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GRAVITY DRIVEN SHALLOW WATER MODELS FOR ARBITRARY
TOPOGRAPHY ∗

FRANÇOIS BOUCHUT † AND MICHAEL WESTDICKENBERG ‡

Abstract. We derive new models for gravity driven shallow water flows in several space dimen-
sions over a general topography. A first model is valid for small slope variation, i.e. small curvature,
and a second model is valid for arbitrary topography. In both cases no particular assumption is made
on the velocity profile in the material layer. The models are written for an arbitrary coordinate sys-
tem, and several formulations are provided. A Coulomb friction term is derived within the same
framework, relevant in particular for debris avalanches. All our models are invariant under rotation,
admit a conservative energy equation, and preserve the steady state of a lake at rest.

Key words. Shallow water – arbitrary topography – lake at rest – energy equation – velocity
profile – debris avalanche.

1. Introduction
The problem of modeling gravity driven shallow water flows arises in many phys-

ical situations, such as weather forecast, ocean modeling, flows in rivers and coastal
areas, debris avalanches, etc. Consider the motion of a relatively thin layer of material
under the influence of gravity over a complex relief, like the ground of an ocean, or
over a mountain. Our particular interest here is to take into account as much as pos-
sible the influence of the topography in the flow equations. While the dynamics are
well understood for the flat case, and also the mathematical theory becomes settled
now, see [8, 7, 6, 1], the situation is different for the nonflat case. Several models are
discussed in the literature, that we briefly describe now.

The classical Saint-Venant system [12] is given by

∂th+∂x(hu)=0,
∂t(hu)+∂x

(
hu2 + 1

2gh2
)
+hg∂xz =0.

(1.1)

It is widely used to model flows in one space dimension. Here h is the height of the
material, u is the velocity in the direction parallel to the bed, and g is the gravity
constant. The influence of the topography enters through the function z(x) which is
the altitude of the relief. The Saint-Venant system is derived from the free surface
incompressible Navier-Stokes equations in the layer in the regime of small slopes, i.e.
with ∂xz being small. It is robust, hyperbolic and admits a convex entropy, the energy
of the system. One important feature of it is that the steady state of a lake at rest,
i.e. h+z = const and u=0, is preserved.

In 1991 Savage and Hutter [13] introduced a model which is capable of handling
more general slopes. In its adjusted form, it is given by

∂th+∂X(hu) = 0 ,

∂t(hu)+∂X

(
hu2 + 1

2h2gcosθ
)
+hg∂Xz+ 1

2gh2∂X(cosθ) = 0 .
(1.2)
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The momentum equation can be replaced, for smooth solutions, by the velocity equa-
tion

∂tu+∂X

(
1
2u2 +hgcosθ+gz

)
= 0 . (1.3)

Again the model is one-dimensional. But unlike the Saint-Venant equations which
are set up in cartesian coordinate x, the Savage-Hutter model uses the curvilinear
coordinate X along the topography. The function θ(X) measures the angle of the bed
tangent with the horizontal reference frame, thus

dx

dX
= cosθ, (1.4)

and we have the relations

dz

dx
= tanθ,

dz

dX
= sinθ. (1.5)

The Savage-Hutter model is valid in the regime of small slope variation, i.e., for
θX ≡∂Xθ small. Note that θX is the curvature of the terrain. As before, h is the
width of the material layer, this time measured in normal direction, not vertically.
Still u is the tangential velocity. The system is hyperbolic, admits a convex entropy
(the energy) and preserves the lake at rest steady state u=0, hcosθ+z = const. It
is widely used, e.g. for the modeling of debris avalanches, in which case a suitable
friction term is added.

Recently, Bouchut et al. [2] derived a set of equations which models gravity
driven shallow water flows in one space dimension, but without any restriction on the
topography,

∂t

(
h− 1

2θXh2
)
+∂X

(
ln(1−hθX)

−θX
W

)
= 0 ,

∂tW +∂X

(
W 2

2(1−hθX)2
+hgcosθ+gz

)
= 0 .

(1.6)

Again the curvilinear coordinate X is used, h(t,X) is the width in normal direction,
and W (t,X) is related to the tangential velocity profile u defined in the material layer
by

u(t,X,ξ̄) = W (t,X)/(1− ξ̄ θX), (1.7)

where 0≤ ξ̄≤h(t,X) is the normal variable. The system admits a convex entropy
and preserves the lake at rest steady state W =0, hcosθ+z = const. The model
contains asymptotically the Savage-Hutter model under the assumption θX =O(ε),
by neglecting terms in ε3 and ε2 respectively in (1.6). The number ε is the aspect
ratio between the width of the layer and the typical length of phenomena in x (thus
by definition h=O(ε)).

In the multidimensional case the models are less developed. This is mainly due
to the complexity of the geometry. The curvature, for example, becomes a matrix,
so the quantities that need to be included into the model are much more difficult to
guess than in one dimension. The extension to multidimension of the Saint-Venant
system is of course obvious, but it is valid only for almost flat topography, thus not
relevant for debris avalanches in particular. The extension to several dimensions of the



FRANÇOIS BOUCHUT AND MICHAEL WESTDICKENBERG 361

Savage-Hutter model is nontrivial. The first attempt has been made by Gray, Wieland
and Hutter [5]. Their model assumes that the topography has large variation only in
one direction, while it is essentially flat in the other direction. Variants of this model
can be found in [14], [4]. Very recently, Hutter and Pusadaini introduced a model for
avalanches in arbitrarily curved and twisted channels, see [11] and [10]. However, to
our knowledge, there still exists no truly multidimensional model for gravity driven
shallow water flows on a general topography.

Our first aim in this paper is to provide general equations extending the Savage-
Hutter theory to several space dimensions. With the same approach, we also generalize
the model of [2] without the small curvature assumption. A new argument that we
also propose enables us indeed to remove the assumption on the velocity profile in the
normal variable (constant for (1.2), specific linear dependence (1.7) for (1.6)). It is
replaced by the interpretation that the velocity variable is approximately the average
value in the layer of the velocity profile.

In view of the fact that the model must be solved numerically, it is desirable
to have some flexibility in the choice of (possibly curvilinear) coordinates, thus our
models are written in arbitrary coordinates. Our models also inherit the following
features from the incompressible Navier-Stokes equations with free surface:

• The systems admit a conservative entropy equation. This ensures hyperbol-
icity, and this is particularly important in order to describe shock formation,
and for numerical stability.

• The models preserve the steady state of a lake at rest.
• The models are invariant by rotation.
• The models imply intrinsically that the vorticity is transported by the flow.

However, in contrast with [13], we shall not take into account internal angles of friction.

The paper is organized as follows. In Section 2 we state our models and their
intrinsic properties, including the case of Coulomb friction. In Section 3 we derive
the models from the free surface incompressible Navier-Stokes equations. Finally, in
Section 4 we give a detailed justification of the invariance under rotation.

2. Multidimensional shallow water models
This section is devoted to the introduction of our models for multidimensional

gravity driven shallow water flows valid for general geometries. Our main model in
Subsection 2.2 is valid under the assumption of small slope variation, or equivalently
of small curvature, while the model proposed in Subsection 2.3 is more general and
is valid without this assumption, generalizing the one-dimensional model of [2]. The
Coulomb friction term is described in Subsection 2.4 for both cases.

2.1. Topography description. We assume that the topography is given as
the graph of some scalar function z(x), the altitude of the terrain, where x∈RN is
the horizontal coordinate, see Figure 2.1, the physically relevant cases being N =1 or
N =2. We denote the graph by S ⊂RN+1. We assume z sufficiently smooth, so that
the unit upward normal vector ~n to S can be defined. It is given by

~n =
(
− ∇xz√

1+|∇xz|2 , 1√
1+|∇xz|2

)
≡ (−s,c)∈RN ×R . (2.1)

The scalar c>0 is indeed the cosine of the angle between ~n and the vertical. From
these definitions of s(x) and c(x), and since |s|2 +c2 =1, we notice that

∂xc = − 1
c s

t∂xs, (2.2)
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Fig. 2.1. Multidimensional topography

∂xs = c(Id−sst)∂2
xxz , ∂2

xxz =
c2 Id+sst

c3
∂xs, (2.3)

where we used the identity (Id−sst)(Id+sst/c2)=Id. The matrix

H = c3∂2
xxz (2.4)

is the curvature tensor of S.
It is sometimes convenient not to work in cartesian coordinates, but in a coor-

dinate system which is adapted to the topography. We account for that need by
assuming that we are given a parametrization of S, or equivalently of the horizontal
coordinate x∈RN by a curvilinear coordinate ξ∈RN , i.e., we have a bijection

ξ 7→x(ξ)∈RN , ξ∈RN . (2.5)

We denote by ∂ξx the Jacobian matrix of x, and for convenience we assume that
det∂ξx>0. We shall write down our models in general ξ–coordinates, but of course
it is possible to make the choice x(ξ)=ξ. Anyway, the models are independent of the
chosen coordinates.

2.2. A multidimensional shallow water model for small slope variation.
The model reads as follows. The flow is described by

h(t,ξ)≥0, V (t,ξ)∈RN , (2.6)

where h is the width of the material layer in direction normal to the terrain, and V
parameterizes the velocity field, in the sense that defining

V = (∂ξx)V, (2.7)

the material velocity vector Vtg ∈RN+1 has horizontal/vertical components

Vtg =
(

Id
1
c s

t

)
V . (2.8)

This formula shows obviously that this physical velocity is tangent to the topography,
Vtg ·~n=0. Its norm is |Vtg|2 = |V|2 +(stV/c)2.

