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Abstract: We consider Fermion systems on integer lattices. We establish the ex-
istence of dynamics for a class of long range interactions. The infinite volume
ground states are considered. The equivalence of the variational principle and ground
state conditions is proved for long range interactions. We also prove that any pure
translationally invariant ground state of the gauge invariant algebra is extendible to
a ground state of the full CAR algebra for the Hamiltonian with a chemical poten-
tial (equivalence of ensemble for canonical and ground canonical states at the zero
temperature).

1. Introduction

In this paper we consider lattice Fermion Hamiltonians and their ground states.
We consider the infinite volume systems directly by use of functional analytic
techniques. The main object of this paper is as follows. (1) We establish the
existence of the time evolution as the one-parameter group of automorphisms
on the algebra of observables (Heisenberg picture). (2) We show that the in-
finite volume ground state in the sense of (1.13) below is characterized via
the minimization of energy. Equation (1.13) means the positive energy repre-
sentation while the principle of minimization of energy expectation value is the
Gibbs variational principle at zero temperature. (3) Any translationally invariant
pure ground state of the gauge invariant algebra can be extended to a ground
state of the full CAR algebra for the Hamiltonian with a chemical potential
term.

The prototype of the interaction we have in mind is the spinless translationally
invariant Hamiltonian //,

H= Σ tkl4aι + ΣWιΠ"j> O 1 )
Zd3k,l A A3j

where a\a\ and n} are Fermion creation, annihilation and number operators and
WA is a real number (=coupling constant) depending on the finite subset A of Ίβ.
The translational invariance means that ttj = toi-j and that WA = WA-J- The decay
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condition we will assume is the finiteness of the following numbers:

°° (1.2)
A 30

Stronger conditions are often used in [5] and [18]. Part of the results of this article
was announced in [14].

We will consider the spinless Fermion on the integer lattice Zd. Except for
Theorem 1.5 and Proposition 4.8 the same results are valid when the Fermion field
has a finite number of components and the gauge group is a compact Lie group and
the lattice has the periodicity.

We use operator algebraic language. For details of the basic notions see [5].
Let us begin with fixing notations. Let s/ be the CAR (canonical anti-commutation
relation) algebra. s$ is the C*-algebra with unit generated by a*,ak (j\k£Zd)
satisfying

{aj9ak} = {a],a*k} = 0, {aj9a*k} = δjk\ . (1.3)

It is often useful to handle the notation of the Clifford algebra. So we introduce
and 6(y,-) via the equations,

ba+)=a*+aj, ba_) = a l ^ . (1.4)

Thus we have
ba = b*a9 {ba9bβ} = δ^pl (1.5)

for α and β in Γ = Zd x {+, - } .
Let j be a site in Zd. Let A = {αi,α2,...,αm} be a finite subset of Γ — Zd x

{ + , - } (θίk = (/jfc,fi*), * = 1,2,...,/w with lkeZd, εk = ±.) We set A+j = {(/*+
j,Sk)9 k = 1,2,..., AW}. By A 3 j we mean A 3 (y',+) or A 3 (j,—) when A C Γ

d

We fix an order for the elements of Γ. (For our purpose, any choice of order
will do.) Then for a finite subset A of Γ, A = {αi,α2,...,αm} we introduce the
ordered product,

b(A) = baιba2 bβm=llba. (1.6)
A 3oί

By A we denote a d dimensional cube and \A\ will be the total number of lattice sites
in A. The thermodynamic limit (=the infinite volume limit) is taken for sequences
of d dimensional cubes, so lim^ means that the limit is taken for the sequence of d
dimensional cubes A which converges to Zd. Needless to say, the van Hove limit
can be taken without modifying results.

Let yd be a subset of Zd. By srfA we denote the C*-subalgebra generated by
άj, ak with j,keA and stf\oc = Uμ|<oo ̂  ^° a n element of s/\oc is an operator
supported in a finite subset of Zd. By τ ; (jeZd), we denote the lattice translation
which is an automorphism of srf determined via the equations

τj(ak) = j

Let Θ be the automorphism of s$ determined by Θ(aj) = —aj for all j in Zd.
So it is easy to see that Θ2(Q) = Q for any QES/. The even part (resp. odd part)
of stf will be denoted by srf+ (resp. J / _ ),

- Q}9 s/_ - {Qes/\Θ(Q) = -Q} . (1.7)
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The (global) gauge action γe of U{\) is defined by

γθ(a*k) = e>θa*k9 yθ(ak) = e~wak

for all k in 7/. We denote the gauge invariant part of srf by

By ^ we denote the abelian C*-subalgebra of J / ^ ( 1 ) generated by all nj(jeZd).

M is isomoφhic to the set of continuous functions on {1,0} as a C*-algebra.
We now state our result on the existence of time evolution. We consider the

following translationally invariant Hamiltonian //,

H= Σ τj(h), (1.8)
j£Zd

where h is a selfadjoint element of stf+ expanded by b(A) of (1.6) as follows:

h= Σ h(A)b(A). (1.9)
A:A30

h(A) is a complex number and the above sum is taken for finite even subsets A
of Γ = Zd x { + , - } which contain (0,+) or (0 ,-) . The selfadjointness of h is
equivalent to the following identity:

h(A) = (-l

Theorem 1.1. Assume that the following is finite,

Σ MI2|/*(Λ)|<oo. (l.io)
A: A 30

Then the derivation δ defined by

i[H9Q] = iΣ [τy(A),β] O Π )

is well defined on srf\QZ and its closure generates the one-parameter group of au-
tomorphisms (χt (teR) of' jtf,

j t (1.12)

for Q in stf\oc.

The condition (1.10) is different from the conventional description for Hamilto-
nians. The statement of Theorem 1.1 is also valid for the following translationally
invariant Hamiltonian (See Theorem 2.9.):

h = Σ «W ,
X30

where X is a finite subset of Zd and Ψ(X) = Ψ{X)*esrf+ Π sύχ9

Next we present a characterization for infinite volume ground states for the
class of interactions with (1.10). Recall that the ground state is a state φ of stf
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satisfying

\<P{Q*KQ)) = <P(Q*[H,Q]) ^ 0 (1.13)

for any element Q in the domain (or core) of the generator of our time evolution at

of Theorem 1.1. A brief explanation for this definition will be given later in Sect. 3.
(See also Chapter 5 and 6 of [5].) The infinite volume ground state is characterized
by minimization of the energy per volume in the sense specified below.

Theorem 1.2. Consider the translatίonally invariant Hamίltonian H satisfying the
condition of Theorem 1.1. Let φ be a transiationally invariant state of stf. Then
the following conditions are equivalent'.

1. φ is a ground state.

2. φ minimizes the energy per volume in the sense that

φ(h) = inf ψ(h) , (1.14)

where inf is taken for all the translatίonally invariant states φ

The above theorem was proved for quantum spin models (for example,
Heisenberg models) by O. Bratteli, A. Kishimoto and Robinson in [4]. Our
Theorem 1.2 is the Fermion version of their results.

