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GROUND, SYMMETRIC AND CENTRAL VORTEX STATES IN
ROTATING BOSE-EINSTEIN CONDENSATES ∗

WEIZHU BAO † , HANQUAN WANG ‡ , AND PETER A. MARKOWICH §

Abstract. We study ground, symmetric and central vortex states, as well as their energy and
chemical potential diagrams, in rotating Bose-Einstein condensates (BEC) analytically and numer-
ically. We start from the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with an angular
momentum rotation term, scale it to obtain a four-parameter model, reduce it to a 2D GPE in the
limiting regime of strong anisotropic confinement and present its semiclassical scaling and geometrical
optics. We discuss the existence/nonexistence problem for ground states (depending on the angular
velocity) and find that symmetric and central vortex states are independent of the angular rotational
momentum. We perform numerical experiments computing these states using a continuous normal-
ized gradient flow (CNGF) method with a backward Euler finite difference (BEFD) discretization.
Ground, symmetric and central vortex states, as well as their energy configurations, are reported
in 2D and 3D for a rotating BEC. Through our numerical study, we find various configurations
with several vortices in both 2D and 3D structures, energy asymptotics in some limiting regimes
and ratios between energies of different states in a strong replusive interaction regime. Finally we
report the critical angular velocity at which the ground state loses symmetry, numerical verification
of dimension reduction from 3D to 2D, errors for the Thomas-Fermi approximation, and spourous
numerical ground states when the rotation speed is larger than the minimal trapping frequency in
the xy plane.

Key words. rotating Bose-Einstein condensate, Gross-Pitaevskii equation, ground state, sym-
metric state, central vortex state, angular momentum rotation, continuous normalized gradient flow,
energy, chemical potential.
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1. Introduction
Since its realization in dilute bosonic atomic gases [4, 10], Bose-Einstein conden-

sation (BEC) of alkali atoms and hydrogen has been produced and studied extensively
in the laboratory [34, 38], and has permitted an intriguing glimpse into the macro-
scopic quantum world. In view of potential applications [22], the study of quantized
vortices, which are related to superfluid properties, is one of the key issues. In fact,
bulk superfluids are distinguished from normal fluids by their ability to support dis-
sipationless flow. Such persistent currents are intimately related to the existence of
quantized vortices, which are localized phase singularities with integer topological
charge [22]. The superfluid vortex is an example of a topological defect that is well
known in superconductors [30] and in liquid helium [18]. The occurrence of quantized
vortices in superfluids has been the focus of fundamental theoretical and experimental
work [18]. Different groups have obtained quantized vortices in a BEC experimen-
tally, e.g. the JILA group [34], the ENS group [33, 39] and the MIT group [38].
Currently, there are at least two typical ways to generate quantized vortices from
the BEC ground state: (i) impose a laser beam rotating with an angular velocity
on the magnetic trap holding the atoms to create a harmonic anisotropic potential
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[42], (ii) add to the stationary magnetic trap a narrow, moving Gaussian potential,
representing a far-blue-detuned laser [28]. In fact, recent experimental and theoretical
advances in exploration of quantized vortices in a BEC have spurred great excitement
in the atomic physics community and renewed interest in studying superfluidity.

The properties of a BEC in a rotational frame at temperatures T much smaller
than the critical condensation temperature Tc are usually well modelled by a non-
linear Schrödinger equation (NLSE) for the macroscopic wave function known as the
Gross-Pitaevskii equation (GPE) [36], which incorporates the trap potential, rota-
tional frame, as well as the interactions among the atoms. The effect of the inter-
actions is described by a mean field which leads to a nonlinear term in the GPE.
The cases of repulsive and attractive interactions - which can both be realized in
the experiment - correspond to defocusing and focusing nonlinearities in the GPE,
respectively.

There has been a series of recent numerical studies for the stability and dynamics
of quantized vortices in BEC. For a non-rotating BEC, Bao and Du [6] presented a
CNGF with BEFD discretization to compute central vortex states, Caradoc-Davis et.
al [12, 13], Bao and Zhang [9] studied stability of central vortices and their interactions
numerically, Lundh et. al [32] studied free expansion of vortex state. For a rotating
BEC, in the line of adding a far-blue-detuned Gaussian laser stirrer, Caradoc-Davis et.
al [12, 13], Jackson et. al [27, 28], and Bao et. al [7, 9] studied dynamics of vortices,
generation of vortices from the ground state and critical angular speed; in the line of
a BEC in a rotational frame, Aftalion and Du [1], Aftalion and Riviere [2] studied
numerically and asymptotically ground state, critical angular velocity and energy
diagram in the Thomas-Fermi (TF) or semiclassical regime, Aftalion and Danaila [3]
and Modugno et. al [35] reported bent vortices, e.g. S-shaped vortex and U-shaped
vortex, numerically in cigar-shaped condensation and compared with experimental
results [39], Garcia-Ripoll and Perez-Garcia [24, 23, 26] studied stability of the central
vortex, Tsubota et. al [45] reported vortex lattice formation. Moreover, Svidzinsky
and Fetter [42] have studied dynamics of a vortex line depending on its curvature.
For an analysis of the GP-functional in a rotational frame we refer to [40]. For a
numerical and theoretical review of quantized vortices, we refer to [22] and the recent
book [37].

The aim of this paper is to analytically and numerically study ground, symmetric
and central vortex states, as well as their energy diagrams in a BEC under a rota-
tional frame representing a laser beam rotating with a given angular velocity on the
magnetic trap. We extend the efficient and stable numerical method of CNGF with
BEFD discretization, proposed in [6] for computing ground state of a non-rotating
BEC, to a rotating BEC, and then apply it to study the ground state, symmetric
state, central vortex states, central vortex ground state, as well as their energy dia-
grams, in a rotating BEC numerically. Vortices and energy bifurcation are observed in
the ground state when the angular rotation speed is bigger than a critical frequency.
These results agree very well with those, obtained by theoretical and other numerical
methods, in the physical literatures [1, 25, 32, 40, 41]. Furthermore, we also present
some new analytical and numerical results for the ground, symmetric and central
vortex states, as well as their energy diagrams in a rotating BEC. These results are
to: (i) provide asymptotics of the energy and chemical potential of the ground state
in the semiclassical regime; (ii) show that the ground state is a global minimizer of
the energy functional over the unit sphere and all excited states are saddle points in
the linear case; (iii) provide semiclassical scaling and geometrical optics for a rotating
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BEC; (iv) find numerically the ratio between energies of different stationary states
goes to constant in the semiclassical regime; (v) find the asymptotics of the energy of
the ground state when the angular momentum velocity is near the minimal trapping
frequency in xy plane; (vi) perform a numerical verification for dimension reduction
from 3D to 2D and find the convergence rate; (vii) define the central vortex ground
state and find the critical rotation speed for it numerically; (viii) study the TF ap-
proximation numerically; (ix) test different choices of initial data for the numerical
method in an isotropic trap and find there is only one choice which always guarantees
convergence to the ground state where it exists.

The paper is organized as follows. In section 2, we take the 3D GPE with an
angular momentum term, scale it to get a four parameter model, reduce it to a 2D
problem in a limiting regime, and present its semiclassical scaling and geometrical
optics. In section 3, we study the energy functional and (for the sake of completeness
and readability) present a simple proof of existence of the ground state when the
angular speed is less than the minimal trapping frequency in the xy plane, and resp.,
nonexistence of the ground state when the angular speed is bigger than the maximal
trapping frequency in the xy plane. In section 4, we present symmetric, central vortex
and central vortex ground states. In section 5, we extend the CNGF and its BEFD
discretization, proposed for non-rotating BEC in [6], to rotating BEC for computing
ground and vortex states. In section 6, we report numerical results in 2D and 3D,
and finally in section 7 we draw some conclusions.

