Commun Math Phys. 182, 723 —751 (1996) Communications in
Ma ti
Physics

© Springer-Verlag 1996

Ground States of Fermions on Lattices

Taku Matsui

Department of Mathematics, Tokyo Metropolitan University, 1-1 Minami Ohsawa, Hachioji-shi,
Tokyo 192-03, Japan E-mail: matsui@math metro-u ac jp

Received: 4 August 1995/ Accepted: 2 July 1996

Abstract: We consider Fermion systems on integer lattices. We establish the ex-
istence of dynamics for a class of long range interactions. The infinite volume
ground states are considered. The equivalence of the variational principle and ground
state conditions is proved for long range interactions. We also prove that any pure
translationally invariant ground state of the gauge invariant algebra is extendible to
a ground state of the full CAR algebra for the Hamiltonian with a chemical poten-
tial (equivalence of ensemble for canonical and ground canonical states at the zero
temperature).

1. Introduction

In this paper we consider lattice Fermion Hamiltonians and their ground states.
We consider the infinite volume systems directly by use of functional analytic
techniques. The main object of this paper is as follows. (1) We establish the
existence of the time evolution as the one-parameter group of automorphisms
on the algebra of observables (Heisenberg picture). (2) We show that the in-
finite volume ground state in the sense of (1.13) below is characterized via
the minimization of energy. Equation (1.13) means the positive energy repre-
sentation while the principle of minimization of energy expectation value is the
Gibbs variational principle at zero temperature. (3) Any translationally invariant
pure ground state of the gauge invariant algebra can be extended to a ground
state of the full CAR algebra for the Hamiltonian with a chemical potential
term.
The prototype of the interaction we have in mind is the spinless translationally
invariant Hamiltonian H,
H = Z tkga,fal—f-ZVKIHnj, (1.1)
Zi3k,1 4 A3j
where aja; and n, are Fermion creation, annihilation and number operators and
W is a real number (=coupling constant) depending on the finite subset 4 of Z?.
The translational invariance means that #; = o, and that Wy = W,_;. The decay
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condition we will assume is the finiteness of the following numbers:

> |tul < oo, > AW <00 (1.2)
1ezd 430
Stronger conditions are often used in [5] and [18]. Part of the results of this article
was announced in [14].

We will consider the spinless Fermion on the integer lattice Z¢. Except for
Theorem 1.5 and Proposition 4.8 the same results are valid when the Fermion field
has a finite number of components and the gauge group is a compact Lie group and
the lattice has the periodicity.

We use operator algebraic language. For details of the basic notions see [5].
Let us begin with fixing notations. Let ./ be the CAR (canonical anti-commutation
relation) algebra. .o/ is the C*-algebra with unit generated by af,ax ( JkeZd)
satisfying

{aj,ar} = {a;,a;} =0, {aj,a;} = ol . (1.3)
It is often useful to handle the notation of the Clifford algebra. So we introduce

b(j+) and b, ) via the equations,
ai —a;

1

(1.4)

bijvy=d; +a;  bg-y=

Thus we have
by = b}, {by,bp} = d4p1 (1.5)

for « and B in I' = Z¢ x {+,—}.

Let j be a site in Z9. Let 4 = {ay,0,...,%,} be a finite subset of I' = Z4 x
{+, =} (% = (ks e), k=1,2,...,m with [, €Z4, & = +.) We set A+ j = {(x +
Jo&k)s k=1,2,...,m}. By A>j we mean 4 > (j,+) or A>(j,—) when A C T
and j€Z4.

We fix an order for the elements of I'. (For our purpose, any choice of order
will do.) Then for a finite subset A of I', A = {oy,0,...,0,} we introduce the
ordered product,

b(A) = by by, -+ by, = ] by - (1.6)
A>a
By A we denote a d dimensional cube and || will be the total number of lattice sites
in A. The thermodynamic limit (=the infinite volume limit) is taken for sequences
of d dimensional cubes, so lim, means that the limit is taken for the sequence of d
dimensional cubes A which converges to Z¢. Needless to say, the van Hove limit
can be taken without modifying results.

Let A be a subset of Z¢, By .2/, we denote the C*-subalgebra generated by

a}f, a; with j,keA and Ay = Ul Al <oo 4. So an element of 24, is an operator

supported in a finite subset of Z?. By t; (j€Z“), we denote the lattice translation
which is an automorphism of &/ determined via the equations
ti(ak) = ajyk, Ti(ap) = ajyy -

Let © be the automorphism of .o/ determined by ©(a;) = —a; for all j in VA
So it is easy to see that @*(Q) = Q for any Q€ .«/. The even part (resp. odd part)
of o/ will be denoted by o7, (resp. «/_),

A, ={0eA0Q) =0}, A ={QeHOQ)=-0}. (17)
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The (global) gauge action yg of U(1) is defined by
volap) =e’ap,  yola) = e "a;
for all k¥ in Z?. We denote the gauge invariant part of & by .oV,
2V = {QeA|p(@) =0 (V0)} .
By % we denote the abelian C*-subalgebra of 2/Y(!) generated by all n;(j€Z?).

d
% is isomorphic to the set of continuous functions on {1,0}Z as a C*-algebra.
We now state our result on the existence of time evolution. We consider the
following translationally invariant Hamiltonian H,

H= 7% tih), (1.8)

jezd
where 4 is a selfadjoint element of &/, expanded by b(4) of (1.6) as follows:
h= > h(4)b(4). (1.9)

A: 430

h(A) is a complex number and the above sum is taken for finite even subsets A
of I' = Z¢ x {+,—} which contain (0,4) or (0,—). The selfadjointness of % is
equivalent to the following identity:

h(4) = (—=)“2n4) .

