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Abstract: We construct N=2 affine current algebras for the superalgebras
sl(n\n — l)W in terms of N~2 supercurrents subjected to nonlinear constraints and
discuss the general procedure of the hamiltoman reduction in N=2 superspace at the
classical level. We consider in detail the simplest case of N=2 s/(2|l)(1) and show
how N=2 superconformal algebra in JV=2 superspace follows via the hamiltonian
reduction. Applying the hamiltonian reduction to the case of JV=2 ,s/(3|2)(1), we
find two new extended N=2 superconformal algebras in a manifestly supersymmet-
ric iV=2 superfield form. Decoupling of four component currents of dimension 1/2
in them yields, respectively, u(2|l) and «(3) Knizhnik-Bershadsky superconformal
algebras. We also discuss how the N=2 superfield formulations of N=2 W$ and
# = 2 W*p superconformal algebras come out in this framework, as well as some
unusual extended N—2 superconformal algebras containing constrained N—2 stress
tensor and/or spin 0 supercurrents.

1. Introduction

For the last several years important progress has been achieved in understand-
ing the role of world-sheet superconformal symmetry and target space symmetry
of nonlinear er-models in the context of string theory and topological field theory
[1-3]. The BRST structure of the bosonic string (Wn string) generates a topologically
twisted N—2 superconformal algebra [4] (N=2 super- Wn algebra [5, 6]). In obtain-
ing these results, heavy use of the hamiltonian reduction from WZNW models based
on the superalgebra sl(n\n — 1) has been made. Futhermore, any superstring theory
possesses N=3 twisted supersymmetry [5]. Recently, BRST structure has been sys-
tematically constructed for superstrings with N supersymmetries by the hamiltonian
reduction of the affine extension of osp{N + 2|2) [7]. The JV=2 analog for topo-
logical strings is the twisted N=4 su{2) superconformal algebra (SCA) which has
been obtained by the reduction of the affine extension of si(2|2) in [8].
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As these and many other examples demonstrate, the hamiltonian reduction is
a powerful method of deducing new conformal [9-11] and superconformal algebras
and analysing the symmetry structure of the conformal field theory and string theory
models. Since a natural arena for studying various superconformal symmetries and
the related field theory models is provided by superspace, it is tempting to have
convenient superspace generalizations of the hamiltonian reduction. The N = l su-
perspace version of this procedure in various aspects was discussed in Ref. [12].
On the other hand, a lot of interesting models (both in string theory and topological
field theory) reveal N = 2 superconformal symmetries, manifestly covariant formu-
lations of which require N=2 superspace. Motivated by this, in the present paper
we generalize the hamiltonian reduction procedure to N=2 superspace.

Let us recollect some well-known facts which are relevant to the problems we
address in the present paper.

Knizhnik [13] and Bershadsky [14] have proposed SCAs with quadratic nonlin-
earity having as subalgebras u{n) and so(n) affine algebras. It has been shown later
[15] that the nonlinear so(3) and so(4) Knizhnik-Bershadsky (KB) SCAs can be
embedded as subalgebras in the usual linear so(3) and so(4) extended SCAs [16]
after passing to some new basis for the currents of the latter (related to the standard
one by an invertible nonlinear transformation). By construction, the usual N=2 and
N=4 su(2) SCAs [16] are the same as w(l) and u(2) KB SCAs, respectively.

Polyakov [17] has found that there exist two types of classical hamiltonian re-
ductions for 5/(3): one yields the W$ algebra while the other leads to W^ which
is a M(1) "quasi" SCA in the sense that dimension 3/2 fields are bosonic ("wrong"
statistics) and, besides, it reveals a quadratic nonlinearity in the w(l) current in
its operator product expansions (OPEs). Bershadsky [18] has further explained its
structure in detail. In Ref. [19] new infinite families of nonlinear extended confor-
mal algebras, u(n) and sp(2n) quasi SCAs, have been found. Independently it has
been shown [11, 20] that u(n) quasi SCAs can be constructed by the hamiltonian
reductions of affine algebras sl(n)^l\ based on non-principal embeddings of .$7(2)
into sl(n). A N=2 supersymmetric extension of wf1^ containing both wf"^ and
AT=2 SCA as genuine subalgebras have been constructed in [21, 22] by means
of hamiltonian reduction of the affine .$7(3|2)(1) (at the level of component cur-
rents). Recently, a formulation of this extended SCA in terms of constrained N=2
superfields has been presented [23].

It was demonstrated in [24-26] that new SCAs with quadratic nonlinearity, so-
called Z2 x Z2 graded SCAs, can be obtained by combining both fermionic and
bosonic spin-3/2 currents in the same osp(m\2n) or u(m\n) supermultiplet. The u(n)
KB SCAs and the algebra W^ can be identified with Z2 x Zi graded SCAs asso-
ciated with the superalgebras w(/i|0)and w(0|l), respectively.1

By applying the classical hamiltonian reduction to the affine Lie superalgebra
.y/(/f|2)(1) and putting the constraint on the currents valued in its bosonic sl{2) part,
in [27] the classical u(n) KB SCAs has been recovered in a new setting. In [28], this
analysis was promoted to N = 1 superspace and a N= 1 extension of u{n) KB SCAs
has been constructed (at the classical level). However, an attempt to incorporate N=
2 supersymmetry has failed. As we will show, this happened just because nonlinear
constraints on N=2 affine supercurrents have not been involved in the game.

1 There exist other conventions for these superalgebras, see, e.g., Ref. [25].
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As was already said, the aim of this paper is to develop the hamiltonian reduction
at the classical level directly in N=2 superspace. In short, its main steps are: (i)
construction of an N=2 affine current algebra for some superalgebra admitting a
complex structure (we limit our consideration here to the superalgebras sl(n\n —
1)); (ii) imposing appropriate constraints on the relevant superalgebra valued N = 2
supercurrents; (iii) deducing N=2 extended superconformal algebras in the N=2
superfield formalism. We would like to especially emphasize that we are always
dealing with the N = 2 superfield approach in our scheme. To our knowledge, this
was not done before. Another point to be mentioned is that our construction here
is purely algebraic and does not resort to any specific field theory realization of
N=2 affine current superalgebras, e.g. to their WZNW realizations. This is the
difference from, e.g., Ref. [12] where an N = 1 superspace version of the hamiltonian
reduction was discussed in the WZNW context. Also, we will be mainly interested
in such extended N=2 SCAs which include as a subalgebra the standard linear
N = 2 SCA, i.e., contain an N=2 superconformal stress tensor among their defining
supercurrents.

The paper is organized as follows. In Sect. 2 we construct an N = 2 sl(n\n — 1)(1)

current algebra in terms of N—2 supercurrents subjected to nonlinear constraints.
In Sect. 3 we describe the general procedure of the hamiltonian reduction in AT=2
superspace and in Sect. 4 we exemplify it by the simplest case of N=2 .s/(2|l)(1)

which gives rise to the standard N=2 SCA. In Sect. 5 we consider the case of
N=2 sl{3\2fx\ We reproduce the previously known N=2 W3 and N=2 FF3

(2)

SCAs in the AT=2 superfield formulation and find two new N=2 extended SCAs.
We explain how the factorization of the dimension 1/2 component currents in
these superalgebras works. And finally in Sect. 6 we end with a few closing
remarks. In the Appendices, we give notations for sl(n\n — 1) superalgebras, u(m\n)
SCA and a different realization of sl(n\n - 1).

2. N=2 Current Algebra for sl(n\n -

In [29] Hull and Spence have constructed an N=2 current algebra for the bosonic
algebra g in terms of N = 2 superfield currents satisfying nonlinear constraints.
The only essential restriction on g is that it is even-dimensional and admits a com-
plex structure. The quadratic terms appearing in the r.h.s. of superoperator product
expansions (SOPEs) between the supercurrents are necessary for the consistency be-
tween these SOPEs and the aforementioned nonlinear constraints. The nonlinearity
of the N=2 current algebra while it is written in terms of N=2 supercurrents is
the price for manifest N = 2 supersymmetry. When formulated via ordinary currents
or N = 1 supercurrents, the algebra can be put in a linear form (in an appropriate
basis).

If g is an ordinary bosonic algebra, all the N=2 affine supercurrents are
fermionic and we cannot put them to be constants. On the other hand, this kind
of constraints imposed on bosonic (super)currents is of common use in the standard
hamiltonian reduction scheme. We are going to generalize the latter to N = 2 super-
space, expecting such a generalization to allow us to deduce extended N = 2 SCAs
(both previously known and new) in a manifestly supersymmetric N = 2 superfield
fashion. To be able to impose the aforementioned constraints on the affine supercur-
rents, we need to have bosonic ones among them. A natural way to achieve this is
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to deal with N = 2 affine extensions of superalgebras. So we are led to generalize
the approach of Ref. [29] to the superalgebras admitting a complex structure. In this
paper we confine our consideration to the superalgebras sl(n\n — 1).

Let g be a classical simple Lie superalgebra g — go ® g\9 where go is the bosonic
subalgebra and g\ is the fermionic subspace, with the generators tA satisfying graded
commutation relations [tA,tB} ^F/uftc- Let us introduce new structure constants,
fABC^(-lidA+l)dBFABC, where for tA e 0«,a € 0,1 we used the grading dA = <x + 1.
Therefore, fABC are antisymmetric in the indices A,B when A,B correspond to
bosonic generators and symmetric otherwise. It is convenient to choose a complex
basis for g, so that its generators are labelled by a and a, a — 1,2,. . . ,\dim g —
\{{2n — I)2 — 1). In this basis the complex structure associated with the second
supersymmetry has eigenvalue -fi on the generators ta and — i on the conjugated
ones *<?(= 4 ) . The Killing metric gai is given by Str(tat^)9 g^ being symmetric for
the indices related to bosonic generators and antisymmetric otherwise. Any index
can be raised and lowered with g^ and gai*

The affine superalgebra g = sl(n\n — 1)(1) we deal with in this paper has an
equal number 2n{n — 1) of fermionic and bosonic supercurrents. For example, in
the fermionic g valued supercurrent in the fundamental representation # = ^ t e * ^ ,
top-left nxn and bottom-right (n — 1) x (w — 1) matrix elements are fermionic,
so that da,dd= 1. Then the bosonic supercurrents are entries of the top-right
n x (n — 1) and bottom-left (n— I) x n blocks in the supercurrent matrix, so for
them da, dj = 2. In the scheme of hamiltonian reduction which will be explained in
the next section we impose non-zero constraints just on these supercurrents.