Even though the Hamiltonian is translationally invariant, the ground state can
be non-translationally invariant. In [10] C.T. Gottstein and R. Werner have shown
that the 1 dimensional ferromagnetic anisotropic Heisenberg model has infinite vol-
ume non-translationally invariant ground states. Via the Jordan Wigner transform
we obtain a Fermion Hamiltonian with infinite volume non-translationally invariant
ground states. The explicit form of the Hamiltonian is

where A is a real parameter satisfying A > 1. In Sect. 3, we will also give a charac-
terization of ground states which are not necessarily translationally invariant. (See
Theorem 3.4.)

In physics, not only ground states for srf but ground states in a fixed density of
particles are considered. Consider the finite volume Hamiltonian HA on Λ determined
via the equation,

HA = Σ hιa\aχ + Σ WΛ Π nj .
Λ3k,l ADA A3j

Set

"Λ = ^ΛΓ-
 ( U 5 )

Fix s with 0 < s < 1. For each finite volume Λ, consider SA (0 < SA < 1) and a unit
vector ξΛ in the Fock space satisfying

nAξΛ =sΛ\Λ\ξΛ (1.16)

and
(ξΛ,HΛξA) = wf(ω,HΛCθ), (1.17)
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where inf is taken among all the unit vectors ω in the Fock space with the same
density condition,

nΛω = sΛ\Λ\ω .

ξΛ is the ground state vector when the total number of particles is fixed. A typical
question of the above Fermion model is the behaviour of the ground state vectors ^
in the infinite volume limit under the condition, \imsΛ = s. So let φ be the infinite
volume limit state of the vector states associated with ξ^

(1.18)

It is easy to see that φ satisfies the ground state condition (1.13) for Q in srfu^ Π
«G4)C We propose here our definition of the (infinite volume) states with particle
density s, which substitutes for (1.16) when we handle the infinite volume states.

Definition 1.3. Let PΛ(S,S) be the projection to the eigenvectors of HA with the
eigenvalue in (s — δ,s + δ). A state φ of stfυ^ has the density s iff φ is transla-
tionally invariant and for any positive δ,

lim φ(PΛ(s,δ)) = 1 . (1.19)
ΛZd

Any ergodic ground state of s/u^ satisfying φ(nj) = s is a state with density
s in our sense. (See Proposition 4.3.) By ergodic state we mean an extremal state
in the set of translationally invariant states.

Theorem 1.4. Suppose that h of (1.9) is gauge invariant, he^u^ and that (1.10)
is valid.

1. Suppose that φ is a translationally invariant state with density s. If it is
a ground state for h and s/u(^ι\ we have

φ(h) = wfφ(h), (1.20)

where inf is taken among states φ of stfu^ with density s = (p(nj) in the sense
of Definition 1.3.

2. Conversely, let φ be a state of stfu^ with density s satisfying the condition
(1.20). Then φ is a ground state for stfu(ι\

As a corollary to this theorem we also have

Theorem 1.5. Assume the condition of Theorem 1.4. Let φ be an ergodic ground
state for h and s$υ^ with density s. Consider the gauge invariant extension φ,
of φ to srf,

φoγθ = φ, φ(Q) = φ(Q),

There exists μ such that φ is a ground state for s$ with the Hamiltonian

The rest of this paper is organized as follows. In Sect. 2, we prove Theorem 1.1
and related results. Section 3 is devoted to Theorem 1.2. In Sect. 4 we discuss the
characterization of ground states for ^\
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2. Time Evolution

The aim of this chapter is to prove Theorem 1.1 and related results which we will
use later.

Let us begin with the algebraic structure of the CAR alegbra si. As a C*-
algebra, si is simple and it is isomorphic to the infinite tensor product of the 2 by
2 complex matrix algebra M2(C). In fact siA is the algebra of 2^1 by 2^1 complex
matrices M2\Λ\(C) which is isomorphic to the tensor product of the \Λ\ copies of
M2(C). For later use, we give here the explicit form of isomorphism. As before the
elements of A are numbered , A = {j\J2 mj\Λ\}> a n d set

l-\

k=\

Γ I 2 / I Λ - Λ *(/,_). (2.1)

Then σKa} satisfies the commutation relation of Pauli matrices,

^ H ' ^ - ^ V 0 («*/*)• (2-2)
σ̂  generates M 2 MI(C). It is also known that J / + is isomorphic to J / as a C*-
algebra. Then the following lemma is obvious once we realize the above isomor-
phism of the Pauli spin algebra and the CAR algebra.

Lemma 2.1. Let A' be a (not necessarily finite) subset of Zd which includes
a finite subset A, A' D A. Let Q be an operator in S^A1 which commutes with
stf/U QR — RQ for any RES^A- Then Q is written in the following way.

Q = Q+ + Q-VA, Q±e^Λ>nAc n ^ ± , (2.3)

where Ac is the complement of A and VA is defined by

VΛ= Π ( 2 / i y - l ) . (2.4)

By s^Λ

c we will denote the commutant of stfΛ, ^A° = {Q\QR = RQ(VRestfΛ)}. Next
we introduce the variation norm following [13]. For α in Γ, da is a linear operator
on si determined via the equation,

da(Q) = l/2(baG(Q)ba - Q). (2.5)

Then it is easy to see the following relations:

8a2 = -da, daodβ^dβθda, (2.6)

θ, i f β φ α
H . (2.7)

-ba, if β = oc
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We now define ||| | | | and || | |ci via the following equations:

where | | β | | is the C*-algebra norm of Q in stf. By Cι(stf) we denote the set of all
Q with finite | | | β | | | ,

\ oo}. (2.8)

Historically, Cλ(st) and ||| ||| were introduced for classical Ising spin systems (cf.
[11]) and we defined the same objects for the quantum spin case in [13]. S. Richter
and R. Werner have investigated various properties of the (more general) variational
norm for non-commutative C*-algebras in [16]. We present here some facts on

\ and ||| | | |.

Lemma 2.2. (i) | | | β | | | =0 iff Q is a scalar, Q = c\.
\

, (2.9)

where tr is the unique normalized trace of stf.
(iii) Cι(stf) is a Banach algebra with the norm || | | c i .
(iv) j/ioc is dense in Cλ(s$) with respect to the norm || | | c i .

Proof of Lemma 2.2. (i) and (iii) are obvious, (iv) is proved in Proposition 9 of
[16]. To show (ii), consider the partial trace \xΛ on S&A determined by

. (2.10)

For the one point algebra stf^fi the partial trace is obtained via the following formula,

*{y}(β) = β + 3 α +)(β) + Su,-)(Q) + 3a+) o 3 α _ ) ( β ) . (2.11)

The above trace formula follows from (2.6) and (2.7). On the other hand, we have

and

The latter inequality implies

||3(y>+) o du,-)(Q)\\ ύ

Then

β - tr(β)l = ( t r { Λ ( β ) - tr(β)l) - da+)(Q) - 3α_)(β) - du,+) o

(2.12)

\\Q-tr(Q)\\ g | | t r { y } (β) - fr(β)||+3/2 Σ l|δ«(β)ll (2-13)
( j )Λj)
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By iterating this procedure, we have

This implies (ii). D

Next we turn to the generator of the time evolution.

