx
516

2 L 7 ~
/a /51/6 1 |0 H|? + cos (H) djdz + o(1)

> co[(B—a) —20]+0¢(1),
i.e.
Pe(He;a,b) > o [(B — a) — 20] + 0¢(1),

for o > 0, where ¢g is a positive constant from (3.17). Here we have used the fact
that ©, — O, = 1+ O (£7/3) for a+ 0 <z < B— 0o, |y| = £ /3. Consequently,
we have the lower bound estimate

Pe(He;a,b) > co (B — ) +0¢(1), (3.26)
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by letting o go to zero. Therefore we may complete the proof of Theorem II.

Remark IT.1. We may generalize Theorem II to the case that
a‘:(alv"'vad)ﬂ b:(bla"'vbd)eﬂdv

and a;’s and by’s are distinct 2d points. As for Theorem II, there are d line segments
L;j = [ak,,by,;],j = 1,--- ,d joining these 2d points, where [ax,, by,| denotes the line
segment joining ax, and bg,. Due to the energy minimization, the line segments L;’s
must have the smallest length of all d line segments joining a;’s and by’s in d pairs.

3.1. Remarks on energy minimization for 1 << ¢ << log %

In this section, we state three cases on the energy minimization problem of the
energy functional (1.4) for 1 << & << log % Two cases of them can be analyzed by
Theorem I and II. However, the rest of the cases are open and would be very difficult.
Now we state these cases as follows:

Good case. No domain walls:
Assume the boundary conditions u! |sgo= g1, u? |sn= g2 satisfying g1 - g2 = 0 i.e.,

+iz
g1=¢e""2gy

In this case one can show: If (ui,g,uf,g) are minimizers of (1.4) such that uég =
gl,ui5 = go on 9. Then

1
Ecglucg uée) = (2mlog—)-d+0(1)
1
= 2ndlog — + W (a, g", Q) + 0ce(1)
€

Here d = | deg g1],and the renormalized energy W reaches minimun at a.
Indeed,one may simply choose d points b', ..., b% € Q,and one constructs maps

V;g, Vfg with vortices at b', ..., b% such that Vj@’s have no domain walls, and

€

1
Ece(V2e,V2) = 2mdlog -+ Oce(1). (3.27)

Here one notices that H = 7 in € and h is harmonic. From (3.27), one has

1
E. ¢(ul & u? ¢) < 2mdlog = + O(1).
& Ue, B

By Theorem I and II, we may conclude that vortices of “i,g and uag have to be
at essentially the same locations. Since if vortex locations for two components are
different by a fixed amount, then H = £7 in Q a.e. would imply H has to have
jumps across some hypersurfaces i.e. H # 7, the region H = § and H = —% both
are nontrivial. Then it is not hard to see Ee,g(ui@uf’g) > 2mlog L + O(v/€). This

would contradict the energy upper bound if £ is sufficiently large.

Bad case 1. Domain wall is simply a line connecting end points of I';:

Here we assume I'y C 09 a smooth connected curve such that the line segment
joining endpoints of I'; is contained in 2. Now we assume the boundary conditions
satisfying

g1 =¢€'%gy on Ty
g1=e""2gy on OO\T'; .
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In this case there has to be a domain wall joining endpoints of I';, that is, subregions
of H to be § and —7 are both nontrivial. But since the degrees of g; and go are the
same, one may smooth g; to avoid jump near endpoints of I'y. Thus one can construct

a comparison (V1,V?) s.t.
1
Eee(V!,V?) = 2rdlog - + col1 /€ +O(1)
1
= 2ndlog —(1 4 o(1))
€

Here we have used the assumption 1 << ¢ << log %, and [y =length of the segment
connecting endpoints of I'y. On the other hand, by the first two integrals of the energy
functional (1.4), it is easy to see

1
E@g(uig,ufg) > 2rdlog — + O(1).
& Ue, B

Thus the minimizing map has exactly d vortices for each component. Suppose when
V€ — +00, (€ — 0) these vortices do not come together. Then as for the Good case
described above, we may get contradiction by energy comparisons as there would
be some extra domain walls. Furthermore, by Theorem II and energy asymptotic
expansion, we have