Our model reads as two equations on h and V ,

∂t(J0h)+∇ξ ·
(
J0hV

)
= 0 , (2.9)
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∂tV +V ·∇ξV +(∂ξx)−1
(
Id−sst

)
(∂ξx)−t∇ξ

(
g(hc+z)

)
= Π , (2.10)

with the right-hand side

Π ≡ −(∂ξx)−1
(
∂2

ξξx ·V ·V
)− 1

c2
(VtHV)(∂ξx)−1s. (2.11)

The number g is the gravitation constant, and

J0 ≡ 1
c det(∂ξx). (2.12)

Equations (2.9), (2.10) can be combined to give a momentum equation in conservative
form,

∂t(J0hV )+∇ξ ·(J0hV V t)

+J0(∂ξx)−1
(
Id−sst

)
(∂ξx)−t

(
∇ξ

(
1
2h2gc

)
+hg∇ξz+ 1

2gh2∇ξc

)

= J0hΠ. (2.13)

We say that this equation is in conservative form because differentiation of the
unknowns h, V appear only in conservative terms (the matrix factor in front of
∇ξ

(
1
2h2gc

)
can be put under the ∇ξ symbol up to an additional term which contains

no derivatives of h and V ).

Theorem 2.1. The system (2.9)–(2.10) has the properties
(i) it admits a conservative energy equation

∂t

{
1
2J0h

[|V|2 +(stV/c)2
]
+ 1

2J0h
2gc+J0hgz

}

+∇ξ ·
{(

1
2

[|V|2 +(stV/c)2
]
+g(hc+z)

)
J0hV

}
= 0 , (2.14)

(ii) it preserves the steady state of a lake at rest V =0, hc+z = const,
(iii) denoting by ε the aspect ratio between the width of the layer and the typical length
of phenomena in x, the system is an approximation up to error terms in ε3 in (2.9)
and in ε2 in (2.10) (or ε3 in (2.13)), as ε→0, of the free surface incompressible
Euler equations, under the only assumption that the curvature is small, H=O(ε). In
particular, the velocity dependency in the normal variable needs not be specified.

The precise meaning of statement (iii) and its proof is the subject of Subsection
3.3, so here we only prove (i) and (ii).

Proof of Theorem 2.1 (i)/(ii). The statement (ii) is obvious since for functions
independent of time satisfying V =0 and hc+z = const, (2.9) and (2.10) are satisfied.
In order to prove (i), we multiply (2.10) by ∂ξx and use identity V ·∇ξ =V ·∇x to
obtain the equation

∂tV+V ·∇xV+
(
Id−sst

)∇x

(
g(hc+z)

)
= − 1

c2
(VtHV)s. (2.15)

Next, we take the scalar product of (2.15) with the vector s/c. Noticing that V ·
∇x(st/c)=V ·∇x(∂xz)=VtH/c3, we get

∂t(stV/c)+V ·∇x(stV/c)+cst∇x

(
g(hc+z)

)

=
(V ·∇x(st/c)

)V− 1
c3

(VtHV)|s|2 =
1
c
VtHV . (2.16)
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Then, we multiply (2.15) by V, we multiply (2.16) by stV/c, and adding the results,
this yields

∂t

{
1
2

[|V|2 +(stV/c)2
]}

+V ·∇x

{
1
2

[|V|2 +(stV/c)2
]
+g(hc+z)

}
= 0 . (2.17)

Noticing again that V ·∇x =V ·∇ξ, we finally multiply (2.17) by J0h and (2.9) by
1
2

[|V|2 +(stV/c)2
]
+g(hc+z), which by addition give the energy equation (2.14).

We remark in passing that (2.15) shows that the model is independent of the
chosen coordinates ξ, since ξ does not enter any longer in this equation. The continuity
equation (2.9) can also be formulated in a ξ-independent manner, because according
to the divergence chain rule, we have

∇ξ ·
(
J0hV

)
=det(∂ξx)∇x ·

(
hV/c), thus (2.9) gives

∂t(h/c)+∇x ·
(
hV/c

)
= 0 . (2.18)

In this spirit, the momentum equation takes the form

∂t

(
hV/c

)
+∇x ·

(
hVVt/c

)

+
1
c

(
Id−sst

)(∇x

(
1
2h2gc

)
+hg∇xz+ 1

2gh2∇xc

)

= − h

c3
(VtHV)s. (2.19)

Concerning weak solutions, i.e., possibly discontinuous solutions h and V , we remark
that as long as z(x) and the change of coordinates x(ξ) are smooth, the formulations
(2.9), (2.13) and (2.18), (2.19) both make sense (recall that the matrix factors in
front of the pressure terms can be put inside the differentiation, up to an additional
right-hand side). They are indeed equivalent, even for weak solutions, because they
are obtained by multiplication by a smooth function. New equations obtained by
the same procedure, such as the conservative version of (2.26), (2.27) below, are also
equivalent to the previous ones. However, for weak solutions, energy equations have
to be changed into inequalities.

We would like now to make some remarks on the very special form of (2.10),
or equivalently (2.15). The curvature term VtHV that appears above can indeed be
interpreted in terms of ~n, as follows. Using (2.2), (2.3) and (2.4), we compute

V ·∇xs = (∂xs)V =
1
c2

(Id−sst)HV ,

V ·∇xc = − 1
c s

tV ·∇xs = − 1
c s

tHV ,

(2.20)

V ·∇x~n = − 1
c2

(
Id−sst

cst

)
HV , (2.21)

and thus we get the relation

(V ·∇x~n) ·Vtg = − 1
c2
VtHV . (2.22)

Therefore, the right-hand side of (2.15) can be somehow better understood if we write
the equation satisfied by Vtg, which is obtained by putting (2.15) and (2.16) in a single
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N +1–dimensional equation,

∂tVtg +V ·∇xVtg +
(

Id−sst

cst

)
∇x

(
g(hc+z)

)

=
1
c2

(VtHV)~n

= −(
(V ·∇x~n) ·Vtg

)
~n. (2.23)

In this equation, the right-hand side has the role to preserve the condition Vtg ·~n=0.
If we neglect the gravity, it only remains ∂tVtg +V ·∇xVtg = −(

(V ·∇x~n) ·Vtg
)
~n, and

the physical interpretation of this equation is that the particles are advected with the
only constraint to remain on the surface S.

In order to make a transition to our more general model without the small cur-
vature assumption, which we will present in the next subsection, let us now write
another equivalent formulation of the model (2.9), (2.10). It uses a new velocity
parametrization W (t,ξ)∈RN , linked to V and to V=(∂ξx)V by

W ≡ M−1
0 V = (∂ξx)t

(
Id+sst/c2

)V , (2.24)

with matrix M0 defined by

M0 ≡ (∂ξx)−1
(
Id−sst

)
(∂ξx)−t . (2.25)

The relation with the material velocity Vtg is still given by (2.8).

Proposition 2.2. The system (2.9)–(2.10) is equivalent to

∂t(J0h)+∇ξ ·
(
J0hM0W

)
= 0 , (2.26)

∂tW +
(
∂ξW −(∂ξW )t

)
M0W +∇ξ

(
1
2W tM0W +g(hc+z)

)
= 0 . (2.27)

Moreover, the energy equation (2.14) takes the form

∂t

{
1
2J0hW tM0W + 1

2J0h
2gc+J0hgz

}

+∇ξ ·
{(

1
2W tM0W +g(hc+z)

)
J0hM0W

}
= 0 . (2.28)

Proof. The first equation (2.26) is obviously the same as (2.9) since V =M0W . Then
we compute from (2.24)

W tM0W = Vt(Id+sst/c2)V = |V|2 +(stV/c)2 = |Vtg|2 , (2.29)

and (2.28) follows. The velocity equation is more involved. We multiply (2.16) by s/c
and add it to (2.15). We get

∂t

(
(Id+sst/c2)V)

+V ·∇x

(
(Id+sst/c2)V)

+∇x

(
g(hc+z)

)

=
(V ·∇x(s/c)

)
stV/c ≡ B. (2.30)
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But since ∂x(st/c)=∂2
xxz is symmetric, the jth component of the right-hand side is

Bj =
(V ·∇x(sj/c)

)
stV/c

=
(Vt∂xj

(s/c)
)
stV/c = 1

2Vt∂xj
(sst/c2)V .

So by definitions (2.24), (2.25) we can write

Bj = 1
2W t(∂ξx)−1

(
Id−sst

)
∂xj

(
Id+sst/c2

)(
Id−sst

)
(∂ξx)−tW

=− 1
2W t(∂ξx)−1∂xj

(
Id−sst

)
(∂ξx)−tW

=− 1
2W t∂xj

(
(∂ξx)−1

(
Id−sst

)
(∂ξx)−t

)
W

+W t
(
∂xj

(∂ξx)−1
)(

Id−sst
)
(∂ξx)−tW

=− 1
2W t(∂xj M0)W −W t

(
(∂ξx)−1

(
∂xj (∂ξx)

)
(∂ξx)−1

)
V .

Therefore,
(
(∂ξx)tB

)
i
=− 1

2W t(∂ξi
M0)W −W t(∂ξx)−1

(
∂ξi

(∂ξx)
)
(∂ξx)−1V

=− 1
2W t(∂ξi

M0)W −W t(∂ξx)−1
(
∂x(∂ξi

x)
)V

=− 1
2W t(∂ξi

M0)W −(V ·∇x(∂ξi
x)

) ·(∂ξx)−tW ,

and defining Ki =W t(∂ξi
M0)W , this yields

(∂ξx)tB = 1
2K−(V ·∇x(∂ξx)t

) ·(∂ξx)−tW . (2.31)

Finally, we multiply (2.30) by (∂ξx)t and obtain

∂tW +V ·∇xW +∇ξ

(
g(hc+z)

)
= − 1

2K. (2.32)

Using the fact that V ·∇x =V ·∇ξ and V =M0W , this gives (2.27).