Lemma 2.3. Assume that the Hamiltonian H of (1.8) {or h of (1.9)) satisfies
condition (1.10). Consider the derivation δ determined by (1.11).

δ is well-defined on Cx(srf). There exists a positive constant K such that

ύK\\\Q\\\ (2.14)

for any Q in Cι (<$/).

Proof of Lemma 2.3. For Z?α defined in (1.4), and for β in J / ± , the following can
be checked by hand:

||[*«fy,β]|| ^ 2 ( | |

Then set β± = l/2(β ± Θ(β)). It turns out

l|3«(β±)ll ^

and

ύ 2 E (||3a(βc)|| + \\δβ(Qc)\\) S m\da(Q)\\ + \\dβ(Q)\\).

Thus for 4̂ = {ot\(X2, ,0ί2A:} C Γ, we have

As a result,

Σ Σ\KΛ)\\\[b(A+j),Q]\\ g 4 E Σ|A(^-y)l Σ l|δ,(

(2.15)

In this sum, for fixed A (or |A(v4)|) and α, we have at most the cardinality \A\ oί A
for y's so (2.15) is bounded from above by 4^

Lemma 2.4. We assume that (1.10) is valid. For Q = Q* in Cx(srf) and a positive
real number λ, consider R determined by

Let D = {Dafj} be a positive infinite matrix acting on lι(Γ) defined by

ΣDabfb = 2λΣ Σ \KA)\( Σ fb) for f={fb\beΓ}el\Γ)}.
beΓ jeΓA:A+j3a \b:A+j3b )

(2.16)
Then

^ \\da(R)\\ • (2.17)
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Proof of Lemma 2 4 For a selfadjoint β, the spectrum of δ α (β) is symmetric with
respect to 0 because Z?α is a selfadjoint unitary and

baθ(da(Q))ba = - S α ( β ) .

So there exists a state φ satisfying φ(da(Q)) = | |d α (β) | | . For such a state φ, we
have

for any selfadjoint β. By differentiating this, we obtain

<P([O,3«(β)]) = 0 . (2.18)

We now return to the definition of R. Then,

3«0W,β]) = / Σ

By (2.18) we have

iλ

Σ

Σ 1̂ )1 Σ l
A:A+j3a <x:A+j3<x

^ • (2.19)

Lemma 2.5. Under the assumption (1.10), the linear operator D of Lemma 2 is
a bounded operator on lι(Γ) and its operator norm is estimated as follows:

Proof of Lemma 2.5 We begin with

ΣDab = 2λΣΣ Σ Σ \h(A)\. (2.20)
a jeΓ a A:A+j3ab:A+j3b

This summation reads as follows. For a fixed A or h(A), consider a pair (x,y) of
points in A such that x = a — j , y = b — j . As b is fixed, j satisfying y = b — j is
unique so that a is determined automatically. Thus the possibile choice for a,b,j is
at most that for (x,y) in A xA and \h(A)\ appears at most |̂ 4| x |̂ 4|. As a result
we have

* S2λΣ\KA)\\A\2 . (2.21)
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Now we can estimate the norm of D. For / = {fa} e lι(Γ),

^ Σ (ΣDab) \fl

ύMΣl\fa\=M\\f\\HΓ). D (2.22)
a

Proof of Theorem 1.1. For δ(Q) = /[//, β] and /I satisfying |-^| < 1 we show
that (1 — λδ)(Cι(stf)) contains Cι(jrf). This is sufficient for our purpose as this
implies that 1 - λδ has the dense range and the range of its closure is total so we
can use general results such as Lemma 3.1.14, Lemma 3.1.15 and Theorem 3.1.10
of [5].

To prove (1 — λδ)(Cι(s/)) contains Cx(srf) we may and do restrict our attention
to the selfadjoint part. So take R = R* G C 1 ^ ) . Consider the bounded derivation
<5(w) determined by

δ{n\Q) = i Σ [τ, (Λ),β]. (2.23)
jeZ*:\j\<n

As δ^ is a bounded generator we can find Qn determined by

Qn ~ λδίnXQn) = R .

We claim that Qn G Cι(stf). To show this we may assume that λ is positive. Then
the proof of Lemma 2.4 implies

\\da(Qn)\\-λΣab\\db(Qn)\\ £ \\da(R)\\ . (2.24)
b

D = {Dab} is a positive matrix, and (1 — λD)~λ is also a positive matrix due to
ι A;=OI 2 ^

)
the convergent Neumann expansion, (1 — λD)~ι = ΣA;=OI 2 ^ As a consequence,
Eq. (2.24) leads us to

\\UQn)\\ ύ Σ ( l - λDyx)ab\\db(R)\\ . (2.25)
b

By the assumption | ^ | < 1 we have the following:

k

mam ύ k M

Now that Qn 6 C (<sθ, we can define Rn via the equation

Qn ~ λδ(Qn) = Rn .

Then

\\R-Rn\\ ύλ Σ l|[τy (A),j2/i]||

^ 2A Σ Σ \KA)\ Σ l
| y | ^ n v4 a:A+jea

(2.26)
^n A a:A+j£a b
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The right-hand side of (2.26) is finite even for n = 0. In fact

2λΣΣ\KΛ)\ Σ EO-^r'UHWII
j A a:A+jEa b

ί 2λΣ\KA)\ Ml Σ Σ ( l - λD)-ι)ab\\db(R)\\
A aeΓ b

ί 2λΣ\KA)\\A\\\(\ -λD)-ι)f\\HΓ) < oo (2.27)
A

for fa = ||3fl(Λ)||. Thus in (2.26) if we take n to the infinite,

l i m \ \ R - R n \ \ = 0 ,
n—-> o o

which completes the proof of Theorem 1.1. D

For later use, we introduce a class of Feller semigroups. (See also [14].) First
we explain what a Feller semigroup on a C*-algebra means. Let ̂  be a C*-algebra.
A linear map E on ^ is positive if E preserves the positivity of spectrum,
E(Q*Q) ^ 0 for any β G ^ . Given a linear map E on ^ , we define a linear
map En on ^ ^ Mn{C) = Mn{^) by the equation, En = Ψ 0 1 or equivalently,
^«([β(/]) = [£(%')]> where %! ®Mn(C) is identified with ^ valued n by n matrices

Definition 2.6. A linear map E on a C* -algebra is completely positive if En is
positive for any natural number n.

For example, let d be an element of ^ and set E(Q) = d*Qd. E is completely
positive. More generally the map determined by the following equation is completely
positive if it converges:

where dj are elements of ζ€.
Completely positive maps are basic ingredients of the quantum theory of open

systems. (See [6].) Fundamental mathematical facts on completely positive maps
may be found in [15].

Definition 2.7. Let <€ be a unital C*-algebra. A strongly continuous semigroup of
unit preserving completely positive maps on <$ is called a Feller semigroup.

