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TIME SPLITTING FOR THE LIOUVILLE EQUATION IN A
RANDOM MEDIUM ∗

GUILLAUME BAL † AND LENYA RYZHIK ‡

Abstract. We consider the Liouville equations with highly heterogeneous Hamiltonians and
their numerical solution by a time splitting algorithm. Such equations model the density of parti-
cles evolving according to the corresponding Hamiltonian dynamics as well as the propagation of
high frequency waves with a wavelength much smaller than the correlation length of the random
Hamiltonian.

Our main results are on the relation between the time step used in the time splitting algorithm
and the correlation length of the Hamiltonian. In order to fully resolve the Liouville equation, the
time step must be chosen much smaller than the correlation length. However, we show that the
time step can be chosen of the same order as the correlation length of the Hamiltonian when one
is only interested in suitable statistical properties of the solution to the Liouville equation. We also
present a more involved time splitting algorithm that allows us to take a time step independent of
the correlation length.
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1. Introduction
In many problems of wave propagation the typical wavelength of the propagating

fields can be assumed to be smaller than the correlation length of the underlying prop-
agating medium. Applications include light in a turbulent atmosphere, microwaves
in wireless communication, acoustic waves in underwater communication, and seismic
waves generated by earthquakes [5, 12, 17, 18]. Here we consider propagation of high
frequency acoustic waves. Wave propagation in such a regime can be approximated
by a Liouville equation with random potential for the acoustic energy density in the
phase space (see [1] and references therein).

There exist many works on the numerical simulation of wave equations; see, e.g.,
[6, 7] for recent monographs. The numerical techniques are usually well adapted to
the low-to-moderate frequency regime where the size of the calculation domain is not
too large compared to the typical wavelength of the system. High frequency wave
propagation in the semi-classical regime, which corresponds to the high frequency
regime with slowly varying underlying media, has also been considered [4, 14, 15].

Here we consider the propagation of the energy density of waves over times and
distances that are large compared to the correlation length of the Hamiltonian. This
is modelled by the following Liouville equation

∂Wε

∂t
+k ·∇xWε− 1√

ε
∇xV

(
t

ε
,
x
ε

)
·∇kWε =0. (1.1)

The function Wε is the phase space energy density of acoustic waves, that is, the
energy density of a wave at a position x with a wave vector k. It is defined as
the limit Wigner distribution of the solution of the underlying wave equation in the
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516 TIME SPLITTING IN A RANDOM MEDIUM

high frequency limit [9, 16]. The parameter ε¿1 measures the correlation length
and time of the random medium relative to the overall propagation distance and
time, respectively. It is small in the applications we have in mind. The strength of
the potential is scaled in such a way that the above equation admits a physically
interesting limit as ε→0: see Section 2.

We consider a time discretization of the above equation by a time splitting method
[19]. Our analysis follows the method of study of the time splitting algorithm of a
parabolic wave equation that we have used in [3]. Let us denote by

A=k ·∇x, Bε =− 1√
ε
∇xV

(
t

ε
,
x
ε

)
·∇k

the spatial advection and the ”scattering” operators, respectively. The time splitting
algorithm consists of separating the advection of the particles from the interaction
with the underlying medium. So during a time interval T =(Tn,Tn+1), we first solve
the advection equation

(
∂

∂t
+A

)
Wε =0

on T assuming that the medium is homogeneous. We then consider the solution at
the end of the interval as the initial condition to solve the wave vector advection
(”scattering”) equation

(
∂

∂t
+Bε

)
Wε =0

on the same interval T , this time accounting for interactions with the random medium
but without advection in the physical space. The interest of the method is that the
first step can easily be solved for instance by the Fourier method since the medium is
homogeneous, and the second step can also easily be solved since the problem is now
local in space during the time integration on T .

One may, of course, also consider (2.1) as the Liouville equation for the density
of particles evolving according to the random Hamiltonian

H(t,x,k)=
|k|2
2

+
√

εV

(
t

ε
,
x
ε

)

without any reference to the acoustic waves. The time-splitting algorithm described

above corresponds to alternatingly solving the Hamilton equations: first,
dX
dt

=K
with K fixed, and then

dK
dt

=− 1√
ε
∇xV

(
t

ε
,
X
ε

)

with X fixed.
The question is then how one should optimally choose the time step Θε =Tn+1−

Tn provided that the correlation length ε of the underlying Hamiltonian is known. It
is a classical result [19] that the accuracy (in the strong L2 sense for instance) of the
time splitting scheme is governed by

Θε‖[A,Bε]‖=Θε‖ABε−BεA‖=O(Θεε
−3/2),
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where ‖·‖ is the L2 norm. The constraint Θε¿ε3/2 is necessary to fully resolve
the solution of the Liouville equation, with an accuracy (in the strong L2 sense) of
order Θεε

−3/2. Instead of the classical time splitting scheme mentioned above, we
could use the more accurate Strang time splitting for the same computational cost.
The latter scheme corresponds to solving

(
∂
∂t +A

)
Wε =0 for a time Θε/2 followed by(

∂
∂t +Bε

)
Wε =0 for a time Θε, and finally by

(
∂
∂t +A

)
Wε =0 again for a time Θε/2.

The leading term in the error made is then of order

Θ2
ε‖A2Bε‖=O(Θ2

εε
−5/2).

We thus find that a better constraint Θε¿ε5/4 guarantees convergence in the strong
L2 sense when the Strang time splitting scheme is used.

Our main result is that Θε¿ε is actually sufficient provided one is interested in
statistical properties of the solution and not in its complete detailed structure. More
precisely we show that when Θε¿ε, moments of the solution of the Liouville equation
have the same deterministic limit as ε→0 as the continuous time dependent solution
of the random Liouville equation. We actually show a stronger result, namely that
the whole law of the moments of the solution of the time splitting scheme agrees in
the limit ε→0 to the limiting law of the continuous solution of the Liouville equation.
The moments are of the form 〈Wε,λ〉, where λ(x,k) is a smooth test function.

We also introduce a modified time splitting algorithm for the Liouville equation,
which allows us to obtain the same result provided Θ¿1 independent of ε. This time
splitting scheme is still based on separating convection from scattering. However in
the new scheme the random potential ∇xV is evaluated at a point that depends on
time t on the interval T . This is a hybrid scheme, which no longer enjoys the property
of the original scheme that the scattering term is local. The resulting equations are
thus more complicated to solve than for the original scheme (though they are less
complicated than the initial Liouville equation) but the time step can be chosen much
larger and independent of ε.

Our results are related to other results on the commutativity of mesh size conver-
gence and ”small parameter” convergence, to a common limiting equation in homog-
enization problems, such as the homogenization of an elliptic problem in a periodic
medium in [11], or the diffusion limit of the linear transport equation with a small
mean free path in [10].

The proposed scheme is valid in two different asymptotical regimes, namely the
regime of wave propagation in homogeneous media, where the phase information of
the wave is important, and the regime of propagation in highly heterogeneous media,
where only the energy density is meaningful because of the multiple scattering. At a
much lower cost than classical time splitting schemes, we can thus expect to recover
the phase information where it matters, as well as the correct energy density of waves
in the scattering regions.