1
Eeyg(ui,g, uz,g) = 2ndlog E + Coll\/g—f' O(].)

Bad case 2. Assume deg g; = deg g2,and both ¢'s are smooth but g; - g2 # 0 on 9Q:

Since the minimum energy upper bound < 2wdlog %(1 +4),¥d > 0 it is obvious
that log% >> ¢, This already implies that both ui ¢ and uz ¢ have exactly d “essential
zeros” or “vortices”. However, the minimum energy for the phase functions could be
very high and there could be another type(not due to topological reasons) of boundary
layer to form since H takes limit values § or —Z.We also note that from [2], it was
found that there exists a mapping between a two-flavor Ginzburg-Landau functional
and a version of a O(3)-symmetric Faddeev model. This implies in particular that
such a system possesses a hidden O(3) symmetry and allows for the formation of stable
knotted solitons for the phase functions. The knotted solitons are much more complex
and structurally complicated topological defects than Abrikosov vortices, and thus its
realization in superconductors should open an exceptionally wide range of possibilities
of studies of various phenomena associated with them.

4. Dynamics of Domain Walls

Now we study the dynamics of vortices connected by domain walls governed by
a system of coupled Ginzburg-Landau equations given by

1
utzAu+—2(1—|u|2)u—§(u-v)v in @ xRy, (4.1)

Ayt €

1
vtzAv+—2(1—|v|2)v—£(u-v)u in @ xRy, (4.2)

)\675 €

with the Neumann boundary conditions and initial conditions as follows:

Oyu(z,t) = dyv(x,t) =0, for x € 9N ,t >0, (4.3)
u(z,0) = Ugg(a:) , for x € Q, (4.4)

v(z,0) = Ve?é(x), for z € Q.
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The solution (u,v) of (4.1)-(4.5) may depend on € and &. For simplicity, we only use
(u,v) to denote it. Here ) is a two-dimensional, smooth, bounded domain, €, £ and
Ac ¢ are positive parameters, and (u,v) : @ x Ry — @ is smooth.

For the initial data U, 2 ¢(x) and V;?g(x), we make the following assumptions:

(A1)
U@, @] <1,

VU0, (2)] | vvg(x)\ <K E forazeq,

67

where K is a positive constant independent of € and &,
(A2) TForall £ >0, as e — 0+,
Oe(x) — L% i68@)  weakly in HL . (Q\{a}),

& | — al

Vi) = g ) weakdy i H, @A),

where a and b are two distinct points in €2, and qﬁg and <I>2 are of

H'(%R),
(As)
x: |00 (x)‘ < %} C Bs(a)C {zeQ:dist(z,090) > &} ,
i |Vo(@)| £} C Bau(b)C v e Q:dist(x,00) = b} |

where g is a positive constant depending only on points a, b and the
domain Q such that Bs,(a) and Bs,(b) are two disjoint balls in

(A4) For £ >0,
1
E ¢ (Ugg,V&) §27rlogg—|—C§, as € — 0+,
where C¢ is a positive constant depending on &.

(A5) As & — +o0, (bg - @2 forms a domain wall L° which is a line
segment joining points a and b, and satisfies
Pe(¢g — g5 a,b) = co|L°| +0¢(1)  as € — +oo,
where P is defined in (3.7), |L°| is the length of L, and ¢y (defined
in (3.11)) is a positive constant independent of £, a and b,

(As)

. 1
lm [ Eee (U2, VO) — 2mlog | = VE (colL°| + 0¢(1))

e—0+

as £ — 400, where E ¢ is defined in (3.1), and || is the volume of
2, and o¢(1) is a small quantity which tends to zero as £ — +oc.
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The system of equations (4.1) and (4.2) may arise in the gradient flow of the
energy functional E, ¢(u,v) given by

1 0B ¢(u,v)
)\e,ﬁ (u’ v)t - K (’U,, U) ’

where FE.¢(u,v) is defined in (3.1), and A.¢ is a positive constant for time scale
depending only on € and &.