A striking property of the formulation (2.27) is that it implies that
curlξ W ≡∂ξW −(∂ξW )t is transported by V =M0W .

2.3. A multidimensional shallow water model for arbitrary topography.
This model is described by

h(t,ξ)≥0, W (t,ξ)∈RN , (2.33)

where as before h is the width of the material layer in direction normal to the topog-
raphy, and W is a parametrization of the velocity field that is linked to the N +1–
dimensional material velocity vector Vtg by

Vtg =
(

Id
1
c s

t

)
(Id−sst)

(
Id− 1

2h∂xs
)−t(∂ξx)−tW . (2.34)

Notice that this relation is now time dependent, via the function h(t,ξ). The model
reads as

∂t

∫ h

0

J dξ̄+∇ξ ·
(∫ h

0

JM dξ̄ W

)
= 0 , (2.35)



FRANÇOIS BOUCHUT AND MICHAEL WESTDICKENBERG 367

∂tW +
(
∂ξW −(∂ξW )t

)∫ h

0
JM dξ̄

∫ h

0
Jdξ̄

W +∇ξ

(
1
2W tMhW +g(hc+z)

)
= 0 (2.36)

where M(ξ, ξ̄) and J(ξ, ξ̄) are defined for ξ̄≥0 small enough by

M ≡ (∂ξx)−1
(
Id−ξ̄ ∂xs

)−1(Id−sst
)(

Id−ξ̄∂xs
)−t(∂ξx)−t , (2.37)

J ≡ (detM)−1/2 = 1
c det

(
(Id−ξ̄ ∂xs)∂ξx

)
, (2.38)

and

Jh(t,ξ) ≡ J
(
ξ, ξ̄ =h(t,ξ)

)
, Mh(t,ξ) ≡ M

(
ξ, ξ̄ =h(t,ξ)

)
. (2.39)

Notice that with these notations, J0 and M0 defined previously in equations (2.12) and
(2.25) can be understood as J0(ξ)=J(ξ, ξ̄ =0) and M0(ξ)=M(ξ, ξ̄ =0). The velocity
equation (2.36) has the advantage of making apparent the transport equation on
curlξ W =∂ξW −(∂ξW )t, but it can be replaced by the momentum equation

∂t

(∫ h

0

J dξ̄ W

)
+∇ξ ·

(
W ⊗

∫ h

0

JM dξ̄ W

)
−(∂ξW )t

∫ h

0

JM dξ̄ W

+

(∫ h

0

J dξ̄

)
∇ξ

(
1
2W tMhW +g(hc+z)

)
= 0 , (2.40)

or in conservative form

∂t

(∫ h

0

J dξ̄ W

)
+∇ξ ·

(
W ⊗

∫ h

0

JM dξ̄W

)

+∇ξ

{∫ h

0

J dξ̄ 1
2W tMhW − 1

2W t

∫ h

0

JM dξ̄ W +
∫ h

0

Jdξ̄ g(hc+z)

}

−Jhg(hc+z)∇ξh

=
∫ h

0

∇ξJ dξ̄
(

1
2W tMhW +g(hc+z)

)
− 1

2W t

∫ h

0

∇ξ(JM)dξ̄ W . (2.41)

Indeed we have for the term in ∇ξh

Jhg(hc+z)∇ξh = ∇ξ

(∫ h

0

Jg(ξ̄c+z)dξ̄

)
−

∫ h

0

∇ξ

(
Jg(ξ̄c+z)

)
dξ̄ . (2.42)

Theorem 2.3. The system (2.35)–(2.36) has the properties
(i) it admits a conservative energy equation

∂t

{
1
2W t

∫ h

0

JM dξ̄ W +gc

∫ h

0

Jξ̄dξ̄+gz

∫ h

0

J dξ̄

}

+∇ξ ·
{(

1
2W tMhW +g(hc+z)

)∫ h

0

JM dξ̄ W

}
= 0 , (2.43)
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(ii) it preserves the steady state of a lake at rest W =0, hc+z = const,
(iii) denoting by ε the aspect ratio between the width of the layer and the typical length
of phenomena in x, the system is an approximation up to error terms in ε3 in (2.35)
and in ε2 in (2.36) (or ε3 in (2.41)), as ε→0, of the free surface incompressible Euler
equations, without any assumption on the topography nor on the velocity profile in the
normal variable.

The precise meaning of statement (iii) and its proof is the subject of Subsection
3.4, and since (ii) is obvious, we only prove here (i).

Proof of Theorem 2.3 (i). Multiply (2.36) by
∫ h

0
JM dξ̄ W , (2.35) by 1

2W tMhW +
g(hc+z) and add up the results. It gives

(
1
2W tMhW +g(hc+z)

)
Jh∂th+∂tW

t

(∫ h

0

JM dξ̄ W

)

+∇ξ ·
{(

1
2W tMhW +g(hc+z)

)∫ h

0

JM dξ̄ W

}
= 0 , (2.44)

leading to (2.43).

In the case of small curvature H=O(ε), we have ∂xs=O(ε), and since by
definition of ε we have h=O(ε), we deduce that for 0≤ ξ̄≤h, M =M0 +O(ε2),
J =J0 +O(ε2), thus (2.35)–(2.36) reduces to (2.26)–(2.27) up to terms in ε3 and ε2,
respectively.

2.4. Coulomb friction. A bottom friction term of the type described in [5]
can be included in either the model for small slope variation of Subsection 2.2 or the
model for arbitrary topography of Subsection 2.3.

2.4.1. Friction with small curvature. In the case of model (2.9)–(2.10),
an extra term has to be introduced as

∂t(J0h)+∇ξ ·
(
J0hV

)
= 0 , (2.45)

∂tV +V ·∇ξV +(∂ξx)−1
(
Id−sst

)
(∂ξx)−t∇ξ

(
g(hc+z)

)

= Π− gµcV√
|V|2 +(stV/c)2

(
1+

VtHV
gc3

)

+

, (2.46)

where Π is still given by (2.11), and with the same notations. The denominator in
the friction term is nothing else than the norm of the material velocity Vtg in (2.8),

|V|2 +(stV/c)2 = Vt(Id+sst/c2)V = |Vtg|2 . (2.47)

The friction coefficient µ≥0 could be any function of t and ξ, but for physical relevance
it should depend only on h and |Vtg|, see [9]. The scalar VtHV is the curvature of the
topography in the direction of the flow. It can be positive or negative according to the
local convexity or concavity of the surface. The index + stands for the positive part,
x+ =max(0,x). It appears here because when the expression between parentheses
becomes negative, the material should leave the topographical surface, giving thus a
vanishing (instead of negative) friction.
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In the horizontal coordinate formulation the model reads as

∂t(h/c)+∇x ·
(
hV/c

)
= 0 , (2.48)

∂tV+V ·∇xV+
(
Id−sst

)∇x

(
g(hc+z)

)

= − 1
c2

(VtHV)s− gµcV√
|V|2 +(stV/c)2

(
1+

VtHV
gc3

)

+

, (2.49)

see (2.18), (2.15). In (2.45)–(2.46) or (2.48)–(2.49), we have to make precise the
meaning of the friction term when V =0, or equivalently when V=0. Indeed we have
to understand the ratio R=V/|Vtg| as multivalued. This means that when V=0,
R can take any value that can be obtained from a limit when V→0, i.e., R can be
any vector such that |R|2 +(stR/c)2≡Rt(Id+sst/c2)R≤1, or equivalently |Rtg|≤1,
by adopting the abstract notation Rtg≡ (R,stR/c). With this interpretation, one
can check easily that the friction term dissipates energy, in the sense that the right-
hand side that enters into the energy identity (2.14) is always nonpositive. This
interpretation also gives directly the steady states of (2.48)–(2.49), which are those
for which

V = 0 ,
∣∣∣
[(

Id−sst
)∇x(hc+z)

]tg
∣∣∣ ≤ µc, (2.50)

or more explicitly

V = 0 ,
(∇x(hc+z)t

)(
Id−sst

)∇x(hc+z) ≤ µ2c2 . (2.51)

A rigorous existence result has been proved for such a multivalued friction term in
[6].

Another velocity parametrization of interest is

u=V/c, (2.52)

for which the relation with the material velocity Vtg in (2.8) becomes

Vtg = (cu,s ·u). (2.53)

Note that this is close to a rotation of u since |s|2 +c2 =1. In dimension N =1, u is
effectively the scalar physical velocity in the direction of the topography. The system
satisfied by h and u is

∂t(h/c)+∇x ·
(
hu

)
= 0 , (2.54)

∂tu+cu ·∇xu+
1
c

(
Id−sst

)∇x

(
g(hc+z)

)

= −1
c
(utHu)s+

1
c
(stHu)u− gµcu√

c2|u|2 +(s ·u)2

(
1+

utHu

gc

)

+

. (2.55)

The model can also be written with the normal variable W . The system (2.26)–(2.27)
is then modified as

∂t(J0h)+∇ξ ·
(
J0hM0W

)
= 0 , (2.56)
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∂tW +
(
∂ξW −(∂ξW )t

)
M0W +∇ξ

(
1
2W tM0W +g(hc+z)

)

=− gµcW√
W tM0W

(
1+

VtHV
gc3

)

+

, (2.57)

with the relation (2.24) linking V to W , that gives |Vtg|2 =W tM0W .