The rest of the paper is organized as follows. We present the proof that the time
splitting scheme has the correct statistical limit as ε→0 in section 2. The proofs
are similar to those of the limit theorems in [2] and [3]. Nevertheless we present
the important details for the convenience of the reader. The Liouville problem is
formulated in Section 2.1, where the assumptions on the random potential are also
presented. The time splitting algorithm is introduced and our main result presented
in Section 2.2. An outline of the proof of our result is given in Section 2.3. The
martingale structure at the core of our demonstration is presented in section 2.4 and
the convergence result for the whole law of the time splitting algorithm in Section 2.5.
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In section 3 we introduce the time splitting algorithm that allows us to choose Θε¿1
independent of ε. We present the modified scheme in Section 3.1 and its convergence
properties in Section 3.2.

2. The high-frequency limit of the time-splitting scheme

2.1. The Liouville equation. We start with the following Liouville equation

∂Wε

∂t
+k ·∇xWε− 1√

ε
∇xV

(
t

ε
,
x
ε

)
·∇kWε =0, (2.1)

with the initial data Wε(0,x,k)=W0(x,k)∈L2(Rd×Rd) independent of the parame-
ter ε.

We assume that the random potential V (t,x) is a Markov process in time taking
values in C1(Rd). The Markovian hypothesis is not necessary to obtain the results
presented below – a sufficiently strong mixing assumption in time is sufficient [8]. It is
however crucial to simplify the mathematical analysis because it allows us to treat the
process t 7→ (V (t/ε,x/ε),Wε(t,x,k)) as jointly Markov and to apply the martingale
method. Here are some additional assumptions on the potential. We assume that
there exists a deterministic constant C0 >0 so that

‖V ‖C1(Rd)≤C0 (2.2)

with probability one. We define the set V={V ∈C1(Rd) : ‖V ‖C1(Rd)≤C0} where the
process V takes its values. Furthermore, V (t,x) is assumed to be stationary in x and
t and to have mean zero: E{V (t,x)}=0. The correlation function

R(t,x)=E{V (s,y)V (t+s,x+y)} (2.3)

is assumed to be smooth and rapidly decaying in space. We assume that the generator
Q of the Markov process V (t) is a bounded operator on L∞(V) with a unique invariant
measure π(V )

Q∗π =0,

and that there exists α>0 such that if 〈g,π〉=0 then

‖erQg‖L∞V ≤C‖g‖L∞V e−αr. (2.4)

A simple example of a generator with a gap in the spectrum and invariant measure π
is a jump process on V where

Qg(V )=
∫

V
g(V1)dπ(V1)−g(V ),

∫

V
dπ(V )=1.

Given (2.4), the Fredholm alternative holds for the Poisson equation

Qf =g,

provided that g satisfies 〈π,g〉=0. It has a unique solution f with 〈π,f〉=0 and
‖f‖L∞V ≤C‖g‖L∞V . The solution f is given explicitly by

f(V )=−
∫ ∞

0

erQg(V )dr.
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The integral above converges absolutely because of the spectral gap assumption (2.4).
More generally, the mean-zero bounded solution of

∂f

∂τ
+Qf =g(τ,V ) (2.5)

with the right side g∈L∞([0,T ]×V) is given by

f(τ,V )=−
∫ ∞

0

erQg(τ +r,V )dr (2.6)

provided that 〈π,g〉(τ)=0 for all τ >0.
One may show under the above assumptions that the expectation of the solution

of (2.1) converges to the solution of a Fokker-Planck equation.

Theorem 2.1. Let W0(x,k)∈L2(Rd×Rd), and let φ∈L2(Rd×Rd) be a test
function. Then the process

∫
φ(x,k)Wε(t,x,k)dxdk converges in probability to∫

φ(x,k)W (t,x,k)dxdk. Here W (t,x,k) is a solution of the Fokker-Planck equation

∂W

∂t
+k ·∇xW =

∂

∂km

(
Dmn(k)

∂W

∂kn

)
(2.7)

with the diffusion matrix

Dmn(k)=−
∫ ∞

0

∂2R(s,sk)
∂zn∂zm

ds. (2.8)

Theorem 2.1 was proved in the much harder case of a time-independent random
potential V in [13] for E{Wε}, while convergence in probability for such potentials
was established in [1]. We will restrict our analysis in this paper to the case of time-
dependent Markovian potentials in order to keep the presentation simple. Nevertheless
our results may be generalized to the time independent case under sufficiently strong
mixing assumptions on the potential using the techniques of [1]. This, however, is
highly technical and lies beyond the scope of the present paper.

2.2. The time-splitting algorithm. In the Liouville equation (2.1), the
advection part ∂t +A and the scattering part ∂t +Bε are easier to solve than the full
equation ∂t +A+Bε. This justifies the time splitting method to solve (2.1) numeri-
cally. The time splitting method consists of two steps. First, given the approximation
W (nΘ,x,k) one solves the pure streaming part

∂Un+1

∂t
+k ·∇xUn+1 =0 (2.9)

on a time interval nΘ≤ t≤ (n+1)Θ with the initial data Un+1(nΘ,x,k)=
W (nΘ,x,k). The solution of (2.9) may be written explicitly as

Un+1(t,x,k)=W (nΘ,x−(t−nΘ)k,k).

During the second step one solves

∂Zn+1

∂t
− 1√

ε
∇xV

(
t

ε
,
x
ε

)
·∇kZn+1 =0, nΘ≤ t< (n+1)Θ, (2.10)
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with initial data Zn+1(nΘ,x,k)=Un+1((n+1)Θ,x,k). Equation (2.10) may also be
solved explicitly:

Zn+1(t,x,k)=Un+1

(
(n+1)Θ,x,k+

1√
ε

∫ t

nΘ

∇xV
(s

ε
,
x
ε

)
ds

)
.

Then we set W ((n+1)Θ,x,k)=Z(n+1)((n+1)Θ,x,k) and iterate the procedure.
It remains to understand how the time step Θ should be chosen. We have seen

in the introduction that time steps smaller than εα with α=3/2 for the above time
splitting method and α=5/4 for the Strang time splitting method are necessary to
obtain an error converging to 0 strongly in the L2 sense. In this paper, we are inter-
ested in the largest time step Θ so that the solution of the time-splitting algorithm
(2.9)-(2.10) has the statistical behavior close to that of the exact solution of the Liou-
ville equation. In practice, this is often all we are interested in. We show that in the
latter case, the time step Θ can be chosen much larger than what we just mentioned,
whereby substantially reducing the computational cost of the Liouville solution.

The time splitting algorithm can also be given the following interpretation. The
Liouville equation (2.1) may be solved by the classical method of characteristics:

Wε(t,x,k)=W0(Xε(s=0;t,x,k),Kε(s=0;t,x,k))

with

dXε

ds
=Kε,

dKε

ds
=− 1√

ε
∇xV

(
t

ε
,
Xε

ε

)
, Xε(s= t;t,x,k)=x, Kε(s= t;t,x,k)=k.