As & =0, the problem (4.1)-(4.5) becomes a standard Ginzburg-Landau equation,
and the vortex dynamics is well-known (cf. [11] and [12]). Basically, vortices are static
when the time scale is of O(1), and vortices start to move and the motion is governed
by a system of ordinary differential equations when the time scale is of O (—loge).
In this section, we assume —loge > £ > 1 and find out the different dynamic law
of vortices due to the effect of domain walls. When the time scale is of order O(1),
vortices are still static. In the time scale of order O (\/Z), the curved domain walls
do a motion by the mean curvature while fractional degree vortices located at the
boundaries of domain walls are essentially static. Furthermore, in the time scale
of order O (— (loge) /+/€), the domain wall has become a line segment and starts to
shorten itself in constant speed, and pulls vortices at the ends of the domain wall to be
a pair. Such a new vortex dynamic law is illustrated by two theorems. One is for the
time scale of order O(1), and the other is for the time scale of order O (— (loge) /V/€).
For such a time scale, first we let € tend to zero and fix £ as any constant, and then
let £ tend to co. Now we state these two theorems as follows:

Theorem III. Let (Uc¢(x,t), Vee(x,t)) be the solution of (4.1)-(4.5) with (Ugg(x),

Veog(x)) satisfying the assumptions (A1) — (A4). Then we have the following conclu-
Sions:

(i)  If Aeg =1, then

Uee(x,t) — |i : Z| e 2@ weakly in H! . (Q\{a}),

b _
Vel ) = frgr et weakly in H,, (@\(2))

for each &,t > 0 as € — 04, where (¢¢(z,t), Pe(z,t)) is the solution
of the problem

athg = Ahg in QX RJr s

8tH§ ZAHg—I—fSin [2 (ea_®b+H§)] in £ xRy,

Oy e =-0,0, on 08,

81,(1)5 = —81,@[, on 89,

62(2,0) — () for v €,

Q¢ (z,0) = ®%(z) for x €,
(4.6)

where he = ¢¢ + ®¢ and He = ¢¢ — P

(it) If Ae.e/V/E — 00 and \/EAce/log T — 0 aslog(1/€) > & — oo,
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then
Ueelz,t) — ﬁ et (@) inL}, (ﬁ X R+) ,
Vee(a,t) — ﬁ 6@ i L2 (@xR)
Uee(x,t) — |z : Z| e %@ weakly in H], (Q\{a}) ,
Veel(z,t) — ﬁ e weakly in HJ, (Q\{b}) ,

fort >0, where (¢¢(x,t), Pe(x,t)) is the solution of the problem

Ahg =0 m Q,

AHg = —fsin[ (@a_@b+H§)] in Q, (4 7)
Oy ¢ =-0,0, on 09, ’
0, P =—-0,0, on 09,

where he = ¢¢ + ®¢ and He = ¢¢ — P

Proof of Theorem III: The proof is identical to that for Theorem 3.7 in [10] and
Theorem 2.1 (i) and (ii) in [12]. The only difference is the sine-Gordon type equa-
tions (4.6) and (4.7) of the phase function He. We may explain that as follows: By
Proposition 1.2 of [13], as € — 0+(up to a subsequence), Ue ¢ and V; ¢ have the limit
functions Uy ¢ and Vp ¢ with the form

Uoe(z,t) = e (Oatoe) . Voela,t) = ot (Opt+Pe)

Now we take the wedge product for u and the equation (4.1), v and the equation
(4.2) and set u = Uc¢ and v = V¢ . Hence by the same argument of pp. 335 and
Theorem 3.7 in [10], we may obtain the equations (4.6) and (4.7), respectively, and
complete the proof of Theorem III.

Remark III. Under the assumptions of Theorem III, suppose as £ — 400, qﬁg - <I>2
forms a curved domain wall 4° which may be a smooth curve. Then by the system (4.6)
and results of [8] Section 12.2, one may show that in the time scale of order O (1/€)
with proper initial data, curved domain walls do a motion by the mean curvature while
fractional degree vortices located at the boundaries of domain walls are essentially
static. Here the condition 1 < & < (10g %) /+/€ is crucial to show boundaries of
domain walls are essentially static.

