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GENERALIZED NAVIER BOUNDARY CONDITION FOR THE
MOVING CONTACT LINE*

TIEZHENG QIANT, XIAO-PING WANG! AND PING SHENGH!

Abstract. From molecular dynamics simulations on immiscible flows, we find the relative
slipping between the fluids and the solid wall everywhere to follow the generalized Navier boundary
condition, in which the amount of slipping is proportional to the sum of tangential viscous stress
and the uncompensated Young stress. The latter arises from the deviation of the fluid-fluid interface
from its static configuration. We give a continuum formulation of the immiscible flow hydrodynamics,
comprising the generalized Navier boundary condition, the Navier-Stokes equation, and the Cahn-
Hilliard interfacial free energy. Our hydrodynamic model yields near-complete slip of the contact
line, with interfacial and velocity profiles matching quantitatively with those from the molecular
dynamics simulations.

1. Introduction

Immiscible two-phase flow in the vicinity of the contact line (CL), where the
fluid-fluid interface intersects the solid wall, is a classical problem that falls beyond
the framework of conventional hydrodynamics [1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12, 13, 14].
In particular, molecular dynamics (MD) studies have shown relative slipping between
the fluids and the wall, in violation of the no-slip boundary conditions [6, 7, 8, 9].
While there have been numerous ad-hoc models [1, 10, 12, 13, 14] to address this
phenomenon, none has been able to give a quantitative account of the MD slip velocity
profile in the molecular-scale vicinity of the CL. This failure casts doubts on the
general applicability of the continuum hydrodynamics in the CL region. In particular,
a (possible) breakdown in the hydrodynamic description for the molecular-scale CL
region has been suggested [8, 9]. Without a continuum hydrodynamic formulation, it
becomes difficult or impossible to have realistic simulations of micro- or nanofluidics,
or of immiscible flows in porous media where the relative wetting characteristics, the
moving CL dissipation, and behavior over undulating surfaces may have macroscopic
implications.

From MD simulations on immiscible two-phase flows, we report the finding that
the generalized Navier boundary condition (GNBC) applies for all boundary regions,
whereby the relative slipping is proportional to the sum of tangential viscous stress
and the uncompensated Young stress. The latter arises from the deviation of the fluid-
fluid interface from its static configuration [12]. By combining GNBC with the Cahn-
Hilliard (CH) hydrodynamic formulation of two-phase flow [13, 14], we obtained a
consistent, continuum description of immiscible flow with predictions matching those
from MD simulations. Our findings suggest the no-slip boundary condition to be
an approximation to the GNBC, accurate for most macroscopic flows but failing in
immiscible flows.

2. Molecular dynamics simulations
The MD simulations were performed for both the static and dynamic configura-
tions in Couette and Poiseuille flows [15]. The two immiscible fluids were confined
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between two parallel walls separated along the z direction, with the fluid-solid bound-
aries defined by z = 0, H. Interaction between the fluid molecules was modeled by

a modified Lennard-Jones (LJ) potential Uy; = 4e [(cr/r)12 — Oy (J/T)G], where 7 is

the distance between the molecules, € and o are the energy scale and range of inter-
action, respectively, and d7y = 1 for like molecules and d;y = —1 for molecules of
different species. Each of the two walls was constructed by two [001] planes of an fcc
lattice, with each wall molecule attached to the lattice site by a harmonic spring. The
mean square displacement of wall molecules was controlled to obey the Lindemann
criterion. The wall-fluid interaction was also modeled by a LJ potential U, f, with
energy and range parameters €, 5 = 1.16¢ and o,y = 1.040, and a d,,s for specifying
the wetting property of the fluid. The mass of the wall molecule was set equal to that
of the fluid molecule m, and the average number densities for the fluids and wall were
set at p = 0.81/0% and p,, = 1.86/03, respectively. The temperature was controlled
at 2.8¢/kp, where kp is Boltzmann’s constant. Moving the top and bottom walls
at a constant speed V in the +xz directions, respectively, induced the Couette flow
[8, 9]. Applying a body force mg,,, to each fluid molecule in the x direction induced
the Poiseuille flow [6, 7]. Periodic boundary conditions were imposed on the z and y
boundaries of the sample. Most of our MD simulations were carried out on samples
consisting 6144 atoms for each fluid and 2880 atoms for each wall. The sample is
163.50 by 6.80 along the x and y, respectively, and H = 13.60. Our MD results
represent time averages over 20 to 40 million time steps.