We refer the reader to Ref. [29] for details of how the N=2 current algebra can
be formulated in N=2 superspace. The only new thing to.be kept in mind in our
case is that now there are extra bosonic supercurrents besides the fermionic ones.
The presence of supercurrents with different statistics will play an important role in
our construction. This property will manifest itself in the appearance of some extra
(—1) factors in the r.h.s. of SOPEs defining the N=2 affine superalgebra.

With all these remarks taken into account, we summarize the N=2 affine cur-
rent algebra corresponding to sl(n\n — 1)(1) with the level £ as the following set
of SOPEs between N=2 superfield currents satisfying the appropriate nonlinear
constraints:2

Z\2 Z\2

} ( 2 . D

2 By Z we denote the coordinates of ID N=2 superspace, Z = (z,dyd). From now on we do not
write down explicitly the regular parts of SOPEs. All the supercurrents (currents) appearing in the r.h.s.
of SOPEs (OPEs) are evaluated at the point Z2 (z2).
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where

012 = 01 ~ 02, 012 = 01 - 02, Zl2 =ZX-Z2 + 1(0, 02 + 0,02) , (2.2)

and the constraints on the supercurrents read

^ c = 0, 9/, + ^(-1 tfak/l/c = 0 (2.3)

(the summation is assumed over repeated indices). Here, we work with complex
fermionic covariant derivatives

satisfying the algebra

{»,»} = -d (=-0*) f (2.4)

all other anticommutators are vanishing. If we restrict the indices in (2.1) and
(2.3) to the fermionic supercurrents we reproduce the N = 2 sl(n)^ © sl{n — 1)(1) ©
M(1) (1) affine current algebra [29]. We have checked that the whole N=2 current su-
peralgebra (2.1) with the nonlinear constraints (2.3) satisfies the standard Z2 graded
Jacobi identities and that SOPEs of the l.h.s. of (2.3) with any affine supercurrent
vanish on the shell of constraints (the presence of nonlinear terms in the r.h.s. of
(2.1) is crucial for this). When we consider this superalgebra at the quantum level
(to all orders in contractions between the supercurrents), then there appears an ex-
tra term, \(-\yk+lfa/ff in ^^r* in the r.h.s. of SOPE /a(Zi)fh(Z2). This is
due to the fact that there exist additional contractions between the supercurrents at
the quantum level. In the remainder of this paper we will deal with the classical
relations (2.1) and (2.3).

Generalizing the well-known Sugawara construction to N=2 superspace yields
the following formula for the improved N=2 stress tensor in terms of the affine
supercurrents / f l , / a ,

%*g = l^SaSh + *i9JTi + ajSMTj . (2.5)

We denote by Jfi9Jf] (i = 1,2,...,« — 1) the supercurrents associated with Cartan
generators of sl(n\n— 1). The N = 2 super stress tensor satisfies the following
SOPE:

C _i_ 0 * 2 0 1 2 0 1 2 ^ 0 * 2 < £ . 0 1 2 0 1 2
mg ( 2 . 6 )

z\2 I z\2 Z12 Z12 *12 J

with

c = -2k OLiOLjgtj. (2.7)

With respect to this ^ug, the supercurrents jfh Jtf- are quasi-superprimary superfields
of the dimension 1/2 with w(l) charge -hi, — 1, respectively. All other affine N = 2
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supercurrents are superprimary,

012^12 ^12 ^ ^12 ^ 012^12
= \Sa(d)

[ ^12 Z12 ^12 *12 *12 J

(2.8)

Their dimensions (superspins) sa(Z) and w(l) charges qa(a) depend in a certain way
on the parameters a,-, aj. The explicit formulas for them will be given later, for each
specific example we will consider.

Our last remark in this section is that for the superalgebra sl(n\n — 1) (and
seemingly for other superalgebras admitting a complex structure) the above N=2
extension actually coincides with the N—l extension given in [12, 30]. In other
words, the latter possesses a hidden N = 2 supersymmetry which becomes manifest in
terms of constrained N=2 supercurrents. Indeed, due to the fact that the generators
of sl(n\n — 1) can be divided into the pairs of mutually conjugated ones, the relevant
N=l supercurrent for each pair is complex and its component content (two real
spins \ and two real spins 1) is such that these components can be combined into
aiV = 2 supermultiplet.3 To explicitly demonstrate this, let us solve the constraints
(2.3) via unconstrained N=l supercurrents Ja,Ja>

fa=Ja + 01

/a = Ja ~ 01 \iDJa + (-1 t ^ J ' A • (2.9)

Here the N — 1 supercurrents are defined on a real N = 1 superspace Z = (z, 02), 02 =
^(0 + 0), D = ^ — 02d is a N=l covariant fermionic derivative and
0l = 5j(0 — 0) is an extra fermionic coordinate. The SOPEs between the Af = l
sl{n\n — 1)(1) affine supercurrents JA(Z) [12, 30] are given by

JA(Zi )JB(Z2) = LkQAB + e^fAB
c Jc , (2.10)

Z\2 Z\2

where

0T2 = 0? - 02, zn =*\ -z2 - e\9i . (2.11)

In a complex basis, the indices A,B,... can be divided into the two sets of the barred
and unbarred indices, thus demonstrating that the number of N = 1 supercurrents in
the present case coincides with the number of N = 2 ones (of course, these complex
N=l supercurrents are reducible, each containing two real iV= l supermultiplets).
The superalgebra (2.10) is equivalent to the superalgebra (2.1) supplemented with
the nonlinear constraints (2.3). The N= 1 superfield formulation clearly demonstrates
that the nonlinearities in the r.h.s. of Eqs. (2.1) are fake: they appear as the price
for manifest N=2 supersymmetry. In what follows the N=\ formulation will be
a useful guide of how to impose constraints on the relevant N = 2 supercurrents

1 Similar arguments for the case of the bosonic algebra g were given in [31].



TV = 2 Hamittonian Reduction 211

corresponding to different embeddings of .s/(2|l) into sl{n\n — 1) and to extract
those preserving N=2 supersymmetry from their general set.

In the next sections, we will discuss different hamiltonian reductions of the N—2
sl(n\n - 1)(1) current algebra in N—2 superspace for the particular cases of n — 2,3.
But before that we will sketch the basic peculiarities of the N—2 superspace version
of the hamiltonian reduction procedure.

3. Hamiltonian Reduction

To illustrate the basic idea of different reductions, we start by considering how we
can obtain extended N=2 SCAs by imposing reduction constraints on the N=2
affine supercurrents which we defined in Sect. 2.

From now on we will deal with the matrix elements </mn of the sl(n\n — 1)
valued affine N = 2 supercurrent (with the sl(n\n — 1) generators in the fundamental
representation) rather than with its adjoint representation components labelled by
indices a, a. The explicit relation between them is given by

\
unbarred
indices

y -f-
barred
indices

(3.1)

(see also Appendices A and B).
We will consider only linear reduction constraints as in [9-11]. Then we are

led to equate some of #mn (we denote the corresponding subset of indices by the
symbol "hat") to constants

$mh = fmh - CM = 0 . (3.2)

The entries of the constant supermatrix CM can be either 0, which is possible both
for bosonic and fermionic supercurrents, or 1, which is admissible only for bosonic
supercurrents. In order to produce N=2 supersymmetric algebras these constraints
should be invariant with respect to N=2 superconformal transformations generated
by the improved N=2 stress tensor (2.5), which means that the constrained super-
currents with nonzero CM should have zero spin and w(l) charge.

In Ref. [30], W superalgebras which can be obtained by the reductions associ-
ated with different embeddings of osp(l\2) into sl(n\n — 1) have been classified in
N=l superspace. Once we know the constraints in N = l superspace, the relation
(2.9) gives us constraints in N=2 superspace. Some of the constraints in N=l
superspace, being rewritten in N=2 superspace, explicitly break N=2 supersym-
metry. Meanwhile, we wish to deal with only those reductions which preserve N=2
supersymmetry, because our eventual aim is to get extended SCAs containing N=2
SCA as a subalgebra. Only a subset of constraints in N = 1 superspace preserves
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AT=2 supersymmetry, namely those which after substitution into (2.9) produce no
explicit 0's in the r.h.s., i.e. lead to the N = 2 constraints in the form (3.2). Thus,
we can choose the appropriate subset of constraints in N=l superspace and then
extract the constraints in N=2 superspace from (2.9).

Then the first-class constraints, i.e. those which commute among themselves on
the constraints shell, generate a gauge invariance. An infinitesimal gauge transfor-
mation of <fki induced by 0M with a gauge parameter AM can easily be calculated,

^ ( 3 . 3 )

where the symbol [{a^o} means that after computing the SOPEs we should pass
on the constraints shell by imposing the constraints (3.2) on the resulting expression
and the gauge parameters AM are general N=2 superfields which do not depend on
Ski- It is clear that the variation of the l.h.s. of (2.3) vanishes identically because
the SOPEs of (2.3) with any fku and, in particular, with 0M are zero on the shell
of (2.3) (see the discussion in the paragraph below (2.4)).

By definition, an extended N=2 SCA constructed by the hamiltonian reduction
based on the constraints (3.2) is a superalgebra generated by gauge invariant dif-
ferential - polynomial functional of affine supercurrents fku including some N=2
stress tensor. It is possible to find these superalgebras by using Dirac construction.
Let us recall its main steps.

At first, we should fix the gauge, which means that we are led to enlarge the
original set of first-class constraints by adding the gauge-fixing conditions (standard
gauge-fixing procedure), such that the total set of constraints becomes second-class.
We denote this extended set of constraints by WM- The number of constraints WM is
exactly twice the number of 0M- For the remaining unconstrained supercurrents we
will use in this section Greek indices, a, jS,.... Clearly, once a gauge freedom with
respect to the A transformations has been somehow fixed, the surviving supercurrents
Jf^o are expressed as some gauge invariant differential functional of the original
affine supercurrents.

Secondly, we should construct Dirac brackets between these gauge invariant su-
percurrents. We generalize this procedure to the N=2 supersymmetric case and
represent Dirac brackets in an equivalent form of SOPEs. The new rules for calcu-
lation of SOPEs of the gauge invariant supercurrents which we denote by brackets
with a star, ( / ^ ( Z i X / ^ ^ ) ) * , can be defined in terms of original SOPEs of the
affine supercurrents as follows (the supercurrents entering this star bracket are gauge
invariant, but for brevity we omit the symbolv above them):

(3.4)

where #ap are functional of the original supercurrents fu (including both un-
constrained /afi and constrained fmh supercurrents) which satisfy the following
restrictions on the constraints shell:

Ap\{>FM=O} = /« / ! (3.5)
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and are arbitrary otherwise. The supermatrix A*J>kl(Z\9Z2) is the inverse of the
supermatrix

i.e.

fd Z2/S(ZuZ2)AaM(Z2yZ3) ^ 0 , 3 0 1 3 * * , z3) . (3.7)

Any gauge invariant supercurrent can be represented as some functional of jf^ and
SOPEs between these functionals can be calculated using SOPEs (3.4).