(2.11)
The time-splitting algorithm (2.9)-(2.10) corresponds to a time-splitting approxima-
tion of (2.11) obtained by evolving Xε and Kε in an alternating manner. The dy-
namics are then trivially solved with source terms that become constant over the
time-splitting interval.

Before stating the main result, it is convenient to reformulate the time-splitting
algorithm in a somewhat more general framework as follows. We replace the exact
equation (2.1) by

∂Wε

∂t
+φ

(
t

ε

)
k ·∇xWε− 1√

ε
ψ

(
t

ε

)
∇xV

(
t

ε
,
x
ε

)
·∇kWε =0. (2.12)

The functions φ(τ) and ψ(τ) are periodic in τ = t/ε with period Θ>0, which corre-
sponds to a period Θε on the large time scale. A generalized time-splitting algorithm
corresponds to periodically shutting down the two operators in (2.1) so that

ψ(τ)=





0, τ ∈ [0,τ0)
Θ

Θ−τ0
, τ ∈ [τ0,Θ),

and φ(τ)=





1
τ0

, τ ∈ [0,τ0)

0, τ ∈ [τ0,Θ).

The standard time-splitting scheme corresponds to ψ(τ)=1 and φ(τ)=
∑∞

n=−∞δ(τ−
nΘ), that is, the limit τ0→0 of the above. Note that information is lost if τ0 >0
since the random potential is time-dependent. This would not be the case for time-
independent potentials. We allow for more general distributions ψ and φ in order to
investigate other possibilities but impose the constraints

1
Θ

∫ Θ

0

φ(τ)dτ =1,
1
Θ

∫ Θ

0

ψ(τ)dτ =1. (2.13)
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This is a natural restriction ensuring that both operators in the time-splitting proce-
dure have equal weight and that time is not re-scaled.

Let us define the diffusion operator

LΘf =− 1
Θ

∫ Θ

0

∫ ∞

0

ψ(τ)ψ(τ +s)
∂

∂km

[
∂2R(s,k[Φ(τ +s)−Φ(τ)])

∂zm∂zn

∂f(t,x,k)
∂kn

]
ds dτ,

(2.14)

where Φ(s) is an anti-derivative of φ:
dΦ
dτ

=φ. Since only increments of Φ appear in
our results the choice of a particular anti-derivative is irrelevant. The main result of
this section is the following theorem.

Theorem 2.2. Let the initial data W0(x,k) for (2.12) be bounded in L2(R2d), the
function ψ and φ satisfy the normalization (2.13) and be uniformly bounded. Then
the solution of (2.12) converges in probability and weakly in L2(Rd) to the solution W
of the modified Fokker-Planck equation

∂W

∂t
+k ·∇xW =LΘW (2.15)

with initial data W0(x,k). More precisely, for any test function λ∈L2(Rd) the random
process

〈Wε,λ(t)〉=
∫

R2d

Wε(t,x,k)λ(x,k)dxdk

converges in probability to 〈W,λ〉 as ε→0 uniformly on finite time intervals t∈ [0,T ].
An important special case arises when ψ =1 and φ(τ)=Θ

∑∞
j=−∞δ(τ−jΘ). The-

orem 2.2 does not apply to this case as stated, as the function φ is unbounded. How-
ever, as only the anti-derivative Φ of the function φ enters in most estimates, the
only modifications in the proof required to treat this case are in estimates (2.36) and
(2.37), and these are straightforward. This corresponds to the time-splitting scheme
(2.9)-(2.10) when scattering by the random potential V is accounted for at all times
while advection in the spatial variable is accounted for at times t= jεΘ by the correc-
tion W (εjΘ+,x,k)=W (εjΘ−,x−εΘk,k). Then we have Φ(s)=Θ[s/Θ] := [s]Θ and
obtain the following expression for LΘ:

LΘf =− 1
Θ

∫ Θ

0

∫ ∞

0

∂

∂km

[
∂2R(s,k{[τ +s]Θ− [τ ]Θ})

∂zm∂zn

∂f(t,x,k)
∂kn

]
ds dτ.

However, we have [τ ]Θ =0 when 0≤ τ <Θ and thus obtain

LΘf =− 1
Θ

∫ Θ

0

∫ ∞

0

∂

∂km

[
∂2R(s,k{[τ +s]Θ})

∂zm∂zn

∂f(t,x,k)
∂kn

]
ds dτ. (2.16)

It is instructive to consider the limits Θ→0 and Θ→∞. The former limit corresponds
to a time step much smaller than the correlation length. Then we obtain after the
change of variables η = τ/Θ:

LΘf =− 1
Θ

∫ Θ

0

∫ ∞

0

∂

∂km

[
∂2R(s,k{[τ +s]Θ})

∂zm∂zn

∂f(t,x,k)
∂kn

]
ds dτ

=−
∫ 1

0

∫ ∞

0

∂

∂km

[
∂2R(s,k{[s+Θη]Θ})

∂zm∂zn

∂f(t,x,k)
∂kn

]
ds dη

→−
∫ ∞

0

∂

∂km

[
∂2R(s,sk)
∂zm∂zn

∂f(t,x,k)
∂kn

]
ds=

∂

∂km

(
Dmn(k)

∂f

∂kn

)
(2.17)
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since [s+Θη]Θ =Θ[η+(s/Θ)]→s as Θ→0 point-wise in s and η. Here Dmn(k) is the
exact limit diffusion matrix (2.8) that arises without the time-splitting approximation.

In order to consider the opposite limit Θ→∞, it is convenient to assume that the
correlation function R(s,x) has a compact support in s: R(s,y)=0 for s≥T0. Then
we have for 0≤s≤T0 and Θ sufficiently large:

[s+Θη]Θ =Θ[η+(s/Θ)]=





0, 0≤η <1− s

Θ
,

Θ, 1− s

Θ
≤η≤1.

The operator LΘ becomes

LΘf =−
∫ 1

0

∫ ∞

0

∂

∂km

[
∂2R(s,k{[s+Θη]Θ})

∂zm∂zn

∂f(t,x,k)
∂kn

]
ds dη

=−
∫ ∞

0

1−s/Θ∫

0

∂

∂km

[
∂2R(s,0)
∂zm∂zn

∂f(t,x,k)
∂kn

]
dηds−

∫ ∞

0

1∫

1−s/Θ

∂

∂km

[
∂2R(s,Θk)

∂zm∂zn

∂f(t,x,k)
∂kn

]
dηds

=−
∫ ∞

0

∂

∂km

[{(
1− s

Θ

) ∂2R(s,0)
∂zm∂zn

+
s

Θ
∂2R(s,Θk)

∂zm∂zn

}
∂f(t,x,k)

∂kn

]
ds

→−
∫ ∞

0

∂

∂km

[
∂2R(s,0)
∂zm∂zn

∂f(t,x,k)
∂kn

]
ds=

∂

∂km

(
D̄mn(k)

∂f

∂kn

)
. (2.18)

The above diffusion matrix D̄mn corresponds to the case of fluctuations in V that
are white noise in time. It means that when the time step is chosen much larger
than the correlation length, the limit diffusion operator of the time-splitting scheme
is correct only when the medium fluctuations are white in time. Therefore, choosing
a time step on the order of or much larger than the wavelength ε usually leads to
incorrect statistics for the solution to the Liouville equation. Theorem 2.2 and (2.14)
quantify the error made by choosing too big a time step. Let us also remark that it is
straightforward to generalize the above calculation to correlation functions that are
not compactly supported in time, although we shall not consider this case here.