Two different cases were considered in our simulations. The symmetric case refers
to identical wall-fluid interactions for the two fluids (both &, = 1), which leads to
a flat static interface in the yz plane with a 90° contact angle. The asymmetric case
refers to different wall-fluid interactions, with d,; = 1 for one and 6, = 0.7 for
the other. The resulting static interface is a circular arc with a 64° contact angle.
We measured six quantities in the Couette-flow steady states of V = 0.25(¢/m)'/?
H = 13.60 for the symmetric case: v3/P, the slip velocity relative to the moving wall;
GY, the tangential force per unit area exerted by the wall; the 04;, 05, components
of the fluid stress tensor (n denotes the outward surface normal), and v, v,. We
denote the region within 0.850 = 2y of the wall the boundary layer (BL). It must be
thin enough to render sufficient precision for measuring v5/"? and meanwhile be thick
enough to fully account for the tangential wall-fluid interaction force, due to the finite
range of the LJ interaction. The wall force can be identified by separating the force
on each fluid molecule into wall-fluid and fluid-fluid components. For 0 < z < zg the
fluid molecules can detect the atomic structure of the wall. When coupled with kinetic
collisions with the wall molecules, there arises a nonzero tangential wall force that
varies along the z direction and saturates at z ~ 2. G¥ (both static and dynamic)
is the saturated total tangential wall force per unit wall area. It is not possible to
do MD measurements strictly at the fluid-solid boundary, not only because of poor
statistics, but also because of this intrinsic limitation. Spatial resolution along the x
and z directions was achieved by evenly dividing the sampling region into bins, each
Az = 0.4250 by Az = 0.850 in size. v:""? was obtained as the time average of fluid
molecules’ velocities inside the BL, measured with respect to the moving wall; G was
obtained from the time average of the total tangential wall force experienced by the
fluid molecules in the BL, divided by the bin area in the zy plane; ;. (ne) Was obtained
from the time averages of the momentum transfer plus the fluid-fluid interaction forces
across the constant-z(z) bin surfaces, and v,(,) was measured as the time-averaged
velocity component(s) within each bin. For the contribution of intermolecular forces
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to the stress, we have directly measured the fluid-fluid interaction forces across bin
surfaces instead of using the Irving-Kirkwood expression [16], whose validity was noted
to be not justified at the fluid-fluid or the wall-fluid interface (see the paragraph
following equation (5.15) in the above reference). As reference quantities, we also
measured G0, 0¥, % in the static (V = 0) configuration. In addition, the average
molecular densities p; and ps for the two fluid species in each bin, as well as the
shear viscosity n = 1.95,/em/o? and the interfacial tension v = 5.5¢/02 were also
determined.

We have also measured the interface and velocity profiles for the asymmetric
case in the Poiseuille geometry, with mg.,+ = 0.05¢/0 applied in the z direction and
H =13.60.

We present evidence to show that everywhere on the boundaries, relative slipping
is proportional to the net tangential force per unit area exerted on the three (fluid)
sides of the BL fluid element, due to the hydrodynamic motion of the surrounding
fluid(s) (the GNBC, see also equation (2.3) below):

Gl = puslir, (2.1)

where (3 is the slip coefficient, over tilde denotes the quantity to be the difference
between the dynamic and static values (e.g., Gra(ne) = Taza(na) — agm(m)), and G
denotes

@:@/&meﬁmw, (2.2)
0

obtained by integrating from 0 to zg the z-direction hydrodynamic force density,
04040 + 0,0.,, and noting &,,(0) = 0 at the wall-fluid boundary (strictly it is
Gnz(07) = 0). Here the z coordinate is for the lower fluid-wall boundary (same
below), with the understanding that the same physics holds at the upper boundary,
and 0y ., means taking partial derivative with respect to z, z, or surface normal n
(0, = —0, for the lower boundary). We have verified the steady state force balance
G¥ 4+ GI = 0 on the two boundaries (inset to figure 2.1). Inertial effect was found
to be less than o,,; by two orders of magnitude. In figure 2.1 we show the measured
MD data for the symmetric case in the Couette geometry. The solid lines repre-
sent the values of C;‘g; calculated from Bvsl? by using 3 = /1 = 2 = 1.2\/em/c>.
For the asymmetric case, independent measurement determines (3 = 1.2y/em/o3,
Bo = 0.532\/em/c®, and B3 = (Bip1 + Bop2)/(p1 + p2) in the CL region, with G,
vilP and p1,2 obtained from MD simulations. Here 8 = (B1p1 + B2p2)/(p1 + p2) is
obtained by assuming the two fluids interacting independently with the wall, so that
G may be expressed as the weighted average of GI! = 10551 and GI? = fyvstir2,
The desired expression is obtained by noting vS!"P! ~ 12 to within 10%.