Now we consider the time scale is of order O ((log1)/1/€) and see the effect of ¢
on the dynamics of vortices. For this purpose we first define the renormalized energy
for the case of the Neumann boundary condition. Let a and b be two distinct points
in , and let

_ TT0 ihe(x)
Ua(x) ol e , for z€Q, (4.8)
b .
V() = h ethe@ - for 2 € Q. (4.9)

Here h,(z) and hy(z) are functions defined later on the whole 2 with

Oyhg =—0,0,, and J,hy =—0,0
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on the boundary 992. We define the renormalized energy by
1 2,1 2
W (a,b:€) = lim / 2 [VUal"+ 5 [VVi| N PST)
10 | Jo(B,(@uB,p) T35 (Ua-Vb)" dudy — 2mlog 5
It is easy to check that (4.10) is well-defined and equal to

1 1
lim / = |V@a|2 dx — mlog —
o0 [ o\, () 2 p

1 1
/ Z|VOy|? dz — 7wlog =
B, () 2 p

1 1
+/ = (|Vha|2 + |Vhb|2) + =€ cos? (04 — Op + hg — hy) .
o 2 2

+ lim
plO

The third integral can be written as
1 1 1
/ i [Vhas|* + / 1 IVH, ) + € c0s” (00 — Oy + Hayp) | (4.11)
Q Q

where Hy p(x) = ho(x)—hp(x) and he p = ho(z)+hp(z). To minimize such an integral,
we set hqp as a harmonic function, and H, p is the energy minimizer of the energy
functional

/Q i VH? + %g cos (O — Oy + H) ,
with
Ovhap =—0,(0a+0y), O, Hap=—0,(0,— Op)
on the boundary 9. Note that

allha,b = — 81/ (Ga + Gb) = / a1/ (@a + @b) =0 )
o0 o0 9B, (a)

8l/I{a,b = - 0y (@a - @b) = / 0y (@a - @b) =0
o0 o0 OB,(b)

(for all sufficiently small > 0) and hence such hq_ () (up to constants) and H, p(x)(mod
) exist. As & — oo, by Theorem II, the domain wall L comes out, and the second
integral of (4.11) becomes

1 1
1 |VHa7b|2 + 55 cos? (O, — Oy + H,p) dz
Q
= V/€[co| L + 0¢(1)]

where ¢ is the positive constant defined in Theorem II, L is the line segment joining
a and b, |L| is the length of L, and o0¢(1) is a small quantity tending to zero as £ goes
to infinity. Hence the renormalized energy satisfies

W (a,0;€) = V€ [co|L| + 0e(1)]  as € — +o0. (4.12)

It is well-known that the renormalized energy is crucial to the dynamics of vortices.
Hence the dynamics of the domain wall may dominate the dynamics of vortices. This
may result in new dynamics of vortices.
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The main result of this section is

Theorem IV. Under the same assumptions of Theorem III and the assumptions

(As) and (Ag), if Aee = (log ) /V/E, then

Uee(z,t) — %ei%(w) weakly in H},, (2\{ae(t)}) , (4.13)
T — ag
Veelz, t) — % e @) weakly in HJ, (Q\{bc(0)}) , (4.14)

foreach & >0 and 0 <t < T as e — 0+, where ag(t) and be(t) are two distinct points
in Q, (¢¢(z,t), Pe(x,t)) is the solution of the problem

Ahe =0 in €,

AHe = —€sin[2(Ou) — Opy + He)]  in Q, (4.15)
Oy e = ~0,90(0) on 01, |
0, ¢ = =00 (1) on 94,

where he = ¢¢ + ¢ and He = ¢p¢ — P¢. As & — +oo(up to a subsequence), ag(t) and
be(t) converge uniformly to a(t) and b(t) on a finite time interval [0, T, respectively.
Moreover, a(t) and b(t) satisfy

d — d —
Ea(t)zclab, Eb(t)z—clab, (4.16)

where ¢ is a positive constant depending only on the constant ¢y defined in (3.17),

i
and ab is the unit vector from the point a to the point b.

Remark IV.1. The motion equation (4.16) shows that the line segment L with finite
length |a — b| starts to shorten itself in a constant speed. Since the equation (4.16)
holds when vortices a and b are separate, then the length of the finite interval T" must
satisfy T' < |a — b|/c1.