2.3. Outline of the proof. The proof of Theorem 2.2 follows the idea of
the proof of the main result in [2]. Therefore we briefly outline the main steps and
concentrate on the necessary modifications in the proof. First, we need to show that
the family of measures Pε generated by the process Wε(t) on C([0,T ];L2(R2d)) is
tight:

Lemma 2.3. The family of measures Pε is weakly compact.
The proof of this lemma is very similar to that in [2] and is omitted.
It is straightforward to verify that the L2-norm of Wε is preserved by the evolution

and hence Wε takes values in a ball X ={W ∈L2 : ‖W‖L2 ≤C}.
Lemma 2.4. The L2-norm of the solution of (2.12) is preserved:

‖Wε(t)‖L2(R2d) =‖Wε(0)‖L2(R2d). (2.19)

Let λ(t,x,k) be a fixed deterministic function. In order to identify the limit of
Wε, we construct the functional Gλ :C([0,T ];X)→C[0,T ] defined by

Gλ[W ](t)= 〈W,λ〉(t)−
∫ t

0

〈W,
∂λ

∂t
+k ·∇xλ+LΘλ〉(s)ds (2.20)
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and show that it is an approximate martingale. More precisely, we show that the
following lemma holds.

Lemma 2.5. There exists a constant C >0 so that
∣∣EPε {Gλ[W ](t)|Fs}−Gλ[W ](s)

∣∣≤Cλ,T

√
ε (2.21)

uniformly for all W ∈C([0,T ];X) and 0≤s<t≤T .
The proof of Lemma 2.5 is based on the construction of an exact martingale

Gε
λ[W ] that is uniformly close to Gλ[W ] within O(

√
ε). Lemma 2.3 implies that there

exists a subsequence εj→0 so that Pεj
converges weakly to a measure P supported on

C([0,T ];X). The weak convergence of Pε and the strong convergence (2.21) altogether
imply that Gλ[W ](t) is a P -martingale so that

EP {Gλ[W ](t)|Fs}−Gλ[W ](s)=0. (2.22)

Taking s=0 in the above equation we obtain the Fokker-Planck equation (2.15) for
W =EP {W (t)} in its weak formulation. The construction of the martingale Gε

λ and
the proof of Lemma 2.5 are presented in detail in Section 2.4.

The second step is to show that for every test function λ(t,x,k) the second func-
tional

G2,λ[W ](t)= 〈W,λ〉2(t)−2
∫ t

0

〈W,λ〉(s)〈W,
∂λ

∂s
+k ·∇xλ+LΘλ〉(s)ds

is also an approximate Pε-martingale. We then obtain that EPε
{〈W,λ〉2}→〈W,λ〉2,

which implies (weak) convergence in probability of Wε(t,x,k) to W (t,x,k). It follows
that the limit measure P is unique and deterministic, and that the whole sequence
Pε converges to P .

2.4. The approximate martingale. To obtain the approximate martingale
property (2.21) and prove Lemma 2.5, one has to consider the conditional expec-
tation of functionals F (W,V ) with respect to the probability measure P̃ε on the
space C([0,T ];V×X) generated by V (t/ε) and the Cauchy problem (2.12). The
only functions we need to consider are actually of the form F (W,V )= 〈W,λ(V )〉 with
λ∈L∞(V;C1([0,T ];S(R2d))). Given a function F (W,V ) let us define the conditional
expectation

EP̃ε

W,V,t{F (W,V )}(τ)=EP̃ε {F (W (τ),V (τ))| W (t)=W,V (t)=V }, τ ≥ t.

The weak form of the infinitesimal generator of the Markov process generated by P̃ε

is given by

d

dh
EP̃ε

W,V,t{〈W,λ(V )〉}(t+h)
∣∣∣∣
h=0

=
1
ε
〈W,Qλ〉+

〈
W,

(
∂

∂t
+φ

(
t

ε

)
k ·∇x− 1√

ε
ψ

(
t

ε

)
∇xV

(x
ε

)
·∇k

)
λ

〉
, (2.23)

hence

Gε
λ = 〈W,λ(V )〉(t)−

∫ t

0

〈
W (s),

(
1
ε
Q+

∂

∂s
+φ

(s

ε

)
k ·∇x− 1√

ε
ψ

(s

ε

)
∇xV

(x
ε

)
·∇k

)
λ(s)

〉
ds, (2.24)



524 TIME SPLITTING IN A RANDOM MEDIUM

is a P̃ε-martingale. The generator (2.23) comes from equation (2.12).
Given a test function λ(t,x,k)∈C1([0,L];S) we will construct the function

λε(t,x,k,V )=λ(t,x,k)+
√

ελε
1(t,x,k,V )+ελε

2(t,x,k,V ), (2.25)

with the correctors λε
1,2(t) bounded in L∞(V;L2(R2d)) uniformly in t∈ [0,T ]. The

functions λε
1,2 will be chosen so that

‖Gε
λε

(t)−Gλ(t)‖L∞(V)≤Cλ

√
ε, (2.26)

for all t∈ [0,T ]. Here Gε
λε

is defined by (2.24) with λ replaced by λε, and Gλ is defined
by (2.20). The approximate martingale property (2.21) follows from this.

As is usual in homogenization theory we need to account for the behavior both

at the fast and the slow scales and define λε
j(t,x,k,V )=λj(t,

t

ε
,x,

x
ε
,k,V ) for j =1,2.

The function λ1(t,τ,x,z,k,V ) is the mean-zero solution of

∂λ1

∂τ
+φ(τ)k ·∇zλ1 +Qλ1 =ψ(τ)∇V (z) ·∇kλ, (2.27)

with V (z) fixed and independent of τ . Solution of this equation is given by

λ1(t,τ,x,z,k,V )=−
∫ ∞

0

esQ ∂V

∂zn
(z+k[Φ(τ +s)−Φ(τ)])ψ(τ +s)ds

∂λ(t,x,k)
∂kn

.

(2.28)

The equation for λ2 is

∂λ2

∂τ
+φ(τ)k ·∇zλ2 +Qλ2 =[LΘλ+ψ(τ)∇zV (z) ·∇kλ1]+[1−φ(τ)]k ·∇xλ. (2.29)

The first term on the right may be further decomposed as
(
LΘλ−Lτ

Θλ
)

+
(
Lτ

Θλ+ψ(τ)∇zV (z) ·∇kλ1).

