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Abstract: We prove that the solution of the spatially homogeneous Boltzmann equa-
tion is bounded pointwise from below by a Maxwellian, i.e. a function of the form
c\ exp(-C2t;2). This holds for any initial data with bounded mass, energy and en-
tropy, and for any positive time t ^ to. The constants, c\9 and Q , depend on the
mass, energy and entropy of the initial data, and on to > 0 only.

A similar result is obtained for the Kac caricature of the Boltzmann equation,
where the proof is easier.

1. Introduction

We consider the spatially homogeneous Boltzmann equation,

(1.1)

where f=f(v9t\ v e R3 , is a non-negative function which gives the velocity dis-
tribution of a (spatially homogeneous) dilute gas. The bilinear operator Q is the
so-called collision operator. It is given by

Q(f,9)(v) = JUfWWi)- f(v)g(vi))B(\v - t>,|,0)<Wt,, , (1.2)
where i/ and v[ are the velocities after the collision of two particles which had the
velocities v and V\ before the collision. The velocities before and after a collision
are related by

v1 = v + [(v — v\) • co]co,

v\ =v\ — [(v — v\) • (o]a>.

The collision operator Q has the form (1.2) for all monatomic gases. The exact
form of the interaction between the particles is given by the collision kernel, B. In
this paper we deal only with the so-called hard potentials with an angular cut-off.
In this case,

- v l \ P , (1.3)
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with 0 :g fi ^ 1, and / 0 h(O)dQ < oo; elastic spheres are modelled by /? = 1, and
h{9) = cos0. The cut-off potentials simplify the mathematical treatment of the equa-
tion because they make it possible to write the collision operator as the difference
of two positive terms, Q+(f,f) and Q~(f,f) = fLf, which are defined as the
terms containing the velocities after and before a collision respectively; these are
known as the gain term and the loss term.

The mathematical theory for the space independent Boltzmann equation is by
now rather complete. It is known that the equation is well posed, and that the
unique solution conserves mass, momentum and energy:

ff{v9t)<l>idv= f MvWidv.
R 3 R3

Here </>o = 1, <t>t = v\ i = 1,2,3, (i?1 are the components of i?), and fa = \v\2. Since
mass is conserved, there is no loss of generality in assuming that this is normalized
to one.

Moreover, the entropy is a decreasing function of time:

f f(v,t)\ogf(v9t)dv ^ J Mv)\ogf0(v)dv.
R3 R3

The entropy is minimized by the so-called Maxwellians, which are functions of the
form a exp(—(v — b)2/c); these are the only equilibrium solutions, and the solutions
of (1.1) converge strongly to the unique Maxwellian which has the same mass, mo-
mentum and energy as the initial data /<>. Initial data for which all these quantities
are bounded are said to satisfy the natural bounds. For a more general introduc-
tion to the physical background as well as to the mathematical theory, we refer
to [Ce].

The first mathematically rigorous results dealing with the Boltzmann equation are
due to Carleman ([Cal,Ca2]). He considered a gas of elastic spheres, and proved
that the above properties hold, under the additional condition that the initial data be
Holder continuous, and satisfy a moment condition,

f fo(v)\v\6 dv < oo .
R3

In the course of the proof he also proved that the solutions must be bounded
from below by exponential functions, c exp(—|tf|2+e), with e > 0 arbitrarily small.
Lower bounds of this type are essential for determining the rate of entropy
dissipation,

^ / f(v9t)logf(v,t)dv = / 0 ( / , / ) ( 0 ) log / (M)<fc .
at R3 R3

They are used by Carleman for this purpose, and more recently Carlen and Carvalho
(see e.g. [C-C]) have made a detailed study of the entropy production rate, in
which also lower bounds play an important role. A different approach was taken by
Desvillettes [Dl], and later by Wennberg [W], but also in those papers, the solutions
were assumed to be bounded pointwise from below.

In this paper we prove that the result of Carleman holds for all realistic initial
data (i.e. with bounded mass energy and entropy), and that the exponential can be
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replaced by a Maxwellian (s = 0). This improvement may seem a minor one, but in
fact it has a direct application for example in the papers by Carlen and Carvalho. In
addition, it is likely that precise estimates for the spatially homogeneous Boltzmann
equation may be useful in obtaining results for the more interesting case of the full,
space dependent equation.

We begin by stating the main result, which will be proved in Sect. 3.