The fact that the wall force density is distributed inside a thin BL and vanishes
beyond the BL necessitates the form of G‘g; as defined by equation (2.2). However,
it is intuitively obvious that the fluids would experience almost the identical physical
effect(s) from a wall force density G¥&(z), concentrated strictly at the fluid-solid
boundary with the same total wall force per unit area. The replacement of a diffuse
boundary by a sharp boundary can considerably simplify the form of the GNBC,
because local force balance along x then requires 0,6, + 0,6,, = 0 in the fluid.
Integration of this relation from 0 to zy yields Gf = —&,,(0%) (by comparing with
equation (2.2)). Thus, the GNBC (2.1) becomes —&,,(0) = BviP in the sharp
boundary limit.
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Fic. 2.1. é{; plotted as a function of v;lw. Here we show the results obtained for the Couette
flow in the symmetric case (V = 0.25(¢/m)'/? and H = 13.65). Symbols are MD data measured in
the BL at different x locations. The solid lines were calculated from equation (2.1) with values of
B1,2 (and the expression for 8) given in the text. The statistical errors of the MD data are about
the size of the symbols. Since in the present case the data for the lower and upper boundaries are
related by symmetry, we show only the data for the lower boundary. Solid symbols indicate those
data points inside the interfacial region, in the vicinity of the CL. The fact that the measured data
lie on a straight line (with a slope of 1 in log-log plot) indicates the validity of the GNBC. Inset:
C;';” plotted as a function of C:?i, measured in the the lower BL at different values of x. The data

are seen to lie on a straight line with a slope of —1, indicating G~;” + C;’ﬁ; =0.

The tangential stress &,, can be decomposed into a viscous component and a
non-viscous component: &y, (z) = 02, (z) + 5, (2). In figure 2.2, we show that away
from the interfacial region the tangential viscous stress o2, (z) = n(0nvz + Opvn)(2)
is the only nonzero component, but in the interfacial region 6, = o, — 02, — 09, =
oY — oY, is dominant. Therefore, away from the CL region the Navier Boundary
Condition (NBC) is valid [17], but in the interfacial region the NBC clearly fails

to describe the CL motion. We wish to clarify the origin of o}, and ¥, as the
dynamic and static Young stresses, respectively, so that &Y, = oY — 00 is the

uncompensated Young stress. As shown in the inset to figure 2.2, the integrals (across
the interface) of o), (= 0. — 0¥, calculated by subtracting the viscous component

ne?

N(Onvs + Ozvy,) from the total tangential stress) and o0, are equal to 7 cosf, and

~cos B, respectively, at different values of z, i.e., — fint oY (2)dr = ycosfy(z) and
— fin O0a(2)dz = ~ycosfs(z), where 04(z) and 0,(z) are respectively the dynamic

and static interfacial angles at z. These results clearly show the origin of the extra
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tangential stress in the interfacial region to be from interfacial (uncompensated) Young
stress. Thus, the GNBC is given by

Boi™? = —6,2(0) = — [19n] (0) — G, (0). (2.3)

Here only one component of the viscous stress is nonzero, due to v, = 0 at the bound-
ary; and —&,(0) is denoted the uncompensated Young stress, satisfying — [,  6Y_(0)
dx = ~y(cos 89 — cos §?), with 92( 0 being a microscopic dynamic (static) contact angle
at the fluid-solid boundary. The fact that Y, (0) ~ 0 away from the CL shows that
the GNBC implies NBC for single phase flows. In essence, our results show that in
the vicinity of the CL, the tangential viscous stress —op, as postulated by the NBC
cannot give rise to the near-complete CL slip without taking into account the tangen-
tial Young stress —o), in combination with the gradient of (BL-integrated) normal
stress o,,. For the static configuration, the normal stress gradient is balanced by the
Young stress, leading to the Young equation. It is only for a moving CL that there
is a component of the Young stress which is no longer balanced by the normal stress
gradient, and this uncompensated Young stress is precisely the additional component

captured by the GNBC but missed by the NBC.