We decompose λ2 as

λ2 =λ21 +λ22 +λ23, (2.30)

corresponding to the three arising source terms, respectively. The operator Lτ
Θ is

defined by

Lτ
Θλ=−E{ψ(τ)∇zV (z) ·∇kλ1},

and

LΘλ=
1
Θ

∫ Θ

0

Lτ
Θλdτ, (2.31)

where Θ is the period of φ and ψ. The explicit form of Lτ
Θ is:

Lτ
Θλ(t,τ,x,z,k)=−E{ψ(τ)∇zV (z) ·∇kλ1}=−ψ(τ)E

{
∂

∂km

(
∂V (z)
∂zm

λ1

)}

=ψ(τ)
∂

∂km

[
E

{∫ ∞

0

esQ ∂V (z)
∂zm

∂V

∂zn
(z+k[Φ(τ +s)−Φ(τ)])ψ(τ +s)ds

∂λ(t,x,k)
∂kn

}]

=−ψ(τ)
∂

∂km

[∫ ∞

0

∂2R(s,k[Φ(τ +s)−Φ(τ)])
∂zm∂zn

ψ(τ +s)ds
∂λ(t,x,k)

∂kn

]
.
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Therefore we have

LΘλ=− 1
Θ

∫ Θ

0

∫ ∞

0

ψ(τ)ψ(τ +s)
∂

∂km

[
∂2R(s,k[Φ(τ +s)−Φ(τ)])

∂zm∂zn

∂λ(t,x,k)
∂kn

]
ds dτ.

We observe that the operators LΘ and Lτ
Θ are independent of V and z and therefore

the function λ21 =λ21(t,τ,x,k) is also independent of these variables. It is given
explicitly by

λ21(t,τ,x,k)=
∫ τ

0

[LΘ(t,x,k)−Lζ
Θ(t,x,k)]λ(t,x,k)dζ (2.32)

and is periodic in the fast variable τ . Similarly the function λ23 is also independent
of V and z and is given by

λ23(t,τ,x,k)= [τ−Φ(τ)]k ·∇xλ(t,x,k). (2.33)

The function λ22 satisfies

∂λ22

∂τ
+φ(τ)k ·∇zλ22 +Qλ22 =Lτ

Θλ−g, g =ψ(τ)∇zV (z) ·∇kλ1,

and is thus given explicitly by

λ22(t,τ,x,z,k,V )

=−
∫ ∞

0

esQ[Lτ+s
Θ λ(t,x,k)−g(t,τ +s,x,z+(Φ(τ +s)−Φ(τ))k,k,V )]ds.

(2.34)

Using (2.27) and (2.29) we have

d

dh
EP̃ε

W,V,t{〈W,λε〉}(t+h)
∣∣∣∣
h=0

=
〈

W,

(
∂

∂t
+φ

(
t

ε

)
k ·∇x− 1√

ε
ψ

(
t

ε

)
∇V

(x
ε

)
·∇k +

1
ε
Q

)(
λ+

√
ελε

1 +ελε
2

)〉

=
〈

W,

(
∂

∂t
+k ·∇x

)
λ+LΘλ

〉

+
〈

W,

(
∂

∂t
+φ

(
t

ε

)
k ·∇x

)(√
ελε

1 +ελε
2

)
+
√

εψ

(
t

ε

)
∇V

(x
ε

)
·∇kλε

2

〉

=
〈

W,

(
∂

∂t
+k ·∇x

)
λ+LΘλ

〉
+
√

ε〈W,ζλ
ε 〉,

with

ζλ
ε =

(
∂

∂t
+φ

(
t

ε

)
k ·∇x

)
λ1

(
x,

x
ε

)
+ψ

(
t

ε

)
∇V

(x
ε

)
·∇kλ2

(
x,

x
ε

)

+
√

ε

(
∂

∂t
+φ

(
t

ε

)
k ·∇x

)
λ2

(
x,

x
ε

)
.

Note that the terms k ·∇xλ1 above are understood as differentiation with respect to
the slow variable x only and that the gradients are evaluated at z=x/ε. It follows
that Gε

λε
is given by

Gε
λε

(t)= 〈W (t),λε〉−
∫ t

0

〈
W,

(
∂

∂t
+k ·∇x +LΘ

)
λ

〉
(s)ds−√ε

∫ t

0

〈W,ζλ
ε 〉(s)ds

(2.35)
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and is a martingale with respect to the measure P̃ε defined on C([0,T ];X×V). Lemma
2.5 and the estimate (2.21) follow from the following lemma.

Lemma 2.6. Let λ∈C1([0,T ];S(R2d)). Then there exists a constant Cλ >0 indepen-
dent of t∈ [0,T ] so that the correctors λε

1(t) and λε
2(t) satisfy the uniform bounds

‖λε
1(t)‖L∞(V;L2) +‖λε

2(t)‖L∞(V;L2)≤Cλ (2.36)

and
∥∥∥∂λε

1(t)
∂t

+φ

(
t

ε

)
k ·∇xλε

1(t)
∥∥∥

L∞(V;L2)

+
∥∥∥∂λε

2(t)
∂t

+φ

(
t

ε

)
k ·∇xλε

2(t)
∥∥∥

L∞(V;L2)
+‖∇kλε

2‖L∞(V;L2)≤Cλ.

(2.37)

Proof of Lemma 2.6. The estimates (2.36) and (2.37) follow immediately from the
explicit expressions (2.28) for λ1 and (2.32), (2.33), (2.34) for λ2, the gap property
(2.4) and the almost sure a priori bounds (2.2). For example, we have

|λ1(t,x,k,z,V )|≤
∫ ∞

0

e−αs‖∇V ‖L∞ds |∇kλ(t,x,k)|≤ C0

α
|∇kλ(t,x,k)|,

from which the first bound in (2.36) follows. The other estimates in Lemma 2.6 are
shown in a similar if slightly more tedious fashion.
Proof of Lemma 2.5. Observe that (2.36) implies |〈W,λ〉−〈W,λε〉|≤C

√
ε for all

W ∈X and V ∈V, while (2.37) implies that for all t∈ [0,T ],

‖ζλ
ε (t)‖L2 ≤C (2.38)

for all V ∈V. So (2.21) follows from the fact that (2.35) is a martingale.
As explained in Section 2.3 the tightness of measures Pε given by Lemma 2.3 im-

plies that the expectation E{Wε(t,x,k)} converges weakly in L2(R2d) to the solution
W (t,x,k) of the transport equation for each t∈ [0,T ].