Theorem 2.4. The system (2.45)–(2.46) (or equivalently (2.48)–(2.49) or (2.54)–
(2.55) or (2.56)–(2.57)) is an approximation, up to errors in O(ε3) and O(ε2) respec-
tively for mass and velocity equations, as the aspect ratio ε→0, of the free surface
incompressible Navier-Stokes equations with viscosity ν and Coulomb bottom friction
with coefficient µ, under the assumptions that ν =o(ε2), µ=O(ν/ε), and the curvature
is small H=O(ε).

More precise statements are provided within the proof of this theorem, which is
given in Subsection 3.5. Notice that with the assumption of smallness of the friction
µ, the curvature term leads to a correction of order ε2 that could just be removed.
However, we keep it in order to have a more accurate model.

Notice also that with our assumption ν =o(ε2), the boundary layer induced by
viscosity, which is of order

√
νt, is much smaller than the material layer, which is of

order ε. This situation is very different from that considered in [3] where ν∼ ε, which
implies that the lengthscale induced by the viscosity is much larger than ε.

2.4.2. Friction with arbitrary topography. The model for arbitrary
topography (2.35)–(2.36) has to include a friction term of the form

∂t

∫ h

0

J dξ̄+∇ξ ·
(∫ h

0

JM dξ̄ W

)
= 0 , (2.58)

∂tW +
(
∂ξW −(∂ξW )t

)∫ h

0
JM dξ̄

∫ h

0
J dξ̄

W +∇ξ

(
1
2W tMhW +g(hc+z)

)

= −J0
µW√

W tM0W

(
ghc+ 1

2W t(Mh−M0)W
)
+∫ h

0
J dξ̄

. (2.59)

Theorem 2.5. In the regime curlW =O(ε), the system (2.58)–(2.59) is an approxi-
mation, up to errors in O(ε3) and O(ε2) respectively for mass and velocity equations,
as the aspect ratio ε→0, of the free surface incompressible Navier-Stokes equations
with viscosity ν and Coulomb bottom friction with coefficient µ, under the assumptions
that ν =o(ε2) and µ=O(ν/ε).

The proof of this theorem is provided in Subsection 3.5.

3. Derivation of the models
In this section, we derive the models introduced in Section 2 from the incompress-

ible Euler equations with free boundary.
Notation. In the following, a vector in RN+1 is marked by an arrow. The first
components of it which form a vector in RN are denoted by bold symbols, the last
component by an overbar, as in ~X =(X,X̄). If symbols have an arrow, then indices
are running from 1 to N +1. For bold symbols, indices range from 1 to N .
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z

x

hc+z

h

Fig. 3.1. Material layer above the graph of z.

3.1. Geometry of the layer. Consider a topography S, as described in
Subsection 2.1, and assume a parametrization of S is given, via an invertible map ξ 7→
x(ξ) for ξ∈RN . Then we construct a coordinate system in a suitable neighboorhood
above the graph of z as follows. We define a map ~ξ 7→ ~X(~ξ ) for ~ξ =(ξ, ξ̄)∈RN+1, ξ̄ >0,
by

~X(~ξ ) ≡ (X,X̄) =
(

x(ξ)
z(x(ξ))

)
+ ξ̄

(−s(x(ξ))
c(x(ξ))

)
. (3.1)

Note that the second vector on the right-hand side is just the normal ~n, written as a
function of ξ. The mapping (3.1) is (locally) invertible whenever ξ̄ is small enough,
so that the Jacobian has full rank. This defines an open neighboorhood above the
graph of z. We are going to describe a material layer filling the domain

Ωt ≡
{

~X(~ξ )∈RN+1
∣∣∣0<ξ̄ <h(t,ξ)

}
, (3.2)

see Figure 3.1, thus we assume that ~X is a diffeomorphism in Ωt.
The Jacobian matrix of (3.1) defines the matrix A by

A−1 = ∂~ξ
~X =

(
Id −s
1
c s

t c

)(
∂ξX 0

0 1

)
, (3.3)

A =
(
∂~ξ

~X
)−1 =

(
(∂ξX)−1 0

0 1

)(
Id−sst cs
−st c

)
, (3.4)

with

∂ξX =
(
Id−ξ̄ ∂xs

)
∂ξx. (3.5)

For further reference, we compute

AAt =
(

M 0
0 1

)
with M = (∂ξX)−1(Id−sst)(∂ξX)−t . (3.6)

The determinant of (3.3) is given by

J ≡ det(∂~ξ
~X) = 1

c det(∂ξX) = (detM)−1/2 , (3.7)

and the differential operators transform according to

∇~X = At∇~ξ . (3.8)
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3.2. Transformation of Euler equations. We start from the incompressible
Euler equations in cartesian coordinates. Assume that velocity and pressure fields

~U
(
t, ~X

)∈RN+1 , P
(
t, ~X

)∈R (3.9)

are given for t>0 and ~X ∈Ωt, that satisfy

∂t
~U +

(
~U ·∇~X

)
~U +∇~XP =−~g , (3.10)

∇~X · ~U =0 , (3.11)

where ~g =g
(
0
1

)
, and the following boundary conditions: at the bed

~U ·~n = 0 for ξ̄ = 0 , (3.12)

and at the free surface

P = 0 for ξ̄ = h(t,ξ). (3.13)

We also have to give a rule for the evolution of the free surface:

The free surface is advected by the material velocity ~U. (3.14)

We are going to transform these Euler equations into the curvilinear coordinate system
defined in Subsection 3.1. Moreover, starting from the horizontal and vertical velocity
components ~U =(U,Ū), we are going to decompose ~U into the part tangential to the
topography and the normal part, and write the corresponding momentum equations.
This can be done in several ways, and we have selected two important choices which
lead to two different formulations, even if they are of course equivalent.

3.2.1. First velocity decomposition: by jacobian matrix. A natural
way of choosing new velocity components is to define a parameter vector

~V ≡ (V,V̄ ) = A~U . (3.15)

According to (3.8), we then obtain

~U ·∇~X = ~V ·∇~ξ . (3.16)

Note that (3.15) and (3.4) read

(∂ξX)V = U+sV̄ , V̄ = ~n · ~U , (3.17)

thus V̄ is the normal component of ~U . Using (3.3) we also find

U = (∂ξX)V−sV̄ , Ū = 1
c s

t(∂ξX)V+cV̄ . (3.18)

This yields in particular the tangential part of ~U ,

~U−(~n · ~U)~n =
(

Id
1
c s

t

)
(∂ξX)V . (3.19)

A first equation is obtained by applying the divergence chain rule to the incompress-
ibility condition (3.11),

∇~ξ ·
(
J ~V

)
= J∇~X · ~U = 0 . (3.20)
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Observe that once V is known, this equation determines V̄ in a unique way with the
boundary condition (3.12). Next, to write down a momentum equation for ~V , we
multiply (3.10) by A, noticing that

~g = ∇~X

(
~g · ~X

)
= ∇~X

(
g(ξ̄c+z)

)
, (3.21)

and we obtain

∂t
~V +

(
~V ·∇~ξ

)
~V +AAt∇~ξ

(
P +g(ξ̄c+z)

)
= ~Γ(~V ), (3.22)

with

~Γ(~V ) =
((

~V ·∇~ξ

)
A

)
A−1~V = −A

((
~V ·∇~ξ

)
A−1

)
~V , (3.23)

the Christoffel symbol of the transformation. Denoting the components of (3.23) by
~Γ≡ (

Γ,Γ̄
)
, (3.22) can also be written with (3.6)

∂tV+
(
~V ·∇~ξ

)
V+M∇ξ

(
P +g(ξ̄c+z)

)
= Γ(~V ), (3.24)

∂tV̄ +
(
~V ·∇~ξ

)
V̄ +∂ξ̄ P +gc = Γ̄(~V ), (3.25)

with M defined by (3.6). To simplify notation, we will write ∂i =∂~ξi
, for indices

i=1,... ,N +1. We compute with (3.3)–(3.4)
(

∂ξX 0
0 1

)
A

(
∂i(A−1)

)

=
(

Id−sst cs
−st c

)(
∂i(∂ξX) −∂is

1
c s

t
(
∂i(∂ξX)

)
+

(
∂i( 1

c s
t)

)
(∂ξX) ∂ic

)

=
(

∂i(∂ξX) −∂is
0 0

)
+

(
cs

(
∂i( 1

c s
t)

)
(∂ξX) 0

c
(
∂i( 1

c s
t)

)
(∂ξX) 0

)
.

Let us consider the last component Γ̄(~V ) of ~Γ(~V ) first. From definition (2.1) above
we know that 1

c s
t =∂xz. Hence the chain rule gives

Γ̄(~V ) = −cVt(∂ξx)t(∂2
xxz)(∂ξX)V . (3.26)

Next, we have

(∂ξX)Γ(~V ) = −
((

∂~ξ (∂ξX)
)
~V

)
V + (∂ξs)V V̄ + Γ̄(~V )s

= −∂2
ξξX ·V ·V + 2(∂ξs)V V̄ + Γ̄(~V )s.

(3.27)

The formulas (3.20) and (3.24)–(3.27) conclude the derivation of the transformed
incompressible Euler equations inside the domain Ωt.