It is a very complicated technical problem to calculate the inverse supermatrix
AiJikl(Zi,Z2) in the general case. To get around this difficulty, we use the following
trick. By looking at (3.4), one can observe that for /^ satisfying

^ = 0 (3.8)

the second term in the r.h.s. of (3.4) is vanishing. We are free to choose \#ap to
satisfy Eq. (3.8) as these functional are a priori arbitrary up to the condition (3.5)
which is obviously consistent with (3.8). Then the SOPEs with star between the
gauge invariant supercurrents coincide with ordinary SOPEs between /ap on the
constraints shell and so can be calculated using SOPEs (2.1) for the original affine
supercurrents,

)/ya(Z2)T = G M Z , ) ^ ( Z 2 ) ) | { ^ = o } . (3.9)

In this way, the task of constructing N=2 extended superalgebras reduces to that of
constructing the functionals f^ satisfying the restrictions (3.5), (3.8). Note that off
the shell of constraints these objects can differ from the gauge invariant supercurrents
jfrf by terms depending on !F^.

Now let us discuss the general structure of such functionals. It is evident that
only those of them which are linear in the total set of constraints WM can actu-
ally contribute to (3.9), because the SOPEs including any higher order monomial
of WM are proportional to W^ and so obviously vanish on the constraints shell
{*PM = 0}. The coefficients in these linear functionals can in general be nonlin-
ear functionals of the remaining unconstrained supercurrents /tf. These functionals
can be local or non-local, depending on whether the superfield parameters AM of
the gauge transformation (3.3) relating the gauge-fixed supercurrents to the origi-
nal ones are expressed in terms of the latter in a local or non-local way. In what
follows we will always choose the gauges yielding local functionals, as they cor-
respond to the most interesting extended N=2 superconformal algebras. Note that
the Miura transformations relating superconformal algebras to the algebras of free
superfields just realize the passing from the gauges of the first type to the second
type.

Keeping in mind the above discussion, from now on we consider as a starting
expression for J^ linear functionals of constraints VM (and derivatives of the latter)
with nonlinear in general coefficient-functions of #ap. Taking for these coefficients
the most general ansatz in terms of f^ with arbitrary constant coefficients, such that
it preserves superspins and u{\) charges with respect to the improved TV=2 stress
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tensor (2.5), and substituting it into Eqs. (3.5), (3.8), one obtains the solution which
proves to be unique up to some unessential coefficients which do not contribute to
(3.9).

In the next section we will illustrate the formalism described above by the
simplest example of hamiltonian reduction of the N=2 .s/(2|l)(1) superalgebra.

4. Example: /V = 2 s/(2|l)(1) Affine Superalgebra

Let us apply the general procedure developed in the previous section to the superal-
gebra AT=2 sl(2\ 1)(1). We will naturally come to the N=2 superspace formulation
of standard N — 2 SCA in this way.

In Appendix A, for completeness we give the explicit form of generators,
structure constants and the Killing metric for the sl{2\\) superalgebra in the
complex basis described in Sect. 2, as well as the relations between affine super-
currents /a^d in this basis and matrix elements #mn introduced in Sect. 3.
Substituting these formulas into (2.1), (2.3) and (2.5) one can obtain explicit
expressions for the defining SOPEs of the N=2 affine extension of the s/(2|l),
for nonlinear constraints the relevant supercurrents satisfy, as well as for the
improved Sugawara N=2 stress tensor. The last one has the following
form:

%ug = jfLSnfll - *\*\ ~ /13/31 " /23/32) + « l & # i + *\®#\ , (4.1)

where two parameters, OL\ and (Xj, give rise to a splitting of supercurrents into
the grades with positive, zero and negative dimensions and w(l) charges (see Ta-
ble 1). Actually, this splitting is due to the existence of two grading operators:
{(x.\t2 + afff)/2 ^ d OL\t2 - a^f, tut\ being Cartan generators of s/(2|l) in the coad-
joint representation. The eigenvalues of the former are exactly ("dimension"- 1/2)
in Table 1 and those of the latter are ("w(l) charge" ±1) where +1 is for barred
supercurrents and — 1 for unbarred ones.

Table 1.

scs dim

1/2

1/2

(!+«! -aT)/2

1

- 1

(1+«!+«!)
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In this and all subsequent tables we use the following abbreviations: "scs" for
supercurrents, "dim" for superconformal dimensions and "w(l)" for w(l) charges.

We also give the explicit form of the nonlinear constraints (2.3)

= 0, 3 3V-X = 0 ,

= o, (9- x-*e^\ /2 i = o,

= 0 , (@- ± j f ^ /31 - \fi\Jyi = 0 ,

0. (4.2)

Now we are ready to consider a hamiltonian reduction of 7V=2.s/(2|l)(1) which
produces N = 2 SCA. To this end, we should first learn at which values of para-
meters ai and aj at least one of the bosonic supercurrents could have the spin and
w(l) charge characteristic of the N=2 stress tensor, i.e. 1,0, respectively. It turns
out to be possible with the following choice:

«! = - 1 , a, = 1 . (4.3)

In this case, besides the fermionic supercurrents #?\^3tf\ with the spin and w(l)
charge 1/2 and ±1, the N=2 .s/(2|l)(1) superalgebra contains bosonic spin 0
C/13,/32) and spin 1 (/lufn) ones with zero «(1) charges, as well as the
fermionic doublet fn.fix with spins -1/2,3/2 and w(l) charges 1 , -1 , respectively.

Secondly, we should put first-class constraints on some supercurrents at which
at least one of two spin 1 supercurrents {/^\ or ^23) is unconstrained in order to
be able to identify it with the N=2 unconstrained stress tensor. At first sight, it
seems impossible to achieve this because from the beginning all the supercurrents
are constrained by the conditions (4.2). Nevertheless, it can be done. Let us briefly
explain the basic idea of how unconstrained N=2 superfields can come out in
this way.

By looking at the constraints (4.2), one sees that they are quadratically nonlinear
and their number precisely matches with that of supercurrrents. Moreover, in every
constraint there is only one linear term with spinor covariant derivative on some
supercurrent, and different constraints contain different linear terms, so they are in
one-to-one correspondence with the consistent set of standard chiral and anti-chiral
conditions. The last ones reduce the number of independent superfield components
by the factor two. The same is evidently true for a nonlinear generalization of these
constraints (4.2): the only new point is that the components which were forced to
be zero in the case of chiral constraints become some functions of the remaining
independent ones in the case of (4.2). However, an important difference of the latter
from the linear constraints is the following. If we replace some bosonic supercurrents
in (4.2) by nonzero constants, then in some constraints the nonlinear terms can
produce a linear one without a spinor derivative on it. So, this constraint becomes
algebraic with respect to the supercurrent entering it linearly and can be solved
for the latter. Thus this supercurrent turns out to be eventually expressed in terms
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of other ones and their spinor covariant derivatives. Now among the remaining
independent supercurrents one can find, in a number of cases, unconstrained N=2
superfields. This is just what comes about in the case at hand. An analogous resume
could be drawn from the analysis of solutions of N=2 constraints (4.2) in terms
of unconstrained # = 1 superfields (2.9).

Keeping in mind the above remark, we choose first-class constraints as follows:

0 f

1

They clearly preserve iV=2 superconformal symmetry generated by ^g (4.1),
(4.3). This set of constraints is also consistent with Eqs. (4.2). Indeed, by sub-
stituting (4.4) into (4.2) we find that those constraints from (4.2) which include the
spinor derivative of the supercurrents #n,#n and fn are satisfied identically while
the constraint containing the spinor derivative of the f$\ current becomes algebraic
and expresses #2\ in terms of ^31,

/ 1 \

hi • (4.5)

The remaining constraints from the set (4.2) preserve their form on the constraints
shell (4.4). Thus on the shell of constraints (4.4) no restrictions arise on the spin 1,
M(1) charge 0 bosonic supercurrent ^31, so the latter is an unconstrained N=2
superfield and, as we will see soon, proves to be directly related to the N=2
superconformal stress tensor.

Let us note that the constraints (4.4) actually amount to the set of constraints
imposed in[12]inAT = l superspace. This latter set can be shown to produce the
above constraints without breaking N=2 supersymmetry through the explicit rela-
tion (2.9) between N= 1 and N=2 supercurrents.

Constraints (4.4) can easily be checked to have zero mutual SOPEs on their
shell, so they are first-class and give rise to a gauge invariance which can be used
to gauge away three more entries in the supermatrix (4.4). Indeed, with respect
to infinitesimal gauge transformations (3.3) generated by constraints (4.4) with the
gauge parameters An, An and A& the currents ^23,^1 and 3tf-x are transformed
inhomogeneously,

(4.6)

One can explicitly check that these gauge transformations preserve the constraints
(4.2). As a result, we can consistently fix the gauge as4

/23 = 0, ^ 1 = o , J f T = 0 . (4.7)

It is easy to check that the total set of constraints, i.e. constraints (4.4) and gauge
fixing conditions (4.7), is second-class. Substituting the gauge fixing conditions (4.7)

4 In this gauge there remains a residual gauge freedom with chiral An, A\i and anti-chiral Ayi.
However, the final expression for the N=2 stress tensor turns out to be invariant under this residual
freedom.
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and the expression (4.5) into the supermatrix (4.4) we obtain the expression for
JV=2 supercurrents /„„ in the highest weight (or Drinfeld-Sokolov [9]) gauge

/ 0 0 l \

/£? = *&Si\ 0 0 . (4.8)
V /» i o)

So the superalgebra which is produced from N = 2 ,s/(2|l)(1) by hamiltonian reduc-
tion associated with the constraints (4.4) is generated by only one gauge invariant
bosonic supercurrent ^31 which coincides with ^ on the shell of total set of
constraints (see (3.5)).

Our next task is to find ^31 from the conditions (3.5), (3.8). This can be easily
done by making use of the general j>rocedure described in Sect. 3. As a result we
obtain the following expression for ^31 up to unessential terms:

Substituting this expression into (3.9), we get the SOPE of the superalgebra we are
looking for. This SOPE coincides with the SOPE of N = 2 SCA (2.6) with central
charge — 2k after rescaling,

/31 -> -*/3i • (4.10)

In the next section we will discuss various reductions of N=2 s/(3|2)(1) and
deduce some new superfield extended N=2 SCAs in this way.