Theorem 1.1. Assume that the following is finite,

> AP A4)] < 0. (1.10)
A: 430
Then the derivation 6 defined by
Q) =i[H,0l =i} [1;(h), 0] (1.11)
jezd

is well defined on oty and its closure generates the one-parameter group of au-
tomorphisms o, (tER) of A,

d
-4 Q) = ([, Q)) (1.12)
for Q in A

The condition (1.10) is different from the conventional description for Hamilto-
nians. The statement of Theorem 1.1 is also valid for the following translationally
invariant Hamiltonian (See Theorem 2.9.):

h= 3 YX),
X30

where X is a finite subset of Z¢ and ¥(X) = Y(X)* €., N Ay,

> XPIPOl <o
X: X30

Next we present a characterization for infinite volume ground states for the
class of interactions with (1.10). Recall that the ground state is a state ¢ of &/
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satisfying X
;(P(Q*fS(Q)) =@(Q*[H,0]) 2 0 (1.13)

for any element Q in the domain (or core) of the generator of our time evolution o,
of Theorem 1.1. A brief explanation for this definition will be given later in Sect. 3.
(See also Chapter 5 and 6 of [5].) The infinite volume ground state is characterized
by minimization of the energy per volume in the sense specified below.

Theorem 1.2. Consider the translationally invariant Hamiltonian H satisfying the
condition of Theorem 1.1. Let ¢ be a translationally invariant state of /. Then
the following conditions are equivalent:

1. ¢ is a ground state.
2. ¢ minimizes the energy per volume in the sense that

@(h) = inf Y(h), (1.14)
where inf is taken for all the translationally invariant states

The above theorem was proved for quantum spin models (for example,
Heisenberg models) by O. Bratteli, A. Kishimoto and Robinson in [4]. Our
Theorem 1.2 is the Fermion version of their results.

Even though the Hamiltonian is translationally invariant, the ground state can
be non-translationally invariant. In [10] C.T. Gottstein and R. Werner have shown
that the 1 dimensional ferromagnetic anisotropic Heisenberg model has infinite vol-
ume non-translationally invariant ground states. Via the Jordan Wigner transform
we obtain a Fermion Hamiltonian with infinite volume non-translationally invariant
ground states. The explicit form of the Hamiltonian is

* * 4
H = —Z {aj_Haj —|—ajaj+1 + —2—(2nj — 1)(2nj+1 — 1)} s
J

where A is a real parameter satisfying 4 > 1. In Sect. 3, we will also give a charac-
terization of ground states which are not necessarily translationally invariant. (See
Theorem 3.4.)

In physics, not only ground states for .7 but ground states in a fixed density of
particles are considered. Consider the finite volume Hamiltonian A, on A determined
via the equation,

Hy = Z tk1a,ta1+ Z wy Hl’lj.

Ak, 1 ADA A3j
Set 5
431
nyg=—— (1.15)
|4]

Fix s with 0 <s < 1. For each finite volume A, consider s4 (0 <s4 < 1) and a unit
vector &4 in the Fock space satisfying

méa=s4|A1 g (1.16)

and
(&4, Hpén) = inf(0, Hyo) , (1.17)
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where inf is taken among all the unit vectors @ in the Fock space with the same
density condition,
njw =Sy |A| .

&4 1s the ground state vector when the total number of particles is fixed. A typical
question of the above Fermion model is the behaviour of the ground state vectors &,
in the infinite volume limit under the condition, lim sy = s. So let ¥ be the infinite
volume limit state of the vector states associated with &4,

Jim (£, 060) = Y(Q) - (1.18)

It is easy to see that  satisfies the ground state condition (1.13) for Q in VM N
. We propose here our definition of the (infinite volume) states with particle
density s, which substitutes for (1.16) when we handle the infinite volume states.

Definition 1.3. Let Pi(s,0) be the projection to the eigenvectors of ny with the
eigenvalue in (s — 8,5 + 9). A state y of /YD has the density s iff Y is transla-
tionally invariant and for any positive 9,

lim W(Py(s,8)) = 1. (1.19)
A—Z4

Any ergodic ground state of «/U(1) satisfying y(n;) = s is a state with density
s in our sense. (See Proposition 4.3.) By ergodic state we mean an extremal state
in the set of translationally invariant states.

Theorem 1.4. Suppose that h of (1.9) is gauge invariant, h€ /Y and that (1.10)
is valid.

1. Suppose that ¢ is a translationally invariant state with density s. If it is
a ground state for h and /Y, we have

@(h) = inf Y(h), (1.20)

where inf is taken among states  of /YY) with density s = @(n;) in the sense
of Definition 1.3.

2. Conversely, let ¢ be a state of /YY) with density s satisfying the condition
(1.20). Then ¢ is a ground state for /Y.

As a corollary to this theorem we also have

Theorem 1.5. Assume the condition of Theorem 1.4. Let ¢ be an ergodic ground
state for h and VYV with density s. Consider the gauge invariant extension @,
of ¢ to o,

P oyg =, Q) =¢Q), Qex’D.

There exists j such that ¢ is a ground state for o/ with the Hamiltonian

H(p) = Z‘cj(h)-l-uan.
j j

The rest of this paper is organized as follows. In Sect.2, we prove Theorem 1.1
and related results. Section 3 is devoted to Theorem 1.2. In Sect. 4 we discuss the
characterization of ground states for .ozV().
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2. Time Evolution

The aim of this chapter is to prove Theorem 1.1 and related results which we will
use later.

Let us begin with the algebraic structure of the CAR alegbra /. As a C*-
algebra, <7 is simple and it is isomorphic to the infinite tensor product of the 2 by
2 complex matrix algebra M,(C). In fact <7 is the algebra of 21| by 211l complex
matrices M, 4 (C) which is isomorphic to the tensor product of the |A| copies of
M,(C). For later use, we give here the explicit form of isomorphism. As before the
elements of A are numbered , A = {jjo---Jj | A,}, and set

o) =2mj, — 1 =2a}a;, — 1,
o -1
o) = <kH1 2, — 1) b+ »

-1
o)) = ( [12n;, — 1) b - (2.1)
k=1

Then og‘) satisfies the commutation relation of Pauli matrices,
o=, 1,
ool = oo (k+1),
ool = ~aPo’  (a4p). (2.2)
o generates M, 4 (C). It is also known that o7, is isomorphic to ./ as a C*-

algebra. Then the following lemma is obvious once we realize the above isomor-
phism of the Pauli spin algebra and the CAR algebra.