Concerning boundary conditions, (3.12) and (3.13) are unchanged since ~U ·~n= V̄ ,
and we only need to give an equation for (3.14). Since ∇~X · ~U =0, this condition of
advection of the domain can be written

∂t1I ~X∈Ωt
+∇~X ·

(
1I ~X∈Ωt

~U
)

= 0 for 0<ξ̄ <∞, (3.28)
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thus multiplying by J and using the divergence chain rule, it becomes

∂t(J1Iξ̄<h(t,ξ))+∇~ξ ·
(
J1Iξ̄<h(t,ξ)

~V
)

= 0 for 0<ξ̄ <∞. (3.29)

Since this equation is trivial inside the domain, only the part proportional to
δ
(
h(t,ξ)− ξ̄

)
is involved, thus (3.29) can be explicited as

∂th+Vξ̄=h(t,ξ) ·∇ξh = V̄ξ̄=h(t,ξ) . (3.30)

In order to put this equation for h in conservation form, we use the assumption V̄ =0
at ξ̄ =0 in (3.29), which gives

∂t(J1I0<ξ̄<h(t,ξ))+∇~ξ ·
(
J1I0<ξ̄<h(t,ξ)

~V
)

= 0 for −∞<ξ̄ <∞. (3.31)

Integrating in ξ̄ from −∞ to +∞ we obtain

∂t

∫ h(t,ξ)

0

J dξ̄+∇ξ ·
∫ h(t,ξ)

0

JVdξ̄ = 0 . (3.32)

This last formulation is the true conservative formulation, since the total volume of
material is

∫
~X∈Ωt

d ~X =
∫∫ h

0
J dξ̄dξ.

3.2.2. Second velocity decomposition: the normal form. Our second
choice of new velocity components is to define

~W ≡ (W,W̄ ) = A−t ~U . (3.33)

The relation between ~W and ~V defined in (3.15) is then given by

~W = A−tA−1~V , (3.34)

thus according to (3.6),

W = M−1V , W̄ = V̄ . (3.35)

With this choice, we have

|~U |2 = ~U ·At ~W = ~W · ~V = ~W tAAt ~W = WtMW+W̄ 2 . (3.36)

Now we multiply (3.10) by A−t. From (3.16), (3.8) and (3.21), we get

∂t
~W +

(
~V ·∇~ξ

)
~W +∇~ξ

(
P +g(ξ̄c+z)

)
= ~Ξ, (3.37)

with

~Ξ ≡
((

~V ·∇~ξ

)
A−t

)
~U =

((
~V ·∇~ξ

)
A−t

)
A−1~V . (3.38)

Denoting as before ∂i =∂~ξi
, for indices i=1,... ,N +1, we have by definition A−t

kj =

∂k
~Xj , hence

∂iA
−t
kl = ∂2

ik
~Xl = ∂kA−t

il , (3.39)
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and therefore denoting

G = A−tA−1 =
(

M−1 0
0 1

)
, (3.40)

we compute
∑

l

(
∂iA

−t
kl

)
A−1

lj =
∑

l

(
∂kA−t

il

)
A−1

lj

= ∂kGij−
∑

l

A−t
il

(
∂kA−1

lj

)

= ∂kGij−
∑

l

A−1
li

(
∂kA−t

jl

)
= ∂kGij−

∑

l

(
∂jA

−t
kl

)
A−1

li .

When multiplying by ~Vi
~Vj and summing over i and j, the second term on the right

gives the same as the sum on the left. Thus we get

~Ξk = 1
2
~V ·(∂kG)~V

= 1
2

~W ·G−1(∂kG)G−1 ~W

=− 1
2

~W ·(∂kG−1) ~W = − 1
2W

t(∂kM)W . (3.41)

Since W̄ = V̄ , comparing (3.25) to the last component of (3.37), this gives a new
formula instead of (3.26),

Γ̄(~V ) = Ξ̄ = − 1
2W

t(∂ξ̄M)W . (3.42)

Using now (3.41), (3.42) in (3.37), we obtain

∂tW+
(
~V ·∇~ξ

)
W+∇ξ

(
1
2W

tMW+P +g(ξ̄c+z)
)

= (∂ξW)tMW , (3.43)

∂tW̄ +
(
~V ·∇~ξ

)
W̄ +∂ξ̄

(
1
2W

tMW+P +g(ξ̄c+z)
)

= (∂ξ̄W)tMW . (3.44)

Notice that in (3.43), we can make the curl of W appear by writing

(
~V ·∇~ξ

)
W−(∂ξW)tMW = V̄ ∂ξ̄W+

(
∂ξW−(∂ξW)t

)
MW . (3.45)

These two equations (3.43), (3.44) conclude the derivation of the transformed Euler
equations for our second velocity decomposition, since the divergence equation (3.20)
and the boundary conditions (3.12) (note that V̄ =W̄ =~n · ~U), (3.13), and (3.30) or
(3.32) remain unchanged, we just have to say that V=MW.

3.3. Shallow water approximation for small slope variation. We derive
in this section the model of Subsection 2.2, i.e., we prove Theorem 2.1 (iii). This is
done starting from the formulation of incompressible Euler equations of Subsection
3.2.1. In order to emphasize the question of velocity variation in the layer, we first
perform the derivation within the classical assumption of almost constant dependency,
and treat general dependency afterwards.
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3.3.1. Almost constant velocity in the layer. We assume that
(a) the material layer is thin, h=O(ε),
(b) the curvature is small, H=O(ε),
(c) the velocity V does almost not depend on the normal variable ξ̄,

V(t,~ξ )=V (t,ξ)+O(ε2). (3.46)

Here, ε¿1 is the aspect ratio between the width of the layer and the typical length of
phenomena in x. Note that (b) can also be written as ∂xs=O(ε). Assumption (c) is
made to get a model in the variable ξ only. The usual procedure to get an equation in
ξ is depth-integration, but here we shall write the equation in the full domain Ωt, and
check that the variable ξ̄ disappears. This approach has the advantage of justifying
the compatibility of assumption (c) with the set of equations in the whole material
layer.

With (a) and (3.2), we get ξ̄ =O(ε). Assuming moreover that there is no boundary
layer, we deduce from the boundary condition (3.12) at the bed that

V̄ = ~n · ~U = O(ε). (3.47)

We can now make expansions in (3.5), (3.26) and (3.27),

∂ξX = ∂ξx+O(ε2), (3.48)

Γ̄(~V ) = −cV t(∂ξx)t(∂2
xxz)(∂ξx)V +O(ε3) = O(ε), (3.49)

(∂ξx)Γ(~V ) = −∂2
ξξx ·V ·V + Γ̄(~V )s+O(ε2). (3.50)

Using this in (3.24), (3.25), we obtain the reduced momentum equation

∂tV +V ·∇ξV +M∇ξ

(
P +g(ξ̄c+z)

)

= −(∂ξx)−1∂2
ξξx ·V ·V +Γ̄(~V )(∂ξx)−1s+O(ε2), (3.51)

and the pressure relation

∂ξ̄P = −gc+O(ε). (3.52)

This equation can be integrated with the boundary condition (3.13),

P = −gc
(
ξ̄−h(t,ξ)

)
+O(ε2). (3.53)

Using this in (3.51) and expanding M with (3.6), (3.48), we get our equation (2.10),
up to terms in O(ε2). Finally, we have to write the equation for evolving the free
surface. We use the formulation (3.32), and expanding J according to (3.7), (3.48),
we get J =J0 +O(ε2), and

∂t (J0h)+∇ξ ·(J0hV ) = O(ε3), (3.54)

which is (2.9) up to terms in O(ε3).
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3.3.2. Arbitrary velocity dependency in the layer. We now establish
Theorem 2.1 (iii) in its full generality, i.e. with the only assumptions

(a) the material layer is thin, h=O(ε),
(b) the curvature is small, H=O(ε).

Now, the assumption (c) above is replaced by a linear approximation argument, and
by an interpretation of (2.10) as the equation on the mean value of the velocity in the
layer.

We first notice that since ξ̄ =O(ε) by (a) and (3.2), the fact that we do not
consider any singular boundary layer implies that up to an error in ε2, the normal
dependency is linear,

V(t,~ξ ) = V (t,ξ)+V 1(t,ξ)
(
ξ̄−h(t,ξ)/2

)
+O(ε2), (3.55)

for some functions V (t,ξ) and V 1(t,ξ) that represent respectively the mean value and
the slope of the velocity in the material layer. Then, the important point in evaluating
integrals over the layer is that for any smooth function ϕ,

∫ h(t,ξ)

0

ϕ
(
V(t,~ξ )

)
dξ̄ = h(t,ξ)ϕ

(
V (t,ξ)

)
+O(ε3). (3.56)

We now follow the lines of the previous subsection and observe that from (3.12), (3.5),
(3.6), (3.7), (3.26), (3.27),

V̄ = O(ε), (3.57)

∂ξX = ∂ξx+O(ε2), (3.58)

M = (∂ξx)−1(Id−sst)(∂ξx)−t +O(ε2), (3.59)

J = J0 +O(ε2), (3.60)

Γ̄(~V ) = −cV t(∂ξx)t(∂2
xxz)(∂ξx)V +O(ε2)=O(ε), (3.61)

(∂ξx)Γ(~V ) = −∂2
ξξx ·V ·V + Γ̄(~V )s+O(ε2). (3.62)

Using this in (3.25) we get with (3.13)

∂ξ̄P = −gc+O(ε), P = −gc
(
ξ̄−h(t,ξ)

)
+O(ε2), (3.63)

P +g(ξ̄c+z) = g(hc+z)+O(ε2). (3.64)

Concerning the continuity equation, we deduce by expanding (3.32) with (3.56) that
(2.9) holds, up to terms in O(ε3).

Now it remains only to deal with the velocity equation (3.24). If in this equation
we replace V by its expansion (3.55), drop terms in ε2 and separate the terms constant
and linear in ξ̄, we obtain two equations coupling V and V 1, one starting with ∂tV and
another starting with ∂tV

1. The striking property that we are going to justify now
is that indeed the equation on V is exactly (2.10), and in particular it is decoupled



378 SHALLOW WATER MODELS FOR ARBITRARY TOPOGRAPHY

from V 1. The argument is as follows. Since in (3.55) V is defined only up to terms
in ε2, we can fix its value to the value of V at ξ̄ =h(t,ξ)/2, i.e., as

V (t,ξ) = V
(
t,ξ,h(t,ξ)/2

)
. (3.65)

Then by the chain rule,

(∂tV)
(
t,ξ,h(t,ξ)/2

)
= ∂tV −(∂ξ̄V)

(
t,ξ,h(t,ξ)/2

)
∂th/2,

(∂ξV)
(
t,ξ,h(t,ξ)/2

)
= ∂ξV −(∂ξ̄V)

(
t,ξ,h(t,ξ)/2

)
∂ξh/2.