Theorem 1.1. Let fo(v) ^ 0 be given with J fo(v)(l + |t?|2 + logfo(v))dv <oo,
and let f(v,t) be the solution of the Boltzmann equation, (1.1), for hard potentials,
and with fo(v) as initial data. Then, for any positive time, f(v,t) is bounded point-
wise from below by a Maxwellian,

The constants C\ and Ci depend on the mass, energy and entropy of the initial
data and on t > 0, as well as on the collision kernel. In general the constants
improve as t increases: C\ and Ci can be chosen uniformly for all t > to, where
to is any positive time.

Apart from the estimates by Carleman, we are not aware of other precise point-
wise lower bounds for the Boltzmann equation. However, Bobylev has obtained an
estimate of the average behaviour at large velocities, of isotropic solutions in the
case of Maxwellian molecules (cf. [Bo]). In a previous paper [P-W], the estimate of
Carleman was obtained for general initial data as in (1.1), though only for
Maxwellian molecules (j? = 0 in (1.3)).

The proof of Theorem 1.1 consists of two main parts. First we prove that at any
positive time, t$, there is a ball, \v — V\<3Q, such that in this ball, f(v,to) > £o- It
is important that &o and <5o depend only on the same quantities as do the constants
in the theorem. Next we prove that once this estimate has been established, it
follows that at t\ > to, / ( M o ) > £i for \v — v | < S\, where <5i > So. The proof is
then completed by an iteration procedure.

Section 2 is devoted to the Kac equation (see [K]), which is a model of the
Boltzmann equation. The Kac equation can be written as (1.1), but in this case
v € R, and the lower dimension makes the collision operator much simpler than
the real one. In spite of this simplification, the equation is in many ways similar
to the Boltzmann equation, and the main result in Sect. 2 is a direct analogue of
Theorem 1.1, and the spirit of the proof is the same. However, it is slightly less
complicated, and we hope that by including it in the paper, the ideas will become
more clear. Of course, the Kac equation is interesting in its own right, and it has
been studied in several papers recently (see [D2,G-T,G-P]), which gives still an-
other motivation for including a separate section on this matter.

2. The Kac Equation

The Kac equation is a simplified Boltzmann-like equation, which describes the evo-
lution of a one-dimensional gas, in which the collision operator Q(f,f), is given
by

7 / ^(/(f ')/(^') - f(v)f(w))d0dw. (2.1)
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All possible collisions are now two-dimensional rotations:

t/ = v cos 0 — w sin 0,

w' = v sin 0 + w cos 0,

which preserve the energy, but not the momentum and, in the original form intro-
duced by Kac [K], are considered equiprobable. Although it is possible to generalize
the collision operator by replacing the constant factor l/2n by a rate function de-
pending on 0 (as in the references given above), we will consider only the simpler
case (2.1), since, before passing to the Boltzmann equation, we want to explain our
method for constructing lower bounds in an easier, but quite reasonable case. In
fact the Kac equation has many properties in common with the usual Boltzmann
equation: the solutions conserve mass, fRf(v,t)dv, and energy, fRf(v,t)v2dv and
the corresponding //-functional, H(f) = fR f(v) log f(v)dv decreases in time. Mo-
mentum, however, is conserved only if it vanishes. Thus the following are natural
conditions for the initial data

Jfo(v)dv = 1, Jvfo(v)dv = 0, fv2f0(v)dv = E<oo. (2.2)
R R R

We also require that the entropy is bounded initially; in fact, in this section we
make the stronger assumption that the Linnik functional is bounded. The Linnik
functional is defined as

[£^v = L0<oo. (2.3)

This functional is decreasing for solutions of the Kac equation, and it is minimized
by the Maxwellians, just like the usual entropy. It is convenient to use here because
it gives estimates of the regularity of the solutions.

With the initial data normalized as in (2.2) the Kac equation takes the form

^=Q+(f,f)(v)-f(v)9 (2.4)

(the gain term Q+ is defined in the obvious way by (2.1)) and the solution can be
represented as a so-called Wild sum (cf. eg. [M]):

e-' g/(M) = e-'Mv) + e-' g (1 - e
*=i

The terms /„ are computed recursively from the initial data,

fn+x(v) = - X T £ QHfkJn-kW . (2.5)
n + 1 *=o

We begin by giving some properties of the terms of the Wild sum, and of the
solutions of the Kac equation
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Lemma 2.1. If /o satisfies conditions (2.2), (2.3), then every term of the Wild
sum satisfies the same conditions, i.e.