2.5. Convergence in probability. We now prove that for any test
function λ the second moment E

{〈Wε,λ〉2
}

converges to 〈W,λ〉2. This will im-
ply the convergence in probability claimed in Theorem 2.2. The proof is based
on constructing an appropriate approximate martingale for the quadratic functional
〈W ⊗W,µ〉, where µ(t,x1,k1,x2,k2) is a test function, and W ⊗W (t,x1,k1,x2,k2)=
W (t,x1,k1)W (t,x2,k2). We need to consider the action of the infinitesimal generator
on functions of W and V of the form

F (W,V )= 〈W (x1,k1)W (x2,k2),µ(t,x1,k1,x2,k2,V̂ )〉= 〈W ⊗W,µ(V )〉,

where µ is a given function. The infinitesimal generator acts on such functions as

d

dh
EP̃ε

W,V,t{〈W ⊗W,µ(V )〉}(t+h)
∣∣∣∣
h=0

=
1
ε
〈W ⊗W,Qλ〉+〈W ⊗W,Hε

2µ〉, (2.39)

where

Hε
2µ=

2∑

j=1

φ

(
t

ε

)
kj ·∇xj µ− 1√

ε
ψ

(
t

ε

)
∇V

(
xj

ε

)
·∇kj µ. (2.40)
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Therefore the functional

G2,ε
µ = 〈W ⊗W,µ(V )〉(t)−

∫ t

0

〈
W ⊗W,

(1
ε
Q+

∂

∂s
+φ

(s

ε

)
[k1 ·∇x1 +k2 ·∇x2 ]

〉
ds

+
∫ t

0

〈
W ⊗W,

1√
ε
ψ

(s

ε

)[
∇V

(
x1

ε

)
·∇k1µ+∇V

(
x2

ε

)
·∇k2µ

]〉
ds, (2.41)

is a P̃ ε martingale. We let µ(t,X,K)∈S(R2d×R2d) be a test function independent
of V , where X=(x1,x2), and K=(k1,k2). We define an approximation

µε(t,X,K)=µ(t,X,K)+
√

εµ1(t,X,X/ε,K)+εµ2(t,X,X/ε,K).

We will use the notation µε
1(t,X,K)=µ1(t,X,X/ε,K) and µε

2(t,X,K)=
µ2(t,X,X/ε,K). The functions µ1 and µ2 are to be determined. We now use
(2.39) to get

Dε :=
d

dh

∣∣∣
h=0
EW,V,t(〈W ⊗W,µε(V )〉)(t+h)=

1
ε

〈
W ⊗W,


 ∂

∂τ
+Q+φ(τ)

2∑

j=1

kj ·∇zj


µ

〉

+
1√
ε

〈
W ⊗W,


 ∂

∂τ
+Q+φ(τ)

2∑

j=1

kj ·∇zj


µ1−ψ (τ)

2∑

j=1

∇V (zj) ·∇kj µ

〉

+

〈
W ⊗W,


 ∂

∂τ
+Q+φ(τ)

2∑

j=1

kj ·∇zj


µ2−ψ (τ)

2∑

j=1

∇V (zj) ·∇kj µ1

〉

+

〈
W ⊗W,

∂µ

∂t
+φ(τ)

2∑

j=1

kj ·∇xj µ

〉

+
√

ε

〈
W ⊗W,


 ∂

∂t
+φ(τ)

2∑

j=1

kj ·∇xj


(µ1 +

√
εµ2)−ψ (τ)

2∑

j=1

∇V (zj) ·∇kj µ2

〉
.

The above expression is evaluated at zj =xj/ε and τ = t/ε. The term of order ε−1

in Dε vanishes since µ is independent of V and of the fast variables τ and z. We
cancel the term of order ε−1/2 as before by defining µ1 as the unique mean-zero (in
the variables V , τ and Z=(z1,z2)) solution of

( ∂

∂τ
+Q+φ(τ)

2∑

j=1

kj ·∇zj

)
µ1−ψ(τ)

2∑

j=1

∇V (zj) ·∇kj µ=0. (2.42)

It is given explicitly by

µ1(τ,X,Z,K,V )=−
∫ ∞

0

esQψ(τ +s)
[∇V (z1 +k1[Φ(τ +s)−Φ(τ)]) ·∇k1µ

+∇V (z2 +k2[Φ(τ +s)−Φ(τ)]) ·∇k2µ
]
ds.

When µ has the form µ=λ⊗λ, then µ1 has the form µ1 =λ1⊗λ+λ⊗λ1 with the
corrector λ1 given by (2.28). Let us also define µ2 as a sum of three terms, as in
(2.30),

µ2 =µ21 +µ22 +µ23.
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The function µ23 is the solution of

∂µ23

∂τ
+Qµ23 +φ(τ)

2∑

j=1

kj ·∇zj µ23 =[1−φ(τ)][k1 ·∇z1µ+k2 ·∇z2µ].

It is given explicitly by

µ23(t,τ,x,k)= [τ−Φ(τ)][k1 ·∇z1µ+k2 ·∇z2µ]. (2.43)

The function µ21 is the mean zero solution, with respect to the invariant measure
π(V ), of


 ∂

∂τ
+Q+φ(τ)

2∑

j=1

kj ·∇zj


µ21 =ψ(τ)

2∑

j=1

∇V (zj) ·∇kj µ1 +Lτ
2,Θµ, (2.44)

where Lτ
2,Θµ is given by

Lτ
2,Θµ=E

{
−ψ(τ)

2∑

j=1

∇V (zj) ·∇kj µ1

}
.

We now compute this operator explicitly:

Lτ
2,Θµ=E

{
−ψ(τ)

2∑

j=1

∇V (zj) ·∇kj µ1

}

=E
{

ψ(τ)
2∑

j,l=1

d∑
n,m=1

∂V (zj)
∂zj

n

∂

∂kj
n

(∫ ∞

0

esQψ(τ +s)
∂V (zl +kl[Φ(τ +s)−Φ(τ)])

∂zl
m

∂µ

∂k l
m

ds

)}

=
2∑

j,l=1

d∑
n,m=1

∂

∂kj
n

(∫ ∞

0

ψ(τ +s)ψ(τ)
∂2R(s,zl−zj +kl[Φ(τ +s)−Φ(τ)])

∂zj
n∂zl

m

∂µ

∂k l
m

ds

)
.

Note that unlike the first moment calculation now the operator Lτ
2,Θ depends also on

the fast spatial variable Z and not only on the fast time τ . The difference is that while
the dependence on τ ∈ [0,Θ] may be averaged out by integration over the period, the
dependence on Z∈Rd has to be treated differently. The function µ21 may be written
explicitly as

µ21(t,τ,X,Z,k,V )=−
∫ ∞

0

esQg21(t,τ +s,X,Z+(Φ(τ +s)−Φ(τ))K,K,V )ds (2.45)

with

g21(t,τ,X,Z,k,V )=ψ(τ)
2∑

j=1

∇V (zj) ·∇kj µ1 +Lτ
2,Θµ. (2.46)

Finally, µ22 is the solution of

 ∂

∂τ
+Q+φ(τ)

2∑

j=1

kj ·∇zj


µ22 =L2,Θµ−Lτ

2,Θµ
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with

L2,Θµ(t,X,Z,K)=
1
Θ

∫ Θ

0

Lτ
2,Θµdτ

=
1
Θ

∫ Θ

0

2∑

j,l=1

d∑
n,m=1

∂

∂kj
n

(∫ ∞

0

ψ(τ +s)ψ(τ)
∂2R(s,zl−zj +kl[Φ(τ +s)−Φ(τ)])

∂zj
n∂zl

m

∂µ

∂k l
m

dsdτ

)
.