3. Continuum hydrodynamic formulation

Based on the MD results, we formulate a (first approximation) hydrodynamic
model based on the GNBC and the CH free energy functional [18]. The CH free
energy is noted to be successful in the calculations of fluid-fluid interfacial phenomena:

P [ |35 07+ f0)] (3.1)

where ¢ = (pa — p1)/(p2 + p1), f(P) = —%r(b? + iuqﬁ‘ﬂ and K, r, u are parameters
which can be directly obtained from MD simulations through the interface profile
thickness ¢ = /K /r, the interfacial tension v = 2v/2r2¢/3u, and the two homoge-
neous equilibrium phases given by the condition of 9f/9¢ = 0, yielding ¢+ = £+/7/u
(= £1 in our case). From MD simulations, the interface £ ~ 0.3¢ has a profile very
accurately described by the tanh(z/v/2¢) form predicted by the CH free energy. The
small value of £ implies negligible diffusion across the interface.

A displacement of the molecules from r to r' = r 4+ u(r) induces a local change
of ¢, 6¢ = —u - V¢, to the first order in u. The associated change in F' is given
by 0F = — [dr[g-u] + [ds[o)u;], where g = V¢ is the capillary force density,
with p = §F/d¢ being the chemical potential, and oY, = —K9,,¢0;¢ is the tangential
Young stress due to the spatial variation of ¢ at the fluid-solid boundary. Hence the
two coupled equations of motion are the Navier-Stokes equation (with the addition of
the capillary force density) and the convection-diffusion equation for ¢(r):

0
Pm |:a: + (VV) V:| = —Vp—‘rVO'U +Mv¢+pmgeztv (32)
%f +v Vo =MV, (3.3)

together with the incompressibility condition V - v = 0. Here p,, is the fluid mass
density, p is the pressure, ¥ denotes the viscous part of the stress tensor, pygest 1S
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Fi1G. 2.2. Two components of the dynamic tangential stress at z = zg, plotted as a function of x.
Here we show the results obtained for the Couette flow in the symmetric case (V = 0.25(e/m)*/? and
H = 13.60).Similar results are also obtained for the asymmetric case. The dashed lines denote 5Y,,;
solid lines represent the viscous component. In the CL region, the mon-viscous component is one
order of magnitude larger than the viscous component. The difference between the two components,
however, diminishes towards the boundary, z = 0, due to the large interfacial pressure drop (implying
a large curvature) in the BL, thereby pulling 04 closer to 0s. Inset: Xg4 s plotted as a function of
ycosbqy,s at different values of z. Here ¥4 = — [ da(one — 03), Bs = —fdxa?lz, and 04 5 was
measured from the time-averaged interfacial profiles. The hollow circles denote the dynamic case
and the single solid circle at the origin denotes the static case. The data are seen to follow a
straight (dashed) line with slope 1, indicating X4 s = ycos0q . This is also found to be true for the
asymmetric case.

the external body force density (for Poiseuille flows), and M is the phenomenological
mobility coefficient.

Four boundary conditions are required. Two are given by the impermeabil-
ity condition, i.e., the normal components of the fluid velocity and diffusive flux
are zero (v, = 0 and O, = 0). The other two boundary conditions may be de-
rived from our knowledge of CNBC plus the total free energy F[¢] + [dsyuf(6),
where 7, 7(¢) is the interfacial free energy at the fluid-solid boundary. We use
Ywi(®) = (Avws/2)sin(m¢p/2) to denote a smooth interpolation between £A~,,r/2,
with Av,; = —ycosf? (Young’s equation). Here it should be noted that the form
of the smooth interpolation has very little effect on the final results. Hence, we have
chosen a very simple interpolation function. The continuum form of the GNBC (2.3)



TIEZHENG QIAN, XTAO-PING WANG AND PING SHENG 339

is given by
ﬂvilip = —0Onz (O) =" [anvat] (O) =+ [L(Qb)ax(ﬂ (0)7 (3'4)

where[L(¢)0,¢] (0), with L(¢) = K0p¢ + Ovws(¢)/0¢, is the differential expression
for —5Y_.(0) = —o}_(0) + 02,(0) in equation (2.3) [14]. Here K0,¢0.¢ is —o),(0)
and [071(0) /091020 = Opyuws(9) is 09,(0) (from static force balance 0,7y f(¢) —
00,(0) = 0), with [, . de[Kd,¢0,¢](0) = ycosb] and [, . dedyyws = —7cosb?,
thus [ dx[L(¢)0,¢] (0) equals to y(cos8y — cos6?), with [L(¢)0,¢] (0) being the
uncompensated Young stress.