If ^ is the matrix algebra Mn{C), the generator L of a Feller semigroup St is
always written in the following form:

L(Q) = E(Q) - l/2{£(l),g} + i[H9Q], (2.28)

where E is a completely positive map on J*, H — H* is a selfadjoint element of #.
As this form was first discovered by G. Lindblad, it is referred to as the Lindblad
generator (cf. [12]).
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Now let us consider the translationally invariant (pre generators of Feller semi-
groups on stf determined by

UQ) = Σ Lj{Q),

Lo(Q) = E(Q) - l/2{E(l), Q} + i[h,Q], (2.29)

where E is a completely positive map and h is a selfadjoint element of j / . We
assume the following condition for the completely positive map E in (2.29):

, (2.30)

k=\

oo
E-(Q)=Σd(k,-)*Θ(Q)d(k,-), (2.31)

k=\

where d(k, + ) is an even element and d(k,—) is an odd element, d(k, + ) £ j / + ,
d(k,—) e £#-. The odd part £_ of E is studied systematically in [7].

Suppose that d(k-\-\ d(k-) and h are written in the following way:

(2.32)

(2.33)

(2.34)

where D^{A, + ) , D^(A, —) and /*04) are constants and the sums of (2.32) and (2.34)
are taken for even finite subsets of Γ (A with an even number of elements) while
the sum of (2.33) is taken for odd finite subsets.

Theorem 2.8. Consider L determined by (2.29)-(2.34). Assume that h of (2.34)
is selfadjoint and that the following sums are finite:

ΣΣ \D(A,±)\\A\2 < oo , £ \h(A)\\A\2 < oo . (2.35)
k A A

Then, L is well-defined on jrf\oc and its closure L generates the Feller semigroup St
d <on J / , 4-St(Q) = St(L(Q)). Furthermore, there exists a positive constant K such

that

\\\St{Q)\\\ Sg

for any Q in C\stf).
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This is a generalization of Theorem 1.1 and can be proved in the same manner.
The description of interactions of Hamiltonians in Theorems 1.1 and 2.8 are slightly
different from the conventional way. Given h or d(k, ± ) the coefficient h{A) and
Dk(A,±) are canonically determined. For example, set

h(A) = tr(b(A)-]h).

Then (1.9) converges in the 1? norm of the canonical trace of stf. A conventional
way for presentation h is as follows:

h= Σ ψ(χ),
XCΊJ*

where Ψ(X) G $0χ. This presentation is far from unique. We can prove results
corresponding to Theorems 1.1 and 2.8 in this presentation.

Theorem 2.9. Suppose that

h= Σ

where Ψ(X) G s/+ Π s/χ and

Σ ιm*)iιι*ι2 <oo. (2.36)
JCZ r f

Consider the derivation δ determined by (1.11). The closure of δ is the generator
of a one-parameter group of automorphisms of srf.

The only differences in our proof of Theorems 1.1 and 2.9 are the estimates
(2.15) and (2.19). If A is in s/+ Π srfx then

[A,R] = [A9R-trχ(R)].

On the other hand, if j is in X,

Q - trjr(β) = Q~ *x

so

Combined with (2.11) we have

< 2U\\ Σ(l|3y,+(β)ll + l|3y,-(β)||) . (2.37)
jex

With this estimate it is straightforward to prove Lemmas 2.4 and 2.5 in the context
of Theorem 2.9.
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3. Ground State

Let us recall the definition of a ground state for general quantum systems. Let <€ be
a C*-algebra with the unit element. Let cct be a strongly continuous one-parameter
group of automorphisms of c€. (We regard at as the time evolution of the system.)

Definition 3.1. Let φ be a state of Ή. φ is a ground state for oct iff the following
condition is valid for any Q in the domain of the generator δ of oct:

-iφ(Q*δ(Q))^0. (3.1)

This definition makes sense for any C*-algebra, in particular, for infinite quantum
lattice systems. The physical meaning is as follows (cf. [5]).

Given a state φ, there exists a Hubert space J^ψ9 a unit vector Ωφ in J^φ,
a representation nφ() of srf on 2tfφ such that

φ(Q) = (Ωφ,πφ(Q)Ωφ).

This is the so-called GNS triple. If the state φ is a ground state, there exists
a positive selfadjoint operator H ^ 0 on J^φ such that

HΩφ = 0, eιtHπφ(Q)e-itH = πφ(at(Q)) (3.2)

for any Q in stf.
Conversely, suppose we have a representation π of J / on a Hubert space ffl,

a positive selfadjoint operator H ^ 0 satisfying eitHπ{Q)e~ιtH = π(at(Q)). Suppose
that the vector Ω is a unit eigenvector for H with eigenvalue 0 (HΩ = 0). The
vector state φo associated with Ώ, (ΨΩ(Q) — (π(β)Ώ, Ώ)) is a ground state. Thus
the ground state in the sense of (3.1) is the vacuum expectation value. We can also
show that any zero temperature limit of Gibbs states is a ground state in the sense
of (3.1).

We present some facts which we use in this article. Proofs may be found in [5].

Proposition 3.2. (i) For a fixed time evolution och the set of all ground states is
a convex weak*-closed subset of the state space
(ii) The set of all ground states is a face in the state space, namely, if
a ground state φ is a convex combination of other states φ\, φ, φ — λφ\ +
(1 — λ)ψ2 with 0 < λ < 1, ψ\ and φ2 are also ground states
(iii) Any extremal ground state is pure (extremal in the set of all states). So if
φ is an extremal ground state and it is a convex sum of other states ψ\ and φ2,
φ = λψ\ + (1 — λ)ψ2 (0 < λ < 1), then φ = ψ\ = φ2

(iv) Let φ be a ground state The positive selfadjoint operator H satisfying (3.1)
is affiliated with the von Neumann algebra generated by πφ(s/), namely eίtH e

In what follows, we use a different presentation for our Hamiltonian.

Definition 3.3. An interaction is a collection of selfadjoint elements Ψ(X) such
that X is a finite subset of Zd, Ψ(X) = Ψ(X)* e^+n^/χ and

Σ uncoil <oc. (3.3)
X-.X3Q

An interaction is translationally invariant iff Ψ(X -\-j) = τj(Ψ(X)) for any j
and any X c Zd.
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Given an interaction and a finite subset A of 7/, we set

HΛ= Σ ψ(X), (3.4)
X .ΛDX

BΛ= Σ

Theorem 3.4. Suppose that a translationally invariant interaction {Ψ(A) \A C Ί/}
is given and that the following derivation δ is well defined on s/\oc:

δ(Q)= lim [HA,Q]9 (3.6)

where the limit of A is taken for d dimensional cubes. We also assume that
the closure of δ is the generator of the one-parmeter group of automorphisms at

of srf and
oct(Q) = lim eιtHΛQe-itHΛ . (3.7)

Λ-^Zd

For a state φ of st, the following conditions are equivalent'.