Jfn(v)dv=l, Jv2fn(v)dv = E, L{fn) g L(f0). (2.6)
IR R

Moreover

IIZ-lloo ^ [i(/«)] ' / 2 •

Proof. See for example [M] and [G-T]. D

A direct consequence of the boundedness of L{ /o), is the following Holder
estimate.

Lemma 2.2. If L(fo) < oo,

|/(»i) - /(»2)| ^ W/)]3 / 4ki - f2|1/2 • (2.7)

Proof.

>-%r/2. •
Next we prove that the solution / is strictly positive in an interval near the

origin.

Lemma 2.3. If f and g satisfy conditions (2.6) and (2.7) then Q+(fg) satisfies

( 2 8 )

Moreover, if f{v,t) is the solution of(2A) with initial data fo(v), and iffo satisfies
(2.2,2.3), then for any positive time to,

f(v,t0) > e-\\ - < r * ) — i = , for \v\ < (CEMfo)y
l . (2.9)

Proof By a change of variables,

p = y/v2 -f w2 = yu'2 H- wf2 ,

vr = p cos <p, w' = p sin ̂  ,
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the gain term Q+ becomes

OO Jt Q

Q+(fg)(v)=f I f(p cos <p)g(p sin (p)--===dq> dp
\v\ -* Vr - v2

7
n - o

Here % is the characteristic function of the set {t/2 -f- w72 > p2}. On evaluating the
integral in (2.10) at v = 0, we obtain

= l 7 J f ( v ' ^
n

= ^TT / 7 f(v'
V27ZK -oo -oo

\2nR
f 7 fWM^')^'dw'

1 7 / f(v')g(w')dv' dw'
y/lnR -oo \W'\>R

*2

The inequality (2.8) follows by taking /? ^ \/dE and using the Holder estimate;
CE,L(/0) ~ ( I O S T U 2 ^ ^ 2 ) " 1 . Finally, (2.9) can be obtained by keeping only one term
in the Wild sum,

/(M) > e'\\ - e-'M+ifafoKv) . •

The following lemma provides an estimate of the support of Q+(f,f) in terms
of the support of / .

Lemma 2.4. Assume that f(v) > Sofor \v\ ^ So, for some given so.So > 0. Then

for \v\ < SoV2(l - y) .

Proof First we note that, since Q+ is a positive quadratic operator, it is enough
to consider the case where / is the characteristic function of the set {\v\ ^ <5o}- An
easy computation, that will be carried out in the case of the Boltzmann equation,
shows that

0+(/,/)(<5otO = SoQ+(f0o • If (So • ))(t0 ,

and therefore it is enough to assume that f(v) = X{|i>|̂ i}« In this case Q+(f,f)(v) is
strictly positive for |t;| < \fl\ we are now concerned about the asymptotic behaviour
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near |t?| = y/l. For 1 < |t?| < >/2,

4 y/l-v2 nfl

- / /
71 0 0

151

4 ^ / 2 \
= - / arcsin I -= r - 1 J

dw

4V
- /
7C

2 \ . 8
— 1 j rfw = — arctan

) nv
4 ^

v 2 — i?2 ,
n

near \v\ = A/2, and note that the "~" could have been replaced by " ̂  ." By writing
v = y/l{\ — y), and expanding in terms of y, we find that

| V |^ - iy\/2)5/2),

and that gives the result. D

We are now ready to prove the main result concerning the Kac equation. Since
all terms in the Wild sum are positive, a rough estimate from below can be obtained
by using only one of the terms, and therefore

/(Mi) > e-'*(l-e-«y(t(fo9fo){v) > \Q+ifojo)(v) , (2.11)

if t\ < 1/3 (for example). From Lemma 2.3 we know that f(v,t0) > £0 if M < <5o>
and therefore according to Lemma 2.4,

9 for (2.12)

Iterating this gives

for \v\ < <502
2/2(l - y,)( l - y2), and after n steps,

f(v,to

(2*/2(i-n)
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for \v\ < S02
n/2(\ — y i ) - - - ( l -yn)- Good choices for tk and yk are tk = t$ and

yk = y*9 where the constants to and r0 can be chosen later. The product of the

factors tkyl/2 is (toy^2)4, where

n - l

^ = 2""1 ]T (* + 1)2"* = 2#I(2 - (2 + w)2~/l) ^ 2n+x .