Another boundary condition may be inferred from the fact that L(¢) = 0 is
the Euler-Lagrange equation at the fluid-solid boundary for minimizing the total free
energy F[p|+ [ dsyuf(¢). That is, L(¢) = 0 corresponds with the equilibrium (static)
condition where 9¢/0t + v - V¢ = 0. Therefore, to the first order, the boundary
relaxation dynamics of ¢ are plausibly assumed to be proportional to a nonzero L(¢):

80 vV =T, (35)
where I' is a phenomenological parameter.

Motivated by the methods presented in [19, 20], a second order scheme is designed
to solve the CH hydrodynamic model (3.2),(3.3),(3.4),(3.5) with verified exponential
convergence in time to the steady state. Besides those parameters which can be di-
rectly obtained from MD simulations, M and I' are treated as fitting parameters,
determined by comparison with MD results (values given in the figure legend). In
figure 3.1, we show that the continuum model can indeed quantitatively reproduce
the interface and velocity profiles from MD simulations, including the near-total slip
(vz =~ 0) of the CL and the fine features in the molecular scale vicinity of the CL.
We wish to emphasize that for the comparison with the symmetric case, the param-
eters in the continuum model, including those in the GNBC, are directly obtained
from the MD simulations, whose velocity profiles are then fitted by those from the
hydrodynamic calculations with optimized M and I' values. Thus the comparison
with the asymmetric Poiseuille flow, with §5 directly evaluated from MD simulation
data, is without additional adjustable parameters. The above results verify that the
boundary conditions and the parameter values are local properties and hence applica-
ble to flows with different macroscopic conditions. The remarkable overall agreement
affirms the validity of the GNBC and the hydrodynamic model, as well as justifies the
replacement of the diffuse fluid-solid boundary (force density) by a sharp boundary.

4. Concluding remarks

In summary, we have found for the first time the boundary condition that yields
near-complete slipping of the CL, in good agreement with MD results on the molecu-
lar scale. These results open the door to efficient simulations of nano- or microfluidics
involving immiscible components, as well as to macroscopic immiscible flow calcu-
lations, e.g., in porous media, that are physically meaningful at the molecular level
[21]. Tt should also be noted, however, that the present continuum formulation can
not calculate fluctuation effects that are important in MD simulations. Long range
interactions, e.g., those due to van der Waals interactions, have also been ignored.
The latter is potentially important in the calculations involving wetting layers.
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Fic. 3.1. Comparisons between the MD (symbols) and the continuum hydrodynamics (solid
lines) results, the latter calculated with the GNBC and values of M = 0.0230%/y/me and T' =
0.660/v/me. (a) The vy profiles for the Couette flow in the symmetric case (V = 0.25(e/m)*/2 and
H = 13.60) at different z planes. The profiles are symmetric about the center plane; hence, only the
lower half is shown for z = 0.4250 (black circles), 2.1250 (red squares), 3.8250 (green diamonds),
and 5.5250 (blue triangles). (b) The vy profiles for the Poiseuille flow in the asymmetric case
(H = 13.60, the two walls moving at a constant speed V = 0.51(¢/m)'/2 in the —x direction in
order to maintain a time-independent steady-state interface, with mgeqst = 0.05¢/0 applied in the
direction) at different z planes. The profiles are symmetric about the center plane; hence, only the
lower half is shown for z = 0.4250 (black circles), 2.1250 (red squares), 3.8250 (green diamonds),
and 5.5250 (blue triangles). For the boundary layers, vz = 0 means complete slip. (c) and (d)
The interface profiles corresponding to (a) and (b), respectively. The symbols represent the time-
averaged interface profiles from MD, defined by p1 = p2 (¢ = 0). The black solid lines are the
interface profiles calculated from the continuum hydrodynamic model with the GNBC.
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