1. φ is a ground state.
2. For any subset A of 7/,

φ(HΛ +BΛ) = inf ψ(HΛ +BΛ), (3.8)

where inf is taken for all the states ψ satisfying

Φ(Q) = φ(Q) (3.9)

for any Q in S$ΛC-

Proof of Theorem 3.4. The proof of this theorem is almost the same as that for
Theorem 6 of [5]. We explain the difference originating from anti-commutativity.

First we assume that φ is a Θ invariant ground state. We may also suppose that
the state ψ satisfying the condition (3.9) is Θ invariant due to the Θ invariance
of HA and BΛ. Let {πφ( ),J4fφ,Ωφ} be the GNS triple for the Θ invariant ground
state φ. Let H be the positive selfadjoint operator on Jfφ satisfying (3.2). By Θ
invariance, we can define the unitary UQ which implements the automorphism (9,

UΘπφ(Q)U*Θ - πφ(Θ(Q)% UΘΩφ = Ωφ . (3.10)

First we claim that eιtH G πφ(s$+)". This follows from the fact that at commutes
with Θ and

UΘeίtHπψ{Q)Ωφ = πφ(Θ(at(Q)))Ωφ = πφ(at(Θ(Q)))Ωφ = eitHUΘπφ(Q)Ωφ .

So

UΘeitH = eitHUΘ.

By the Trotter-Kato formula,



738 T Matsui

On the other hand, for any ^ 4 i ,

eit{H-HΛ-BΛ)Q = Qeit(H-HΛ-BΛ) ^

So

φ satisfying the condition (3.9) is quasi-equivalent to φ because of Θ invariance
of φ and φ, Lemma 2.1 and Lemma 6.2.55 of [5]. By φ we denote the normal
extension of φ to πφ(s/)/f. Then,

Consider the derivative of the above equation and

φ(H) = (HΩφ,Ωφ) = 0, φ(H) ^ 0 .

As a result,

HΛ-BΛ) ^ -φ{HΛ+BΛ). (3.11)

This gives us (3.8) when φ is Θ invariant.
When the ground state φ is not Θ invariant, consider the Θ invariant ground

state φo p, where p is the projection to s/+ defined by

(3.12)

Take a state φ satisfying (3.9) for φ. By the previous step of our proof, we have

^ Φ o p(HΛ + BΛ) = φ(HΛ + BΛ) , (3.13)

which concludes the first part of the proof of Theorem 3.4.
Next we consider the converse direction (the condition 2 to 1). So let φ be

a state satisfying (3.8). Then we first claim that φ o p is at invariant. If Q — Q* G
S&A Π J / + , (3.7) implies

φ o p(euQ(HA+BA)e-uQ) ^ φ o p(HΛ+BΛ) (3.14)

for any real ί. Hence by taking the derivative of the above inequality, we get

Ψ o p([H, Q]) = φo p([HΛ + BΛ, Q]) = 0 (3.15)

for Q in g = Q* G ̂  Π ̂ /+. By 0 invariance of φ o />, (3.15) is valid for any

β e J^IOC.

Fix local observables Q+ in J / + ΓΊ J/I O C and g_ in stf- Π J/I O C . Define operators
L+ and Z_ via the equation,

L+{R) = Q+*RQ+ - 1/2{Q+*Q+,R},

L-(R) = Q-*θ{R)Q- - \/2{Q-*Q-,R} . (3.16)
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The states φ o p o etL± satisfy the condition (3.9) so

φop(etL±(HΛ+BΛ)) ^ φop(HΛ+BΛ)

φop(L±(HΛ+BΛ)) ^ 0.

Combined with (3.15), we arrive at

φop(Q±*(HΛ+BΛ)Q± - 1/2{Q±*Q±,HΛ+BΛ})

= φ°p(Q±\HΛ+BΛ)Q±-l/2{Q±*Q±,HΛ+BΛ})

-l/2φo P([Q±*Q±,HΛ+BΛ])

= φop(Q±*[HA+BΛ,Q±])^0. (3.17)

As the state φ o p is Θ invariant the above inequality tells us

φop((Q*[HA+BΛ9Q])^0

for any Q = Q+ + Q- (Q e ^\oc, Q± G stf\oc Π J / ± ) . So φ o p is a ground state
and so is φ due to Proposition 3.2.(ii). D

Next we consider translationally invariant states. We show that the translationally
invariant ground state minimizes the energy per volume.

Theorem 3.5. We assume the same conditions as those of Theorem 3.4. Futher-
more we assume

lim ~ = 0 . (3.18)
Λ—Z* \Λ\

If φ is a translatίonally invariant state of stf, the following conditions are equiv-
alent'.

1. φ is a translationally invariant ground state.

(3.19)

where inf is taken for all the translationally invariant states ψ.

The statement of Theorem 3.5 is essentially the same as Theorem 1.2. The trans-
lationally invariant Hamiltonian of (1.9) and (1.10) is related to HA as follows. For h
satisfying (1.9) and (1.10) we set

= Σ Σ KA)b(A+j). (3.20)

It is easy to see that \imΛ_>Zd HΛ and H of (1.8) gives rise to the same time
evolution,

[H,Q]= lim \HΛ,Q]= lim [HΛ + BΛ,Q], (3.21)
Λ Z d AΊβ
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where Q is in jtf\oc and the limit of A is taken for d dimensional cubes. Due to
assumption (1.10), we can also show

Σ
X-.X3Q A

\\Ψ{X)\\ SΣ\KA)\\A\ <oo. (3.22)
A

This leads us to (3.9). Due to the translational invariance, we have also

lim ——— = ω(h) (3.23)

for any translationally invariant state ω. Conversely, if a translationally invariant
interaction Ψ = {Ψ(X)} is given, set

*'= Σ ™ (3-24)

Then for any translationally invariant state ω, we have ω(Ψ(X +j)) = ω(Ψ(X) and

ϋm[HΛ,Q]=
Λ~>z

for any Q G &0\OQ. Thus (3.18) can be rewritten as follows:

φ{hψ) = Mω{hψ)9 (3.25)

where inf is taken for all translationally invariant states ω.

Proof of Theorem 3.5. First we assume that φ is a translationally invariant ground
state and another translationally invariant state φ is given. It suffices to show that
the Θ invariant ground state φ o p satisfies the condition (3.19).

Let A be a d dimensional cube in 7/. The C*-algebra stf is isomorphic to the
tensor product of S$A and its commutant stfΛ

c. Consider the state φΛ determined by

for Q\ e S$AC and Q2 G s$A. φΛ satisfies condition (3.9) for the ground state (pop
because of Lemma 2.1. We apply Theorem 3.4 now:

~-φop(HΛ) g ^-{ψΛ(HΛ+BΛ)-φop(BΛ)} < -^-{φΛ(HΛ) + 2 \\BΛ\\} .

By our assumption (3.18), we obtain (3.19).
Conversely, suppose that φ is a state satisfying condition (3.19) of Theorem 3.5.