5. Hamiltonian Reductions of N = 2 s/(3|2)(1> Affine Superalgebra

The reductions of N = 2 .s/(3|2)(1) we will consider in this section give rise to four
new types of extensions of N = 2 SCA. The first one is rather unusual in the sense
that the N=2 stress tensor is a constrained supercurrent. The second possesses an
unconstrained stress tensor, but contains spin 0 supercurrents, such that it turns
out impossible to decouple dimension 0 component currents. We will concentrate
on the third and fourth cases corresponding to N = 2u(2\l) and N=2 w(3) SCAs,
respectively, because these are "canonical" in the sense that the relevant N=2
stress tensor is unconstrained and there are no spin 0 supercurrents. We will also
illustrate how the known N = 2 W3 [32] and N=2 JF3

(2) [23] SCAs reappear in the
hamiltonian reduction approach in N = 2 superspace.

It is rather straightforward to find the structure constants and Killing metric in
the complex basis for 5/(312), so we do not write them explicitly (see Appendix B).
From the general expression for the improved Sugawara N=2 stress tensor (2.5)
we obtain it for N=2 s/(3|2)(1) in the following form:

( # * ^ ^ + / / + / / + /23/32 " /14/41

(5.1)
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where four parameters, ai,ai,a2,&2 S P^ ̂ e supercurrents into the grades with pos-
itive, zero and negative dimensions and w(l) charges (see Table 2).

Let us stress that the nonlinear constraints (2.3) for the case of sl(3\2) can be
easily read off using the structure constants of this superalgebra. They will play the
important role in all the calculations in the remainder of this paper. Our main aim
in this section will be to find extended N—2 SCAs which contain at least one

Table 2.

scs dim u(\)

Xf 1/2 -1

1/2 1

1/2 -1

1/2 1

(-l-ai-aT +

ff^ (1—aj+a2)/2 (l+aj+a2)

f$l ( l + « j — a2)/2 (— 1 — af — a2)
jfF ( \ f* I >y _ _ /y • \ / O /I /y _l /v _1_ /y

î (l-«l)/2 (-l-«i)

(l+aT-a2)/2 <

/ £ (l-ai-ha2)/2

/52 (1 + «1 - «2)/2

f£3 (1-a i -aj+a 2 ) /2 ( - 1 - ^ + a T + a 2 )

^ 3 5 ( 1 —f- oc^ ) / 2 ( 1 — (X2)

sh (i-
/ S (»-
ef$4 ( 1 + a l "+" a f — 0C2 — <
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bosonic unconstrained supercurrent with dimension 1 and vanishing w(l) charge by
applying the general procedure of the hamiltonian reduction to iV=2 $/(3|2)(1) affine
superalgebra.

In the next subsections, we will present only the basic results and make some
comments without detailed explanations, because most of technical points are a
direct generalization of those expounded in Sect. 4 on the simpler example of
N=2sl(2\\il\

5.1. N = 2 Wi SCA. In order to understand the reduction scheme in the case under
consideration, we take as a first example N=2 W?> SCA [32] and study how it is
reproduced in our method.

The algebra N=2 W3 has one extra spin 2 bosonic supercurrent besides the
spin 1 N = 2 stress tensor. This counting suggests that we should impose ten con-
straints which is the "maximal" set. The point is that requiring the constraints to be
first-class restricts a possible number of such constraints. It can be easily checked
that this requirement cannot be met if the number of constraints exceeds ten.

For the choice

0LX = - 1 , aT = 2 , a2 = - 2 , OL-2 = 1 (5.2)

in Table 3, we give the list of "twisted" dimensions and w(l) charges of those
supercurrents which will be subjected to the reduction constraints and corresponding
gauge fixing conditions (we use for them, respectively, the abbreviation "constr. scs"
and "g.f. scs").

We impose the constraints on all the negative and zero dimension supercurrents
as is summarized below:

/ * 0 0 1 0 \
* * 0 * 1
* * * * * . (5.3)
* 1 0 * 0

\ * * 1 * */

As was repeatedly mentioned above, these first-class constraints generate gauge in-
variances. In the upper line of Table 3 we place the supercurrents which are sub-
jected to the above constraints and are basically the generators of these invariances
according to the general formula (3.3). The lower line collects the supercurrents

Table 3.

dim

constr. scs

g.f. scs

dim

1

/f3

<=^34

2
0

0
-1

/ &

1
0

0
-1

/S

/fa
3

-1

1

~2

/f2

/2*4

1
0

1
- \

/£

1
0

1

-i
/S
/£
3

-1

0
0

<

I

1

0
0

Jff

1

1

0
0

/£

1

-1

0
0

1

- 1



220 C. Ahn, E. Ivanov, A. Sorin

which are gauged away by these invariances. For example, ^34 can be gauged
away using the gauge transformation generated by constraint /13 {/si by /15 and
so on). Note that four constraints of units in (5.3) are necessary to gauge away four
dimension 1/2 supercurrents corresponding to Cartan elements.

As we see, only four supercurrents fiu fiu #4U /51 eventually survive. Substi-
tuting (5.3) into the nonlinear constraints (2.3) we find that </2i>/3i, before fixing
the gauge, are expressed as follows:

/31 =k(&- Ujfi + ^2)) Ss\ ~ /21/52 - /41/54 • (5.4)

After gauging away the unphysical degrees of freedom in accord with Table 3, we
are left with the following supercurrent matrix /mn in the highest weight gauge

/ 0

41 0 0 0 1

(5.5)

0
0

0
1

0

0
0

0
0
1

1
0

0
0
0

1

0
0
0^\ /si

Thus as an output we have two independent unconstrained supercurrents with zero
w(l) charges: a dimension 1 supercurrent /41 which is nothing but the ^ = 2 stress
tensor and a dimension 2 supercurrent /51.

We will not discuss here how to construct gauge invariant supercurrents and
which SOPEs they satisfy, because all these formulas can be reproduced via a
secondary hamiltonian reduction from N=2 W^ SCA which will be discussed in
the following subsection. Anticipating the result, the relevant set of SOPEs forms
the classical N = 2 W3 SCA [32].

5.2. N=2 W^ SCA. Let us now describe another reduction.
We wish to understand how AT=2 FF3

(2) SCA of Ref. [23] can be obtained within
our procedure. Recall that this algebra is described in N=2 superspace by the spin
1/2,2 bosonic and 1/2,2 fermionic constrained supercurrents in addition to the spin 1
bosonic unconstrained N = 2 stress tensor. To match this superfield content, we are
led to impose nine constraints on the N = 2 affine supercurrents. One could try to
proceed by relaxing one of the constraints (5.3), still with the same choice of the
splitting parameters (5.2). However, in this basis one finds no spin 2 fermionic
supercurrents required by the superfield content of N=2 W^ SCA. So we are led
to choose a,-, a,- in another way (once again, the basic motivation for this choice
is the presence of at least one spin 1 supercurrent with zero u{\) charge after
splitting)

oci = - 1 , a; = 1, a2 = - 2 , a5 = 0 . (5.6)

It turns out that this is the right choice to produce the AT = 2 wf^ SCA precisely
in the form given in [23], one of the surviving supercurrents being the correspond-
ing unconstrained N=2 stress tensor. Actually, the choices (5.2), (5.6) are closely



# = 2 Hamiltonian Reduction 221

related to each other: the relevant N=2 stress tensors differ by an improving term
containing a spin 1/2 fermiomc supercurrent. We will come back to this point later,
while discussing the secondary reduction of N = 2 W^ SCA.

Proceeding as before, we list in Table 4 the dimensions and M(1) charges of the
constrained and gauge fixed supercurrents, and in Table 5 indicate the supercurrents
surviving the whole set of the hamiltonian reduction second class constraints to be
defined below (we denote these latter supercurrents as "surv. scs").

In Table 5 and in similar tables for other cases studied in this section we adopt
the following convention: to the right from the double vertical line we place those
of the surviving supercurrents (actually the single current fix in the case at hand)
which are expressed through other ones by the remnants of the nonlinear con-
straints (2.3) after imposing the hamiltonian reduction constraints. These latter su-
percurrents themselves (they still can be constrained, e.g., be chiral) are placed on
the left.

From Table 4 we conclude that there are only three bosonic affine supercurrents
with both spin and w(l) charge equal to zero, namely, fu9 /is and ^42. So we
can put them equal to 1, while all the supercurrents with negative dimensions,
as in the previous examples, equal to zero. We also equate to zero the fermionic
supercurrent ^23 • Thus the constraints we impose are of the form

Table 4.

«(1)
dim

constr. scs

g.f. scs

dim

w(l)

0
- 1

jF

3

1

0
- 1

/S

1

0

^constr
& tun

1

~ 2

/£

i

0

/ *
*
*
*

\ *

- 1

1

0

0
*
*
1
*

0
0
*
0
*

1

/£
3

- 1

1
*
*
*
*

0 \
1
*
0
*/

0
0

/

/

1

1

0
0

is A

is <

i
1

0
0

Jti

1

1

(5.7)

0
0

•^42

1

Table 5.

surv. scs

dim

«(i)

1

- 1
5
-1

jB

1
0

2
0

2
0

3

- 1
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By plugging (5.7) into the nonlinear constraints (2.3), we can solve one of them
for #2\ and express the latter in terms of ^41,

/21=' (5.8)

As the next step we should fix gauges. Gauge fixing procedure can be performed
using the same arguments as in the previous examples and we eventually arrive at
the following ™

argume

/ 0 0

k®/AX 3V-2

/31 0

/ « 1
V /si 0

0 1 0 \

0 0 1
0 0 0
0 0 0

/ a 0

(5.9)

Now we are ready to construct five independent gauge invariant supercurrents by
exploiting the general procedure expounded in Sect. 3. It is a matter of lengthy but
straightforward computation to explicitly find them and to verify that they satisfy
the condition (3.5). In view of the complexity of the relevant formulas, we do not
present them here.

It is also direct to calculate the star SOPEs between these supercurrents using
the rule (3.9) and the relations (2.1). The N=2 stress tensor is given by

(5.10)

where the second equality is fulfilled on the shell of constraints. It has the central
charge -2k and coincides with ^ , 9 (5.1), (5.6) on the constraints shell. After the
redefinitions

/ S 3 £3/31, (5.11)

all the supercurrents except for 3^\ are superprimary with respect to the stress
tensor (5.10) (see Eq. (2.8)), and have the spins 1/2,1/2,2 and 2, respectively,
while 2^1 is quasi-superprimary (from now on, we omit the index "•", keeping in
mind that all such SOPEs are computed according to the rule (3.9))

z '2 Zl2 Zn

(5.12)

The rest of SOPEs coincides with those quoted in [23] and for this reason we
do not give them here.