Proof of Theorem IV: As ¢ is positive and finite, we may follow the same idea of
the proof of Theorem 2.1 (iii) in [12], and we may obtain (4.13)-(4.15). Now we may
sketch the proof as follows:

Step 1. We define

L (10 +IVVeel?)
1 {(1 - |Ue,g|2)2+ (1- IV;,gIQﬂ ddy,

Acg eg(t) = .
16(Uee Vee)®

for t € [0, T¢ ¢], where T¢ ¢ is defined as in the proof of Theorem 2.1 (iii) in [12]. Then
Hee(t) is a family,0 < e < 1, of bounded Radon measure for t € [0,T,¢| and £ > 0.
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Moreover, by (4.1) and (4.2), we may calculate

%/&w%wm

@ 2
oU,
=2 2 €€
OU, ¢

-2\ / AVIOR <VU€§ 8;

dx

OVeye
., —8t )dw

Ve |?
ot

AU, ¢ Vee|?
/¢Meg (t)dz + A { C (¢ /’ ’ 5| 4@
C(9) [lec O]l + K. (0)]
for ¢ € C} (RQ), where
2
aUe Deg | ’8‘4’5 dz dt,
ot

C (¢) is a positive constant depending only on ||¢[|Z,, and [|ge,¢(0)|| denotes the total
measures of p ¢(0).
By (4.1)-(4.3), it is easy to check that

& BeeWee Vo) = [ | 2et] 4 |2 (417)
Hence by the assumption (A44), we obtain
e 8U€€ 'agf " dwdt < C Q). (4.18)
Moreover, by the assumptions (As) and (Ag), and Theorem II, we have
e 8U€€ ‘agf 2dmdt§\/EC(Q)
ie.
<1og ) o 8U€f lag?f D dedt < (). (4.19)

Here we have used the assumption that A ¢ = (log%) /VE  Thus the function
Eee (9, t)—C (@) [|lpte,e(0)]| - t + Kc ¢(t)] is monotonically nonincreasing for ¢ € [0, c0),

where E. ¢(¢,t) = / ¢*pie £(t) dz. We choose a countable dense subset {‘bj};il of
Q

c} (RQ)7 and for each j we can find a sequence of €’s that goes to zero such that the
corresponding sequence of functions 1! . = Ee¢ (¢;,t) — C () [[[11e,e(0)[| - t + Kee(t)]
pointwise converges to a monotonically nonincreasing function ng (t) for each t > 0.

Now we use the diagonal sequence to obtain a sequence of €, | 0 such that 77;“5 (t)
pointwise converges to a function n¢(t) for each ¢ > 0. It is then easy to see that
6 (0)]] = 2 as € — 0+,
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Step 2. The Radon measure obtained in step 1 is of the form pu(t)=n (5a£(t)+5b£ (t))

for two distinct points ag(t) and be(¢) in Q. Then by the argument of step 2 and 3
in the proof of Theorem 2.1 (iii) in [12], we may obtain (4.13)-(4.15), and a¢(t) and
be(t) are continuously dependent on ¢ € [0, 00) for £ > 0. Now we want to show that
ag(t) and be(t) converge uniformly on a finite time interval ¢ € [0, 7] as £ — co(up to
a subsequence), where T > 0 is a positive constant. As for the step 3 of pp. 408 in
[12], one may calculate

2

) dx

‘%Eﬁvf (¢7t)| )

oU,

< C(P) A2 /Q (‘ o
+C(¢) {Agg/ﬂ VU | dx]2 [ ‘8U " x]
{66/ YV ? x] ’% dm]

SC(@A;?/Q (‘8&& ‘ )
2
dm]

() VE llog /‘6Ue£
dm] <t —ta]2/C(Q).

OVe e
ot

=

U

=

3t

[N

8V€,5
ot

Hence by (4.19), we may obtain

INCHN!

By various proper choices of ¢ € C¢ (Q), as e — 0+(up to a subsequence),
Jag (t1) = ag (t2)] < |t — ta]* /C'(Q),
[be (t1) = be (t2)] < |t2 — t2|2 /T (),

for € > 0, where the constant C' (2) may be different from that in (4.19). We may
use the same notation for convenience. Therefore by Arzela-Ascoli Theorem, we may
deduce the uniform convergence of as and be as { — oo(up to a subsequence).