Again we consider the Θ invariant state φ o p. Thus for hψ of (3.24) we have

where φ is an arbitrary translationally invariant state φ. Take a selfadjoint element
Q = Q* in j/ioc Π J ^ + . Set

Q <$(*) = eitHQAe~itHQ . (3.26)
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As the state φ o pf o αp is translationally invariant, φ o p(aγ(hψ)) ^ <po p(hψ).
By differentiating this, we have

Σ <P o />([τ, (β), Ay]) = Σ Φ o p(τ y ([ρ,τ_ y(A y)]))
7 j

= Σ<P° P([Q,y(hΨ)]) = φ o p([Q,H]) £ 0 .
j

If we consider — Q we get φ o ^ ( [ g , / / ] ) ^ 0 and for any Q in £/\oc,

? , # ] ) = 0, φopoat = φop.

This time invariance is valid for any Q as our state φ o p is Θ invariant. Next
take another (not neccesarily selfadjoint) element Q in stf\oc Π jrf+. Consider the
Feller generator L of (2.20) with E(A) = Q+*AQ+. Let St be the Feller semi-
group generated by this L. Again φ o p o St is translationally invariant and we have
φo p(L(hψ)) ^ 0 as above. By this inequality and the translational invariance of
φ o p we arrive at

ΣΨ ° P(Q+*y(hΨ)Q+ - y2{Q+*Q+,τj(hψ)}) = φ o p(Q+*[H,Q+]) £ 0,

(3.27)
where we used the time invariance of φo p. Take Q- from ja/i o c(Ίj/_. Again
consider the Markov semigroup St of (2.20) with E(A) = Q-*Θ(A)Q_. We can
proceed as before and obtain (3.27) for g_ in place of Q+. Thus φ o /? is a ground
state. Due to Proposition 3.2 (ii) φ is a ground state as well. D

4. Ground States for

In this section, we consider ground states for s$υ^. We present here results
corresponding to Theorem 3.4 and 3.5 for jrfu(ι\ In what follows we always
assume the conditions of Theorem 3.4 and the gauge invariance of the local
Hamiltonian,

yθ(HΛ) - HA, yθ(BΛ) = BΛ for any θ .

So the time evolution oct(Q) = \m\A eιtHΛQe~ιtίίΛ commutes with the gauge transfor-
mation oit o yθ = yθ o α,. Consider the density operator ΠA of (1.15). Let PA(S) be the
projection to the eigenvectors of ΠA with the eigenvalue s. Obviously the possible
values of s are 0, \/A,...,1. By definition of PA(S,3)9 we have

PΛ(s,δ)= Σ PΛ{S>).
s'\ \s'—s\ <δ

Proposition 4.1. Suppose that the translationally invariant interaction {Ψ(X)} is
gauge invariant, i.e. Ψ(X) G jtfu^ Π stfx for any finite subset X of Ίβ'. We assume
that the conditions of Theorem 3.4 and Theorem 3.5 are valid. Let φ be a state
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of jtfu(ι\ The following conditions are equivalent:

1. φ is a ground state of s
2. For any Λ,

φ(HΛ+BΛ) = iπf{ιKHΛ+BΛ)} , (4.1)

where inf is taken for states ψ of s$u^ satisfying

ψ(QPΛ(s)) = φ(QPΛ(s)) (4.2)

for all Q e s/u(l) Π s/Λc and all s = 0, I/A,2/A--Ί.

Lemma 4.2. Let A be a finite subset of Ίβ. The commutant of s$υ^ Π
u{l) is generated by nΛ 0/(1.15) and stfu{x) Π sfc.

Proof of Lemma 4.2. Suppose that Q in stfu{X) commutes with

[Q,D] = 0 D in stfu{l) Π sfΛ .

Then Q can be written in the following form:

Q= Σ QFG n«*n«k,
F,GCΛ F3l G3k

where QFQ is in S$ΛC> For any site j in A we have

2π

Q= J eίΘnJ Q e~WnJ dθ . (4.4)
o

On the other hand,

Thus the summand of (4.3) does vanish when j GF Π GC and when j GFC Π G. AS
7 is an arbitrary site in A, we can conclude that QFQ = 0 unless F = G. So

β = Σ QFF Π */ Π ak = Σ 2 F Π nι , (4.5)
FBI F3k FCΛ FBI

where Q'F is in J / Π ^ C . Due to the gauge invariance of Q, Q'F belongs to

On the other hand, the permutation of lattice sites / and j in A gives rise
to the inner automorphism Ξ^. It is possible to show that Ξy is implemented by
a selfadjoint unitary of $tυ^ C\ stfA. As a result, Q is invariant under Ξίy . By av-
eraging via the Haar measure of the permutation group of lattice sites in A, Q can
be expressed in the following way:

Q= Σ β o A , (4.6)
α=l,2, ,m

where Qa belongs to srfu^ Π ja^c, 5 α belongs to <% Π ja^ and Ξij(BΛ) = 5 α for any
/,7 in yd. Recall that we defined $ as the abelian algebra generated by number
operators in Sect. 1 so f Π 4 i is the abelian algebra generated by ttj (jΈΛ).
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To complete our proof, we have only to show that any permutation invariant
element of J* Π s/Λ is a polynomial of HA AS nf = nj, any elementary symmetric
polynomial of n} (j G A) is a polynomial of ΠA •

Lemma 4.2 tells us that the commutant of srfu{X) Π siA in J / ^ ( 1 ) is the direct
sum of \A\ + 1 copies of stfu{λ) Π sfΛ°,

^ (8) C ,

where each summand corresponds to the center PΛ(s)(s/u^ Π J^O-RIC5) °f

It is possible to show that the state φ satisfying (4.1) is quasi-equivalent to φ
and the proof of Proposition 4.1 is essentially same as that of Theorem 6 of [4].
We do not repeat it here.

Next, we consider translationally invariant ground states for s^u(^\ Due to
Proposition 4.3 below, it suffices to consider states in the fixed density s of parti-
cles in the sense of (1.19). Now we fix the particle density s with 0 < s < 1. The
states φ with no particle s = 0 or no antiparticle s = 1 are the Fock states charac-
terized by the equations, φ(rij) = 0 (or φ(rij) = 1) for any j in Z,d. These are not
interesting in our context and we will not mention these cases.

Proposition 4.3. Let φ be a translationally invariant state of stfu^ with φ(nj) = s.
Assume that the restriction of φ to & is an ergodic measure with respect to the
translation {the shift on Σd). Then it is a state with the density s in the sense
of Defintion 1.3. In particular, any ergodic state of stfu^ is a state with the
density s.

Note that the restriction of an ergodic state of si ^ ' or si to & is an ergodic
measure.

Proof of Proposition 4.3. Recall that & is an abelian C*-algebra generated by

number operators n}. Consider the measure on {1,0} induced by the restriction of
φ to ̂ . Due to our assumption of ergodicity, the function ΠA — nA(x) converges to
the constant s almost everywhere,

lim nΛ(x) = φiη) = s (a.e.) .