Lemma 2.1. Let A’ be a (not necessarily finite) subset of Z¢ which includes
a finite subset A, A" D A. Let Q be an operator in oy which commutes with
oy, OR = RQ for any Re ofy. Then Q is written in the following way:

0=0,+0Vs, Qr€dynaNes, (2.3)
where A is the complement of A and V, is defined by
Vi=11@n—1). (24)
jea

By Z;° we will denote the commutant of o7, ° = {Q|OR = RQ(VR € 2/;)}. Next
we introduce the variation norm following [13]. For o in I, d, is a linear operator
on «/ determined via the equation,

0(Q) = 1/2(6,0(Q)bs — Q) . (2.5)
Then it is casy to see the following relations:
0. =—0y4,  0,008=0p00,, (2.6)

0, if B
Ou(bp) = {—ba zfﬁzaa ) (2.7)
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We now define ||| ||| and || ||¢1 via the following equations:
ol = ;II%(Q)II @l =liel+ el

where ||Q|| is the C*-algebra norm of Q in 7. By C'(«/) we denote the set of all
Q with finite |||O][,
Cl(#)={0e| |l|Qlll <o} . (2.8)

Historically, C'(/) and ||| ||| were introduced for classical Ising spin systems (cf.
[11]) and we defined the same objects for the quantum spin case in [13]. S. Richter
and R. Werner have investigated various properties of the (more general) variational
norm for non-commutative C*-algebras in [16]. We present here some facts on
C'(#) and || ||

Lemma 2.2. (i) |||Q||| = 0 iff Q is a scalar, Q = cl.
(i) If O is in C(s2),
10 — ()| = 3/2[|[Q]l] , (2.9)

where tr is the unique normalized trace of <.
(iii) C' () is a Banach algebra with the norm || ||c1.
(iv) o is dense in C'(of) with respect to the norm || ||c.

Proof of Lemma 2.2. (i) and (iii) are obvious. (iv) is proved in Proposition 9 of
[16]. To show (ii), consider the partial trace trs on . determined by

) (Q1002) = Qitr(Q)Q, (Q€y 1, Qr € ). (2.10)
For the one point algebra </ ;, the partial trace is obtained via the following formula,
tr 1 () = O + 9.)(Q) + 0j—(Q) + 0 j+) © I, —(Q) - (2.11)

The above trace formula follows from (2.6) and (2.7). On the other hand, we have

traug ;3(0) = try(try,1(Q))

and

104y © 04— = (106 -
The latter inequality implies

10¢j.+) © 8Dl = 1/2[10¢ -y (O + 1/2[10¢;,— (Il -

Then
0 —tr(Q)1 = (tr 3(Q) — tr(Q)1) — I(;+)(Q) — 0, —(Q) — O(ji+) © O~ (D)
(2.12)
10—t = [[try3(Q) — (D) +3/2 > 6.0 (2.13)

a=(j+)(j,—)
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By iterating this procedure, we have

1@ — (D] £ [[tra(@) — (D[ +3/2 > [10(D)] -

a=(j,%), jeA
This implies (ii). O
Next we turn to the generator of the time evolution.

Lemma 2.3. Assume that the Hamiltonian H of (1.8) (or h of (1.9)) satisfies
condition (1.10). Consider the derivation o determined by (1.11).
d is well-defined on C'(s7). There exists a positive constant K such that

o)l = L4, Q11 = K|l[Q]ll (2.14)
for any Q in C'(oA).

Proof of Lemma 2.3. For b, defined in (1.4), and for Q in </, the following can
be checked by hand:

[6sbg, Q11 < 2(][0(Q)| + (|25 -
Then set O+ = 1/2(Q + ©(Q)). It turns out
100041 = [0(Q)]
and

[1bobg, QI = [|[babp, Q+1Il + [[[babrp, O]l
=2 :zi(”aa(Qc)“ + 1959 = 4(l10(D)II + 19D -

Thus for 4 = {a,...,00¢} C I', we have
164,01l £4 > |[ba—2i-1b5,, Ol £ 4 > [104,(O)] -
1=1,2, ,k 1=1,2, 2k

As a result,

IOl = > > Ih(A[[[[6(4 + /), Ol = 4 20 3 [h4 - ) Z 10(Q)]] -

jezZd 4 jezd A
(2.15)

In this sum, for fixed 4 (or |#(4)|) and «, we have at most the cardinality |4| of 4
for j’s so (2.15) is bounded from above by 43", |h(4)||4]|||Q]]l. O

Lemma 2.4. We assume that (1.10) is valid. For Q = Q* in C'(«/) and a positive
real number A, consider R determined by

R=0Q—il[H Q] =(1-16)(Q).
Let D = {D,} be a positive infinite matrix acting on 1'(I') defined by
> Dapfo=24% >, [h(4) < > fb) Jor f={folbel'tel'(I}.

ber JET A: A+j>a A+j3b
(2.16)

Then
10.(O)Il — Z/lDaﬂ”aﬂ(Q)” 0(R)|| - (2.17)
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Proof of Lemma 2 4 For a selfadjoint Q, the spectrum of 0,(Q) is symmetric with
respect to 0 because b, is a selfadjoint unitary and

by O(0:(Q))bs = —04(Q) .
So there exists a state ¢ satisfying ¢(0,(Q)) = ||0,(Q)||. For such a state ¢, we
e P(9(0)) = 100 Z p(e"0,(Q)e )
for any selfadjoint Q. By differentiating this, we obtain
@([0,0.(Q))) =0. (2.18)
We now return to the definition of R. Then,

0:(Q) = 04(R) + iA0,([H, 0]) ,
0u(ilH, 01 =i 2_ > h(AN[0u(b(A4 + /), b2O(Q)ba] + [b(A + ), 0(D)]} -

jezd A4
By (2.18) we have

10(Q)]| = ¢(3:(2))
= @(0u(R)) +iA 3 > M A)@([0:(b(A4 + /), b O(Q)b2])

jezd 4

= 0B+ 420 22 IAAI([0:(b(4 + 7)), QDI

jezd 4

Soa®I+4 2 >0 [AAII[bA + ), 0D

JEZA A:A+j>a

SN0 +22 20 30 (WA > (10Dl

JEZA A:A+j>a o A+

= [[0(R)I| + %waﬂ”aﬁ(Q)”' 0 (2.19)

Lemma 2.5. Under the assumption (1.10), the linear operator D of Lemma 2 is
a bounded operator on 1'(I') and its operator norm is estimated as follows:

1Dllnry = M =225 )]
Proof of Lemma 2.5 We begin with
ZDb =222 > X2 k4. (2.20)

JEI a A:A+j>a b: A+j3b

This summation reads as follows. For a fixed 4 or A(4), consider a pair (x, y) of
points in A4 such that x =a —j, y =b —j. As b is fixed, j satisfying y =b —j is
unique so that a is determined automatically. Thus the possibile choice for a,b,; is
at most that for (x,y) in 4 X 4 and |h(4)| appears at most |4| x |4|. As a result
we have
> D < u;lhm)nAl2 : (2.21)
a
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Now we can estimate the norm of D. For f = {f,} € I'(I),
107w, = S0ulfl = £ (£0) 15

éMza:Ifal :Mllf”p(r)' 0 (2.22)

Proof of Theorem 1.1. For 6(Q) = i[H,Q] and 1 satisfying |Ai1] < 1 we show
that (1 — A6)(C'(2#)) contains C'(./). This is sufficient for our purpose as this
implies that 1 — A6 has the dense range and the range of its closure is total so we
can use general results such as Lemma 3.1.14, Lemma 3.1.15 and Theorem 3.1.10
of [5].

To prove (1 — A8) (C'(./)) contains C!(.«/) we may and do restrict our attention
to the selfadjoint part. So take R = R* € C'(.«/). Consider the bounded derivation

8™ determined by
M@ =i Y [y, 0]. (2.23)
JEZ: | jl<n
As 6™ is a bounded generator we can find Q, determined by
0, — 26"(0s) =R.

We claim that Q, € C!(«/). To show this we may assume that A is positive. Then
the proof of Lemma 2.4 implies

10a(On) — }“§Dab“ab(gn)” < 0@ - (2.24)

D = {Dy} is a positive matrix, and (1 — AD)~! is also a positive matrix due to
the convergent Neumann expansion, (1 — AD)~! = Zk:o,l,z DF. As a consequence,
Eq. (2.24) leads us to

10a(On)II = Zb3(1 — D)™ Vs |06 (R)| - (2.25)

By the assumption [%[ <1 we have the following:

k
IRl -

4
M

MOl = 32
k

Now that 0, € C 1(42/ ), we can define R, via the equation

Qn - ia(Qn) =R,.
Then

R=Rull =4 > [l[z;(h), Qulll

JEZA: | jlzn

<22 3 YKl X 110

|jlzn 4 a:A+j€a

<24 3 YR X ;(1—/10)_1)abllf?b(R)|l- (2.26)

|jlzn 4 a:A+j€a
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The right-hand side of (2.26) is finite even for n = 0. In fact

UZE; LECV DY ;(1 — D) as|Op(R)|
J

a:A+j€a

1A

223 A 4] 32 32 (1 = AD) M|l 0s(R)||
A ael b
= 21%: W D41 = 2D) ") fllnry < o0 (2.27)

for f, = ||02(R)||. Thus in (2.26) if we take n to the infinite,

lim ||R — R,|| =0,
n—o0

which completes the proof of Theorem 1.1. O

For later use, we introduce a class of Feller semigroups. (See also [14].) First
we explain what a Feller semigroup on a C*-algebra means. Let ¢ be a C*-algebra.
A linear map E on ¥ is positive if E preserves the positivity of spectrum,
E(Q*Q) = 0 for any Q € 4. Given a linear map £ on %, we define a linear
map E, on ¥ ® M,(C) = M,(¥) by the equation, £, = ¥ ® 1 or equivalently,
E,([a;]) = [E(a;)], where € ® M,(C) is identified with € valued » by n matrices
M,(6).

Definition 2.6. A linear map E on a C*-algebra is completely positive if E, is
positive for any natural number n.

For example, let d be an element of 4 and set E(Q) = d*Qd. E is completely
positive. More generally the map determined by the following equation is completely
positive if it converges:

E(Q) = Y. d0d;,
J

where d; are elements of 4.

Completely positive maps are basic ingredients of the quantum theory of open
systems. (See [6].) Fundamental mathematical facts on completely positive maps
may be found in [15].

Definition 2.7. Let € be a unital C*-algebra. A strongly continuous semigroup of
unit preserving completely positive maps on € is called a Feller semigroup.

If ¥ is the matrix algebra M,(C), the generator L of a Feller semigroup S; is
always written in the following form:

L(Q) = E(Q) — 1/2{E(1), 0} + i[H, 0] , (2.28)

where E is a completely positive map on 4, H = H* is a selfadjoint element of €.
As this form was first discovered by G. Lindblad, it is referred to as the Lindblad
generator (cf. [12]).
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Now let us consider the translationally invariant (pre)generators of Feller semi-
groups on &/ determined by

LQ)= > L(Q),

jezd

Li(Q)=rt;0Loot_;(Q),
Lo(Q) = E(Q) — 1/2{E(1), 0} + i[h, Q] , (2.29)

where £ is a completely positive map and /4 is a selfadjoint element of /. We
assume the following condition for the completely positive map E in (2.29):

E=E"+E, (2.30)

E*(Q)= ;_'f] d(k,+) 0d(k, +) |
E(Q)= k{é d(k,— ) ©(0)d(k, —). (231)

where d(k,+) is an even element and d(k,—) is an odd element, d(k,+) € <Z,,
d(k,—) € o/_. The odd part E_ of E is studied systematically in [7].
Suppose that d(k+), d(k—) and h are written in the following way:

d(k+) = 3. De(A4, +)b(A) (2.32)
A
d(k—) = ;Dk(As —)b(4) , (2.33)
h=Y3hA)b(4), (2.34)
A

where Dy(4,+), Dy(4,—) and A(A) are constants and the sums of (2.32) and (2.34)
are taken for even finite subsets of I' (4 with an even number of elements) while
the sum of (2.33) is taken for odd finite subsets.