(3.66)

We deduce the value of

∂tV+
(
~V ·∇~ξ

)
V = ∂tV+

(
V ·∇ξ

)
V+ V̄ ∂ξ̄V (3.67)

at the point
(
t,ξ,h(t,ξ)/2

)
,

(
∂tV+

(
~V ·∇~ξ

)
V

)(
t,ξ,h(t,ξ)/2

)

=∂tV +
(
V ·∇ξ

)
V

+(∂ξ̄V)
(
t,ξ,h(t,ξ)/2

){
V̄

(
t,ξ,h(t,ξ)/2

)−∂th/2−V ·∇ξh/2
}

. (3.68)

But using condition (3.30) and since V(ξ̄ =h)=V +O(ε), we have

V̄
(
t,ξ,h(t,ξ)/2

)
= 1

2 V̄
(
t,ξ,h(t,ξ)

)
+O(ε2)

=
(
∂th/2+V ·∇ξh/2

)
+O(ε2). (3.69)

Putting this in (3.68) we obtain
(
∂tV+

(
~V ·∇~ξ

)
V

)(
t,ξ,h(t,ξ)/2

)
= ∂tV +

(
V ·∇ξ

)
V +O(ε2), (3.70)

and V 1 =∂ξ̄V+O(ε) disappears. Now in order to obtain our velocity equation, we
take the value of (3.24) at ξ̄ =h(t,ξ)/2. Using (3.70), we obtain (2.10) up to terms in
O(ε2).

Finally, the justification of the relation with the physical velocity (2.8) is that in
our expansion V̄ =~n · ~U =O(ε), thus from (3.19)

~U = Vtg +O(ε). (3.71)

A higher order expansion is also possible,

Vtg =
(

~U−(~n · ~U)~n
)(

t,ξ,h(t,ξ)/2
)
+O(ε2). (3.72)

Remark. Note that assumption (c) in Subsection 3.3.1 (see (3.46)) is consistent with
the derivation we gave here since it is always possible to take V 1 =0 in (3.55). Indeed
the equation on V 1, that we did not write down explicitly but that can be obtained
as explained above, is linear (with coefficients depending on V ). Thus if we start from
initial data with V 1 vanishing, then V 1 vanishes for all time.
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3.4. Shallow water approximation for arbitrary topography. We derive
in this section the model of Subsection 2.3, i.e., we prove Theorem 2.3 (iii). This is
done starting from the formulation of incompressible Euler equations of Subsection
3.2.2. The only assumption is that the material layer is thin, h=O(ε). Contrary to
the case of small curvature, we cannot assume here that the velocity is almost constant
in the layer, as this would lead to a contradiction unless curlξ W =O(ε). Therefore,
we rather follow the strategy of Subsection 3.3.2.

We still have that ξ̄ =O(ε), and since we do not consider any singular boundary
layer, the normal dependency of the velocity is linear up to an error in ε2,

W(t,~ξ ) = W (t,ξ)+W 1(t,ξ)
(
ξ̄−h(t,ξ)/2

)
+O(ε2), (3.73)

for some mean value W (t,ξ) and some slope W 1(t,ξ). Then, by the mean value
formula (3.56) and since V=MW, the free surface evolution equation (3.32) directly
gives (2.35) up to an error in O(ε3). Next, since W̄ = V̄ =~n · ~U =O(ε) by (3.12),
equation (3.44) gives

∂ξ̄

(
1
2W

tMW+P +g(ξ̄c+z)
)

= (∂ξ̄W)tMW+O(ε). (3.74)

Therefore, by integration between ξ̄ and h(t,ξ) and using (3.13),
1
2W

tMW+P +g(ξ̄c+z)

= 1
2W

t
hMhWh +g(hc+z)−

∫ h

ξ̄

∂ξ̄W
tMW+O(ε2)

= 1
2W

tMhW+g(hc+z)−
∫ h

ξ̄

∂ξ̄W
t(M−Mh)W+O(ε2)

= 1
2W

tMhW+g(hc+z)+O(ε2), (3.75)

where the index h means that we take the value at ξ̄ =h(t,ξ). Now, we can replace in
(3.43) W by its expansion (3.73) and the term under ∇ξ by its expansion in (3.75).
Separating the terms constant and linear in ξ̄, the result is a system of two equations
involving W and W 1. We claim that again, the equation on W is decoupled from W 1.
In order to obtain this equation, we argue as in Subsection 3.3.2. Since in (3.73) W is
only defined up to terms in ε2, we can fix its value to the value of W at ξ̄ =h(t,ξ)/2,

W (t,ξ) = W
(
t,ξ,h(t,ξ)/2

)
. (3.76)

Then the same computations (3.66)–(3.69) give

(∂tW)
(
t,ξ,h(t,ξ)/2

)
= ∂tW −(∂ξ̄W)

(
t,ξ,h(t,ξ)/2

)
∂th/2,

(∂ξW)
(
t,ξ,h(t,ξ)/2

)
= ∂ξW −(∂ξ̄W)

(
t,ξ,h(t,ξ)/2

)
∂ξh/2,

(3.77)

and (
∂tW+

(
~V ·∇~ξ

)
W

)(
t,ξ,h(t,ξ)/2

)

= ∂tW +
(
Mh/2W

) ·∇ξW

+(∂ξ̄W)
(
t,ξ,h(t,ξ)/2

)

×
{

V̄
(
t,ξ,h(t,ξ)/2

)−∂th/2−(Mh/2W ) ·∇ξh/2

}

= ∂tW +
(
Mh/2W

) ·∇ξW +O(ε2). (3.78)
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Now, we take the value of (3.43) at ξ̄ =h(t,ξ)/2. We apply (3.78) and (3.75), and we
use again the chain rule formula (3.77) for the two terms involving derivatives in ξ.
For each term it produces an extra term proportional to ∂ξh, thus in O(ε). But since
Mh−Mh/2 =O(ε), the errors compensate and we obtain

∂tW +
(
Mh/2W

) ·∇ξW +∇ξ

(
1
2W tMhW +g(hc+z)

)

= (∂ξW )tMh/2W +O(ε2), (3.79)

which is (2.36) up to terms in O(ε2). Concerning the formula (2.34) for Vtg, it follows
from (3.19) and V=MW, which give

~U−(~n · ~U)~n =
(

Id
1
c s

t

)
(∂ξX)MW . (3.80)

Since by (3.6) we have (∂ξX)M =(Id−sst)(∂ξX)−t, with (3.5) we get
(

~U−(~n · ~U)~n
)(

t,ξ,h(t,ξ)/2
)

= Vtg . (3.81)

To conclude this section, we would like to mention that the conservative momen-
tum and energy equations of our models can also be obtained by expansions from
corresponding equations for the incompressible equations in the layer. To obtain the
energy equation (2.43) for example, we multiply (3.10) by ~U to get

∂t|~U |2/2+
(
~U ·∇~X

)|~U |2/2+ ~U ·∇~XP = −~U ·~g = −~U ·∇~X(~g · ~X), (3.82)

which can be put in conservative form with (3.11),

∂t|~U |2/2+∇~X ·
(
(|~U |2/2+P +~g · ~X)~U

)
= 0 . (3.83)

Thus multiplying by J and using the divergence chain rule,

∂t

(
J |~U |2/2

)
+∇~ξ ·

(
J(|~U |2/2+P +~g · ~X)A~U

)
= 0 . (3.84)

Then, using (3.36) and (3.1),

∂t

{
J
(

1
2

(
WtMW+W̄ 2

)
+g(ξ̄c+z)

)}

+∇~ξ ·
{

J
(

1
2

(
WtMW+W̄ 2

)
+P +g(ξ̄c+z)

)
~V

}
= 0 .

(3.85)

Integrating for ξ̄ between 0 and h and using the boundary condition (3.30) we obtain

∂t

∫ h

0

J
(

1
2

(
WtMW+W̄ 2

)
+g(ξ̄c+z)

)
dξ̄

+∇ξ ·
∫ h

0

J
(

1
2

(
WtMW+W̄ 2

)
+P +g(ξ̄c+z)

)
MWdξ̄ = 0 . (3.86)

Expanding the integrals we finally get (2.43) up to terms in O(ε3). A similar compu-
tation, expanding (3.100) (with ν =0) with the help of (3.75) yields the momentum
equation (2.41) up to terms in O(ε3).
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Remark. The proof above shows that if we have a solution to (2.35)–(2.36)
such that curlξ W =0, then W≡W is an exact solution constant in the variable ξ̄
to the hydrostatic incompressible Euler system (where only the normal acceleration
∂tW̄ +

(
~V ·∇~ξ

)
W̄ in (3.44) is removed).

3.5. Bottom Coulomb friction. In this section, we prove Theorems 2.4 and
2.5. Since Theorem 2.4 can take the equivalent form (2.56)–(2.57), we are going to
provide a common proof for both cases. We will derive the momentum equation in
conservative form, i.e., we derive an equation analogous to (2.41) with friction terms
added. Transforming this into the nonconservative form of (2.59) is then straightfor-
ward.