Let us prove (1.19). Take δ\ and δi satisfying 0 < δ\ < δ2 < δ and a continuous
function χ(t) on R such that

ί 1, if \t-s\ <δι
0 ^ χ ^ 1, χ(t) = <

Then
0 ^ χ(nA(x)) ^PΛ(s,δ) ^ 1.

Due to (4.1) we have

^limrf χ(nΛ(x)) = χ(s) = 1 (a.e.)

and

limd PA(s,δ)= 1 (a.e.).

This implies (1.19). D
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Remark 4.4. (i) Even though the state φ is not ergodic, we have the following
convergence in the strong operator topology in the GNS representation space:

lim πφ(nΛ) = n^ .

In fact, the above limit exists almost everywhere due to the Ergodic theorem. As

\\riA|| = 1, the convergence is in L2({0,1}Z ). So

limrf \\(πφ(nΛ) - noo)Ωφ\\ = 0 .

For the vector πφ(Q)Ωφ with Q G jtf\oc we have

limrf \\(πφ(nΛ) - noo)πφ(Q)Ωφ\\ = 0 ,

because
lim^(πφ(nΛ) - noo)πφ(Q)Ωφ, (πφ(nΛ) - noo)πφ(Q)Ωφ)

limd(πφ(Q*Q)Ωφ, (πφ(nΛ) - n^fΩφ) = 0 .

(ii) Proposition 4.3 tells us how a translationally invariant state φ of srfu^ is
decomposed to the states φs with density s. For non ergodic φ consider the spectral
decomposition of n^ and the spectral measure μ of the state φ,

}sdE{s) = ioo, μ([0,s]) = φ(E([O,s]) ,
o

where φ( ) is the normal extension to π(srfu^)"'. Note that n^ is in the centre of
the von Neumann Algebra π(<srfu^)n. Then the decomposition of φ is

Θ
φ = fφsdμ(s).

Lemma 4.5. A translationally invariant state φ has the density s if and only if
for any positive integer k,

lim φ(nΛ

k) = sk . (4.7)
Λ-^Zd

The proof follows from the Stone-Weierstrauss Theorem for approximation of
continuous functions by polynomials.

Now we restate Theorem 1.4 in a slightly more general situation.

Proposition 4.6. Suppose that the translationally invariant interaction {Ψ(X)} is
gauge invariant, i.e. Ψ(X) G sίυ^ Π s$χ for any finite subset X ofZd. We assume
the conditions of Theorem 3.4 and

Z X(Ί/lφ0,ZnylcΦ0 I711

Let φ be a translationally invariant state of s$υ^ with the density s. Then the
following conditions are equivalent'.

1. φ is a translationally invariant ground state o
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lim = inf < hm > ,

Λ->Z<* IAI μ — z " |Λ1 J
where inf M ίαfĉ w among all translatίonally invariant states ψ of s$υ^ with
density s

We present our proof of Proposition 4.6 after Lemma 4.10.

Remark 4.7. Suppose the assumptions of Theorem 4.3 are valid. For a real num-
ber μ set

HΛ(μ)=HΛ+μΣnj. (4.9)
keΛ

Let oct(μ) be the one-parameter group of automorphisms of srf with the Hamiltonian
H{μ) = \\mΛ^zd HΛ{μ\

at{μ){Q) = etδ^\Q\ δ(μ)(Q) = ί lim [HΛ(μ% Q] . (4.10)
Λ—> £j

It is easy to see

Thus any ground state of (s/,<x,t(μ)) yields a ground state for (stfu(ι\oct) via restric-
tion. We may ask whether any ground state of (s^u^l\(xt) is obtained in this way.
The same question can be posed for KMS states (=Gibbs states) and was solved by
Araki and Kishimoto ([1]) for abelian gauge groups and by Araki, Kastler, Haag,
Takesaki for general compact gauge groups in [2].

The following Proposition 4.8 is a partial answer to the question in the case of
the ground state.

Proposition 4.8. Suppose that the assumptions of Proposition 4.6 are valid. Let φ
be a translationally invariant ground state of (^u^\(xt) with density s satisfying

0 < s — φ(n0) < 1 .

Consider the gauge invariant extension φ of φ to s$. Then there exists μ such
that φ is a ground state for (<stf,

We now begin our proof of Propositions 4.6 and 4.8. We consider the mean
ground state energy.

Let eΛ(s) be the smallest eigenvalue of TJΓPΛ(S)HΛ. Obviously,

Proposition 4.9. Suppose the interaction is translationally invariant. Assume also
that the conditions of Proposition 4.6 are valid. The following limit exists:

lim eΛ(s) = e(s). (4.12)

This convergence is uniform for s in any closed interval [a,b] C (0,1). e(s) is
a convex function of s and for any sequence sn with lim sn = s and any sequence
of cubes An with \\mAn = Zd, we have

lim eAn(sn) = e(s).
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Sketch of proof of Proposition 4.9. This is somewhat standard in mathematical
statistical physics. (See Sect. 3 of [8].) We show the uniform convergence of (4.12)
which will be important for the next proposition.

For A = A\ U A2, A\ Π A2 = 0,

HΛ=HΛϊ+HΛl+ Σ Ψ(X).
xnΛ1^φ,xnΛ2φφ

So we have
HΛ S HΛί +HΛ2+(\B\Λι + \B\Λ2)l , (4.13)

where we set

\ B \ Λ = Σ
0

i R\

By (4.8), lim^ Vjf = 0. By the isomorphism (2.1) of CAR and the tensor algebra

of matrices,
HΛι +HΛ2=HΛι®l + l® HΛl,

we can find unit eigenvectors ψ\ and ι/r2 satisfying

HΛjφj = \Aj\eΛj(sj)\l/j, nΛjφj = sjψj (j = 1,2) .

Consider ψ = ψ\ 0 i/̂  When \A\ s = \A\ \ s\ + \A2\ s2 we have

nΛφ = sφ .

As a result,

\A\eΛ(s)^ \A,\ ^ ( ^ O + I ^ l ^ f e ) + (\B\Λι+\B\Λ2). (4.14)

By the same reason, when A' is the disjoint union of k translates of A and the
remainder A" we have

\Λ'\ eΛ,{s) ^ k \Λ\ eΛ(s) + \Λ"\ eΛ,,(s) + (k{\B\Λ + \B\Λ,,)) . (4.15)

By our assumption (3.3) we have a positive constant M such that

eA(s)£M, (4.16)

independent of s and A. Due to (3.18), we can find a cube Ao such that the following
is valid when A D Ao\

Next we show the convergence of (4.12) for A(k) = [(-2)k,2k]d . Then the remain-
der term of Λ" is absent in (4.15). So when A§ C A(ko) and I > k > ko,

eA{l)(s) ^ eΛ{k)(s) + ε. (4.17)

Set
ek(s) = sup eΛU)(s\ e(s) = lim e*(s) .
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Equation (4.17) tells us

and for k > k\ = k\(s) we have

which implies the convergence,

747

lim
k

ε ^ ek(s) + ε ,

- e(s)\ < 2ε ,

= e(s) .