Theorem 2.8. Consider L determined by (2.29)—(2.34). Assume that h of (2.34)
is selfadjoint and that the following sums are finite:

;XA; ID(4, +)||4]* < o0, zAj |h(4)||4])* < o0 . (2.35)

Then, L is well-defined on of\,. and its closure L generates the Feller semigroup S,
021 o, (%S,(Q) = S(L(Q)). Furthermore, there exists a positive constant K such
tnat

ISl = 2¢X|0l|
for any Q in C'(oA).
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This is a generalization of Theorem 1.1 and can be proved in the same manner.
The description of interactions of Hamiltonians in Theorems 1.1 and 2.8 are slightly
different from the conventional way. Given A or d(k,+) the coefficient A(4) and
Dy(4,+) are canonically determined. For example, set

h(A) = tr(b(4) " h) .

Then (1.9) converges in the L?> norm of the canonical trace of /. A conventional
way for presentation % is as follows:

h= % PX),
xczd

where ¥(X) € /y. This presentation is far from unique. We can prove results
corresponding to Theorems 1.1 and 2.8 in this presentation.

Theorem 2.9. Suppose that

h= 3% YX),
XxXczd
where Y(X) € o/, Ny and
> PO X < o0 (2.36)
xXcz4

Consider the derivation 6 determined by (1.11). The closure of J is the generator
of a one-parameter group of automorphisms of <.

The only differences in our proof of Theorems 1.1 and 2.9 are the estimates
(2.15) and (2.19). If 4 is in &7 N Zx then

[4,R] = [4,R — trx(R)] .
On the other hand, if j is in X,

0 —trx(Q) =0 —try_14(Q) + trx_(1(Q — t(Q)) ,

SO

10 —tex ()] = X [0 — ()] -
jex
Combined with (2.11) we have

14, Ol = 2]|4[[|Q — trx (Q)]
=< 2||4]} 30 1@ — w(Q)]l
JEX
= 2/l4ll 2 ;DI + 18, - (2.37)
JjEX

With this estimate it is straightforward to prove Lemmas 2.4 and 2.5 in the context
of Theorem 2.9.
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3. Ground State

Let us recall the definition of a ground state for general quantum systems. Let 4 be
a C*-algebra with the unit element. Let o, be a strongly continuous one-parameter
group of automorphisms of 4. (We regard «, as the time evolution of the system.)

Definition 3.1. Let ¢ be a state of €. ¢ is a ground state for o, iff the following
condition is valid for any Q in the domain of the generator 6 of w:

—ip(Q70(0)) 2 0. (3.1

This definition makes sense for any C*-algebra, in particular, for infinite quantum
lattice systems. The physical meaning is as follows (cf. [5]).

Given a state ¢, there exists a Hilbert space #,, a unit vector £, in J,
a representation 7,( ) of o/ on #, such that

P(Q) = (24,1 (D)2) -

This is the so-called GNS triple. If the state ¢ is a ground state, there exists
a positive selfadjoint operator / = 0 on J#, such that

HQ, =0, e fry(0)e ™™ = m,(a(Q)) (3.2)

for any Q in /.

Conversely, suppose we have a representation m of .o/ on a Hilbert space J#,
a positive selfadjoint operator H = 0 satisfying e n(Q)e™" = n(,(Q)). Suppose
that the vector 2 is a unit eigenvector for H with eigenvalue 0 (HQ = 0). The
vector state @g associated with Q, (¢o(Q) = (n(Q)R2,2)) is a ground state. Thus
the ground state in the sense of (3.1) is the vacuum expectation value. We can also
show that any zero temperature limit of Gibbs states is a ground state in the sense
of (3.1).

We present some facts which we use in this article. Proofs may be found in [5].

Proposition 3.2. (i) For a fixed time evolution o, the set of all ground states is
a convex weak*-closed subset of the state space

(i) The set of all ground states is a face in the state space, namely, if
a ground state @ is a convex combination of other states @i, ¢, ¢ = ip; +
(1 — Loy with 0 <A< 1, ¢, and @, are also ground states

(iii) Any extremal ground state is pure (extremal in the set of all states). So if
¢ is an extremal ground state and it is a convex sum of other states ¢, and ¢,,
=101+ (1 —A1p, (0<Ai<]), then ¢ = @1 = @2

(iv) Let ¢ be a ground state The positive selfadjoint operator H satisfying (3.1)
is affiliated with the von Neumann algebra generated by m,(</), namely ™ €
(A ).

In what follows, we use a different presentation for our Hamiltonian.

Definition 3.3. An interaction is a collection of selfadjoint elements ¥Y(X) such
that X is a finite subset of 2%, W(X) = Y(X)* € o, Ny and

> P < oo. (3.3)
X: X350

An interaction is translationally invariant iff (X + j) = 1;,(¥(X)) for any j€Z?
and any X CZ°.
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Given an interaction and a finite subset A of Z4, we set

Hi= Y YX), 3.4)
X:ADX

By = 3 Y(X). (3.5)
X:ANX 0, ANX %0

Theorem 3.4. Suppose that a translationally invariant interaction {¥(4)|A C Z%}
is given and that the following derivation ¢ is well defined on of .

oQ) = lim [H;, 0], (3.6)

where the limit of A is taken for d dimensional cubes. We also assume that
the closure of 0 is the generator of the one-parmeter group of automorphisms o
of o and
w0 (Q) = lim eH1Qe i 3.7)
A—Z4
For a state ¢ of </, the following conditions are equivalent:

l. ¢ is a ground state.
2. For any subset A of Z°,

@(Hy + By) = inf Y(Hy + By) , (3.8)
where inf is taken for all the states \ satisfying

Q) = ¢(Q) (3.9)
for any Q in je.
Proof of Theorem 3.4. The proof of this theorem is almost the same as that for
Theorem 6 of [5]. We explain the difference originating from anti-commutativity.
First we assume that ¢ is a © invariant ground state. We may also suppose that
the state y satisfying the condition (3.9) is @ invariant due to the @ invariance
of Hy and By. Let {n,(), #,,Q,} be the GNS triple for the @ invariant ground

state ¢. Let H be the positive selfadjoint operator on J#, satisfying (3.2). By ©
invariance, we can define the unitary Up which implements the automorphism @,

Uamo(Q)Ug = m,(0(Q)),  UeQ, = Q, . (3.10)

First we claim that e € m,(<7,)". This follows from the fact that &, commutes
with © and

Uoe" " 1p(0)2p = 1p(O(u(0)))2p = 1p(u(O(0)))R2y = € Uamy ()2 -

So
U@eltH — elIHU@ .