(2.47)

The function µ22 may be written explicitly as

µ22(t,τ,X,Z,K)=
∫ τ

0

[Lε
2,Θµ−Lε,ζ

2,Θ]µ(t,X,K)dζ. (2.48)

The P̃ ε-martingale G2,ε
µε

is given by

G2,ε
µ = 〈W ⊗W,µ(V )〉(t)

−
∫ t

0

〈
W ⊗W,

( ∂

∂t
+K ·∇X +Lε

2,Θ

)
µ

〉
(s)ds−√ε

∫ t

0

〈W ⊗W,ζµ
ε 〉(s)ds,

(2.49)

where ζµ
ε is given by

ζε
µ =


 ∂

∂t
+φ(τ)

2∑

j=1

kj ·∇xj


(µ1 +

√
εµ2)−ψ (τ)

2∑

j=1

∇V (zj) ·∇kj µ2

and the operator Lε
2,Θ is defined by (2.47) with Z=X/ε:

Lε
2,Θµ(t,X,K)

=
2∑

j,l=1

d∑
n,m=1

∂

∂kj
n

(∫ Θ

0

∫ ∞

0

ψ(τ +s)ψ(τ)
∂2R(s, xl−xj

ε +kl[Φ(τ +s)−Φ(τ)])

∂zj
n∂zl

m

∂µ

∂k l
m

dsdτ

Θ

)
.

(2.50)

The bound on ζµ
ε is similar to that on ζλ

ε obtained previously as the correctors
µε

j satisfy the same type of estimates as the correctors λj :

Lemma 2.7. There exists a constant Cµ >0 so that the functions µε
1,2 obey the uniform

bounds

‖µε
1(t)‖L2(R2d) +‖µε

2(t)‖L2(R2d)≤Cµ (2.51)

and
∥∥∥∂µε

1(t)
∂t

+K ·∇Xµε
1(t)

∥∥∥
L2(R2d)

+‖∇Kµε
1(t)‖L2(R2d)

+
∥∥∥∂µε

2(t)
∂t

+K ·∇Xµε
2(t)

∥∥∥
L2(R2d)

+‖∇Kµε
2(t)‖L2(R2d)≤Cµ

(2.52)

for all t∈ [0,T ] and V ∈V. The proof of this lemma is very similar to that of Lemma
2.6 and is therefore omitted.

Unlike the first moment case, the averaged operator Lε
2 still depends on ε. We

cannot claim yet strong convergence of the P̃ ε-martingale G2,ε
µε

to its limit. However,
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the a priori bound on Wε in L2 allows us to characterize the limit of G2,ε
µε

and to
show strong convergence. This is done as follows. The terms in (2.50) with l= j are
independent of ε and give the contribution:

L0
2,Θµ(t,X,K)

=
2∑

j=1

d∑
n,m=1

∂

∂kj
n

(∫ Θ

0

∫ ∞

0

ψ(τ +s)ψ(τ)
∂2R(s,kj [Φ(τ +s)−Φ(τ)])

∂zj
n∂zj

m

∂µ

∂k j
m

dsdτ

Θ

)
.

The two remaining terms give a contribution that tend to 0 as ε→0 for sufficiently
smooth test functions. They are given by

L12,ε
2,Θ µ(t,X,K)

=
d∑

n,m=1

∂

∂k2
n

(∫ Θ

0

∫ ∞

0

ψ(τ +s)ψ(τ)
∂2R(s, x1

ε − x2

ε +k1[Φ(τ +s)−Φ(τ)])
∂z2

n∂z1
m

∂µ

∂k 1
m

dsdτ

Θ

)

+
d∑

n,m=1

∂

∂k1
n

(∫ Θ

0

∫ ∞

0

ψ(τ +s)ψ(τ)
∂2R(s, x2

ε − x1

ε +k2[Φ(τ +s)−Φ(τ)])
∂z1

n∂z2
m

∂µ

∂k 2
m

dsdτ

Θ

)

= I +II.
(2.53)

The first term above may be written as

Iε(t,X,K)= q

(
x1−x2

ε
,k2

)
∂2µ(t,X,K)

∂k2
n∂k1

m

,

with

q(x,k)=
∫ Θ

0

∫ ∞

0

ψ(τ +s)ψ(τ)
∂2R(s,x+k[Φ(τ +s)−Φ(τ)])

∂z1
n∂z2

m

dsdτ

Θ
.

We observe that
∫
|q2(x,k)|2dx=

∫

Rd

∫ Θ

0

∫ Θ

0

∫ ∞

0

∫ ∞

0

ψ(τ1 +s1)ψ(τ1)ψ(τ2 +s2)ψ(τ2)

×g(s1,x+k[Φ(τ1 +s1)−Φ(τ1)])g(s2,x+k[Φ(τ2 +s2)−Φ(τ2)])
ds1ds2dτ1dτ2

Θ2
dx

≤C

(∫ ∞

0

‖g(s)‖2ds

)2

,

where

g(s,x)=
∂2R(s,x)
∂x1

n∂x2
m

.

We may assume without loss of generality, using classical density arguments, that
∂2µ(t,X,K)

∂k2
n∂k1

m

=η(t,x1−x2,k1)η′(t,(x1 +x2)/2,k2) with sufficiently regular functions

η and η′. Then we obtain

‖Iε‖L2 =
∫ ∣∣∣∣q

(
x1−x2

ε

)∣∣∣∣
2

|η(t,x1−x2,k1)|2 |η′(t,(x1 +x2)/2,k2)|2dx1dx2dk1dk2

≤εd‖q‖L2
x
‖η′‖L2

x,k

∫
sup
x
|η(t,x,k)|2dk.
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A similar bound holds also for the second term in (2.53). This proves that ‖(Lε
2,Θ−

L0
2,Θ)µ‖L2 →0 as ε→0.

We therefore deduce that

G2
µ = 〈W ⊗W,µ(V̂ )〉(z)−

∫ z

0

〈
W ⊗W,

( ∂

∂z
+k1 ·∇x1 +k2 ·∇x2 +L0

2,Θ

)
µ

〉
(s)ds

is an approximate P̃ε martingale. The limit of the second moment

W2(t,x1,k1,x2,k2)=EP {W (t,x1,k1)W (t,x2,k2)}
thus satisfies (weakly) the transport equation

∂W2

∂t
+(k1 ·∇x1 +k2 ·∇x2)W2 =L0

2,ΘW2,

with initial data W2(0,x1,k1,x2,k2)=W0(x1,k1)W0(x2,k2). Moreover, the operator
L0

2,Θ acting on a tensor product λ⊗λ has the form

L0
2,Θ[λ⊗λ]=LΘλ⊗λ+λ⊗LΘλ.

This implies that

EP {W (t,x1,k1)W (t,x2,k2)}=EP {W (t,x1,k1)}EP {W (t,x2,k2)}
by uniqueness of the solution to the above transport equation with initial conditions
given by W0(x1,k1)W0(x2,k2). This proves that the limiting measure P is deter-
ministic and unique (because characterized by the transport equation) and that the
sequence Wε(t,x,k) converges in probability to W (t,x,k).