So we end up with the following five N = 2 supercurrents: a general spin 1 !T%

spin 1/2 antichiral fermionic Jfj an(^ bosonic ^53, constrained spin 2 fermionic ^31
and bosonic #s\ ones.
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We also write down the constraints which stem from the original nonlinear
constraints on the affine supercurrents,

/ 3 i = 0 , (&- i j f ^ / s i - -[/31/53 = 0 . (5.13)

By construction, all the above SOPEs are compatible with these constraints. These
SOPEs and constraints constitute the superfield description of TV=2 W^ superal-
gebra given in [23].

As shown in [23], we can obtain N=2 W3 SCA from N=2 JF3
(2) SCA by means

of secondary hamiltonian reduction [33] (by the primary hamiltonian reduction we
mean the one which proceeds directly from the affine (super)algebra).

With respect to the new stress tensor «^ew,

(5.14)

#S3 has vanishing spin and w(l) charge. Then we can put nonzero constraint on ^53,

/53-l=0, (5.15)

and gauge away f̂j»

^2 = 0 . (5.16)

These additional constraints are consistent with the first and second of Eqs. (5.13),
respectively. One observes that now /31 is expressed from the fourth of Eqs. (5.13)
as

/ 1 \

'si , (5.17)

after which the third of Eqs. (5.13) is satisfied identically. Then we are left with
the same J^ as in (5.5). Thus the surviving independent supercurrents are ^ e w
and ^51 and it remains to construct the appropriate gauge invariant supercurrents
and to compute their SOPEs using the rule (3.9). The dimension of J?si and its
w(l) charge with respect to «^ew are the same as in Table 5, i.e. 2 and 0, which
are characteristic of the second supercurrent of N=2 W3 SCA. According to [23],
the resulting superalgebra is precisely the N = 2 W^ SCA [32]. Of course, we could
arrive at the same SOPEs directly in the framework of the primary hamiltonian
reduction procedure described in the previous subsection.

Let us remark that « êW (5.14) exactly corresponds to the previous choice of
the splitting parameters (5.2), in the sense that the dimensions and w(l) charges of
all the supercurrents with respect to it are the same as in Subsect. 5.1. This implies
that the bases (5.6) and (5.2) are related through the shift ~ 2^^ °f ^e respective
AT=2 stress tensors. We could equally derive N = 2 W^ SCA sticking to the choice
(5.2) and relaxing one of the constraints of units (on ^53) directly in the supermatrix
(5.3). However, in the corresponding basis the N = 2 W^ supercurrents are even
not quasi-superprimary. To put this superalgebra in the standard form given in [23]
one should pass to the stress tensor & (5.10) by the relation (5.14).
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It is worth noticing that one can produce eight reduction constraints by relaxing
the constraint on ^23 in the supermatrix (5.7). Then the surviving supercurrents
have two extra supercurrents fit^/is in addition to the superfield contents of N=2
Wf^ SCA.

In the next subsection we will consider more examples of extended N =
2 conformal superalgebras obtained from AT=2 s/(3|2)(1) via N=2 superfield
hamiltonian reduction.

5.5. New Extended N—2 SCAs, From now on we will concentrate on those ex-
amples of hamiltonian reduction in N=2 superspace which generate new extended
N = 2 SCAs.

The next natural step is to consider the cases in which the number of the reduc-
tion constraints is less than nine. Let us first describe the case with five constraints
(this number is the minimal one at which the constraints can still be chosen to
be first-class). As before, the reason why we choose the specific values for split-
ting parameters as below stems from the demand that among the surviving super-
currents there is at least one bosonic supercurrent with spin 1 and w(l) charge
zero.

For the choice

a , = - l , a T = 0 , a2 = 0, a5 = 1 , (5.18)

we list the dimensions and M(1) charges of supercurrents in Tables 6 and 7.

Table 6.

K(l)

dim

constr. scs

g.f. scs

dim

- 1

~ 2

^54

/£
1
0

0

0

<

i
l

2

0

gB
<?24

/£
1

- 1

0

0

/£
$F

1

1

0

0

/£

i

- l

Table 7.

surv. scs / ^ ^ W\5 A
dim 0 0

0 - 2 - 1 - 1 1

1 1

0 0

1 1

- 2 2 - 1 - 3 1
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We can choose the appropriate constraints as follows

/* * * 1 *\

* * 0 *

225

grconstr * * * 0 *

* * * * *

\* * 1 0 *,

(5.19)

One observes that it is not a subset of constraints discussed in the previous sub-
sections, (5.3), (5.7). Further we fix the gauge according to Table 6 and quote
the surviving supercurrents in Table 7. There are three supercurrents expressible at
the expense of the remaining ones, which can be seen by substituting (5.19) into
the nonlinear constraints (2.3),

31 = - i(jf| + /si " /21/52 ,

/ 4 5 = k (S> + i * f ) / 1 5 - /1 2/25 - / B / 3 5 •

Thus we come to the following f®-

(5.20)

hi

si

0

0

42

0

/23

0

1

1

0

0

</l5

/25

/35

/

(5.21)

The supercurrents #5\>#s2<> and /15 remain unconstrained.
Once we know the gauge invariant supercurrents, it is straightforward to deduce

their algebra. The construction of these gauge invariant quantities is the crucial (and
most difficult) step of our approach. With the above choice of five constraints, it
is rather lengthy and cumbersome to find the correct ansatz for gauge invariant
supercurrents because two spin 0 supercurrents fsx^fsi are present (let us recall
that ftp are some nonlinear fimctionals of #&$ and their derivatives). As the first
step we write down /^ as a lowest order monomial in fs\9/s2^ and check whether
it satisfies the conditions (3.5), (3.8). If this is not the case, we include next order
terms in / 5 i , / s 2 , etc., until the conditions (3.5), (3.8) are satisfied.
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Finally we obtain the gauge invariant supercurrents /«/» in the following form:

/s7 = / u + 2/si - k^/sA + ̂ 2/54 + /23/52/S4 + / M / 5 2 " /s i /s3 ,

= 2/52 ~ /14/52 ,

= /21 + *^/24 + /14/21 - /2l/53

= />3 + /23/l4 - /23/S3 ,

^ = / 4 3 - *®/l3 + /is/53 ,

1 = -k^jfi + jtr2jf-2 - kje2®fu - .#2/15/54

-/is/34 + */l5^/54 + /3s/53 + /45/54 ~ *2/l'4 ,

^ = A#^t + kJ?\®fs3 + *f\#\ - /12/21 - / B ^ I / S I - /13/31/53

+/14/41 + /23/42/54 + /24/42 - /43/si + ^

- /13/32/53 - /13/42/54

+/42/S3 ~ ^

/25 = /14/25 - /l5/24 + /23-#5 - */23®/l4 + */23^/>3 ~ /23/15/54 •
(5.22)

We also construct the TV=2 stress tensor

*" = ~ ̂  t/35 + / . i + ̂ 2^1 + /15/51 - k/232/52 + / 2 5 / 5 2 ] (5.23)

with central charge 2k. The remnants of nonlinear irreducibility constraints are given
by

T = 0, ^Jf 2 = 0 ,

9 - ^ 2 ) /35 = 0, (§- ijfj) / , , + i/2,/42 = 0 ,

= 0, 0 / 2 5 - ^/23/35 = 0 . (5.24)

The above gauge invariant supercurrents form some extended N = 2 SCA, in
particular, the stress tensor (5.23) generates the standard TV=2 SCA. Here we do
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not present this superalgebra explicitly and leave its study to the future, limiting our-
selves only to some comments concerning its irreducible N= 1 supercurrent content
(see below). The reason is that it does not meet one of the criterions by which we
limited from the beginning our study in this paper. Namely, the N=2 stress tensor
(5.23) is constrained because the linear terms in (5.23) /35, /4i are constrained.
The only unconstrained bosonic supercurrent with the spin and M(1) charge appro-
priate for N = 2 stress tensor, /15, enters nonlinearly into 3~ (5.23), so Eq. (5.23)
does not imply an invertible relation between & and /15.

We would like to mention that the supercurrents

<T2, JfT (5.25)

are quasi-superprimary, and

/« , /52, /21, /23, /l5, /42, / 5

(5.26)

are superprimary with respect to 9~ (5.23).
Before going further, let us comment on the N = 1 superfield formulation of this

unusual superalgebra. Solving the constraints (5.24) through N=\ superfields like
this has been done for the constrained N = 2 affine supercurrents in Eq. (2.9); we
find that it is generated by 14 independent N=l supercurrents:

*2» * f» 7 l5> 7 l5> 7*21, 7 2 3 , 7*25, 7*35, 7*42, 7 4 1 , 7*51> 7*51> 7*52> 7*52 »

which are basically the first components in the 01 decomposition of the related N = 2
supercurrents, except for j \ 5 , j \ x , j \ 2 which are second components (the correspond-
ing AT = 2 supercurrents are unconstrained). After substituting the solution of the
constraints (5.24) into the N=l components of the stress-tensor (5.23),

^ = yi+0l3r2, (5.27)

we obtain

IT* = ~\ [735 +741 + *2*f +715751 " |/230»/52 + A) + jisjh] , (5.28)

lh2j 735 -

+ 71S/51 +715751 + ^723(^/52 +7*52) - f f A/23 " AZ/23J (^752 +752)

+ 7257*52 + (a>725 + I723735) 752] • (5.29)

We see that the iV = l stress-tensor ĉ "1 is unconstrained and elementary as it
starts with a combination of independent N=l supercurrents. On the other hand,
the supercurrent &~2 completing &~x to the whole N = 2 stress-tensor turns out to
be composite: for it one gets a kind of N=l Sugawara construction in terms of
the remaining N=\ supercurrents. This composite nature of 3~2 is just the N=l
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superfield manifestation of the above mentioned fact that the N = 2 stress-tensor is
constrained in the present case. To our knowledge, such an unusual situation was
not earlier encountered in the study of N = l superfield hamiltonian reduction [12].

Now we turn to another choice of five constraints which leads to an uncon-
strained N = 2 stress tensor. For

<ZT = 1, a 2 = 0 , = 0 (5.30)

we have the spins and w(l) charges as is given in Tables 8, 9.
With this choice of parameters, we impose the following constraints:

/ * 0 0 1 * \

^constr *

0

\ * * /

(5.31)

Then, fixing gauges according to Table 8, for surviving supercurrents we have
Table 9. In Table 9, last three supercurrents are expressed through the remaining
ones by the relations

/«=•

/ 5 4 = * i j fA /52 - /32/53

Table 8.