2. GPE in a rotational frame
At temperatures T much smaller than the critical temperature Tc [30], a BEC in

a rotational frame is well described by the macroscopic wave function ψ(x,t), whose
evolution is governed by a self-consistent, mean field nonlinear Schrödinger equation
known as the Gross-Pitaevskii equation (GPE) with an angular momentum rotational
term [1, 11, 20, 24], (w.l.o.g.) assuming the rotation being around the z-axis:

i~
∂ψ(x,t)

∂t
=

δE(ψ)
δψ∗

:=H ψ

=
(
− ~

2

2m
∇2 +V (x)+NU0|ψ(x,t)|2−ΩLz

)
ψ(x,t), (2.1)

where x=(x,y,z)T ∈R3 is the spatial coordinate vector, m is the atomic mass, ~ is the
Planck constant, N is the number of atoms in the condensate, Ω is an angular velocity,
V (x) is an external trapping potential. When a harmonic trap potential is considered,
V (x)= m

2

(
ω2

xx2 +ω2
yy2 +ω2

zz2
)

with ωx, ωy and ωz being the trap frequencies in x-
, y- and z-direction respectively. For the following we assume (w.l.o.g.) ωx≤ωy.
U0 = 4π~2as

m describes the interaction between atoms in the condensate with the s-
wave scattering length as (positive for repulsive interaction and negative for attractive
interaction) and

Lz =xpy−ypx =−i~(x∂y−y∂x) (2.2)

is the z-component of the angular momentum L=x×P with the momentum operator
P=−i~∇=(px,py,pz)T . The energy functional per particle E(ψ) is defined as

E(ψ)=
∫

R3

[
~2

2m
|∇ψ|2 +V (x)|ψ|2 +

NU0

2
|ψ|4−Ωψ∗Lzψ

]
dx. (2.3)
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Here we use f∗ to denote the conjugate of a function f . It is convenient to normalize
the wave function by requiring

∫

R3
|ψ(x,t)|2 dx=1. (2.4)

2.1. Dimensionless GPE in a rotational frame. By introducing the
dimensionless variables: t→ t/ωm with ωm =min{ωx,ωy,ωz}, x→xa0 with a0 =√
~/mωm, ψ→ψ/a

3/2
0 , Ω→Ωωm and E(·)→~ωmEβ,Ω(·), we get the dimensionless

GPE

i
∂ψ(x,t)

∂t
=

δEβ,Ω(ψ)
δψ∗

:=H ψ

=
(
−1

2
∇2 +V (x)+β |ψ(x,t)|2−ΩLz

)
ψ(x,t), (2.5)

where β = U0N
a3
0~ωm

= 4πasN
a0

, Lz =−i(x∂y−y∂x), V (x)= 1
2

(
γ2

xx2 +γ2
yy2 +γ2

zz2
)

with
γx = ωx

ωm
, γy = ωy

ωm
and γz = ωz

ωm
, and the dimensionless energy functional per parti-

cle Eβ,Ω(ψ) is defined as

Eβ,Ω(ψ)=
∫

R3

[
1
2
|∇ψ(x,t)|2 +V (x)|ψ|2 +

β

2
|ψ|4−Ωψ∗Lzψ

]
dx. (2.6)

In a disk-shaped condensation with parameters ωx≈ωy and ωzÀωx (⇐⇒ γx =1,
γy≈1 and γzÀ1 with choosing ωm =ωx), the 3D GPE (2.5) can be reduced to a 2D
GPE with x=(x,y)T [7, 5, 8]:

i
∂ψ(x,t)

∂t
=−1

2
∇2ψ+V2(x,y)ψ+β2|ψ|2ψ−ΩLzψ, (2.7)

where β2≈βa
2 =β

√
γz/2π and V2(x,y)= 1

2

(
γ2

xx2 +γ2
yy2

)
[1, 7, 8]. Thus here we con-

sider the dimensionless GPE in a rotational frame in d-dimensions (d=2,3):

i
∂ψ(x,t)

∂t
=−1

2
∇2ψ+Vd(x)ψ+βd|ψ|2ψ−ΩLzψ, x∈Rd, t≥0, (2.8)

where β3 =β and V3(x,y,z)=V (x,y,z).
Two important invariants of (2.8) are the normalization of the wave function

N(ψ)=
∫

Rd

|ψ(x,t)|2 dx≡
∫

Rd

|ψ(x,0)|2 dx=1, t≥0 (2.9)

and the energy

Eβ,Ω(ψ)=
∫

Rd

[
1
2
|∇ψ(x,t)|2 +Vd(x)|ψ|2 +

βd

2
|ψ|4−Ωψ∗Lzψ

]
dx. (2.10)

2.2. Stationary states. To find a stationary solution of (2.8), we write

ψ(x,t)=e−iµtφ(x), (2.11)

where µ is the chemical potential of the condensate and φ is independent of time.
Inserting (2.11) into (2.8) gives the following equation for φ(x)

µφ(x)=−1
2
∆φ(x)+Vd(x)φ(x)+βd|φ(x)|2φ(x)−ΩLzφ(x), x∈Rd, (2.12)
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under the normalization condition

‖φ‖2 =
∫

Rd

|φ(x)|2 dx=1. (2.13)

This is a nonlinear eigenvalue problem with a constraint and any eigenvalue µ can be
computed from its corresponding eigenfunction φ by

µ=µβ,Ω(φ)=
∫

Rd

[
1
2
|∇φ(x)|2 +Vd(x)|φ(x)|2 +βd |φ(x)|4−Ωφ∗(x)Lzφ(x)

]
dx

=Eβ,Ω(φ)+
∫

Rd

βd

2
|φ(x)|4 dx. (2.14)

In fact, the eigenfunctions of (2.12) under the constraint (2.13) are the critical points of
the energy functional Eβ,Ω(φ) over the unit sphere S ={φ∈C | ‖φ‖=1,Eβ,Ω(φ)<∞}.
Furthermore (2.12) is the Euler-Lagrange equation of the energy functional (2.10) with
ψ =φ under the constraint (2.13).

2.3. Semiclassical scaling and geometrical optics. When βdÀ1, i.e.
in a strongly repulsive interacting condensation or in a semiclassical regime, another
scaling (under the normalization (2.9) with ψ =ψε) for the GPE (2.8) is also very
useful in practice by choosing x→ε−1/2x and ψ =ψε εd/4 with ε=β

−2/(d+2)
d :

iε
∂ψε(x,t)

∂t
=

δEε,Ω(ψε)
δ(ψε)∗

:=Hε ψε

=−ε2

2
∇2ψε +Vd(x)ψε + |ψε|2ψε−εΩLzψ

ε, x∈Rd, (2.15)

where the energy functional Eε,Ω(ψε) is defined as

Eε,Ω(ψε)=
∫

R3

[
ε2

2
|∇ψε|2 +Vd(x)|ψε|2 +

1
2
|ψε|4−εΩ(ψε)∗Lzψ

ε

]
dx=O(1),

assuming that ψε is ε-oscillatory and ‘sufficiently’ integrable such that all terms have
O(1)-integral. Similarly, the nonlinear eigenvalue problem (2.12) (under the normal-
ization (2.13) with φ=φε) reads

µεφε(x)=−ε2

2
∆φε +Vd(x)φε + |φε|2φε−εΩLzφ

ε, x∈Rd, (2.16)

where any eigenvalue µε can be computed from its corresponding eigenfunction φε by

µε =µε,Ω(φε)=
∫

Rd

[
ε2

2
|∇φε|2 +Vd(x)|φε|2 + |φε|4−εΩ(ψε)∗Lzψ

ε

]
dx=O(1).

Furthermore it is easy to get the leading asymptotics of the energy functional Eβ,Ω(ψ)
in (2.10) and the chemical potential µβ,Ω(φ) in (2.14) when βdÀ1 from this scaling:

Eβ,Ω(ψ)=ε−1Eε,Ω(ψε)=O
(
ε−1

)
=O

(
β

2/(d+2)
d

)
, (2.17)

µβ,Ω(φ)=ε−1µε,Ω(φε)=O
(
ε−1

)
=O

(
β

2/(d+2)
d

)
, βdÀ1. (2.18)

These asymptotics results will be confirmed by our numerical results in Section 6.
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When 0<ε¿1, i.e. βdÀ1, we set

ψε(x,t)=
√

ρε(x,t)exp
(

i

ε
Sε(x,t)

)
, (2.19)

where ρε = |ψε|2 and Sε is the phase of the wave-function. Inserting (2.19) into (2.15)
and collecting real and imaginary parts, we get the transport equation for ρε and the
Hamilton-Jacobi equation for the phase Sε:

∂tρ
ε +div(ρε∇Sε)+Ω(x∂y−y∂x)ρε =0, (2.20)

∂tS
ε +

1
2
|∇Sε|2 +Vd(x)+ρε +Ω(x∂y−y∂x)Sε =

ε2

2
1√
ρε

∆
√

ρε. (2.21)

3. Ground state
The ground state wave function φg(x) :=φg

β,Ω(x) of a rotating BEC is found by
minimizing the energy functional Eβ,Ω(φ) over the unit sphere S:

(I) Find (µg
β,Ω,φg

β,Ω∈S) such that

Eg :=Eg
β,Ω =Eβ,Ω(φg

β,Ω)=min
φ∈S

Eβ,Ω(φ), µg :=µg
β,Ω =µβ,Ω(φg

β,Ω). (3.1)

Any eigenfunction φ(x) of (2.12) under the constraint (2.13) whose energy Eβ,Ω(φ)>
Eβ,Ω(φg

β,Ω) is usually called as an excited state in the physical literature [37].
Existence/nonexistence results of ground state, depending on the magnitude |Ω|

of the angular velocity relative to the trapping frequencies are known and can be
found [40]. For the sake of readability of this paper we include the sketch of the proof
here.