We start from the free boundary incompressible Navier-Stokes system in cartesian
coordinates. We assume that the functions

~U
(
t, ~X

)∈RN+1 , P
(
t, ~X

)∈R (3.87)

for t>0 and ~X ∈Ωt satisfy

∂t
~U +

(
~U ·∇~X

)
~U +∇~XP =−~g+∇~X ·σ, (3.88)

∇~X · ~U =0 . (3.89)

Again, ~g =g
(
0
1

)
with g the gravitational constant, and

σ = ν
(
∂~X

~U +
(
∂~X

~U
)t

)
(3.90)

with suitable viscosity coefficient ν. This problem is well-defined under the following
set of boundary conditions which we will assume throughout. Let ~N be the outward
unit normal vector at the free boundary of Ωt, see (3.112) below, and define the total
stress tensor

σT = P Id−σ. (3.91)

Then we require
• at the bed

~U ·~n = 0

σT~n−(
~n ·σT~n

)
~n = −µ

~U

|~U |
(
~n ·σT~n

)
+





for ξ̄ =0 , (3.92)

• at the free boundary

P = 0
σT

~N−(
~N ·σT

~N
)

~N = 0

}
for ξ̄ =h(t,ξ). (3.93)

The first equation in (3.92) is the no-penetration condition which we already consid-
ered in Section 3.2, the second is the usual Coulomb friction condition. It states that
the tangential part of the total stress tensor is opposite to the material velocity ~U ,
and its ratio to the normal stress is given by µ. Here again the positive part is used
to neutralize the friction in case the material is leaving the bed, and ~U/|~U | should be
understood as multivalued when ~U =0. Condition (3.93) states that the atmospheric
pressure and the tangential part of the total stress vector vanish at the free surface.
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Note that we can replace σT by −σ on the left-hand sides of (3.92) and (3.93) since
the unit length of ~n and ~N implies that the terms with P Id cancel.

We are going to transform equations (3.88)–(3.89), (3.92)–(3.93) into the curvilin-
ear coordinate system ~ξ defined in (3.1), with the velocity decomposition of Subsection
3.2.2, i.e., with

~W = A−t ~U , A−1 = ∂~ξ
~X . (3.94)

We will need the following lemma on the divergence of tensors whose proof is given at
the end of this section. For ease of notation we write B1 :B2≡ tr(B1B2) for matrices
B1 and B2, with tr the trace.

Lemma 3.1. Let ~ξ 7→ ~X(~ξ) be a change of coordinates, and let σ be a symmetric
tensor, σt =σ. Then

JA−t∇~X ·σ = ∇~ξ ·(JPAAt)+ J
2P :∇~ξ (AAt) (3.95)

with P=A−tσA−1, A−1 =∂~ξ
~X and J =detA−1.

Note that AAt has block structure, see (3.6). In particular, the only nontrivial
entry of any derivative of AAt is the left upper block. We will use Lemma 3.1 to
transform the divergence of the tensor σ into the curvilinear coordinate system. In
order to simplify a bit the notation, we decompose the tensor P=A−tσA−1 into
blocks as

P =
(

P Z
Zt f

)
with P∈RN×N , Z,Z̄ ∈RN , f ∈R . (3.96)

We multiply (3.88) by A−t. Following the arguments of Subsection 3.2.2 and using
Lemma 3.1 yields the transformed momentum equation, separated in tangential and
normal components as

∂tW+
(
~V ·∇~ξ

)
W+∇ξ

(
1
2W

tMW+P +g(ξ̄c+z)
)

= (∂ξW)tMW+J−1∇ξ ·(JPM)+J−1∂ξ̄(JZ)+ 1
2P :∇ξM , (3.97)

∂tW̄ +
(
~V ·∇~ξ

)
W̄ +∂ξ̄

(
1
2W

tMW+P +g(ξ̄c+z)
)

= (∂ξ̄W)tMW+J−1∇ξ ·(JMZ)+J−1∂ξ̄(Jf)+ 1
2P :∂ξ̄M , (3.98)

see (3.43)–(3.44). Multiplying (3.97) by J and using again the incompressibility con-
dition (3.20) we deduce the conservative formulation

∂t(JW)+∇~ξ ·
(
W⊗J ~V

)
+∇ξ

(
J
(
P +g(ξ̄c+z)

))
(3.99)

= −J 1
2W

t(∇ξM)W+
(
P +g(ξ̄c+z)

)∇ξJ

+∇ξ ·(JPM)+∂ξ̄(JZ)+ 1
2JP :∇ξM .

We integrate this equation for ξ̄ between 0 and h(t,ξ). This yields using the boundary
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conditions

∂t

∫ h

0

JWdξ̄+∇ξ ·
∫ h

0

(
W⊗JV

)
dξ̄ (3.100)

+∇ξ

∫ h

0

(
J
(
P +g(ξ̄c+z)

))
dξ̄ − Jhg(hc+z)∇ξh

=
∫ h

0

(
−J 1

2W
t
(
∂ξi

M
)
W+

(
P +g(ξ̄c+z)

)∇ξJ
)

dξ̄

+∇ξ ·
∫ h

0

JPM dξ̄+ 1
2

∫ h

0

JP :∇ξM dξ̄

+Jh

(−PhMh∇ξh+Zh

)−J0Z0 ,

where the subscripts 0 and h indicate that the terms are evaluated at the bottom
and the free surface respectively. We used the Leibniz rule several times to commute
integrals in ξ̄ and derivatives in ξ.

Now we will consider the stress tensor in more detail. Although ~U is known only
implicitly as a solution of the Navier-Stokes system (3.88), we will show that scaling
arguments allow us to identify which components of P are dominating. This will give
a link between the tangential and normal aspects of the flow. We first observe that

A−t∂~X
~UA−1 = A−t∂~ξ

~U = ∂~ξ

(
A−t ~U

)−(
∂~ξ A−t

)
~U . (3.101)

By (3.94) we then have
(
A−t∂~X

~UA−1
)
ij

= ν∂~ξj

~Wi−ν
(
∂2

~ξi
~ξj

~Xt
)
At ~W (3.102)

for all i,j =1,... ,N +1. Note that we already computed A
(
∂~ξA

−1
)

in (3.26). This
formula gives for the components of P, see (3.96),

{
Z = ν∂ξ̄W+ν∇ξW̄ −2ν(∇ξst)(∂ξX)−tW ,

f = 2ν∂ξ̄W̄ .
(3.103)

We do not provide the details of P since they will not be needed. Note, however, that
P contains only derivatives of W in ξ, not in ξ̄.

In the asymptotics ν→0, the boundary conditions (3.92) and (3.93) can only
induce boundary layers in the variable ξ̄, and as usual in parabolic problems, their
length is of order

√
νt. Since by assumption ν =o(ε2), this length is much smaller

than h, and we have the situation drawn in Figure 3.2. Thus derivatives in ξ never
give singularities, while derivatives in ξ̄ and t can be unbounded. However, according
to the parabolic scaling we have that ν∂ξ̄

~U and ν∂t
~U , and hence ν∂ξ̄

~W and ν∂t
~W ,

are bounded. Recall that the geometry is assumed to be sufficiently smooth. Then
we can use the incompressibility constraint (3.20) and (3.35) to conclude that ∂ξ̄W̄
must be bounded as well. These heuristics and (3.96), (3.103) imply that P simplifies
to

P =
(

0 ν∂ξ̄W
ν∂ξ̄W

t 0

)
+O(ν). (3.104)

Consider now (3.98). By the asymptotics just given, we can write

∇ξ ·(JMZ) = ∇ξ ·
(
JM

(
ν∂ξ̄W

))
+O(ν). (3.105)
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Wξ̄=0

Wb+

O(
√

νt)

h
0 ξ̄

W

Fig. 3.2. Viscous and material layers

We use again the incompressibility (3.20) and V=MW to compute

∇ξ ·
(
JM

(
ν∂ξ̄W

))

= ν∂ξ̄

(
∇ξ ·

(
JV

))−ν∇ξ ·
(
∂ξ̄(JM)W

)
(3.106)

= −∂ξ̄

(
J
(
ν∂ξ̄W̄

))−ν∂ξ̄

((
∂ξ̄J

)
W̄

)
−ν∇ξ ·

(
∂ξ̄(JM)W

)
.

The last two terms on the right-hand side are in O(ν). We can therefore conclude
that the error terms, which (3.98) induces in (3.74), are all of the form ∂ξ̄O(ν)+O(ν).
Since ν =o(ε2) and since P =0 for ξ̄ =h(t,ξ) by condition (3.93), we deduce that the
approximation (3.75) is still valid: for 0<ξ̄ <h(t,ξ) we have

P +g(ξ̄c+z) = 1
2W

t
(
Mh−M

)
W+g(hc+z)+O(ε2). (3.107)

In (3.100) the two integrals with P are of order o(ε3) and can therefore be ne-
glected. The same is true for Ph∇ξh since ∇ξh is in O(ε). Using now identity (3.107)
and the expansion of W outside the boundary layer, see (3.73), we obtain the conser-
vative momentum equation (2.41) with the extra term JhZh−J0Z0 on the right-hand
side, up to errors in O(ε3) (the boundary layers are of size

√
νt, hence negligible in

the integrals). We refer to Subsection 3.4 for more details.
Let us now consider the boundary conditions which must finally give the friction.