"(1)
dim

constr. scs

g.f. scs

dim

"(1)

1

/£
/2

54

1
0

2

0

/f3
/£
1

- 1

0

0

/£

2
- 1

0

0

<

1

1

1
1

&

0
- 2

(5.32)

Table 9.

surv. scs

dim

u(\)

ABs

0

2

aB

0

- 2

^ 3

1

-1

I

1

35

1

1

I

-1
i
2

A
1

- 2

1

2

*B

1

0

1

- 2

/ 5
F4

2
- 3

i

3

3

- 1
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The supercurrents ,/i5,^/41, and ̂ 52 are unconstrained. Then one gets the following
aDS.

0

*5
0

1

0

/ 2 3

0

1

0

0

0

/is \

/25

/35 (5.33)

/5. /52 /53

The gauge invariant supercurrents are given by the following expressions:

/52 = 2/52 - /12/54 - /14/52 ,

= /Si ~ /l3/54 -

= /35

- /43/S2

- /l5/34 - - /4S/32

J1?! -f- j f j ,

/l3/35^2 + /14/25 - /!5/24 + kf153>jg\ + /23/15/32 + /35/43

+/45JfT - k&SuAs - k&SuS* - *2 / i '4 / i5,

- ^2/32/53 - /23/32/52 + /24/52 + /34/s3 + /42/si

f52

+/23/14 -

= / 2 4

-/13/31 + /14/41 - /23/32 +

k@f34 + /31/42 - /32/41 -

-kS/n/31 - - k2/^ (5.34)
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The whole set of irreducibility constraints for surviving supercurrents is as
follows:

= 0,

/ 3 5 = 0, (9+±*2^ S23 = 0,

=0, (9-~ I f23/35 = 0 , (9- ^ 5 ) /3i = 0 ,

- i jf5) /51 + l- (/21/52 + /31/53 + /41/54) = 0 . (5.35)

The stress tensor has the following form:

<T = -I[jf2 e^ + /41 +/15/51 +/25/S2 +/35/S3 + *0/l5(*#/s2 " -#5/52)] ,

(5.36)

and possesses the central charge — 2£. On the constraints shell the Sugawara N = 2
stress tensor coincides with &~. With respect to «̂ ~, the following combinations of
supercurrents:

k2

/l5, /52, /53, /23, ^2, JT5> / 3 5 , /31, /25 " y([^,»]/l5 " /15) ,

/51 " y [», ^1/52 " y / 5 2 + ̂ ^ 2 / 5 2 + ̂ / 5 2 ^ (5.37)

are superprimary.
It is straightforward to derive the complete set of SOPEs between the above

supercurrents /otf's (5.37). The N=2 stress tensor (5.36) entering into this N = 2
SCA is unconstrained since the linear term ^41 in (5.36) is unconstrained. We do
not give here the SOPEs between the surviving supercurrents because these are very
complicated due to the presence of dimension zero supercurrents / i5 , /52 . Let us
only point out that in the present case one cannot decouple two fields of dimension
0 after passing to the component form of the superalgebra.

In the next subsection we will show that the above unpleasant features of SCA
under consideration disappear after the appropriate secondary hamiltonian reduction
of it. The resulting SCA does not contain any spin 0 supercurrents; all the involved
supercurrents are superprimary with respect to the corresponding N=2 stress tensor.
This reduction is accomplished by adding two more constraints to the set (5.31) and
so corresponds to imposing some seven constraints on the original supermatrix of
N = 2 s/(3|2)(1) affine supercurrents.

5.4. N=2 u(2\l) SCA. In this subsection we show that there exists a natural reduc-
tion of the second of extended N = 2 SCAs considered in the previous subsection,
such that it yields a N=2 extension of the w(2|l) SCA of Ref. [24].
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The u(2\l) SCA is some graded version of the w(3) KB SCA and is generated
by 16 component currents, the number of bosonic and fermionic ones being the
same. The spins of them are greater than 1/2. The details of this algebra will be
given later, the only point we wish to mention at once is that there is no standard
supersymmetry subalgebra in this SCA. Anticipating our results, the N=2 super-
symmetric extension of this SCA, N=2 w(2|l), contains four extra spin 1/2 currents:
two of them are bosonic, others fermionic. This current content immediately implies
that the number of the hamiltonian reduction constraints should be seven. One could
start directly from the N=2 ^/(3|2)(1) current algebra, i.e. make use of the primary
hamiltonian reduction procedure. However, it is simpler to deduce the same results
in an equivalent way, applying a secondary reduction to the extended N = 2 SCA
described in the end of the previous subsection.

Thus we start with the same choice of splitting parameters (5.30) and wish to
strengthen the set of constraints (5.31) by adding two more. A natural desire is to
get rid of the unwanted spin 0 supercurrents, viz. /is, /is (see Table 9). It turns
out that they both are eliminated by enforcing the constraint

/is=0. (5.38)

Then we can gauge away /si using the gauge transformation generated by this new
constraint:

/ s 2 = 0 . (5.39)

We also note that (5.38), via the relations (5.32), automatically implies

/AS = 0 . (5.40)

So the final supermatrix of constraints is given by

/ * 0 0 1 0 \

* * * * *

* * * * * . (5.41)

* 1 0 * 0

\ * * * * * /

As in previous examples, we list the constrained, gauge fixed and surviving
supercurrents in Tables 10 and 11.

After substituting (5.38), (5.39) into (5.33), the relevant /™ takes the following
form:

0

/31

/41

V / s i

0

0

1

0

0 1

/23 0

Jf2 0

0 0

/ 5 3 0

0

/ 2 5

/ 3 5

0

(5.42)
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Table 10.

11(1)
dim

constr. scs

g.f. scs

dim

1

>

1

0

"2

rF
12

iB

2
0

/fa

^34

1

- 1

0
0

+*41

*f
1

- 1

0
0

AB4

**

i

I

I

i

^43

/£
0

-2

2
0

AB5

>s
0

- 2

3
1

/5

1

- 3

Table 11.

surv. scs

dim

A
i

- i

/3
B

5

1

1

1

1

1

- 1

*B
^25

1

2

1

- 2

yF
^23

1

2

/ / ,

1

0

1

- 2

3

- 1

All the elementary supercurrents here, except for ^ i , are still subjected to the
constraints which are obtained by substituting (5.38), (5.39) into (5.35):

+ l-

= o,

= o,

= 0,

= o ,

= o ,

= 0 ,

" ^/23/35 =0, (§- \*l)Ssi ~ \S*\/Sl = 0 • (5.43)

Using the same techniques as before, we get the appropriate expressions for
gauge invariant supercurrents in terms of the original ones (forming the previous
SCA with five constraints). We do not give them explicitly. We only note that the
SOPEs between ^ appearing in the r.h.s. of these expressions can be found by
using the SOPEs of the second superalgebra presented in subsect. 5.3. The N = 2
stress tensor is given by

f35/53] (5.44)

with central charge — 2k. On the shell of constraints the Sugawara N=2 stress
tensor coincides with this stress tensor and contains linearly the supercurrent ^41,
so &~ (5.44) is unconstrained.
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Then the N=2 w(2|l) SCA (the reason why we call it this will be soon clear)
besides the general spin 1 supercurrent ^ N=2 stress tensor, contains the follow-
ing eight constrained N=2 supercurrents: spin 1/2 jf29 /si, fzs and Jf^ sP*n *
#s\i<?25>> «/23, and ^31. All these supercurrents are superprimary with respect to 3~.
After rescaling

/25 -> £ /23 -> ^ /si-7/51, (5.45)

the rest of the nonvanishing SOPEs are as follows:

Z 1 2 •

/53

012 01

z\2

2 r':

>

2 *

2 '
Jr 1 012 #12 #12

(5.46)

/3 l (Z 2 )=-

/n{Z2)=-\

= ^ 1 / 3 5 / 2 5 ,

/5l(Z2)= -

• /3S/23]

- /35/51]

<
I

/23(Z,)/25(Z2) = -
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^ 1 2 ^ 1 2 , 1 7 ^12 ^ $12 ̂ £>

- —3 k - -^k H- - 5 - ^ 2 + I2"^2

3 ^^ ^ ^ + ^ ^ +

—
Z12

^

9

Z12 *

#C

^ 2 / 3 5 ^ 2 / 5 3 + ^ J T a ^ JTj + ^ 2 ^ / 3 5 / 5 3 +

j j^^ + 9

- T7«^2^53
2 1 2 Z,2

— U/53 + 1^2/53
Z12 I k

-\9XiS33 -/A - ^1
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Ajr2 /3 5 /5 3 /53 + 1

l

/25(Z1)/3I(Z2) = - %
Zc\2 *\2

1 J> * j 012 1 ^

Zi7 k

~

-1/35/35^2/53

/25(Zi)f5\(Z2) = —3—A: - —k -f ^ -
Z Z Z3
Z12 Z12 Z12

+ \^^-2+j^/35/53
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-1 +1® f35/53 + x

^ 2 / 3 5 / 5 3 + ^

~

~

/S3)- ^ / 3 5 ^ / 5 3 J • (5.47)- i (/35

It can be checked that our algebra satisfies all the Jacobi identities. The super-
currents ^2>^2>/35>/53 form m e N = 2 w(l|l)(1) current algebra as a subalgebra
(their SOPEs form a closed set as is seen from Eq. (5.46)).

Let us show that the N = 2 W^ SCA constructed in Subsect. 5.2 using primary
hamiltonian reduction can be equally obtained via a secondary hamiltonian reduction
from the N = 2 w(2|l) SCA. The existence of such a possibility follows already from
the fact that the constraints (5.41) form a subclass of the N=2 W^2) constraints
(5.7).

With respect to the new stress tensor ^ew>

^ e w = 3- - 2®^ , • (5.48)

the spins (w(l) charges) of /2s and /23 are 0(0). In this new basis, we can add
two extra constraints such that

/25 = 1, / 2 3 = 0 , (5.49)

and, as usual, make use of the gauge freedom associated with these constraints for
gauging away two more supercurrents

*i = 0 , / 3 5 = 0 . (5.50)

Using (5.49), (5.50) one can check that (5.43) precisely reduces to (5.13) and f™
coincides with (5.9). It can be easily checked that the dimensions and w(l) charges
of the surviving supercurrents /53,^2>/5i>/3i w*m respect to « êw change and
take the same values as in Table 5. After finding gauge invariant supercurrents
which we did not write down explicitly, the reduced algebra becomes the algebra
N = 2 W™ SCA elaborated in Subsect. 5.2.