3.1. Existence of the ground state when |Ω|<γxy :=min{γx,γy}. To
study the existence of the ground state in a rotating BEC, we first present some
properties of the energy functional

Lemma 3.1. i) In 2D, we have

Eβ,−Ω(φ(x,−y))=Eβ,Ω(φ(x,y)), Eβ,−Ω(φ(−x,y))=Eβ,Ω(φ(x,y)), φ∈S. (3.2)

ii) In 3D, we have

Eβ,−Ω(φ(x,−y,z))=Eβ,Ω(φ(x,y,z)), Eβ,−Ω(φ(−x,y,z))=Eβ,Ω(φ(x,y,z)), φ∈S.
(3.3)

iii) In 2D and 3D, we have

∫

Rd

[
1−|Ω|

2
|∇φ(x)|2 +

(
Vd(x)− |Ω|

2
(x2 +y2)

)
|φ|2 +

βd

2
|φ|4

]
dx≤Eβ,Ω(φ)

≤
∫

Rd

[
1+ |Ω|

2
|∇φ(x)|2 +

(
Vd(x)+

|Ω|
2

(x2 +y2)
)
|φ|2 +

βd

2
|φ|4

]
dx. (3.4)
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Proof. i) From (2.10) with ψ =φ and d=2, observing (2.2), with a change of
variables, we have

Eβ,−Ω(φ(x,−y)) =
∫

R2

[
1
2
|∇φ(x,−y)|2 +Vd(x)|φ(x,−y)|2

+
βd

2
|φ(x,−y)|4 +Ωφ∗(x,−y)Lzφ(x,−y)

]
dxdy

y→−y
=

∫

R2

[
1
2
|∇φ(x,y)|2 +Vd(x)|φ(x,y)|2

+
βd

2
|φ(x,y)|4−Ωφ∗(x,y)Lzφ(x,y)

]
dxdy

= Eβ,Ω(φ(x,y)), φ∈S. (3.5)

Similarly, we obtain the second equality in (3.2).
ii) The proof is similar as in i) except d=3, details are omitted.
iii) From (2.2), the Hölder inequality, we have

∣∣∣∣
∫

Rd

−Ωφ∗(x)Lzφ(x)dx
∣∣∣∣≤|Ω|

∫

Rd

|φ∗(x)Lzφ(x)| dx

= |Ω|
∫

Rd

|φ∗(x)(x∂yφ−y∂xφ)| dx≤|Ω|
∫

Rd

[|xφ∗| |∂yφ|+ |yφ∗| |∂xφ|] dx

≤ |Ω|
2

∫

Rd

[(|∂xφ|2 + |∂yφ|2)+(x2 +y2)|φ|2] dx. (3.6)

Thus the inequality (3.4) is a combination of (3.6) and (2.10) with ψ =φ.

From this lemma, since γy≥γx =γxy and γz >0, when βd≥0 and |Ω|<γxy, we
know that the energy functional Eβ,Ω(φ) is positive, coercive and weakly lower semi-
continuous on S. Thus the existence of a minimum follows from the standard theory
[43] and we have

Theorem 3.2. i) In 2D, if φβ,Ω(x,y)∈S is a ground state of the energy functional
Eβ,Ω(φ), then φβ,Ω(x,−y)∈S and φβ,Ω(−x,y)∈S are ground states of the energy
functional Eβ,−Ω(φ). Furthermore

Eg
β,Ω =Eg

β,−Ω, µg
β,Ω =µg

β,−Ω. (3.7)

ii) In 3D, if φβ,Ω(x,y,z)∈S is a ground state of the energy functional Eβ,Ω(φ),
then φβ,Ω(x,−y,z)∈S and φβ,Ω(−x,y,z)∈S are ground states of the energy functional
Eβ,−Ω(φ), and (3.7) is also valid.

iii). When βd≥0 and |Ω|<γxy, there exists a minimizer for the minimization
problem (3.1), i.e. there exists a ground state.

For understanding the uniqueness question, note that Eβ,Ω(αφg
β,Ω)=Eβ,Ω(φg

β,Ω)
for all α∈C with |α|=1. Thus an additional constraint has to be introduced to show
uniqueness. For a non-rotating BEC, i.e. Ω=0, the unique positive minimizer is
usually taken as the ground state. In fact, the ground state is unique up to a constant
α with |α|=1, i.e. density of the ground state is unique, when Ω=0. For a rotating
BEC under |Ω|<γxy, in section 5, we present a CNGF and its BEFD discretization for
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computing a minimizer of the minimization problem (3.1) with appropriately chosen
initial data. From our numerical results, the density of the ground state may no longer
be unique when |Ω|>Ωc with Ωc a critical angular rotation speed.

3.2. Nonexistence of ground states when |Ω|>γxy :=max{γx,γy}. De-
note γr :=γxy and notice 1

2 (γ2
xx2 +γ2

yy2)≤ 1
2γ2

rr2 with r =
√

x2 +y2, we have

Eβ,Ω(φ)≤ 1
2

∫ 2π

0

∫ ∞

0

[
|∂rφ|2 +

1
r2
|∂θφ|2 +γ2

rr2|φ|2 +β2|φ|4 +2iΩφ∗∂θφ

]
r drdθ,

d=2, (3.8)

Eβ,Ω(φ)≤ 1
2

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

[
|∂rφ|2 +

1
r2
|∂θφ|2 + |∂zφ|2 +(γ2

rr2 +γ2
zz2)|φ|2

+β2|φ|4 +2iΩφ∗∂θφ

]
r drdθdz, d=3, (3.9)

where (r,θ) and (r,θ,z) are polar (in 2D), and resp., cylindrical coordinates (in 3D).
In 2D, let

φm(x)=φm(r,θ)=φm(r)eimθ, with φm(r)=
γ

(|m|+1)/2
r√

π|m|! r|m|e−
γrr2

2 , (3.10)

where m is an integer. In fact, φm(x) is the central vortex state with winding number
m of the GPE (2.8) with d=2, βd =0 and Ω=0. It is very easy to check that φm

satisfies

‖φm‖=2π

∫ ∞

0

|φm(r)|2 r dr =1, m∈Z, (3.11)

1
2

[
−1

r

d

dr

(
r

d

dr

)
+r2 +

m2

r2

]
φm(r)=(|m|+1)γrφm(r), 0<r <∞. (3.12)

Thus φm∈S and we compute

Eβ,Ω(φm(x))≤ (|m|+1)γr−Ωm+β2π

∫ ∞

0

|φm(r)|4r dr

=(|m|+1)γr−Ωm+
β2γr(2|m|)!

4π(2|m|(|m|!))2 . (3.13)

Thus when |Ω|>γr, we have

inf
φ∈S

Eβ,Ω(φ)≤
{

limm→∞Eβ,Ω(φm) Ω>0,
limm→∞Eβ,Ω(φ−m) Ω<0

= lim
m→∞

(γr−|Ω|)|m|+γr +
β2γr(2|m|)!

4π(2|m|(|m|!))2 =−∞. (3.14)

This implies that there is no minimizer of the minimization problem (3.1) when |Ω|>
γxy in 2D.

Similarly, in 3D, the argument proceeds with the central vortex line state with
winding number m of the GPE (2.8) with d=3, βd =0 and Ω=0

φm(x)=φm(r,θ,z)=φm(r,z)eimθ, φm(r,z)=
γ

(|m|+1)/2
r γ

1/4
z

π3/4
√
|m|! r|m|e−

γrr2+γzz2

2 , (3.15)
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and we conclude that there is no minimizer of the minimization problem (3.1) when
|Ω|>γxy in 3D.

Remark 3.1. When γxy < |Ω|≤γxy in an anisotropic trap, although there is no
rigorous mathematical justification, our numerical results in Section 6 show that there
is no ground state of the energy functional Eβ,Ω(φ).

3.3. Stationary states as minimizer/saddle points in the linear case.
For the stationary states of (2.12), we have the following lemma, valid in the linear
case βd =0:

Lemma 3.3. Suppose βd =0, |Ω|<γxy and Vd(x)≥0 for x∈Rd, we have
(i). The ground state φg is a global minimizer of E0,Ω(φ) over S.
(ii). Any excited state φe is a saddle point of E0,Ω(φ) over S.

Proof. Follows the line of the analogous result for a non-rotating BEC in [9].

3.4. Approximate ground state. When βd =0 and Ω=0, the ground state
solution is given explicitly [8]

µg
0,0 =

1
2

{
γx +γy,
γx +γy +γz,

φg
0,0(x)=

1
πd/4





(γxγy)1/4e−
γxx2+γyy2

2 , d=2,

(γxγyγz)1/4e−
γxx2+γyy2+γzz2

2 , d=3.

In fact, this solution can be viewed as an approximation of the ground state for a
weakly interacting slowly rotating condensate, i.e. |βd|¿1 and |Ω|≈0.

For a condensate with strong repulsive interaction, i.e. βdÀ1, |Ω|≈0, γx =O(1),
γy =O(1) and γz =O(1), the ground state can be approximated by the TF approxi-
mation in this regime [1, 7, 8, 9]:

φTF
β (x)=

{√
(µTF

β −Vd(x))/βd, Vd(x)<µTF
β ,

0, otherwise,
(3.16)

µTF
β =

1
2

{
(4β2γxγy/π)1/2 d=2,
(15β3γxγyγz/4π)2/5 d=3.