Assuming that jo is small,

which is strictly positive (larger than 1/2, say, if yo is sufficiently small). The
contribution from the factors of 2 can be accounted for by modifying the constant
C that appears in (2.13). Finally we let t = t0 + Y!k=\ fc = *6 + *o('o - O/Ob - 1)>
and then

f(v,t) ^^(CSoeotfolf, for \v\

Clearly this estimate is interesting only in the interval SoCy(n-\)2^n^1^2 ^ \v\ <
SoCyn2

n/2, and therefore 2n < (%\v\/80)
2, (after replacing Cy(w_i) by 1/2), and so

f(v,t):

where

and

Let us remark that all estimates and constants have been obtained only using the
mass, the energy and the Linnik functional of the initial datum /o, so that the same
lower bound holds for all times after t. Note also that in this calculation £o = 0(*o).

To summarize, we have proven the following theorem.

Theorem 2.5. Let f be the solution of the Kac equation with initial data /o sat-
isfying conditions (2.2), (2.3). For any to there are constants C\ > 0 and Ci > 0
such that

The constants C\ and C2 depend on the initial mass, energy and Linnik functional
and on t, and they can only improve as t increases.
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3. The Boltzmann Equation

In this section the calculations from Sect. 2 are adapted for the Boltzmann equation.
There are essentially two difficulties that must be overcome. First of all, we wish
to obtain the result for all the usual collision kernels, and so there is no analogue
of the Wild sum that is useful. Instead we use the Duhamel formula to represent
the solution, and there are some additional difficulties associated with the fact that
the loss term is not bounded in this case. However, the result that will be obtained
in the end is exactly the same as the result for the Kac equation, and it is valid for
all (hard cutoff) collision kernels that have been studied in e.g. Arkeryd [Al] (and
by Di Perna and Lions in [D-L], for the spatially dependent equation).

The second problem is to obtain an analogue of Lemma 2.4. Without making
additional hypothesis on the regularity of the initial data, we cannot rely on a Holder
condition to find a ball where the solution is bounded from below by a constant;
such an estimate is needed even to start the iteration procedure.

With the notation G\\(v) — exp(— ff2 Lf(v,T)dx)9 the solution of the Boltzmann
equation can be written

f(v9t) = Mv)0o{v) + /G i ( t ; ) e + ( / ( . ,T ) , / ( . ,T ) ) ( t ; )^ .
o

A straightforward computation involving the mass, energy and entropy of / , shows
that there is a constant c, such that

and this holds uniformly in time. A similar inequality holds in the reverse direction
(cf. [A2]). Hence Gfa) ^ exp(-c(*2 - *i)(l + \vf)) = G%(v\ and with a very
crude estimate,

f(v,t) ^ qJ(»)/0(i;) + / ^ ( t7 )e + ( / ( - ,T ) , / ( . ,T ) ) ( i ; )A
0

£ fG^)Q+(GofoAfo)(v)dx. (3.1)
o

This corresponds to keeping one term of the Wild sum, as in Sect. 2. A similar
inequality comes from the analogue of considering two terms of the sum:

) (i?) A . (3.2)
/

This estimate will be needed in the proof of Lemma 3.1.
One further simplification of the inequalities (3.1) and (3.2) is possible when

it is only necessary to consider /o in a bounded set, \v\<R. Then &t
2

l{v)>
exp(—c(t2 — h)(l +/^))> ^ d then the operator Q+ can be taken as acting only
on /o, just as in the case of the Wild sum.

After these preliminary observations, we give the analogues of Lemma 2.3 and
Lemma 2.4.
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Lemma 3.1. Let /o satisfy the natural conditions. There are constants, R,8o,so,
and iJGR3, such that f(v,t) > £o,for all \v—v\< So, \v\ <R. The constants depend
on the mass, energy and entropy of the initial data, and on the kernel of the
collision operator. Moreover, EQ = O(t2) for small t.

Proof. The idea of the proof is most easily explained for Maxwellian molecules,
where the solution of the Boltzmann equation can be written as a Wild sum. The
third term of that sum is

0 + ( 0 + ( / o , / o ) , / o ) , (3.3)

multiplied by a time dependent factor. The operator Q+(*,*) is given by (1.2), as
described in the introduction, but there is an alternative formulation, due to Carleman
([Ca2]), which is also useful in many cases. Rather than parametrizing the sphere
SVfVl (the set of all possible v' which result from a collision between one particle
with velocity v and another one with velocity V\, i.e. the sphere which has WU\ as
a diagonal), one considers the set EVyV> which is the set of all v[ which could be
the post-collisional velocity of one particle, if the other post collisional velocity is
xf and one of the pre-collisional velocities is v. It is easy to see that Evy is the
plane, which contains the point v, and is perpendicular to vf — v. Carleman found
that in those terms, the gain term can be written

Q+(f,*)(•>)=//dO^^p^J ttto^dEWM, 0.4)

with dE(v[) denoting the induced Lebesgue measure on EVtV*.
Suppose now that /o is the sum of two Dirac measures, S\ and S2 at w\ and H>2.