Let us analyze in some detail the component structure of the extended AT = 2
SCA constructed here.
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After solving the constraints (5.43) for the involved supercurrents we are left
with the following set of (10 + 10) currents: one Virasoro spin 2 stress tensor, two
bosonic and four fermionic spin 3/2 currents, five bosonic and four fermionic spin 1
currents, two bosonic and two fermionic spin 1/2 currents. For the time being we do
not give the precise relation of these currents to the components of supercurrents,
we only note that four spin 1/2 currents appear as the 6,0 independent parts of
fiSufsz* Mfi^i- Tte Virasoro stress tensor, the pair of fermionic spin 3/2 currents
and one bosonic spin 1 current form N = 2 SCA as a subalgebra, while the remainder
of currents are spread over N=2 multiplets.

It is not too enlightening to present the OPEs between these latter currents. For
a better understanding of what we have obtained, it is more appropriate to pass, by
means of some nonlinear invertible transformation, to another basis of the constituent
currents in which the N=2 multiplet structure becomes implicit but the spin 1/2
currents commute with all other ones and so can be factored out. The possibility
of such a factorization agrees with the general statement of Ref. [15]. Below we
give the explicit correspondence between the modified currents (commuting with the
spin 1/2 ones) and the initial supercurrents

kJ3
l =/3i\,

V =
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^2/35/53 "

7 ^ Ssi)\, (5.51)

where | means the 0,9 independent part of the corresponding supercurrents. After
decoupling spin 1/2 currents the quotient algebra includes the Virasoro stress ten-
sor T9 two bosonic and four fermionic spin 3/2 currents, respectively, G3,(j3 and
Ga,Ga, (a = 1,2), five bosonic and four fermionic spin 1 currents, respectively
Jb

a,(a9b = 1,2), J3
3 and ./3*,«/<,3, a = 1,2. Nine spin 1 currents turn out to gener-

ate the w(2|l) current algebra.5 Spin 3/2 currents transform under fundamental and
conjugate representaions of w(2|l) for upper and lower positions of indices. Their
OPEs contain a quadratic nonlinearity in the w(2|l) currents. All the currents are
primary with respect to T.

A simple inspection shows that this quotient algebra is none other than the
Z2 x Z2 graded extension of the w(2|l) current superalgebra, w(2|l) SCA [24], which
is some graded version of the w(3) KB SCA (the precise correspondence comes out
with the choice k = — K9m = 2,n = 1 in the general formulas of [24]). In contrast
to the original N = 2 algebra with the spin 1/2 currents added, the quotient algebra
does not contain the standard linear N=2 SCA as a subalgebra; respectively, the
N = 2 multiplet structure of the currents turns out to be lost. Thus we see that
adding the spin 1/2 currents to the w(2|l) SCA makes it possible to extend it to
some extended N = 2 SCA, and this is why we call the latter N = 2 u{2\\) SCA.
The relation between this SCA and its quotient by the spin 1/2 currents strongly
resembles, say, the relation between linear N = 3 SCA and nonlinear so(3) KB
SCA [15]. The essential difference consists, however, in that both N = 2 w(2|l)
SCA and its quotient are nonlinear algebras. Nonetheless, we can say that the first
algebra is still "more linear" compared to the second one, because passing to it
linearizes two of four nonlinear supersymmetries of w(2|l) SCA.

Let us also recall that in the component version of hamiltonian reduction of
5/(3|2)<!>, when we constrain both 5/(3) and sl{2) blocks, N=2 W3 or N=2 W$2)

SCAs come out. It is also known that we can obtain w(3) KB SCA by imposing
constraints only on the sl(2) block [19, 27]. In terms of component currents, w(2|l)
SCA corresponds to the reduction when constraints are placed only on the sl(3)
block of the 5 x 5 s/(3|2)(1) supermatrix of currents.

In the next subsection we show that there exists another kind of hamiltonian
reduction of N=2 s/(3|2)(1) with the same number (7) of constraints. It yields

5 We give the relations of u(m\n) current algebra in Appendix C.
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some nonlinear extended N=2 SCA which by the same reasoning as above can be
called N=2 w(3) SCA.

5.5. N=2 w(3) SCA. Using exactly the same arguments as given in the previous
subsections, we can continue our reduction procedure. We want to construct an
N=2 extension of M ( 3 ) KB SCA which has 16 component currents: that is, 10
bosonic currents and 6 fermionic ones. The minimal way to equalize the number
of bosonic and fermionic currents is to add 4 extra fermionic currents. This implies
that the number of the relevant reduction constraints should again be equal to 7.

We choose

a1 = l , < x f = 0 , a 2 = 0 , a f = - l , (5.52)

and list the dimensions and w(l) charges of supercurrents in Tables 12 and 13.
We impose the following reduction constraints

(5.53)

These constraints are a subset of those we imposed in the N=2 W^ case. This
implies, by the way, that we can produce N=2 wf^ (or N=2 W3) SCA by sec-
ondary hamiltonian reduction starting with these seven constraints and imposing two
(three) more constraints. As usual, the gauge fixing procedure goes in accord with
Table 12 and, as the result, we are left with the set of surviving currents indicated
in Table 13.

Table 12.

^rconstr

/ *

*

*

\ *

0
*
*
1
*

*
0
*
0
*

*
*
*
*
*

1
*
0
*)

dim

constr. scs

g.f. scs

dim

1

~~5

^ 4 5

/£
1

0

0

0

/£

1

- 1

- 2

0

/S

^ 3 2

1

1

0

0

/£

\
1

2

0

A
*B

0

- 2

- 1
1

/£

/£
0

2

3
1

1

- 3

Table 13.

surv. scs fy^

dim \ \ \ \ 1 1 1 1 1

1 - 1 1 - 1 0 2 2 - 2 - 2

3

- 1
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Using the nonlinear irreducibility constraints, we may express ^54 through the
other supercurrents

/ 5 2 - /32/S3 (5.54)

and finally arrive at the following

/ 0 0 / I 3

0 Jf5 + Jf 1 0

/31 0 0

0 1 0

V/51 /52 /53

The remnants of the irreducibility constraints read

= 0, ^ 2 = 0 -

0

/34

0
1

0

0
(5.55)

f34 = 0,

ri4 - ^ = 0, = 0 . (5.56)

The computation of gauge invariant supercurrents is not very hard due to the
absence of dimension 0 supercurrents among the surviving currents. The uncon-
strained N=2 stress tensor is given by

(5.57)

with central charge 2k. All the supercurrents are superprimary with respect to 3~.
After rescaling

1 1 1

we can write down the remaining SOPEs in the following form:

, (5.58)

—
Z\2
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—

- —
Z\2

k , 1 , 1̂2
22—o H

zf2 2 Z12

241

(5.59)

1

/34(Z2) = -

/l4(Z2)

/34(Z2)

I /53(Z2) 2/51 + /31/53],

/l4(Z,)/34(Z2) = _

l
7k'
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,2 z,2

J_ —
Z12 K

—
Z12 + —

+-

+-L

4 ^
z 1 2 z 1 2

+ | + — f̂ "̂ + r
L *

Z12

(5.60)
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Let us summarize the AT = 2 w(3) SCA. It contains the unconstrained spin 1
N = 2 stress tensor &~9 the spin 1/2 chiral and anti-chiral supercurernts Jt\ and
2tf^ the spin 1/2 supercurrents ^13 and ^31 subjected to the nonlinear chiral-
ity constraints, the spin 1 anti-chiral supercurrent ^53 and the spin 1 constrained
supercurrents </i4,</si,^34. All these supercurrents are bosonic (fermionic) for in-
teger (half-integer) spin. The supercurrents «^i,^2></i3></3i possess a closed set of
SOPEs (see Eqs. (5.59)) and form the N=2 w(2) = w(2|0) current subalgebra.

We would like to note that in [28] an N=l superfield extension of w(3) KB
SCA has been found. The field content of both N= 1 w(3) SCA of Ref. [28] and our
superalgebra is the same (modulo different choices of the basis for the constituent
currents), but the novel point is that we have succeeded in arranging the relevant
currents into N=2 supermultiplets (by putting them into properly constrained TV = 2
supercurrents) and thereby revealed N = 2 supersymmetry of this superlagebra which
was hidden in the formulation of Ref. [28].

Let us now consider a secondary Hamiltonian reduction of N = 2 w(3) SCA to
N = 2 fF3

(2) SCA. It goes as follows. With respect to the new stress tensor «^ew,

^;ew = gr - 2Qjjex - ®je-2, (5.61)

the supercurrent </i4 has zero spin and M(1) charge, while the spin and w(l) charge
of ,/i3 are equal, respectively, to —1/2 and — 1. Thus we can impose two first-class
constraints,

/ i 4 = 1, / i 3 = 0 . (5.62)

Gauge fixing procedure for either constraints can be done as usual. So we fix the
gauge by

^ i = 0 , / 3 4 = 0 . (5.63)

Using (5.62), (5.63) we see that (5.56) is reduced to (5.13). The dimensions and
w(l) charges of the surviving supercurrents .fzu^^/su/si with respect to ^ e w
coincide with those in Table 5.

Let us come back to a discussion of N = 2 w(3) SCA. A simple inspection of
its current content shows that there are four spin 1/2 currents in it besides the set
of 16 currents with higher spins. As in the case of N=2 w(2|l) SCA, they can be
factored out by passing to a new basis where they (anti)commute with the remainder
of the currents. After decoupling of these spin 1/2 currents our N = 2 w(3) SCA
reproduces w(3) KB SCA [13, 14].

Let us recall the current content of w(3) KB SCA. It is generated by 16 currents:
Virasoro stress tensor TKB, six spin 3/2 currents G^ and GQKB, and nine spin 1
currents forming the w(3) affine current algebra, namely, the t/(l) current HKB and
eight su(3) currents J 6 ^B ^ ^ z e r o trace 04*s = 0)- Indices a,b are running from
1 to 3 and correspond to the fundamental 3 and its conjugate 3 representations of
su(3) (for upper and lower positions, respectively).