(3.17)

Clearly φTF
β is not differentiable at Vd(x)=µTF

β , thus Eβ,Ω(φTF
β )=∞ and µβ,Ω(φTF

β )=
∞ [7, 9]. This shows that one can’t use (2.10) to define the energy of the TF
approximation (3.16). How to define the energy of the TF approximation is not clear
in the literature. Using (2.14), (3.17) and (3.16), following [9] for a non-rotating BEC,
here we use the way to define the energy of the TF approximation (3.16) [9]:

ETF
β,Ω =µTF

β,Ω−
∫

Rd

βd

2
|φTF

β (x)|4 dx=
d+2
d+4

µTF
β , d=2,3. (3.18)

Our numerical results in Section 6 show that the TF approximation (3.16) is very
accurate for the density of the ground state, except at the vortex vore, when βdÀ1
and |Ω|<γxy, and (3.17) and (3.18) converge to the chemical potential and energy
respectively only when |Ω|≈0, but diverge when |Ω| is near γxy.

4. Excited states
In this section, we present symmetric, central vortex states and their energies

of rotating BEC in 2D with radial symmetry and 3D with cylindrical symmetry, i.e.
γx =γy in (2.8). These states, as well as their stability and interaction, were widely
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studied in non-rotating BEC [7, 12, 13, 27, 28, 6, 9, 5]. They are also very interesting
in rotating BEC [11, 20, 34, 38, 23, 26]. In fact, they will be used as initial data for
studying quantized vortex stability [33, 24, 21], dynamics [35, 44] and interaction in
superfluidity [42].

4.1. Central vortex ground state. One interesting excited state is a vortex
state whose energy minimizes the energy functional among all φ∈S which is locally
a central vortex near the origin in 2D and a central vortex line near the z-axis in 3D.
To be specific, in 2D, let

Sv ={φ(x)∈C | ‖φ‖=1,Eβ,Ω(φ)<∞,φ(0,0)=0, (0,0) is a vortex center of φ}

and in 3D

Sv =
{

φ(x)∈C | ‖φ‖=1,Eβ,Ω(φ)<∞,φ(0,0,z)=0, (0,0,z) (z∈R)

is a vortex line of φ
}

.

Clearly Sv is a subset of the unit sphere S, i.e. Sv⊂S. Then the central vortex
ground state φv(x) :=φv

β,Ω(x) is found by minimizing the energy functional Eβ,Ω(φ)
over the set Sv⊂S:

(II) Find (µv
β,Ω,φv

β,Ω∈Sv) such that

Ev :=Ev
β,Ω =Eβ,Ω(φv

β,Ω)= min
φ∈Sv

Eβ,Ω(φ), µv :=µv
β,Ω =µβ,Ω(φv

β,Ω). (4.1)

Similarly as the proof for ground state, we have the following theorem for central
vortex ground state:

Theorem 4.1. i) In 2D, if φβ,Ω(x,y)∈Sv is a central vortex ground state of the en-
ergy functional Eβ,Ω(φ), then φβ,Ω(x,−y)∈Sv and φβ,Ω(−x,y)∈Sv are central vortex
ground states of the energy functional Eβ,−Ω(φ). Furthermore

Ev
β,Ω =Ev

β,−Ω, µv
β,Ω =µv

β,−Ω. (4.2)

ii) In 3D, if φβ,Ω(x,y,z)∈Sv is a central vortex ground state of the energy
functional Eβ,Ω(φ), then φβ,Ω(x,−y,z)∈Sv and φβ,Ω(−x,y,z)∈Sv are central vor-
tex ground states of the energy functional Eβ,−Ω(φ), and (4.2) is also valid.

iii). When βd≥0 and |Ω|<γxy, there exists a minimizer for the minimization
problem (4.1), i.e. there exists central vortex ground state.

iv). When βd≥0 and |Ω|>γxy, there exists no central vortex ground state.
The CNGF and BEFD discretization for computing the ground state in section

5 can also be applied to compute central vortex ground state numerically for βd≥0
and |Ω|<γxy provided that we choose appropriate initial data for them.

4.2. Symmetric and central vortex states. In 2D with radially symmetric
trap, i.e. d=2 and γy =γx :=γr in (2.8), we consider wave function of the form

ψ(x,t)=e−iµmtφm(x,y)=e−iµmtφm(r)eimθ, (4.3)

where m is an integer which corresponds to a symmetric state when m=0 with φ′0(0)=
0 and to central vortex states when m 6=0 (m is usually called index or winding
number in this case) with φm(0)=0, µm is the chemical potential, and φm(r) is a real
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function independent of time t and angle θ =Arg(x). Inserting (4.3) into (2.8) gives
the following equation for φm(r) with 0<r <∞:

µm φm(r)=
1
2

[
−1

r

d

dr

(
r

d

dr

)
+γ2

rr2 +
m2

r2
+2β2|φm|2−2mΩ

]
φm, (4.4)

φ′m(0)=0 (m=0), and resp. φm(0)=0 (m 6=0), (4.5)
lim

r→∞
φm(r)=0, (4.6)

under the normalization condition

2π

∫ ∞

0

|φm(r)|2 r dr =1. (4.7)

In order to find the radially symmetric state (m=0), and resp., central vortex states
with index m (m 6=0), φm

β,Ω(x,y)=φm
β,Ω(r)eimθ, we need to find a real nonnegative

function φm(r) :=φm
β,Ω(r) which minimizes the energy functional

Em
β,Ω(φ(r))=Eβ,Ω(φ(r)eimθ)

=π

∫ ∞

0

[
|φ′(r)|2 +

(
γ2

rr2 +
m2

r2

)
|φ(r)|2 +β2|φ(r)|4−2mΩ|φ(r)|2

]
r dr

=Em
β,0(φ(r))−mΩ, Ω∈R, (4.8)

over the set S0 ={φ(r)∈R | 2π
∫∞
0
|φ(r)|2r dr =1, Em

β,0(φ)<∞, φ′(0)=0 (m=
0), and resp. φ(0)=0(m 6=0)}. The existence and uniqueness of a nonnegative mini-
mizer for this minimization problem can be obtained similarly as for the ground state
when Ω=0 [31]. Note that the set Sm ={φ(r)eimθ | φ∈S0}⊂S is a subset of the unit
sphere, so φm

β,Ω(r)eimθ is a minimizer of the energy functional Eβ,Ω(φ) over the set

Sm⊂S. When β2 =0 and Ω=0 in (2.8), φm
0,0(r)= γ(|m|+1)/2

r√
π|m|! r|m|e−γrr2/2 [6].

Similarly, in order to find the cylindrically symmetric state (m=0), and resp.
central vortex line states (m 6=0), in 3D with cylindrical symmetry, i.e. d=3 and
γy =γx :=γr in (2.8), we write

ψ(x,t)=e−iµmtφm(x,y,z)=e−iµmtφm(r,z)eimθ, (4.9)

where m is an integer and called as an index when m 6=0, µm is the chemical potential,
and φm(r,z) is a real function independent of time and angle. Inserting (4.9) into (2.8)
with d=3 gives the following equation for φm(r,z)

µm φm =
1
2

[
−1

r

∂

∂r

(
r

∂

∂r

)
− ∂2

∂z2
+γ2

rr2 +
m2

r2
+γ2

zz2 +2β3|φm|2−2mΩ
]
φm, (4.10)

∂rφm(0,z)=0 (m=0), and resp. φm(0,z)=0 (m 6=0), z∈R, (4.11)
lim

r→∞
φm(r,z)=0, −∞<z <∞, lim

|z|→∞
φ(r,z)=0, 0≤ r<∞, (4.12)

under the normalization condition

2π

∫ ∞

0

∫ ∞

−∞
|φm(r,z)|2 r drdz =1. (4.13)
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In order to find the cylindrically symmetric state (m=0), and resp. central vortex line
states (m 6=0) φm

β,Ω(x,y,z)=φm
β,Ω(r,z)eimθ, we compute a real nonnegative function

φm(r,z) :=φm
β,Ω(r,z) which minimizes the energy functional

Em
β,Ω(φ(r,z))=Eβ,Ω(φ(r,z)eimθ)

=π

∫ ∞

0

∫ ∞

−∞

[
|∂rφ|2 + |∂zφ|2 +

(
γ2

rr2 +γ2
zz2 +

m2

r2
−2mΩ

)
|φ|2 +β3|φ|4

]
r drdz

=Em
β,0(φ(r,z))−mΩ, Ω∈R, (4.14)

over the set S0 ={φ(r,z)∈R | 2π
∫∞
0

∫∞
−∞ |φ(r,z)|2r drdz =1, Em

β,0(φ)<∞, ∂rφ(0,r)=
0 (m=0),and resp. φ(0,z)=0 (m 6=0),−∞<z <∞}. The existence and uniqueness
of a nonnegative minimizer for this minimization problem can be obtained similarly
as for the ground state when Ω=0 [31]. Note that the set Sm ={φ(r,z)eimθ | φ∈
S0}⊂S is a subset of the unit sphere, so φm

β,Ω(r,z)eimθ is a minimizer of the energy
functional Eβ,Ω(φ) over the set Sm⊂S. When β3 =0 and Ω=0 in (2.8), φm

0,0(r,z)=
γ(|m|+1)/2

r γ1/4
z

π3/4
√
|m|! r|m|e−(γrr2+γzz2)/2 [6].