Then (?+(/o,/o) is a unit measure concentrated on the sphere SWuW2 (see Fig. 1).
Then take / = /o and g = 2+(/o»/o) in (3.4); if v lies inside SWuW2, and t/ = w\
(or t/ = W2), then the plane EVtV> intersects SWuWl, and so the term given in (3.3)
is non-zero for all v inside the sphere. Clearly similar estimates can be obtained if
/o is the sum of two Dirac measures as above and a remaining part. But the value
of S obtained in this way, and e, depend on \w\ — H>2|, and on how big a part of
the initial data is concentrated in the two Dirac measures.

Fig. 1. Geometry for estimating the iterated gain term



Maxwellian Lower Bound for Solutions to Boltzmann Equation 155

SwjW2

Fig. 2.

*—-HUll
The cubes K\

\

1
r

and K2

In order to find uniform estimates of 5 and e (expressed in the mass, energy and
entropy of the function / ) , we shall first prove that inside a large ball |i;| < y/3R,
one can always find at least two small cubes (with side length r) separated by a
distance cr for a certain constant c, and such that these two cubes contain a part of
the mass that can be uniformly estimated from below. The proof is then concluded
by a convolution argument.

Let KR be the cube with side length 2R centered at the origin, and subdivide
this cube into (2R/r)3 cubes AT, of length r. Denote the centre of the cube Kt by £,.
If R is sufficiently large, then

jMv)dv> 1/2. (3.5)

Since the entropy is bounded, it is possible to compute a uniform upper bound on
the mass contained in each subcube, and if r is small enough,

T 4 for all/. (3.6)
4 *

This means that no set of 27 subcubes can contain more than half of the mass which
is contained in KR, and hence there are at least two subcubes, say K\ and K2, with
centres separated by at least 2y/3r, and such that

We claim that 5 = ( * i + t 2 ) / 2 and 50 = (|*i - f c l - \ /6)/(4\/2 >(2>/3 - y/6)r/
(4\/2) satisfy the statement of Lemma 3.1. To see that, let wt € Ki9 i — 1,2, and
let SWuW2 be the sphere in which the segment wuwi is a diagonal. A geometric
argument shows that the ball with centre in v and radius 2<5o lies entirely inside
SWuW2 (see Fig. 2). Next, let %j to the characteristic function of Kj, let XR be the
characteristic function of KR, and write f\ = /o#i, fi = /oX2> and fa — foXR- Then,

/

f(v,t) ^ jfe-^+^dn dxQ+(f39Q
+(fuf2))(v) . (3.7)

o o
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Here Gfa) could be replaced by a plain exponential, since all the involved func-
tions are supported in KR C {|t?| < \/3R}9 and then the ^-integrals can be evaluated
separately. For small f, the integrals in (3.7) become t2/2-At3 + 0{A2t4).

In order to simplify the estimate of the iterated gain term, we will assume that
h(6) is bounded from below by a constant ho. This does not change the statement
of the theorem, even though of course the constants are affected; however, it is
important that h(0) is bounded from below near 6 = n/4 (this is in fact essential
also in the proof of Theorem 1.1). As in the introductory discussion in this proof,
we will use the Carleman representation to evaluate the "outer" gain term, and
the usual representation for the "inner" one. In (3.4), / is replaced by fi, and g
by Q+(f\5/2), and, in order to make the notation slightly less awkward, we write
v' = w, and v[ = w. We also write fj(v) = / fj(wj)S(v - Wj)dwj (j = 1,2), and
begin by evaluating the integral over Evy. This becomes

/ /i(wi) / fi(wi) J Q+(Su

where Sj denotes the Dirac measure translated by Wj. Consider first the integral
over EVfU. Let Se denote the characteristic function of {w\dist(w,Ev,u) <e}. Then
the £yjU-integral is

\imj- J J

/
2e ̂  ̂ 3 ̂  ( f

= K-w2r2limi / !^J^-EE{W)dn. (3.8)
1 1 Z[ s->o 2eSw

J
w2 cos0(cos0)^ v }

The first of these equalities comes from the usual change of variables dw dw —>
dw dw\ and the second one is a change of variables which can be found in
Carleman; SWuW2 is the sphere which was defined earlier, and dn denotes the surface
measure on that sphere (see Fig. 1). The geometry gives estimates on the velocity
differences (as well as on the angles 6 and 0, in the case where that is necessary;
here it is not), and using also the conditions on h(6), we find that the expression
in (3.8) is bounded from below by

hi -w2f~
2h2

0 \im^- J (co&SylSe(W)dn
6—•O 2 £ c

<3Wl,w2

^ 2«|wi - w2\
p-xh\ Z 2nmm{{2Rf-\{2r)x-^)hl = C .