Step 3. Now we want to derive the motion equations of ag(t) and be(t) as §{ — +oc.
Without loss of generality, we may assume that a = (a®,0) ,b = (”,0) ,a:(0) = a,
and b¢(0) = b are located in the z-axis, where a” < b”. It suffices to show proof of
(4.16) at t = 0. For 0 <t < 0*, we may assume

a‘g(t) C B(S" (Cl)7
where §* > 0 is a sufficiently small constant(see pp. 408 in [12]). For notation con-
venience, we may denote ag(t) and be(t) as a(t) and b(t), respectively. For R €
[Ro/2, Rol, Ro = min {6* /4, |a® — b*|/16}, we multiply (4.1) by VU, ¢, (4.2) by VVe,
and integrate them respectively on Fﬁ, where I‘ﬁ are of C'! domains satisfying

U, ¢ |?
ot

Veel?
ot

"

1
T C B { (@) § (@ 40 <o v Ry <R},

1
FggBR(a)U{(a:,y):awSxﬁ—(aw—i—bm) ,—RSySR},

[\)
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and

or}, 2 {(z,y) € 9BRr(b) : > b*} (4.20)
U{(x,y) T %(a +b%), —3R/4<y<3R/4}

U{(x,y):;(aw+bm)+iR<x<bw,y— R}
o'y 2 {(z,y) € 0Br(a) : x < a"} (4.21)

)
U{(x,y):x %(a'x—i— )—3R/4<y<3R/4}
iR}

Then we take sum of them and use integration by parts to obtain

»-lklb—‘

1
U{(x,y):aw<x<§(aw+bm)

Y oU, OUc¢ 8V€§
log L /1_‘i ot VU€§+ ot v‘/efdx

¢ R
1 2 2 2
=1 (1— Ueel ) + (1—|Ve£| ) v
art

o3 [ (VU V) v

U av.
e ( Tt Vet G ) 4 56 [y Ve Ve v
R

Here we have used the fact that Ac ¢ = — (loge) /v/€.

On the other hand, we calculate with

(4.22)

€€7§(u7 U) =

(|Vu|2 + |VU|2) + ﬁ {(1 —[ul?)? + (1 - |v|2)2} + %f(u )2

N~

that

lo‘gi % /1“ zTeee(Uee, Vee) do
s

___¢ /x e |’ ’
o (esl)” s ot ot

oU, oV,
_ e &t o
log £ /Fi < ot VUee + ot VY, >

R

VE OU, ¢ ' OUce OVeg . OVe e
* /ari”’<au ot " ov ot )

(4.23)

Therefore, by integrating with respect to R € [Ro/2, Ry] and with respect to t-
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variables, we get fejE t) = geig(t) + hfg(t), where

fe®) =

o RO//Qﬁix«aam@wﬁﬂw—agm@n@wnme
0

G. e £ dRdt ,
geE RO/ /o/2<6Fi E( & Ve ))

1 2 2
Gue () =g | (1= 1)+ (L= pl?) | »

+l (|Vu|2+ |W|2) v

au (91} 1 2
_(8_ Vu +8_ Vv)+§§(u-v) v,
2 2
hi(t) = / / z ‘an’f ’8‘4’5 dzdtdR
’ Ry /2 log ri ot ot

OUce OUee OVee OVeg
log /g)pi x( ov ot + v ot de di dft.

Ro /0/2 /o
By (4.13) and (4.14), we may assume
Uee(x,t) = uee(z, t)e”H&(”) and Ve e(z,t) = vee(x,t)e” 3 iHe(@)

Here ue¢ and v, ¢ satisfy

Uee(z,t) — |x — ZZ& 2@ weakly in Hp,, (0\{ac(t)}) , (4.24)
Ve g, ) — é:bit;' ez 1@ weakly in HJ, (Q0\{be(t)}) , (4.25)

for each € > 0 and 0 < t < T as € — 0+, where He(z) = ¢¢(x) — Pe(x) and
he(x) = ¢¢(x) + D¢(x). Hence we may obtain

Ge,g (U€75, Ve,g) = G€ T G T G (4.26)

where

1 22 2\ 2 1 2 2
Ghe= g | (1= o)+ (1= 0eel?) | 5 (1Dl + 90.) o

8’(1,675 8116,&
gy Vet T g, Ve

G6 E = [(Vue,g . iu€,§VH5) - (Vv@g -iv€,§VH5)] 14

l\JI»—l

1 2 2 8H
— 7 (lueel + Poeel?) S EVH

1/ ~ OH; ou
_5 (Zuaﬁ v vu67€+ B - Zuf 5VH§)