When βd >0, the CNGF and its BEFD discretization proposed in [6] for Ω=0
can be applied directly to compute the central vortex states for Ω 6=0.

From the above discussions, for symmetric states and central vortex states in a
rotating BEC, we have

Lemma 4.2. i) The radially (in 2D) and cylindrically (in 3D) symmetric states, and
central vortex states are independent of the angular momentum term, i.e.

φm
β,Ω =φm

β,0, βd≥0, Ω∈R, m∈Z.

ii) The energy and chemical potential are independent of Ω for the symmetric states,
and resp. are changing linearly with respect to Ω for the central vortex states, i.e.

Em :=Em
β,Ω(φm

β,Ω)=Em
β,0(φ

m
β,0)−mΩ,

µm :=µm
β,Ω(φm

β,Ω)=µm
β,0(φ

m
β,0)−mΩ, βd≥0, Ω∈R, m∈Z.

iii) When Ω=0 & βd≥0, the symmetric state is the same as the ground state, i.e.
φ0

β,Ω =φg
β,Ω, and the central vortex state with index m=1 is the same as the central

vortex ground state, i.e. φ1
β,Ω =φv

β,Ω.

4.3. Critical angular velocity in symmetric trap. In 2D with radial
symmetry and in 3D with cylindrical symmetry, for any βd≥0, when Ω=0, the ground
state satisfies φg

β,0(x)=φ0
β,0(r) in 2D and φg

β,0(x)=φ0
β,0(r,z) in 3D, i.e. the ground

state is symmetric. When Ω increases to a critical angular velocity, Ωc
β , defined as

Ωc :=Ωc
β =max

{
Ω | Eβ,Ω(φg

β,Ω)=Eβ,Ω(φ0
β,Ω)=Eβ,0(φ0

β,0)
}

,

the energy of the ground state will be less than that of the symmetric state, i.e.
symmetry breaking occurs in the ground state [40, 41]. Ωc

β is also called as critical
angular velocity for symmetry breaking in the ground state.

Similarly, for any βd≥0, when Ω=0, the central vortex ground state satisfies
φv

β,Ω(x)=φ1
β,0(r)e

iθ in 2D and φv
β,Ω(x)=φ1

β,0(r,z)eiθ in 3D. When Ω increases to a
critical angular velocity, Ωv

β , defined as

Ωv :=Ωv
β =max

{
Ω |Eβ,Ω(φv

β,Ω)=E1
β,Ω(φ1

β,0)−Ω
}

,
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the energy of φv
β,Ω will be less than that of the index 1 central vortex state. We call

Ωv
β as critical angular velocity for symmetry breaking in the central vortex ground

state.
From the above discussions and our numerical computations presented later, we

find

Ωc
0 =Ωv

0 =γr, 0≤Ωc
β <Ωv

β≤γr, for βd >0.

5. Normalized gradient flow and its discretization
Various algorithms, e.g. imaginary time method [15, 1, 2], Sobolev gradient

method [25, 24], finite element approximation [8, 46], iterative method [14] etc., for
finding the minimizer of the minimization problem (3.1) have been studied in the
literatures. Perhaps one of the more popular techniques for dealing with the normal-
ization constraint (2.13) is through the splitting (or projection) scheme: (i). Apply
the steepest decent method to an unconstrained minimization problem; (ii) project
the solution back to the unit sphere S. This suggests to us to consider gradient flow
with discrete normalization (GFDN):

φt =−δEβ,Ω(φ)
δφ∗

=
1
2
∆φ−Vd(x)φ−βd |φ|2φ+ΩLzφ, tn <t<tn+1, (5.1)

φ(x,tn+1)
4
=φ(x,t+n+1)=

φ(x,t−n+1)
‖φ(·,t−n+1)‖

, x∈Rd, n≥0, (5.2)

φ(x,0)=φ0(x), x∈Rd with ‖φ0‖=1; (5.3)

where 0= t0 <t1 <t2 < ···<tn < ··· with ∆tn = tn+1− tn >0 and k =maxn≥0 ∆tn, and
φ(x,t±n )= limt→t±n φ(x,t). In fact, the gradient flow (5.1) can be viewed as applying
the steepest descent method to the energy functional Eβ,Ω(φ) without constraint
and (5.2) then projects the solution back to the unit sphere in order to satisfy the
constraint (2.13). From the numerical point of view, the gradient flow (5.1) can be
solved via traditional techniques and the normalization of the gradient flow is simply
achieved by a projection at the end of each time step.

Let

φ̃(·,t)=
φ(·,t)
‖φ(·,t)‖ , tn≤ t≤ tn+1, n≥0. (5.4)

For the gradient flow (5.1), it is easy to establish the following basic facts:

Lemma 5.1. Suppose Vd(x)≥0 for all x∈Rd, βd≥0 and ‖φ0‖=1, then
(i). ‖φ(·,t)‖≤‖φ(·,tn)‖=1 for tn≤ t<tn+1, n≥0.
(ii). For any βd≥0, and all t′, t with tn≤ t′<t<tn+1:

Eβ,Ω(φ(·,t))≤Eβ,Ω(φ(·,t′)), n≥0. (5.5)

(iii). For βd =0,

E0,Ω(φ̃(·,t))≤E0,Ω(φ̃(·,tn)), tn≤ t≤ tn+1, n≥0. (5.6)

Proof. Follows the line of the analogous result for a non-rotating BEC in [6].
From Lemma 5.1, we get immediately
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Theorem 5.2. Suppose Vd(x)≥0 for all x∈Rd and ‖φ0‖=1. For βd =0, GFDN
(5.1)-(5.3) is energy diminishing for any time step k and initial data φ0, i.e.

E0,Ω(φ(·,tn+1))≤E0,Ω(φ(·,tn))≤···≤E0,Ω(φ(·,0))=E0,Ω(φ0), n≥0. (5.7)

In fact, the normalized step (5.2) is equivalent to solve the following ODE exactly

φt(x,t)=µφ(t,k)φ(x,t), x∈Rd, tn <t<tn+1, n≥0, (5.8)
φ(x,t+n )=φ(x,t−n+1), x∈Rd; (5.9)

where

µφ(t,k)≡µφ(tn+1,∆tn)=− 1
2∆tn

ln‖φ(·,t−n+1)‖2, tn≤ t≤ tn+1. (5.10)

Thus the GFDN (5.1)-(5.3) can be viewed as a first-order splitting method for the
gradient flow with discontinuous coefficients:

φt =
1
2
∆φ−Vd(x)φ−β |φ|2φ+ΩLzφ+µφ(t,k)φ, x∈Rd, t≥0, (5.11)

φ(x,0)=φ0(x), x∈Rd with ‖φ0‖=1. (5.12)

Letting k→0 and noticing that φ(x,tn+1) on the right hand side of (5.9) is the solution
of (5.1) at tn+1 = t+∆tn, we obtain

µφ(t) := lim
k→0+

µφ(t,k)= lim
∆tn→0+

1
−2∆tn

ln‖φ(·,t−n+1)‖2

= lim
∆tn→0+

1
−2∆tn

ln‖φ(·,(t+∆tn)−)‖2 = lim
∆tn→0+

d
dτ ‖φ(·,t+τ)‖2∣∣

τ=∆tn

−2‖φ(·,t+∆tn)‖2

= lim
∆tn→0+

µβ,Ω(φ(·,t+∆tn)
‖φ(·,t+∆tn)‖2 =

µβ,Ω(φ(·,t))
‖φ(·,t)‖2 . (5.13)

This suggests to us to consider the following CNGF:

φt =
1
2
∆φ−Vd(x)φ−βd |φ|2φ+ΩLzφ+µφ(t)φ, x∈Rd, t≥0, (5.14)

φ(x,0)=φ0(x), x∈Rd with ‖φ0‖=1. (5.15)

In fact, the right hand side of (5.14) is the same as (2.12) if we view µφ(t) as a Lagrange
multiplier for the constraint (2.13). Furthermore for the above CNGF, as observed in
[6] for a non-rotating BEC, the solution of (5.14) also satisfies the following theorem:

Theorem 5.3. Suppose Vd(x)≥0 for all x∈Rd, βd≥0 and ‖φ0‖=1. Then the
CNGF (5.14)-(5.15) is normalization conserving and energy diminishing, i.e.

‖φ(·,t)‖2 =
∫

Rd

|φ(x,t)|2 dx=‖φ0‖2 =1, t≥0, (5.16)

d

dt
Eβ,Ω(φ)=−2‖φt(·,t)‖2≤0 , t≥0, (5.17)

which in turn implies

Eβ,Ω(φ(·,t1))≥Eβ,Ω(φ(·,t2)), 0≤ t1≤ t2 <∞.
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Proof. Follows the line of the analogous result for a non-rotating BEC in [6].