3. An efficient time splitting algorithm

3.1. A modified time splitting scheme. The results of the preceding
sections imply that Θε =ε/N with NÀ1 is necessary to obtain the correct statistics
of the wave energy density by solving the time splitting algorithm (2.9)-(2.10). We
now show that the interval Θε can be chosen substantially larger if one modifies
the treatment of the scattering term in an appropriate manner in the time splitting
scheme. However, unlike (2.9)-(2.10) the modified scheme can no longer be solved
explicitly and requires a more complicated numerical scheme to handle the scattering
part.

Let us consider a time splitting algorithm for (2.1), which differs from (2.9)-(2.10)
as follows. The advection operator k ·∇x in (2.1) is treated in the same way as in
(2.9): given the approximation W̃ε(nΘ,x,k) we first solve

∂Un+1

∂t
+k ·∇xUn+1 =0, nΘ≤ t≤ (n+1)Θ, (3.1)

with the initial data Un+1(nΘ,x,k)=W̃ε(nΘ,x,k). We have explicitly as before

Un+1(t,x,k)=W̃ε(nΘ,x−(t−nΘ)k,k), nΘ≤ t≤ (n+1)Θ.

The scattering term is now accounted for in a different fashion from (2.10). The new
scattering equation is

∂Zn+1

∂t
=

1√
ε
∇xV

(
t

ε
,
x−(t−nΘ)k

ε

)
·∇kZn+1, nΘ≤ t≤ (n+1)Θ, (3.2)
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with the initial data Zn+1(nΘ,x,k)=Un+1((n+1)Θ,x,k). We then reset the approx-
imation as W̃ε((n+ 1)Θ,x,k)=Zn+1((n+1)Θ,x,k) and repeat the above scheme.
Note that (3.2) is different from (2.10) as the random potential V is evaluated at the
point x−(t−nΘε)k instead of x. This means, roughly speaking, that we account for
the advection of the rapidly varying part of the right side in (3.2), which depends on
the oscillatory potential V , but we do not advect Wε, which we hope to be statisti-
cally slowly varying in the limit ε→0. This modification allows us to obtain the right
dynamics with much larger Θε (actually independent of ε) than in previous sections
because indeed Wε has a slowly varying limit as ε→0.

However, as we mentioned above the possibility to take a large time step comes
at a price: the modified equation (3.2) has no explicit solution, unlike (2.10). The
main advantage of the modification (2.10) is that it still allows us to bypass the
advection part in the x-variable, which has to be performed much less often than in
the time-splitting scheme (2.9)-(2.10).

3.2. Convergence of the time-splitting scheme for the Wigner equation.
We analyze now convergence of the time-splitting algorithm (3.1)-(3.2) in the small

ε limit with a time-step Θ independent of ε. As in the analysis in Section 2 it is
convenient to introduce a somewhat more general set-up including (3.1)-(3.2) as a
particular example. We modify (2.1) as follows:

∂Wε

∂t
+φ(t)k ·∇xWε =

ψ(t)√
ε
∇xV

(
t

ε
,
x−η(t)k

ε

)
·∇kWε. (3.3)

This is the analog to the modified Wigner equation (2.12). Once again, choosing
the functions φ and ψ equal to zero on alternating time intervals in (3.3) leads to a
genuine time-splitting scheme. In general the periodic functions φ and ψ are as in
Section 2 with period Θ and with mean value equal to one. However, there is an
important difference between the general time-splitting in (3.3) and that in (2.12):
now the functions φ and ψ vary on the macroscopic rather than the microscopic time-
scale. This corresponds to taking a time-step Θ independent of ε in the time-splitting
scheme. However, in order to allow for such a large time step one has to modify the
oscillatory phase in the operator on the right side of (3.3) by means of a function η(t)
also varying on the macroscopic scale. We choose

η(t)=
∫ t

0

[φ(s)−1]ds=Φ(t)− t. (3.4)

This allows us to compensate for the large time-step by appropriately adjusting the
potential V accounting indirectly for advection during the long time-step. This mod-
ification need not be made in the argument of Wε since the latter has a macroscopic
limit. The main result is as follows.

Theorem 3.1. Let the initial data W 0
ε (x,k) for (2.12) converge to W0(x,k) strongly

in L2(R2d) and the functions φ and ψ satisfy the normalization (2.13) and be uni-
formly bounded. Then the modified Wigner distribution Wε, solution of (3.3) con-
verges in probability and weakly in L2(Rd) to the solution W of the modified Fokker-
Planck equation

∂W

∂t
+φ(t)k ·∇W =ψ2(t)

∂

∂km

(
Dmn(k)

∂W

∂kn

)
, (3.5)
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with diffusion matrix

Dmn(k)=−
∫ ∞

0

∂2R(s,sk)
∂zn∂zm

ds, (3.6)

and initial data W0(x,k). More precisely, for any test function λ∈L2(Rd) the random
process

〈W,λ(t)〉=
∫

R2d

Wε(t,x,k)λ(x,k)dxdk

converges in probability to 〈W,λ〉 as ε→0 uniformly on finite time intervals t∈ [0,T ].
Equation (3.5) is nothing but a time-splitting approximation with time-step Θ of

the correct limiting Fokker-Planck equation (2.7), which has the form

∂W

∂t
+k ·∇W =

∂

∂km

(
Dmn(k)

∂W

∂kn

)
. (3.7)

In particular we obtain the correct diffusion matrix for all Θ.
The proof of Theorem 3.1 is very similar to that of Theorem 2.2. We only explain

the necessary modifications. One no longer needs to introduce separately the fast
spatial and temporal variables z=x/ε and τ = t/ε in the construction of the correctors.
The new fast variable is z=(x−η(t)k)/ε so that one formally has

∇x→∇x +
1
ε
∇z,

∂

∂t
→ ∂

∂t
− 1

ε
η̇(t)k ·∇z.

With our choice (3.4) of η(t), the equation for the corrector λ1 takes a particularly
simple form:

k ·∇zλ1 +Qλ1 =∇xV (z) ·∇kλ(x,k)ψ(t), (3.8)

since the function φ(t)− η̇(t) that would multiply the k ·∇z term on the left side is
equal to one identically. The function λ1 is given explicitly by

λ1(x,k,z,V )=−
∫ ∞

0

esQ∇xV (z+sk) ·∇kλ(x,k)ψ(t)ds.

The integral above is convergent because of the gap property (2.4). Then as in the
proof of Theorem 2.2 the right side of the limit equation is given by:

Lλ=ψ(t)E{∇xV (z) ·∇kλ1}=
∂

∂km

(
E

{
−∂V (z)

∂zm

∫ ∞

0

esQ ∂V (z+sk)
∂zn

∂λ(x,k)
∂kn

ψ2(t)ds

})

=− ∂

∂km

(∫ ∞

0

∂2R(s,sk)
∂zn∂zm

ds
∂λ

∂kn

)
=

∂

∂km

(
Dmn(k)

∂λ

∂kn

)
.

The rest of the proof of Theorem 3.1 is very similar to that of Theorem 2.2 and
we omit the details.
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