The convergence (4.12) can be shown by estimation of A" in (4.15) and the
convexity follows from the approximate convexity of βA(s) in (4.13),

eΛ(s) g λeΛι(sx) + (1 - λ)eAl(s2) + τ^τ

The approximate convexity and the uniform boundedness (4.16) also imply
equicontinuity of eΛ(s). As e(s) is convex and bounded, it is continuous. Thus by
equicontinuity of 34(s) and continuity of e(s)9 uniform convergence of lim ΘA(S) =
e(s) is implied by the 3ε argument. D

Lemma 4.10. We assume the conditions of Proposition 4.6. Let φ be a transla-
tionally invariant ground state of s#u^ with density s. Then,

< 4 I 8 >

(4.19)

For any translationally invariant state ψ with density s, we have

φ ) £ lim
ΛZd

Proof of Lemma 4.10 We use Proposition 4.1. Let φ be a ground state of
with density s. Then due to Proposition 4.1, if A is sufficiently large,

By (1.19),

^φ(HΛ + BΛ) £
\Λ\

φ(PΛ(s,δ))= Σ φ(PΛ(s'))>l-ε,
\s'-s\<δ

Ψ(PΛ(S')) ύ ε
\s'-s\>δ
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Thus

g lim Σ
Λ ^ Z |s'-s|<

^ lim sup

S sup ( φ ' ) ) + 2ε. (4.20)
\s'-s\<δ

This implies (4.18).
Let φ be a state of s/u^ with density 5. Then

|s'-s|«5

(1-ε) inf {eA(s'))-ε. (4.21)

This implies (4.19). D

Proof of Proposition 4.6. Due to Lemma 4.10, it suffices to show 2 => 1. So we
assume that φ satisfies condition 2. We again use the Markov semigroup technique
of our proof of Theorem 3.5. Let Q = Q* be an element of srfu^ Π jaήoc and
consider αp of (3.26). If we show the state φ o αp has the density s , condition 2
of Proposition 4.6 implies that φ is invariant under the time evolution ott. We now
show that φ o αp has the density s. Due to Lemma 4.5, we have only to show

lim φ o oi?{nΛ

k) — sk .

In fact,

φ o α?(/ι/) = φ ( Λ / ) + / φ o a?([i/ f i,»/]) ^ . (4.22)
o

However,

j

As τ y(β) is gauge invariant [y(Q),riAk] = 0 unless j is near the boundary of Λ. So
we have a constant C such that
As τ y(β) is gauge invariant [y(
we have a constant C such that

\[Hβ,n/]\ g CA:M |«^Or/(β)| | |β| | . (4.23)

In the thermodynamic limit,

lim φ o oc?(πAk) = lim
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Next we show that φ is a ground state. Take g G srfu^ Π stf\oc and consider the
Markov semigroup St generated by L of (2.20) with E(A) = Q*AQ. Then as is the
case of φ o αp, the state φ o St has the density s and

H,Q]) ^ 0,

which suggests that φ is a ground state. D

For our proof of Proposition 4.8 we need some more preparation. For a transla-
tionally invariant state φ of ss/ or j ^ u ^ \ we set

s(φ) = φ(n0) (= φ(nj) for any j) . (4.24)

We also define E(μ) as the mean ground state energy (3.25) of H(μ), so for
a translationally invariant ground state φμ of ( J / , at(μ)),

ψ (4.25)

Lemma 4.11. Let φμ be a translationally invariant ground state of (stf,
Then,

e(s(φμ)) S E(μ) - μs{φμ) . (4.26)

Proof of Lemma 4.11. Consider the restriction of φμ to s/u^ which is a ground
state for (s/u(ι\aίt). The decomposition of φμ to the states φ(s) with density s
gives rise to that of ground states for (stfu(ι\ oct)(cf. Remark 4.4 and the proof of
Proposition 4.3)

ψμ = fφ(s)dv(s).

Thus by (4.18) and the convexity of e(s) we have

e(s(φμ) = e(Jsdv(s)) ^ / e(s)dv(s)

= E(μ)-μs(φμ). D (4.27)

Lemma 4.12. Let φ be an ergodic ground state for (stfu(ι\at). Suppose there
exists a translationally invariant ground state φμ for (^/,at(μ)) with the property,
s(φμ) = s(φ). Then the gauge invariant extension φ of φ to s^ is a ground state
for (s/,at(μ)).

Proof of Lemma 4.12. Set so = s(ψμ) = s(φ) = φ(no). Due to Lemma 4.11, and
Theorem 3.5,

φμ(hψ) = E(μ) - μs0 ^ φ 0 ) , (4.28)

so by Proposition 4.6 we have

φ(hψ + μn0) = φ(hψ) + μs0 = φ 0 ) + μs0 ^ E(μ) . (4.29)
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By Theorem 3.5, φ(hψ + μno) can not exceed E{μ), so

φ(hψ + μn0) = E(μ) ,

which tells us that φ is a ground state for oct(μ). •

Proof of Proposition 4.8. Due to Lemma 4.12, it suffices to show that for any
s (0 < s < 1) there exists at least one translationally invariant ground state ψ of
(j/, (xt(μ)) with s = s(φ) for some μ. For any μ we have at least one translationally
invariant ground state, say, φμ for (stf,oct(μ)).

Consider s(φμ). We claim that it is non-increasing as a function of μ. To see
this recall Theorem 3.5 and Definition (4.25) of E(μ). Then

E(μ) = φμ(hψ + μn0) ^ φμ>(W + μft0)

= φμ>(hψ + μ'/i0) + (μ - μ>μ/(/i0) = E{μ') + (μ - μ 'M^O , (4.30)

and by interchanging μ and μ; we have

^ ( μ / ) ^ ^ ( μ ) + (μ / -μWφ,) (4.31)

Adding these inequalities (4.30) and (4.31) we obtain

0S(μf-μ)(s(φμ)-s(φμ,)). (4.32)

So we have proved that s(φμ) is non-increasing.
The set of discontinuity for s(φμ) is at most a countable set. Suppose at μ = μo,

s(φμ) is discontinuous. Set

lim s(φμ) = S-9 lim s(φμ) = s+ , (4.33)
μϊμo ^Iμ

lim φμ = φ_, lim φμ — φ+. (4.34)

The convex combination φ = /φ_ + (1 — t)φ+ is a ground state for (s/,(xt(μo)) and

So for any s with s _ ^ s ^ ^+, there exists a translationally invariant ground state
for (s/,oct(μ)).

To complete the proof, we have to show

lim s(φμ) = 0, lim s(φμ) = 1 . (4.35)
μ—>oo μ—> — oo

Consider the mean ground state energy £(μ) and the energy expectation of the Fock
state ψf (cpfirij) = 0 for all j). Then by Theorem 3.5,

. (4.36)

Thus
0 g μs(φμ) g 2 p η | , (4.37)

and we obtain the first identity of (4.35). If we take the anti-Fock state
{.ΨAF(JIJ) — 1 f°r all j) w e obtain the second identity of (4.35). D
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