From this theorem and the inequality (3.4), we may also get as t→∞, when
|Ω|<γxy, φ approaches to a steady state solution which is a critical point of the
energy functional Eβ,Ω(φ) [43, 6]. In a non-rotating BEC, i.e. Ω=0, the unique real
valued nonnegative ground state solution φg(x)≥0 for all x∈Rd [31] is obtained by
choosing a positive initial datum φ0(x)≥0 for x∈Rd, e.g. the ground state solution of
linear Schrödinger equation with a harmonic oscillator potential [8, 6]. For a rotating
BEC, e.g. |Ω|<γxy, our numerical results in section 6 suggest that the initial data
can be chosen as a linear combination of the ground state and central vortex ground
state of (2.8) when βd =0 and Ω=0, which are given explicitly in sections 3 & 4.

With this kind of initial data, the ground state solution φg
β,Ω and its corresponding

chemical potential µg
β,Ω can be obtained from the steady state solution of the CNGF

(5.14)-(5.15), i.e.

φg(x) :=φg
β,Ω(x)= lim

t→∞
φ(x,t), x∈Rd, µg :=µg

β,Ω =µβ,Ω(φg
β,Ω). (5.18)

Furthermore, when γy =γx in (2.8), our numerical results also suggest that when
the initial data is chosen as the central vortex ground state of (2.8) when βd =0 and
Ω=0, the steady state solution of the CNGF (5.14)-(5.15) converges to the central
vortex ground state solution φv

β,Ω as t→∞, i.e.

φv(x) :=φv
β,Ω(x)= lim

t→∞
φ(x,t), x∈Rd, µv :=µv

β,Ω =µβ,Ω(φv
β,Ω). (5.19)

Rigourous mathematical justification for these observations is under further study.
In order to derive a full discretization of the GFDN (5.1)-(5.3) (or CNGF (5.14)-

(5.15)), we first truncate the physical domain of the problem to a rectangle in 2D
or a box in 3D with homogenerous Dirichlet boundary conditions, and then apply
backward Euler for time discretization and second-order centered finite difference for
spatial derivatives. For more details, we refer to [6] for a similar problem.

6. Numerical results
In this section, we will show how to choose initial data for computing ground

state of a rotating BEC, and present numerical results of ground, symmetric, central
vortex and central vortex ground states, as well as their energy diagrams in 2D and
3D. Furthermore, we also study numerical dimension reduction from 3D to 2D, errors
between ground state and its TF approximation and critical angular speed. Due to
lemma 3.1, theorem 3.2, we only present results for 0≤Ω<γxy. In all computations,
the bounded computational domain Ωx is chosen as a rectangle in 2D and a box in
3D, which is centered at the origin.

6.1. Initial data for computing ground state. For computing ground state
of a rotating BEC, as discussed in section 5, the CNGF and its BEFD discretization
guarantees energy diminishing. For |Ω|¿γxy, i.e. a slowly rotating BEC, the initial
data can be chosen as the ground state of (2.8) with βd =0 and Ω=0 (3.16), which is
given explicitly by (3.16). When Ω increases, the ground state may break symmetry.
From our primary numerical study, when Ω is near γxy, the above choice no longer
gives the ground state. Here we present a 2D example to evolve the CNGF (5.11)
with its BEFD discretization for four different initial data.
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Ω case I case II case III case IV
β2 =10 0.0 2.3563 1.5914 1.5914 1.5914

0.25 2.1068 1.5914 1.5914 1.5914
0.50 1.8572 1.5914 1.5914 1.5914
0.75 1.6077 1.5914 1.6078 1.5914
0.80 1.5578 1.5914 1.5578 1.5578
0.90 1.4580 1.4716 1.4580 1.4580

β2 =100 0.00 4.3585 3.945 3.945 3.945
0.25 4.1096 3.9456 3.945 3.945
0.50 3.8608 3.9456 3.8608 3.8608
0.75 3.371 3.3750 3.3802 3.371
0.80 3.2032 3.1980 3.1817 3.1817
0.90 2.6535 2.6573 2.6483 2.6420

β2 =400 0.0 7.8995 7.6328 7.6496 7.6328
0.25 7.6496 7.6328 7.6328 7.6328
0.50 7.3998 7.6328 7.2426 7.2426
0.75 5.9993 5.9678 5.9604 5.9603
0.80 5.5697 5.6026 5.5481 5.5479
0.90 4.5447 4.4651 4.4563 4.4563

Table 6.1. Energy of the steady state solutions of the CNGF (5.11) under the BEFD dis-
cretization with four different initial data.

Example 1. For different choices of initial data for CNGF in 2D, i.e. we choose
d=2, γx =γy =1 and β2 =100 in (5.11). We compute numerically the steady state so-
lution of (5.11) under the BEFD discretization with a bounded computational domain
Ωx =[−6,6]× [−6,6] and four different initial data:

I. φ0(x,y)=φv
ho(x,y)= x+iy√

π
e−(x2+y2)/2, (x,y)∈Ωx,

II. φ0(x,y)=φho(x,y)= 1√
π

e−(x2+y2)/2, (x,y)∈Ωx,

III. φ0(x,y)=
[φho(x,y)+φv

ho(x,y)]/2
‖[φho(x,y)+φv

ho(x,y)]/2‖ , (x,y)∈Ωx,

IV. φ0(x,y)=
(1−Ω)φho(x,y)+Ωφv

ho(x,y)
‖(1−Ω)φho(x,y)+Ωφv

ho(x,y)‖ , (x,y)∈Ωx.

The steady state solution is obtained numerically when maxj,l |φn+1
j,l −φn

j,l|<ε=
10−7. Table 6.1 shows the energy of the steady state solutions with four different
initial data for 0≤Ω<γxy =1 and β2 =10, 100 and 400.

From Table 6.1 and our additional numerical experiments, we have the following
observations: (i) Type IV initial data gives the ground state for all |Ω|<γxy =1, (ii)
Types II& III initial data only give the ground state when |Ω| is near 0, (iii) Type I
initial data only gives the ground state when |Ω| is less than but very near γxy =1.

From this numerical study for computing ground state, when γx =γy =1 and
γz =O(1), we suggest choosing the following initial data in (5.12) for the CNGF
(5.11) with its BEFD discretization:

φ0(x)=
(1−Ω)φho(x)+Ωφv

ho(x)
‖(1−Ω)φho(x)+Ωφv

ho(x)‖ , x∈Rd, (6.1)
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where

φho(x)=





1√
π

e−
x2+y2

2

γ
1/4
z

π
3
4

e−
x2+y2+γzz2

2

φv
ho(x)=





1√
π

(x+ iy) e−
x2+y2

2 d=2,

γ
1/4
z

π
3
4

(x+ iy) e−
x2+y2+γzz2

2 d=3.

Under this choice of initial data, the continuation technique is no longer required for
computing the ground state. Furthermore, from our numerical study, the initial data
for computing the central vortex ground state can be chosen as

φ0(x)=φv
ho(x), x∈Rd.

For how to choose initial data in 3D for a prolate trap in order to obtain a bending
vortex, we refer to [3, 21, 32, 33, 35, 44].

6.2. Results in 2D.
Example 2. For ground, symmetric and central vortex states, as well as their

energy configurations, in 2D, i.e. we take d=2 and γx =γy =1 in (2.8). Figure 6.1
plots surface and contour of the ground state φg(x,y) :=φg

β,Ω(x,y) with β2 =100 for
different Ω and Figure 6.2 for the central vortex ground state φv(x,y) :=φv

β,Ω(x,y).
Figure 6.3 plots the symmetric state φ0(r) :=φ0

β,0(r) and first three central vortex
states φm(r) :=φm

β,0(r) (m=1,2,3) for different interaction rate β2. Table 6.2 and
Figure 6.4 show the energy configurations of these states for different β2 and Ω.
Furthermore, Figure 6.5 shows ratios between the energy of these states, and Figure
6.6 plots the energy of the ground state when β2À1 and Ω≈γxy =1. Similar study
for the ground state and its energy diagram has been done in the physical literatures
[1].

From Figs. 6.1-6 and Table 6.2, we reach the following conjectures for a rotating
BEC under an isotropic trap in 2D, i.e. γx =γy =1:

(a) For any fixed β2 >0, there exists a critical angular frequency 0<Ωc <γxy =1
such that: (i) when 0≤Ω<Ωc, the ground state φg

β,Ω =φg
β,0 =φ0

β,0, Eg
β,Ω =Eg

β,0 =E0
β,0

and µg
β,Ω =µg

β,0 =µ0
β,0; (ii) when Ω=Ωc, the ground state is not unique, e.g. both

φ0
β,0 and φ1

β,0 are ground states, i.e. Eg
β,Ωc =E0

β,0 =E1
β,Ωc and µg

β,Ωc =µ0
β,0 =µ1

β,Ωc ;
(iii) when Ωc <Ω<γxy =1, quantized vortices appear in the ground states, and the
larger Ω is the more vortices appear in the ground state. A similar conclusion was
observed in the literatures [1, 40, 41].

(b) Similar patterns for the central vortex ground state are observed as in (a) for
the ground state.