We first note that A~n=A−t~n=
(
0
1

)
, thus ~U ·~n=W̄ . Then we multiply the second

equation in (3.92) by A−t. Using σ =AtPA and the decomposition of P in (3.96) we
find

A−tσ~n =
(
Z
f

)
and ~n ·σ~n = f . (3.108)

Definition (3.91) gives

A−t
(
σT~n−(

~n ·σT~n
)
~n
)

= −
(
Z
0

)
(3.109)

for the left-hand side of (3.92). Now we observe that the normal component of the
right-hand side vanishes because of (3.94) and W̄ =0 for ξ̄ =0. Also |~U |2 =WtMW,
see (3.36). Thus with (3.104)

ν∂ξ̄W =
µW√

WtMW
P+ +O(ν) for ξ̄ =0 , (3.110)
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which is O(ν) since by assumption µ=O(ν/ε) and P =O(ε).
To compute the unit normal vector ~N at the free boundary we first note that the

tangent space is spanned by the vectors

~Ti ≡
(

Id
1
c s

t

)
∂ξi

X
∣∣∣
ξ̄=h

+ ~n∂ξi
h for i=1,... ,N . (3.111)

Indeed, since the two summands are orthogonal to each other, and since h is assumed
small enough such that ∂ξX has full rank, the ~Ti are linear independent. Therefore
the normal vector ~N is uniquely defined, up to orientation, by the condition ~N ⊥ ~Ti

for all i. We put

η ~N ≡ −
(

Id−sst

cst

)(
∂ξX

)−t
∣∣∣
ξ̄=h

∇ξh + ~n, (3.112)

with normalizing factor η given by

η2 ≡ 1+(∇ξh)tMh∇ξh. (3.113)

Note that the matrix Mh is positive definite, see (3.6), so η is always different from
zero. We now compute

ηA ~N =
(−Mh∇ξh

1

)
and ηA−t ~N =

(−∇ξh

1

)
. (3.114)

Then σ =AtPA and (3.104) implies

ηA−tσ ~N =
(

ν∂ξ̄W
−ν∂ξ̄WtM∇ξh

)
+O(ν)

η2 ~N ·σ ~N = −2ν∂ξ̄W
tM∇ξh+O(ν)





for ξ̄ =h(t,ξ). (3.115)

Multiplying the second equation in (3.93) by A−t yields, with (3.91),
(
1+(∇ξh)tM∇ξh

)
ν∂ξ̄W−2

(
ν∂ξ̄W

tM∇ξh
)∇ξh = O(ν)

(
ν∂ξ̄W

tM∇ξh
)(

1−(∇ξh)tM∇ξh
)

= O(ν)





for ξ̄ =h(t,ξ). (3.116)

Since ∇ξh=O(ε) the second equation gives ν∂ξ̄W
tM∇ξh=O(ν), and using this es-

timate in the first equation implies ν∂ξ̄W=O(ν). From this and the estimate for
(3.110) we obtain the improved bound

∂ξ̄W is bounded, (3.117)

which allows to make precise the expansions we have done and in particular the terms
in O(ν). We shall denote by Or(ν) any function that can be written as ν times a
function which is bounded and has a bounded derivative in ξ̄. We observe from (3.102)
that the error in (3.104) is Or(ν) instead of O(ν). Then, the same improvement occurs
in (3.97), (3.98) and (3.99). We deduce that the error in (3.100) is of order O(νε).

Now we analyze more precisely the boundary layer. In (3.97), the leading operator
as ν→0 is ∂tW−∂ξ̄

(
ν∂ξ̄W

)
, thus one expects an asymptotic behavior of the form

W ∼ ϕ

(
t,

t

ν
,ξ,

ξ̄

ν

)
in the boundary layer as ν→0, (3.118)
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for some smooth function ϕ. Looking at the behavior of the boundary layer pro-
file (3.118) solving the heat equation ∂tW−∂ξ̄(ν∂ξ̄W)=0 with boundary condition
(3.110) (the error in O(ν) comes from a term in Or(ν) and therefore does not come
into play), we deduce the behavior of W at ξ̄ =0 as ν→0,

W
∣∣
ξ̄=0

∼ Wb+


1−

√
νt

ν

µP+|ξ̄=0√
Wt

b+M0Wb+




+

, (3.119)

ν∂ξ̄W
∣∣
ξ̄=0

∼ Wb+min


 ν√

νt
,

µP+|ξ̄=0√
Wt

b+M0Wb+


 , (3.120)

with Wb+ the value at the right of the boundary layer, see Figure 3.2. Now, since
by assumption µ=O(ν/ε) and P =O(ε), the min in (3.120) is realized by the second
argument. But from (3.107),

P |ξ̄=0 = ghc+ 1
2W

t
∣∣
ξ̄=0

(Mh−M0)W
∣∣
ξ̄=0

+O(ε2), (3.121)

and we could replace W|ξ̄=0 by Wb+ or any value of W since their difference is at
most of order O(ε). Similarly we can replace Wb+ by any value of W in (3.120), this
gives an error in O(νε) only. This yields the friction term in (2.59). The only bad term
is the boundary term at ξ̄ =h in (3.100) since ∂ξ̄W=W 1 +O(ε). This is why we have
the assumption that curlW =O(ε) in Theorem 2.5, that enables to take coherently
W 1 =0. Concerning Theorem 2.4, it is possible to consider solutions such that W 1 =0
without any further assumption, see Subsection 3.3.2. The proof is complete.

Proof of Lemma 3.1. For any vector field ~Z we have

J∇~X · ~Z = ∇~ξ ·
(
JA~Z

)
, (3.122)

by the divergence chain rule. Applying (3.122) to each row of σ gives

J
∑

j

∂ ~Xj
σij =

∑

j

∂~ξj

(
J

∑

k

Ajkσik

)
, (3.123)

for all indices i=1,... ,N . Then,

J
∑

i

A−t
li

∑

j

∂ ~Xj
σij (3.124)

=
∑

ij

A−t
li ∂~ξj

(
J

∑

k

σikAt
kj

)

=
∑

ij

∂~ξj

(
JA−t

li

∑

k

σikAt
kj

)
−J

∑

ijk

(
∂~ξj

A−t
li

)
σikAt

kj .

Since PAAt =A−tσAt, the first term on the right-hand side corresponds to the first
term in (3.95). For the last term, we can write

∑

j

(
∂~ξj

A−t
li

)
At

kj =
∑

j

(
∂~ξl

A−t
ji

)
At

kj = −
∑

j

A−t
ji

(
∂~ξl

At
kj

)
(3.125)
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using the definition of A−1, see (3.94). By symmetry of P we have

−
∑

ijk

(
∂~ξj

A−t
li

)
σikAt

kj (3.126)

=
∑

ijk

PjiAik∂~ξl
At

kj

= 1
2

∑

ijk

Pji

(
Aik∂~ξl

At
kj +

(
∂~ξl

Aik

)
At

kj

)
= 1

2P :∂~ξl
(AAt)

for indices l=1,.. .,N +1. This gives the result.

4. Invariance under rotation
One important feature of our models, which distinguishes them from others dis-

cussed in the literature, is their invariance under rotation. In this section we will
discuss this property for the system in (2.48)–(2.49) only, but similar arguments ap-
ply to all other models. Assume that the topography, given by the height field z, is
rotated in RN . More precisely, assume there exists a new function z̃(x) with

z̃(x) = z(Rx) for some rotation R. (4.1)

For any function ϕ, the chain rule gives

∇xϕ̃(x) = Rt∇yϕ(y)
∣∣∣
y=Rx

, (4.2)

where ϕ̃(x)≡ϕ(Rx) with x∈RN . From this formula we obtain

s̃(x) = Rts(Rx) and c̃(x) = c(Rx). (4.3)

The curvature transforms as

H̃(x) = RtH(Rx)R. (4.4)

We will show that a suitable rotation of any solution of (2.48)–(2.49) is a solution
of the rotated problem, i.e., of the same equations with the geometrical functions z,
s, c and H replaced by the corresponding tilded ones. So let (h,V) be a solution of
(2.48)–(2.49) and consider

{
h̃(t,x) ≡ h(t,Rx),

Ṽ(t,x) ≡ RtV(t,Rx).
(4.5)

Then (4.2) and orthogonality of R yield

∇x ·(h̃Ṽ/c̃)
∣∣∣
(t,x)

=Rt∇y ·Rt(hV/c)
∣∣∣
(t,y=Rx)

=∇y ·(hV/c)
∣∣∣
(t,y=Rx)

. (4.6)

Thus we find the modified continuity equation

∂t(h̃/c̃)+∇x ·(h̃Ṽ/c̃)
∣∣∣
(t,x)

= ∂t(h/c)+∇y ·(hV/c)
∣∣∣
(t,y=Rx)

= 0 , (4.7)
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see (2.48). For the momentum equation we proceed in a similar way. The material
derivative, for example, transforms as

(Ṽ ·∇x

)Ṽ
∣∣∣
(t,x)

=
(
RtV ·Rt∇y

)
RtV

∣∣∣
(t,y=Rx)

=Rt
{(V ·∇y

)V
}∣∣∣

(t,y=Rx)
. (4.8)

Using (4.3) and the orthogonality of R we obtain

∂tṼ+
(Ṽ ·∇x

)Ṽ+
(
Id−s̃ s̃t

)∇x

(
g(h̃c̃+ z̃)

)∣∣∣
(t,x)

= Rt

{
∂tV+

(V ·∇y

)V+
(
Id−sst

)∇y

(
g(hc+z)

)
}∣∣∣∣∣

(t,y=Rx)

(4.9)

for the left-hand side of (2.49) and

− 1
c̃2

(ṼtH̃Ṽ)
s̃− gµc̃Ṽ√

|Ṽ|2 +(s̃tṼ/c̃)2

(
1+

ṼtH̃Ṽ
gc̃3

)∣∣∣∣∣
(t,x)

=Rt

{
− 1

c2

(VtHV)
s− gµcV√

|V|2 +(stV/c)2

(
1+

VtHV
gc3

)}∣∣∣∣∣
(t,y=Rx)

(4.10)

for the right-hand side. This proves the rotational invariance of (2.49).
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