By the Trotter—Kato formula,

eMH=I=B) € (ot )"
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On the other hand, for any Q € .o,

eit(H—HA~BA)Q _ Qeit(H—HA—BA) _

So
MH=H=B) ¢ 1 (ot Y O mp(Ag) .

Y satisfying the condition (3.9) is quasi-equivalent to ¢ because of @ invariance
of ¢ and ¥, Lemma 2.1 and Lemma 6.2.55 of [5]. By ¢ we denote the normal
extension of ¥ to m,(./)". Then,

Y HI=BOY — o HH =By
Consider the derivative of the above equation and
o(H) = (HQp.Q,) =0, W(H) Z 0.
As a result,
~ Q(Hy +By) = ¢(H — Hy — By) =y (H — Hy — By) Z —Y/(Hy +B4) . (3.11)

This gives us (3.8) when ¢ is @ invariant.
When the ground state ¢ is not @ invariant, consider the @ invariant ground
state ¢ o p, where p is the projection to .27, defined by

r(Q)=1/2{0+ 6(Q)} . (3.12)
Take a state  satisfying (3.9) for ¢. By the previous step of our proof, we have
@ (Hy+By) = @o p(Hy+B1) < Yo p(Hy+ Br) =Y(Hs + Ba) , (3.13)

which concludes the first part of the proof of Theorem 3.4.

Next we consider the converse direction (the condition 2 to 1). So let ¢ be
a state satisfying (3.8). Then we first claim that ¢ o p is &, invariant. If Q = 0* €
oy Ny, (3.7) implies

@ o p(e"(Hy + Br)e ™) = ¢ o p(Hy+ By) (3.14)
for any real . Hence by taking the derivative of the above inequality, we get
@o p(H,0]) = ¢o p([Hs+ B4, 0]) =0 (3.15)
for Q in Q= Q" € & N.o/,. By O invariance of ¢ o p, (3.15) is valid for any
0 € Ao

Fix local observables Q in &/, N o/}, and Q_ in &/ _ N /.. Define operators
L, and L_ via the equation,

L+(R) = 0+*RQ: — 1/2{017 0., R},
L_(R)=0_"O(R)Q- — 1/2{0_"0_,R} . (3.16)
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The states @ o p o e'“+ satisfy the condition (3.9) so
@ o p(e™*(Hy+ B1)) Z @ o p(Hy+ By)

@op(Le(Hy+B1)) =2 0.

Combined with (3.15), we arrive at

®o p(Q+"(Hy+ B1)Q+ — 1/2{Q+"Ox, Hy + Ba})
=@ o p(Q+"(Hs + B1)0x — 1/2{Q+"Qx,Hy + Bs})
—1/2¢ 0 p([Q+" O, Hs + Bal)
=@op(Q+"[H1+B1,0+]) 2 0. (3.17)

As the state @ o p is © invariant the above inequality tells us

@o p((Q*[Hy+ B4, 0]) = 0

for any Q=0+ + 0 (Q € A1oc, 01 € Hloc N 1). So @ o p is a ground state
and so is ¢ due to Proposition 3.2.(ii). O

Next we consider translationally invariant states. We show that the translationally
invariant ground state minimizes the energy per volume.

Theorem 3.5. We assume the same conditions as those of Theorem 3.4. Futher-
more we assume

1Bl

Aszd |A]

0. (3.18)

If ¢ is a translationally invariant state of </, the following conditions are equiv-
alent:
1. ¢ is a translationally invariant ground state.

2.
o(Hy) . . Y(Hy)
A_*rr%d ] —1nf{A1Ln%d ] } s (3.19)

where inf is taken for all the translationally invariant states .

The statement of Theorem 3.5 is essentially the same as Theorem 1.2. The trans-
lationally invariant Hamiltonian of (1.9) and (1.10) is related to H, as follows. For &
satisfying (1.9) and (1.10) we set

PX)= S S hAbA+)). (3.20)

JEZA A=(X, £)

It is easy to see that lim,_, 7« Hy and H of (1.8) gives rise to the same time
evolution,

[H.0) = lim [H;, Q)= lim [Hy+ B0l (3.21)
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where Q is in /i and the limit of A is taken for d dimensional cubes. Due to
assumption (1.10), we can also show

EO POl = ZA: [h(A)] 4] < oo (3.22)

X:X3
This leads us to (3.9). Due to the translational invariance, we have also

fim 28 _ o (3.23)
A—z4  |A|

for any translationally invariant state w. Conversely, if a translationally invariant
interaction ¥ = {¥(X)} is given, set

P(X)

nt =
XCZ4:X30 IX’

(3.24)

Then for any translationally invariant state @, we have w(¥(X + j)) = o(¥Y(X) and
. _ ¥
Jim [Hy, 0= 3 [5(h"), 0]

jezd
for any Q € /1. Thus (3.18) can be rewritten as follows:
o(h") = inf w(h?), (3.25)

where inf is taken for all translationally invariant states w.

Proof of Theorem 3.5. First we assume that ¢ is a translationally invariant ground
state and another translationally invariant state i is given. It suffices to show that
the @ invariant ground state ¢ o p satisfies the condition (3.19).

Let A be a d dimensional cube in Z¢. The C*-algebra .7 is isomorphic to the
tensor product of ., and its commutant .2Z°. Consider the state y; determined by

Yn(Q102) = @ o p(Q1W(Q2)

for O € o and Q, € . Yy satisfies condition (3.9) for the ground state ¢ o p
because of Lemma 2.1. We apply Theorem 3.4 now:

1

T W+ B = 00 p(B} = T () + 2141}

1
— oo p(H) < <
pop(Hy) < _|||

]

By our assumption (3.18), we obtain (3.19).
Conversely, suppose that ¢ is a state satisfying condition (3.19) of Theorem 3.5.
Again we consider the @ invariant state ¢ o p. Thus for A% of (3.24) we have

@op(h?) < y(h*),

where / is an arbitrary translationally invariant state . Take a selfadjoint element
0 =0" in Ao N Ay, Set

HC =Y 1(Q),  o2(4) = e se H° (3.26)
J
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As the state po pf o oc,Q is translationally invariant, ¢ o p(oc?(hq')) > ¢o p(h?).
By differentiating this, we have

S @0 p([t(Q).h ) =3 ¢ 0 p(;([Q (k"))

j J
=> 9o p([Q.7;(h")]) = po p(IQ.H]) 2 0.
J
If we consider —Q we get @ o p([Q,H]) < 0 and for any Q in &,
o p([Q.H])=0, ¢opom=gop.