Finally,

Q+(f,Q+(f,f))(v) ^ C J f3(u)\u - t^-2 / /,(wi) / Mw2)dw2 dwi du
R3 R3 R3

and this, together with the estimate of the time integral, gives an estimate of eo-
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The following lemma is the analogue of Lemma 2.4 in Sect. 2.

Lemma 3.2. Suppose that there is a v, with \v\ < R, such that f(v) > e for
\v — v\< <5, then there is a constant C such that

for all v with \v — v\< <5\/2(l — y). The constant C depends only on /? and on the
function h(9).

Proof The proof is a direct computation just as in the case of Lemma 2.4. Recall
first that the operator is quadratic, positive and monotonous, and because of the
Gallilean invariance of the collision operator, there is no loss of generality in
assuming that v = 0. The Carleman representation of the gain term is useful also
for establishing the scaling property:

\u -

80
 P\U-V\2-PESOVSOU

R3

The angle 8 is unchanged, since all variables are simply rescaled. From now on in
this proof, let / be the characteristic function of the set {v; \v\ < 1}. By symmetry,
we can assume that v = (0,0,z), with 1 ;§ z < yfl. Then, using polar coordinates
for M, taking v as the origin (so that du = r2 sin a da dr), gives

/ ] d ^ { j^k dEiw)du

The integrand is non-zero only when |w| ̂  1 and |w| ̂  1, i.e. when arccos(l/z) ^

a ^ arcsin(l/z), and zcosa— v 1 — z2sin2a ^ r ^ zcosaH- y 1 — z2sin2a hold
simultaneously. By a change of variables, y = z cos a, and by replacing /*(0)(cos d)~P
with ho, we find that (see Fig. 3)

J rOdr{\-/)dy, (3.9)
/\-z2+y2

and it only remains to estimate the behaviour near z = v^2. Let x — 1 — y and write
z = \fl{\ - y). The integral over r then becomes 2^/4y - 2JC + O(y3/2\ and so the
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Fig. 3. The gain term vanishes when the ball lies inside the corner

right-hand side of (3.9) becomes (note that also x = O(y))

2y+0(y2)
87^0(1 + O(y)) 1^ + O(y3/2)) x(l + 0{y))dx

l+0(y) f X

= 8^*0(1 + &(y))(2yf2 f ( v T ^ + 0(y)) (x + (9{y))dx

15
y5/2 + O(y7/2) . •

The proof of Theorem 1.1 can now be completed by using the iteration argument
from Sect. 2. The starting point is Lemma 3.1, which provides a ball \v — v\ < SQ in
which / ( M o ) > £0- The main difference between this and the corresponding result
for the Kac equation, is that here £o = 0(/j))-

The iteration procedure itself is slightly more complicated here, mainly because
of the unbounded loss term. In the first step,

(3.10)
0 l

f(v, to + h) ^ J G?+hQ+(Glf( • ,16), G]J{ •, to))(v)dx .

At this point, we are only interested in the behaviour of / and Q+ in or near the
given ball, and so, for all relevant velocities,

GT2

With this expression inserted into (3.10), the time dependent factors can be taken
out of Q+, and the time integral can be carried out. The result of that is

/(Mo + /i) £
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and this holds for all |i; — S\ < y/l{\ — yi)<5o- In the last step, we made the as-
sumption that t\ is smaller than some given constant, and included the part of the
exponential that contains 1 + 2\v\ in C. The estimate after the second step in the
iteration in this case is (cf. Sect. 2)

/ ( M o + tx + h) ^

for \v-v\< 22/2(l - 7i)(l - y2)<5o, and after the rfi step,

/ ( M o + .•• + « • ) >

for |t;| < <502
n/2(l - y\) • • • (1 - yn\ This differs from (2.13) only in the exponential

factors at the end, and therefore the proof of Theorem 1.1 is complete once one has
checked that that product converges. And this holds with the same choice of ft and
yk as in Sect. 2 if /? < 2, which includes all relevant cases.
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