(c) For any fixed β2≥0, when Ω increases from 0 to γxy =1, the energy Es
β,Ω and

chemical potential µs
β,Ω (s=g,v,0,1,···) of any stationary states decrease. Further-

more, the energy of the ground state has the following asymptotics when Ω is near
γxy =1 (cf. Fig. 6.6b):

Eg
β,Ω =Eg

β,±γ∓xy
+O(γxy∓Ω), Ω→±γ∓xy.

(d) For any fixed |Ω|<γxy =1, when β2 increases, the energy Es
β,Ω and chemical

potential µs
β,Ω (s=g,v,0,1,···) of any stationary states increase too, and satisfy

lim
β2→∞

Ev
β,Ω

Eg
β,Ω

= lim
β2→∞

µv
β,Ω

µg
β,Ω

=1, lim
β2→∞

Es
β,Ω

Eg
β,Ω

=const, lim
β2→∞

µs
β,Ω

µg
β,Ω

=const, s≥0, (6.2)

Es
β,Ω =O(β1/2

2 ), µs
β,Ω =O(β1/2

2 ), when β2→∞, s=g,v,0,1,··· . (6.3)
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Fig. 6.1. Surface plots of ground state density function |φg(x,y)|2 in 2D with γx =γy =1 and
β2 =100 for different Ω in Example 2.

Example 3. For ground state in 2D with nonsymmetric trap, i.e., we take d=2,
γx =1 and γy =1.5 in (2.8). Figure 6.7 plots the surface of the ground state φg(x,y)
with β2 =100 for different Ω. We notice this case was also studied in [1] by using a
different numerical method.

From Fig. 6.7, the conjecture (a) for ground states in Example 2 is still valid for
an anisotropic trap, i.e. 1=γx 6=γy >1, in 2D.
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Figure 6.1(cont’d): Contour plots.

6.3. Results in 3D.
Example 4. For ground, symmetric and central vortex states, as well as their

energy configurations, in 3D, i.e. we take d=3, γx =1, γy =1 and γz =1 in (2.8).
Figure 6.8 plots the isosurface of the ground state φg(x,y,z) :=φg

β,Ω(x,y,z) and central
vortex ground state φv(x,y,z) :=φv

β,Ω(x,y,z) for different Ω. Figure 6.9 plots the
symmetric state φ0(r,z =0), φ0(r =0,z), and the first central vortex state φ1(r,z =0),
φ1(r =0,z) for different interaction rate β. Figure 6.10 shows the energy configurations
of these states for different β and Ω in 3D.
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Fig. 6.2. Surface plots of central vortex ground state density function |φv(x,y)|2 in 2D with
γx =γy =1 and β2 =100 for different Ω in Example 2.

From Figs. 6.8-10, all the conjectures at Example 2 are still valid in 3D except
that (6.3) should be modified to

Es
β,Ω =O(β2/5), µs

β,Ω =O(β2/5), when β→∞, s=g,v,0,1,··· . (6.4)

For obtaining a bending vortex, e.g. S-shaped vortex and U-shaped vortex, in 3D
with a prolate trap, we refer to [3, 21, 32, 33, 35, 44].
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Fig. 6.3. Symmetric and central vortex states in 2D with γx =γy =1 for β2 =0, 10, 100, 1000,
10000 (in the order of decreasing of peak) in Example 2. Symmetric state φ0(r): a); and central
vortex states φm(r): b). m=1, c). m=2 and d). m=3.

6.4. Critical angular velocity.
Example 5. For critical angular velocities in 2D, i.e. we take d=2 and γx =

γy =1 in (2.8). Table 6.3 displays the critical angular velocity Ωc :=Ωc
β and Ωv :=Ωv

β

for different β2.

From Table 6.3, we get: (a) Ωc =Ωv =γxy =1.0 when β2 =0 and 0<Ωc <Ωv <
γxy =1 when β2 >0; (b) Ωc and Ωv decrease when β2 increases; (c) Ωc≈E1

β,0−E0
β,0

and Ωv≈E2
β,0−E1

β,0 for β2≥0. All these results agree very well with the numerical
results [23, 26] and analytical estimate [40, 41] in the literature. Similar observations
are still valid in 3D.

6.5. Numerical verification of dimension reduction. As we know, when
γx =O(1), γy =O(1) and γzÀ1, the 3D GPE can be asymptotically reduced to a 2D
GPE. Here we present a numerical verification of this procedure. In order to do so, we
compute the ground state φ3D

g (x,y,z) of the 3D GPE, i.e. we take d=3, γx =γy =1
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β Eg
β,Ω E0

β,Ω Ev
β,Ω E1

β,Ω E2
β,Ω E3

β,Ω

Ω=0.0 0 0.997 0.999 1.993 1.999 2.999 3.999
10.0 1.591 1.592 2.356 2.361 3.280 4.237
100.0 3.945 3.945 4.358 4.368 5.040 5.821
1000.0 11.970 11.971 12.151 12.166 12.544 13.039

Ω=0.50 0.0 0.997 0.999 1.494 1.499 1.999 2.499
10.0 1.591 1.592 1.857 1.861 2.280 2.737
100.0 3.860 3.945 3.860 3.868 4.040 4.321
1000.0 11.02 11.971 11.02 11.366 11.544 11.539

Ω=0.75 0 0.997 0.999 1.245 1.249 1.499 1.749
10.0 1.591 1.592 1.608 1.611 1.780 1.987
100.0 3.371 3.945 3.371 3.618 3.540 3.571
1000.0 9.098 11.971 9.114 11.416 11.044 10.789

Ω=0.90 0 0.991 0.999 1.095 1.099 1.199 1.299
10.0 1.449 1.592 1.458 1.461 1.480 1.537
100.0 2.648 3.945 2.653 3.468 3.240 3.121
1000.0 7.163 11.971 7.176 11.266 10.744 10.339

Table 6.2. Energy of the ground state Eg
β,Ω, symmetric state E0

β,Ω, central vortex ground state

Ev
β,Ω and the first three central vortex states Ej

β,Ω (j =1,2,3) with γx =γy =1 for different β2 and

Ω in 2D in Example 2.

β2 0 10 100 1000
Ωc (≈E1

β,0−E0
β,0) 1.0 (1.0) 0.775 (0.769) 0.406 (0.423) 0.188 (0.195)

Ωv (≈E2
β,0−E1

β,0) 1.0 (1.0) 0.87 (0.924) 0.625 (0.682) 0.375 (0.393)

Table 6.3. Critical angular velocities in 2D.

and β =100 in (2.8), numerically for different γz. Then we compute

φ3(z)=

√∫

R2
|φ3D

g (x,y,z)|2 dxdy≈φho(z)=
γ

1/4
z

π1/4
e−γzz2/2,

β2 =β

∫ ∞

−∞
|φ3(z)|4 dz≈βa

2 =β
√

γz/2π.

We also find the ground state φ2D
g (x,y) of the 2D GPE, i.e. we take d=2, γx =γy =1

and β2 =100
√

γz/2π in (2.8), numerically for different γz. Table 6.4 lists the errors of
β2−βa

2 , max|φ3−φho|, ‖φ3−φho‖L2 , max
∣∣φ3D

g −φ2D
g φho

∣∣ and ‖φ3D
g −φ2D

g φho‖L2 for
different γz.

From Table 6.4, the dimension reduction of GPE from 3D to 2D when γzÀ1 is
verified numerically. Furthermore, for fixed β >0, when γz→∞, we have the following
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Fig. 6.4. Energy diagrams for ground state, i.e. Eg :=Eg
β,Ω, symmetric state, i.e. E0 :=E0

β,Ω,

central vortex states, i.e. Em :=Em
β,Ω, and central vortex ground state, i.e. Ev :=Ev

β,Ω, in 2D with

γx =γy =1 for different β2 and Ω in Example 2.

1/γz 1/4 1/8 1/16
|β2−βa

2 |
β2

0.1188 0.0822 0.0524
‖φ3−φho‖L∞ 0.084 0.066 0.048
‖φ3−φho‖L2 0.097 0.062 0.038
‖φ3D

g −φ2D
g φho‖L∞ 0.083 0.025 0.015

‖φ3D
g −φ2D

g φho‖L2 0.260 0.074 0.047

Table 6.4. Numerical verification of dimension reduction from 3D to 2D.

convergence rate:

β2−βa
2

β2
=O

(
lnγz

γ
3/4
z

)
, β2 =β

√
γz

2π

(
1+O

(
lnγz

γ
3/4
z

))
,

‖φ3−φho‖L∞ =O

(
lnγz

γ
1/2
z

)
, ‖φ3−φho‖L2 =O

(
lnγz

γ
3/4
z

)
,

‖φ3D
g −φ2D

g φho‖L∞ =O

(
lnγz

γ
5/8
z

)
, ‖φ3D

g −φ2D
g φho‖L2 =O

(
lnγz

γ
3/4
z

)
.
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Fig. 6.5. Ratios between the energy of different states in Example 2.
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Fig. 6.6. Asymptotics of the energy for the ground state in Example 2. a). When β2À1, b).
When Ω≈γxy =1.