Below we give the precise correspondence between these M(3) KB SCA currents
and components of the original set of N=2 u(3) SCA supercurrents
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\HKB~J\KB =

-kJ\,KB =

-kJl
3KB = /34I,

TKB = (~ Tj +Sl3/3i - /i3/3',])

(5.64)

The OPEs of these currents are a particular case of OPEs of u{m\n) SCA given in
Appendix C, Eqs. (C.I), with the following correspondence:

HKB=Ja
a

(5.65)

and /w = 3, « = 0.
It is worth noticing that Gj^, G\,KB are related to the two fermionic components

of the linear N=2 superconformal stress tensor, ^~, through nonlinear transforma-
tions. So, two of six supersymmetries of M(3) KB SCA are linearized by passing to
N = 2 M(3) SCA(viz., by adding four spin 1/2 fermionic currents), but four of them
remain nonlinear.
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6. Conclusion and Outlook

In this paper we constructed N=2 sl(n \n — 1)(1) current superalgebras and
developed a general scheme of classical hamiltonian reduction in AT = 2 superspace.
We applied it to the N — 2 extension of the affine superalgebra .y/(3|2)(1). As the
main result, we deduced some new extensions of N=2 SCA, N=2 w(2|l) and
N=2 w(3) SCAs. Within our scheme, these two new algebras turn out to be more
fundamental than the previously explored N=2 wf"\ N=2 W3 SCAs in the sense
that the latter can be generated by secondary hamiltonian reductions from the former.
The following diagram depicts basic points of our reduction procedure:

N = 2 w(2|l) SCA N = 2 w(3) SCA

\ /

N = 2 W\2) SCA

I
N = 2 W3 SCA

There are several problems to be worked out and questions which at present are
open.

Quantizing W algebras associated with arbitray embeddings of sl{2) into (super)
algebras has been studied in [34]. These results were extended to # = 1 affine Lie
superalgebras in superspace formalism [35]. It is interesting to see whether the quan-
tization of our superconformal algebras can be carried out in the N = 2 superfield
formalism.

It would be also interesting to study how N = 2 W4 [36], and N = 2 extensions
(yet to be constructed) of some other reductions of sl(4) could come out in the
framework of hamiltonian reduction applied to the AT = 2 s/(4|3)(1) superalgebra.

There exist some other superalgebras which have a completely fermionic simple
root system and admit osp(l\2) principal embedding: osp(2n ± l\2n),osp(2n\2n),
osp(2n + 2\2n) n ^ 1 and Z>(2,l;a) a + 0 , - 1 [37]. It is natural to apply our gen-
eral procedure to these superalgebras and see whether they admit N = 2 superfield
extensions.

It is also rather straightforward to construct free superfield realizations for N = 2
«(2|1) and N = 2 w(3) SCAs. An interesting related problem is to understand how
these latter algebras reappear in the N = 2 superfield Toda and WZNW setting.6

It is a rather exciting task to extend the techniques developed here to the N =
4 case, and, as a first step, to regain "small" N=4 SCA within the hamiltonian
reduction framework in a manifestly supersymmetric N=4 superfield fashion.
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Appendix A: Notations for s/(2|l) Superalgebra

The generators of the .s7(2|l) superalgebra in the complex basis introduced in Sect. 2
for the fundamental representation are given by

*, = I i o o
0 0 0

(A.1)
0 1 0 "

where Cartan generators ^> h together with t\,t\ form the bosonic subalgebra sl{2) 0
w(l), while the generators h9t^tA,t^ are fermionic roots. In this basis the structure
constants of s/(2|l) are

/'a,.

A.
A i

A,4

A,3

= -i,

= i,

= -i,

= -i,

= i,

Ai = i.

A 3 = -i

A* = L

/2(3 = -

• / 2,4 - X»

A,3 = "

I- A,3 =

As =».

i. As

A , 4 =

1 . A 4

A , 4 = i

= 1

- 1

= 1

J (A.2)

and nonzero elements of the Killing metric are given by

9\\ = -022 = ^33 = ^44 = l ' ( A - 3 )

The explicit relations between affine supercurrents ^ , ^ in this basis and the entries
Jmn of the s7(2|l) superlagebra valued affine supercurrent introduced in Sect. 3 are
as follows:

/3=/l3, /4

(A.4)
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We choose four Cartan generators /i,^,/2^2 of the 5/(312) superalgebra in the fun-
damental representation in the following form:

h =

/ 0 0 0 0 0 \

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0y

/ 0 0 0 0 0 \

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

(\ 0 0 0 0>

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

(0 0 0 0 0y

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

(B.I)

Each of the remaining 10 unbarred generators ta9 a = 3,4, . . . , 12 is represented
by a 5 x 5 supermatrix with the only non-zero entry 1 on the intersection of the
m* line and /1th row (m = l,2,3,4,w > m). The barred generators ta have their
nonzero entries 1 in the bottom triangular part. Using the explicit form of the .s/(3|2)
generators we can find their (anti Commutators, taking into account their statistics
(the generators with non-zero entries inside the diagonal 3 x 3 and 2 x 2 blocks are
bosonic, all others are fermionic). In the complex basis, they satisfy the following
graded commutators:

[ta, tb} = Fc
abtC9 ' « , t h } = [ta, t-b} = Fc

ahtc + F'caht-C . (B .2 )

From this we can read off all the structure constants F^ which are 1 or —1 (re-
member that f0^ = ( - O ^ + ^ F ^ ) . The Killing metric gah is given by Str(tat-b\
where we take the usual convention for supertrace. Just as an example, we write
down nonzero elements of gab for the subset (B.I),

- 0 i i =012 = -^22 = (B.3)

Appendix C: u(m\n) SCAs [24] in Terms of Currents

This algebra includes the Virasoro stress tensor T, In spin 3/2 bosonic cur-
rents, Ga

9Ga9 2m spin 3/2 fermionic currents, Gb
9 Gb, a = m + l , m + 2, . . . ,m + n,

b = 1,2,...,m, (ml + n1) spin 1 bosonic currents, Jc
d, c,d = 1,2,...,m, Jep e =

m + l,m + 2,...9m + n, f = n + l9n + 2,...9m + n, and 2mn spin 1 fermionic ones,
•7^, J'y, g = m+ l,/w + 2,...,m + H, h = l,2,...,/i, / = n + 1,H + 2 , . . . , W + /I, j =
l,2,...,m. The total set of (m -h n)2 spin 1 currents forms the u(m\n) current alge-
bra. Spin 3/2 currents transform under fundamental and conjugate representaions of
u(m\n)9 for upper and lower positions of the indices, respectively.
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These currents satisify the following OPEs:

T(z)Ga(w) =

T(z)Ga(w) =

\G + •r-^—.G ,
(z — wy- 2 (z — w)

l—6'a ,w)(z — wy 2 (z — w)

_(_\}(d.+l)(dd+\)Hdb+\)(dc+l)+(dd+\)(db+\)Hdd+\)(dc+\)ftajc j

Ja
b(z)Gc(w) = _

Z — W)

Ga(z)Gb(w) = -^*wy(

(Z-HO

K

X ( ( —J

Appendix D: A Different Realization of sl(n\n — 1)

We can realize the superalgebra sl(n\n — 1) in a different, though equivalent way
by the (2n — 1) x (2n — 1) supermatrix whose entries ^f are related to those ^ /
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in the standard realization according to the following rule [5]:

fc=2£-l, 7 = 2/ - 1 i f l ^ J f c , / ^ / ! ,

k=2(k-n), l=2(l-n) if n <k, I ^ 2n-I . (D.I)

This parametrization corresponds to choosing the system of purely fermionic simple
roots in sl(n\n — 1). It is very convenient when studying embeddings of ,s/(2|l)
into sl(n\n — 1): the former is identified with proper 3 x 3 blocks in the sl(n\n — 1)
supermatrix.7

Using this convention, the set of hamiltonian reduction constraints we dealt with
in the sl{2\\) case can be rewritten in the following suggestive way:

/ * 0 1 \ / * 1 0\
N = 2SCA: / ~ n s t I = | * * * (4.4) =• * * 1 I . (D.2)

V* i */ V* * */
This picture shows that the constraints are concentrated in the upper triangular part
of the supercurrent matrix, and this is true as well for the sl(3\2) constraints except
for (5.19). We first present the matrices of constraints for the cases of N=2 W3,
N=2 W^\ N=2

N=2Wy.

N=2u{2\\):

and AT=2 w(3) SCAs:

/ * 0 0 1 0 \
* * 0 * 1
* * * * * (5.3) =

* 1 0 * 0
\* * 1 * */

/* 0 0 1 0\
0 * 1
* * *

* 1 0 * 0
\* * * * */

/* 0 0 1 0\
* * * * *
* * * * *
* 1 0 * 0

\ * * * * * /

(5.7):

/ * 1 0 0 0\
* * 1 0 0
* * * 1 0 , (D.3)
* * * * 1

\ * * * * * /

/ * 1 0 0 0\
* * 1 0 0
* * * 1 0 , (D.4)

* * * * *

\ * * * * * /
/ * 1 0 0 0 \

* * 1 0 0
(5.41) => * * * * *

* * * * *
\ * * * * * /

/ * 0

N=2u(3):

o\
0

* 1 0 * 0
\* * * * * /

(5.53):

/ * * 0 0 * \
* * 1 0 0
* * * 1 0
* * * * *

\* * * * * /

(D.5)

(D.6)

7 We are grateful to F. Delduc for explaining us the merits of this realization.
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The supermatrices of constraints for two "noncanonical" cases described in
Subsect. 5.3, respectively with the constrained N = 2 stress tensor and/or spin 0
supercurrents present, are given by

0-constr __

/ * * * 1 * \
* * * 0 *
* * * 0 *
* * * * *

\* * i o *

(5.19):

/ * 1 * * * \
* * * * *

* 0 * * *

* 0 * * 1

* o * * * /

(D.7)

^constr =

/ * 0 0 1 * \

* * * * *

* * * * *

* 1 0 * *
\ * * * * * /

(5.31)

/ * 1 0 * 0\
* * 1 * 0

* * * * *

* * * * *
\ * * * * * /

(D.8)

These pictures clearly demonstrate the relations between different reductions in
accord with the diagram of Sect. 6. Also it is seen from them that it is natural
to treat all the considered cases in the language of sl{2\\) embeddings. The case
of N = 2 W3 corresponds to the principal embedding of ,s/(2|l) into ^/(3|2) while
the N = 2 w(2|l) and N = 2 «(3) ones to two inequivalent non-principal embed-
dings. It would be interesting to understand from an analogous point of view the
cases (D.4), (D.7), (D.8). It seems that in this way one could explain some pe-
culiar features of them (lacking the superprimary basis in the N=2 W^ case,
the presence of the constrained Af=2 stress tensor and/or spin 0 supercurrents
in the two remaining cases). Note that the complete classification of sl{2\\) em-
beddings, at the component level and in the string theory context, is undertaken
in [39].
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