This time invariance is valid for any Q as our state @ o p is @ invariant. Next
take another (not neccesarily selfadjoint) element Q in /), N <Z,. Consider the
Feller generator L of (2.20) with E(4) = 0.*4Q,. Let S, be the Feller semi-
group generated by this L. Again ¢ o p o §; is translationally invariant and we have
@ o p(L(h*)) = 0 as above. By this inequality and the translational invariance of
@ o p we arrive at

S @0 p(Qy T(h" )0 — 1/2{Q:* 01, 1;(h")}) = ¢ 0 p(Q*[H.04]) = 0,
J

(3.27)
where we used the time invariance of ¢ o p. Take Q_ from &7}, N/_. Again
consider the Markov semigroup S; of (2.20) with E(4) = 0_"O(4)Q_. We can
proceed as before and obtain (3.27) for O_ in place of Q.. Thus ¢ o p is a ground
state. Due to Proposition 3.2 (ii) ¢ is a ground state as well. O

4. Ground States for /U™

In this section, we consider ground states for .«/Y(). We present here results
corresponding to Theorem 3.4 and 3.5 for «/Y(). In what follows we always
assume the conditions of Theorem 3.4 and the gauge invariance of the local
Hamiltonian,

ve(Hy) = Hy, y9(B4) = B4 for any 6 .

So the time evolution o,(Q) = limy e Qe~" commutes with the gauge transfor-
mation o, o y9 = yg o o,. Consider the density operator n4 of (1.15). Let Py(s) be the
projection to the eigenvectors of n, with the eigenvalue s. Obviously the possible
values of s are 0, 1/4,...,1. By definition of Py(s,d), we have

B(s.8)= Y B().

s |s!—s|<é

Proposition 4.1. Suppose that the translationally invariant interaction {W(X)} is
gauge invariant, i.e. ¥(X)€ LV N oAy for any finite subset X of Z°. We assume
that the conditions of Theorem 3.4 and Theorem 3.5 are valid. Let ¢ be a state
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of YY), The following conditions are equivalent:

1. ¢ is a ground state of /Y.

2. For any A,
@(Hy + By) = inf {y/(Hs + B1)} , (4.1)
where inf is taken for states  of /YY) satisfying
Y(OFi(s)) = @(OF(s)) (4.2)

for all Q€ YD N oty and all s = 0,1/4,2/A4---1.

Lemma 4.2. Let A be a finite subset of Z¢. The commutant of V") N .oy in
YD s generated by ny of (1.15) and /YD N e

Proof of Lemma 4.2. Suppose that Q in /Y commutes with .7V N o7,
[0,D]=0 Din VDN,
Then Q can be written in the following form:

0= > OrcIla Il a, (4.3)

F,GCA F>lI Gk

where Qpg is in . For any site j in A we have
O=[e™MQe™dp. (4.4)
0

On the other hand,

. 4 0 ifk=j

f elOnj ake—zenj do = ] J

0 ar if k#j

Thus the summand of (4.3) does vanish when j € F N G° and when j € F° N G. As
j is an arbitrary site in A, we can conclude that Qrg = 0 unless F = G. So

0=3 O [lajla= 3 O [Tm, (4.5)

ACA F31  F>k FC4 F>31

where Qf is in 7 N ... Due to the gauge invariance of Q, QF belongs to
YD N e

On the other hand, the permutation of lattice sites i and j in A gives rise
to the inner automorphism Z;;. It is possible to show that Z;; is implemented by
a selfadjoint unitary of /Y1) N .o/, As a result, Q is invariant under Z;;. By av-
eraging via the Haar measure of the permutation group of lattice sites in 4, O can
be expressed in the following way:

Q= > QOuBy, (4.6)
a=1,2, ,m

where O, belongs to 2V N o, B, belongs to # N < and Z;;(B,) = B, for any
i,j in A. Recall that we defined # as the abelian algebra generated by number
operators in Sect. 1 so # N o/, is the abelian algebra generated by n; (j € A).
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To complete our proof, we have only to show that any permutation invariant
element of # N <, is a polynomial of n4. As njz = n;, any elementary symmetric
polynomial of n, (j € A) is a polynomial of ny. [J

Lemma 4.2 tells us that the commutant of /Y N o7 in YD is the direct
sum of |A| + 1 copies of V(M) N o,

(VO N’ =4O 0C,

where each summand corresponds to the center Py(s)(ZYM N .oZ)Py(s) of YD
N y.

It is possible to show that the state y satisfying (4.1) is quasi-equivalent to ¢
and the proof of Proposition 4.1 is essentially same as that of Theorem 6 of [4].
We do not repeat it here.

Next, we consider translationally invariant ground states for /Y. Due to
Proposition 4.3 below, it suffices to consider states in the fixed density s of parti-
cles in the sense of (1.19). Now we fix the particle density s with 0 <s < 1. The
states ¢ with no particle s = 0 or no antiparticle s = 1 are the Fock states charac-
terized by the equations, ¢(n;) =0 (or ¢(n;) = 1) for any j in Z?. These are not
interesting in our context and we will not mention these cases.

Proposition 4.3. Let  be a translationally invariant state of /YD with y(n;) = s.
Assume that the restriction of Wy to % is an ergodic measure with respect to the
translation (the shift on Z%). Then it is a state with the density s in the sense
of Defintion 1.3. In particular, any ergodic state of /VV is a state with the
density s.

Note that the restriction of an ergodic state of .27V or &/ to # is an ergodic
measure.

Proof of Proposition 4.3. Recall that # is an abelian C*-algebra generated by

number operators n,. Consider the measure on {1, O}Zd induced by the restriction of
¥ to #. Due to our assumption of ergodicity, the function ny = ny(x) converges to
the constant s almost everywhere,

lim ng(x) = Y(n;) =s (ae.).