6.6. Errors of the TF approximation. As we know, when βdÀ1, γx =
O(1), γy =O(1), γz =O(1) and |Ω|≈0, the ground state is very well approximated by
the TF approximation [1, 2, 8, 9]. Here we study numerically how effective the TF
approximation is, when |Ω| is large, especially when |Ω| is near γxy. In order to do
so, we compare the ground state and its TF approximation in 2D, i.e. we take d=2
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Fig. 6.7. Surface plots of ground state density function |φg(x,y)|2 in 2D with β2 =100 in a
nonsymmetric trap, i.e. γx =1 and γy =1.5 for different Ω in Example 3.

and γx =γy =1 in (2.8). Table 6.5 lists the errors max
∣∣∣|φg

β,Ω|2−|φTF
β |2

∣∣∣, Eg
β,Ω−ETF

β,Ω

and µg
β,Ω−µTF

β,Ω for different β2À1 and Ω.
From Table 6.5, we can see that the density of the ground state converges to the

TF approximation for any |Ω|<γxy =1 when β2→∞. However, when β2 increases,
the energy and chemical potential of the ground state converge to those of the TF
approximation only when |Ω|≈0, but diverge when |Ω| is near γxy =1. This is due to
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a) b)

c) d)

Fig. 6.8. Ground states and central vortex ground states in 3D with γx =γy =γz =1 and
β3 =100 for different Ω in Example 4: (a) Ω=0, (b) Ω=0.5, (c) Ω=0.8 and (d) Ω=0.9. (i)
Isosurface plots of ground states |φg(x,y,z)|2 =0.001.

the fact that more and more vortices appear in the ground state when |Ω| is near 1
and β2À1. A similar conclusion is also valid in 3D based on our additional numerical
experiments.

6.7. Spurious numerical ground states when |Ω|>γxy. As discussed
in section 3, for a rotating BEC, there exists a ground state when |Ω|<γxy and no
ground state when |Ω|>γxy. But when we evolve the discretization of (5.1)-(5.3) with
the initial data (6.1) numerically, for any given β2≥0 and Ω∈R, we always obtain a
steady state φh

β,Ω for a fixed mesh size h¿1. In fact, this steady state is the minimizer
of the following finite-dimensional minimization problem:

Eh := min
φh∈Sh

Eh
β,Ω(φh), (6.5)
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a) b)

c) d)
Figure 6.8(cont’d): (iv) Isosurface plots of central vortex ground states |φv(x,y,z)|2 =0.001.

where Sh ={φh∈C(M+1)×(N+1) | ‖φh‖=1,φh
0,l =φh

M,l =φh
j,0 =φh

j,N =0, j =
0,··· ,M, l=0,··· ,N} and

Eh
β,Ω(φh) :=

M−1∑

j=1

N−1∑

l=1

[∣∣∣φh
j+1,l−φh

j,l

∣∣∣
2

2h2
x

+

∣∣∣φh
j,l+1−φh

j,l

∣∣∣
2

2h2
y

+V2(xj ,yl)|φh
j,l|2

+
β2

2
|φh

j,l|4 + iΩ(φh)∗j,l

(
yl

φh
j+1,l−φh

j−1,l

2hx
−xj

φh
j,l+1−φh

j,l−1

2hy

)]

≈ Eβ,Ω(φ),

where {(xj ,yl)}j,l are grid points of Ωx. Table 6.6 lists the numerical energies Eh

with β2 =100 and γx =1 for γy =1 and γy =1.5, under different rotation speeds Ω
and mesh sizes h.

From Table 6.6, we can observe that for γy≥1: (i) when |Ω|<γxy =1, Eg :=
limh→0Eh which implies that φh

β,Ω is a good approximation of the ground state
φg

β,Ω(x); (ii) when |Ω|>γxy, limh→0Eh =−∞ which suggests that there is no ground
state when |Ω|>γxy and the steady state solution φh is a spurious numerical ground
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Fig. 6.9. Cylindrically symmetric (upper row) and central vortex (lower row) states in 3D with
γx =γy =γz =1 for β3 =0.0, 10.0, 100.0, 1000.0, 10000.0 (in the order of decreasing of peak) in
Example 4. a). φ0(r,0); b). φ0(0,z); c). φ1(r,0); d). φ1(0,z).
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Fig. 6.10. Energy diagrams for ground state, cylindrically symmetric state, central vortex states
in 3D with γx =γy =γz =1.0 in Example 4 for different β and Ω.

state; (iii) when γxy < |Ω|≤γxy in an anisotropic trap, our numerical results sug-
gest that there is no ground state. Similar results can be obtained in 3D from our
additional numerical experiments.
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β2 Ω=0 Ω=0.1 Ω=0.5 Ω=0.75

max
∣∣∣|φg

β,Ω|2−|φTF
β |2

∣∣∣ 100 3.827E-3 3.832E-3 5.641E-2 4.516E-2
200 2.177E-3 2.181E-3 3.989E-2 3.966E-2
400 1.2849E-3 1.288E-3 2.820E-2 2.657E-2
800 7.125E-4 7.407E-4 1.358E-2 1.659E-2
1000 6.157E-4 6.172E-4 1.161E-2 1.321E-2

Eg
β,Ω−ETF

β,Ω 100 0.1167 0.117 9.879E-2 0.932
200 8.950E-2 8.919E-2 0.190 1.652
400 6.846E-2 6.811E-2 0.262 2.620
800 7.858E-2 5.079E-2 1.325 3.748
1000 4.684E-2 4.640E-2 1.586 4.243

µg
β,Ω−µTF

β,Ω 100 0.183 0.183 9.954E-2 0.402
200 0.142 0.1423 2.520E-2 0.890
400 0.110 0.109 0.128 1.568
800 8.643E-2 8.342E-2 0.719 2.441
1000 7.649E-2 7.650E-2 0.870 2.796

Table 6.5. Errors of the TF approximation in 2D.

γy =1 Ω h=1/2 h=1/4 h=1/8 h=1/16
0.0 3.937 3.944 3.945 3.945
0.8 3.164 3.185 3.186 3.186
1.0 2.402 1.952 1.598 1.388
1.5 -1.744 -13.550 -37.952 -52.941

γy =1.5 0.0 4.831 4.843 4.846 4.846
0.8 4.294 4.289 4.285 4.285
1.0 3.592 3.298 2.911 2.716
1.25 2.478 0.751 -1.491 -2.169
1.5 1.010 -4.024 -10.446 -12.99
2.0 -3.56 -17.66 -39.74 -53.31

Table 6.6. Energy Eh in 2D with β2 =100.

7. Conclusion
Based on our asymptotic and extensive numerical studies, we can draw the fol-

lowing conjectures for a rotating BEC:
(i) The nonlinear eigenvalue problem (2.12) admits infinitely many eigenfunctions

which are linearly independent. When βd≥0 and |Ω|<γxy, if the eigenfunctions of
(2.12) are ranked according to their energies, φg, φ1, ..., then the corresponding
eigenvalues (or chemical potentials ) are in the same order, i.e.

Eβ,Ω(φg)≤Eβ,Ω(φ1)≤Eβ,Ω(φ2)≤ ...=⇒µβ,Ω(φg)≤µβ,Ω(φ1)≤µβ,Ω(φ2)≤ ... .

(ii) For any fixed βd≥0, there exists a critical angular frequency 0<Ωc≤γxy such
that when Ω>Ωc the ground state breaks symmetry, i.e. quantized vortices appear
in the ground state. When βd increases, Ωc increases too. Similar conclusions are
valid for the central vortex ground state. Furthermore, we have

Ωc≈E1
β,0−E0

β,0, Ωv≈E2
β,0−E1

β,0.
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(iii) For any fixed |Ω|<γxy, the energy and chemical potential of any stationary
state increase when βd increases. Furthermore, when βd→∞, they have the following
asymptotics:

Es
β,Ω =O(β2/(2+d)), µs

β,Ω =O(β2/(2+d)), when β→∞, s=g,v,0,1,.. . ,

and the ratios between them are constants, i.e.

lim
βd→∞

Ev
β,Ω

Eg
β,Ω

= lim
βd→∞

µv
β,Ω

µg
β,Ω

=1, lim
βd→∞

Es
β,Ω

Eg
β,Ω

=const, lim
βd→∞

µs
β,Ω

µg
β,Ω

=const, s≥0.

(iv) For any fixed βd≥0, the energy and chemical potential of any stationary state
decrease when Ω increases from 0 to γxy or decreases from 0 to −γxy. Furthermore,
the energy of the ground state has the following asymptotic when Ω is near ±γxy:

Eg
β,Ω =Eg

β,±γ∓xy
+O(γxy∓Ω), Ω→±γ∓xy.

(v) In disk-shaped condensation, i.e. γx =O(1), γy =O(1) and γzÀ1, the ground
state and its energy and chemical potential in 3D with interaction β can be well
approximated by those of its 2D reduction with interaction β2 =β

√
γz/2π.

(vi) In the semiclassical regime, the TF approximation is very accurate for the
density of the ground state except at the vortex core; where the TF approximate
energy and chemical potential converge to the ground state energy and chemical
potential respectively only when |Ω|≈0, but diverge when |Ω| is near γxy.
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