_|_

1/ O0H: O,
5(21)675 50 +Vvee + 8 we,gVH5>

1
Gl = [ (1neel + looel) VP + 36 (U Vie ] .
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By the same argument as pp. 409 in [12], we have

Ro
[ ] l6kd < Ko, (4.27)
R
Ro/2 Jor

and
h:g(t) = 06(]‘) ) (428)

where K| is a positive constant independent of £. Here we have used the fact that

he(z) is a harmonic function satisfying the Neumann boundary condition % =

—% (@a(t) + @b(t)) on the boundary 0.
Now we want to estimate the integral of GE’E on 8F§. By (4.13) and (4.14), as
€ — 04, we may write the integral of Gf,g as

Ro 5 Ro 1 9 1 0
/ / ) G%:/ / ) [Z|VH5| + 5€c05® (Bug — Oy + He) | v+ 0cl1).
Ro/2 Jorg Ro/2 Jor
(4.29)

By the assumptions (As) and (As), Theorem II, and the energy dissipative formula
(4.17), we have
He +O404) — Opry — 7/2  exponentially in Q\L(t) as § — oo, (4.30)
and
Pe(He:a(t), b(t) = col L(t)| + 0¢(1)  as € — +oo, (431)
where P is defined in (3.7), L(t) is the line segment joining a(t) and b(t), |L(t)| is the
length of L(t), and c¢q is the positive constant defined in (3.11). Actually, by (4.15),

when £ — oo, the profile of He crossing the domain wall L(t) is preserved as time
varies. From (4.20) and (4.30), we obtain

/ 005 (Qu(e) = Ou(r) + He) v

art

— 2

= ] cos” (Ba(r) = Op(r) + He) v
o'} \Sr

+/ 005 (Qu(r) = Ou(r) + He) v

Sr
= / cos? (@a(t) — @b(t) + Hg) v+ 05(1) ,
Sr
where
1 T X
Su={ (00} 50 = (@ +07) Iyl < R/
Besides,

/8+ |VH5|2V=/S IVHe|?v 4 O(1) as € — co.
s R
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Hence

1
/8 . |:|VH£|2 _|_ 5fCOsQ (ea(t) — @b(t) —|— Hg):| 14
T
R , 1 , (4.32)
= ; |VH§| + 55008 (Ga(t) — @b(t) + Hg) (—1,0) dy + O(l).
R

Similarly, by (4.21) and (4.30),

1
/ ~ |:|VH€|2 + 55 cos? (Ga(t) — @b(t) + Hg)] v
o ) (4.33)
— / {|VH§|2 + 550082 (Ga(t) — @b(t) + Hg)} (1, O) dy + O(l) .

Sr

Thus by (4.29)-(4.33), we obtain

2 o
/ GZe = £VE (e +0¢(1) (=1,0) +0c(1), (4.34)

Ro Jry/2 Jort

for 0 < t < 0*, where ¢, is a positive constant depending only on the constant cg
defined in (3.17).
By (4.24), (4.25) and (4.30), we have

o s 1
= a2, < K, (4.35)
Ro Jry/2 Jort G

where K; is a positive constant independent of € and £. By step 2, f:n,g(t)
mVE(D(t) —b) and f ((t) — 7€ (a(t) —a) as n — oco. Hence by (4.28), g::“g(t)
mVE(D(t) —b) and g_ (t) — 7€ (a(t) —a) as n — oo. Therefore by (4.27), (4.34)
and (4.35), we may obtain (4.16) and complete the proof of Theorem IV.

—
—

Final Remark 1. In the time scale of order O (log %), vortices have already re-
combined in pairs to start with. So the motion of vortices is governed by the O.D.E.
system which can be found in [11].Since it is possible to locate the beginning positions
of these paired vortices (they are basically various midpoints of the very initial loca-
tions of fractional degree vortices), one may easily create a situation in which these
paired vortices motions are nontrivial as well.

Final Remark 2. In the time scale of order O ((log %)/\/Z), one may take double
limits log % > £ — 00, and one may show the conclusions of Theorem IV remain true
by the similar arguments.
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