A—Z4
Let us prove (1.19). Take d; and 9, satisfying 0 < §; < d, < d and a continuous
function y(¢) on R such that

0<y<1 (t) = 1, if‘l—S|<5]
=X=0 B0, ifji—s >0

Then
0 = x(ma(x)) < Bi(s,0) < 1.

Due to (4.1) we have
Agmzd x(na(x)) = x(s) =1 (ae.)

and
lim B(s,0)=1 (ae.).
A—Z4

This implies (1.19). O
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Remark 4.4. (1) Even though the state ¢ is not ergodic, we have the following
convergence in the strong operator topology in the GNS representation space:

Iim 7,(n4) = neo -
A—Z4 (,0( A) *°

In fact, the above limit exists almost everywhere due to the Ergodic theorem. As
lnall = 1, the convergence is in L?({0, 1}Zd ). So

Alinzld [(7p(n1) — 1o )20 || =0 .
For the vector 7,(Q)Q, with Q € 2/, we have
Ali>nzl,d ”(nq)(nA) - ”oo)nq)(Q)Q(p” =0,

because
Ali{gd((%(m) — Hoo )ntp(Q)Qw (nqo(”A) - noo)nq)(Q)Qtp)

Him (1,(0" Q). (1) = 100 Q) = 0.

(ii) Proposition 4.3 tells us how a translationally invariant state ¢ of .«ZY() is
decomposed to the states ¢, with density s. For non ergodic ¢ consider the spectral
decomposition of ns, and the spectral measure u of the state @,

1

bfsdE(S) =neo,  W([0,5]) = P(E([0,5]),

where @( ) is the normal extension to m(.2/Y(1)”. Note that n., is in the centre of
the von Neumann Algebra n(.«#V()". Then the decomposition of ¢ is

(&)
@ = [ @sdu(s).

Lemma 4.5. A translationally invariant state Y has the density s if and only if
for any positive integer k,

lim ynt) = st @)

The proof follows from the Stone—Weierstrauss Theorem for approximation of
continuous functions by polynomials.
Now we restate Theorem 1.4 in a slightly more general situation.

Proposition 4.6. Suppose that the translationally invariant interaction {¥(X)} is
gauge invariant, i.e. Y(X) e #4VD N oLy for any finite subset X of Z¢. We assume
the conditions of Theorem 3.4 and

POl _ (4.8)

lim
=24 yop 56 xoaexo Al

Let ¢ be a translationally invariant state of /U with the density s. Then the
following conditions are equivalent:

1. @ is a translationally invariant ground state of o/,
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CeHD [ W(HY)
A T ‘mf{AlL“%a A f°

2.

where inf is taken among all translationally invariant states Y of /YD with
density s

We present our proof of Proposition 4.6 after Lemma 4.10.

Remark 4.7. Suppose the assumptions of Theorem 4.3 are valid. For a real num-

ber u set
Hy(u) = Hy + ukZ n . (4.9)
€A

Let o,(1) be the one-parameter group of automorphisms of .o/ with the Hamiltonian
H(p) = limy_,z¢ Hy(p),

()Q) = €(Q), Q) =i lim (M. 0. (4.10)

It is easy to see

0 (u)(Q) = o © 7u(Q) -

Thus any ground state of (o7, (1)) yields a ground state for (/YD) ;) via restric-
tion. We may ask whether any ground state of (&/Y(),q,) is obtained in this way.
The same question can be posed for KMS states (=Gibbs states) and was solved by
Araki and Kishimoto ([1]) for abelian gauge groups and by Araki, Kastler, Haag,
Takesaki for general compact gauge groups in [2].

The following Proposition 4.8 is a partial answer to the question in the case of
the ground state.

Proposition 4.8. Suppose that the assumptions of Proposition 4.6 are valid. Let ¢
be a translationally invariant ground state of (YD, a,) with density s satisfying

O<s=0p(m)<l1.

Consider the gauge invariant extension ¢ of @ to of. Then there exists p such
that @ is a ground state for (A, 0, (1))

We now begin our proof of Propositions 4.6 and 4.8. We consider the mean

ground state energy.
Let e4(s) be the smallest eigenvalue of ﬁ&(s)HA. Obviously,

Y(Fa(s)Hy)
Y(Eu(s))

Proposition 4.9. Suppose the interaction is translationally invariant. Assume also
that the conditions of Proposition 4.6 are valid. The following limit exists:

Al_i>nz1d e(s) = e(s) . (4.12)

|A| ea(s) = ir./le 4.11)

This convergence is uniform for s in any closed interval [a,b] C (0,1). e(s) is
a convex function of s and for any sequence s, with lims, = s and any sequence
of cubes A, with lim A, = Z4, we have

lim ey, (sy) = e(s) .
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Sketch of proof of Proposition 4.9. This is somewhat standard in mathematical
statistical physics. (See Sect. 3 of [8].) We show the uniform convergence of (4.12)
which will be important for the next proposition.

For A =A,U A, A1 N Ay :Q),

Hy = Hy, + Hy, + > P(X).
XNA 0, XN A0

So we have
Hy < Hy, + Hy, + (1Bl 4, + By )1, (4.13)

where we set

Bl , = > PO -
XNA£0, XNA£0D

By (4.8), lim, % = 0. By the isomorphism (2.1) of CAR and the tensor algebra
of matrices,
HA, +['1/12 :HA, ®1+1 ®HA2,

we can find unit eigenvectors ¥y and Y, satisfying
Hy = |Ajleq, (s, my=sly (j=1,2).
Consider Y = Y5 ® Y. When |A|s = |Ay| sy + |A3] 52 we have
(Hy, + Hi) ¥ = (| 41| en, (s) + | A2] en, () ¥,
na = sy .
As a result,
|4l ea(s) = |Ai] e, (s1) + |42] e, (s2) + (|Bl 4, + Bl ) - (4.14)

By the same reason, when A’ is the disjoint union of k translates of A and the
remainder A” we have

| A ex(s) < k|Alea(s) + A" ex(s) + (k(|B] , + |B| 1)) - (4.15)
By our assumption (3.3) we have a positive constant M such that
es) =M, (4.16)

independent of s and A. Due to (3.18), we can find a cube A, such that the following
is valid when 4 D Ay:

% é £ .

]
Next we show the convergence of (4.12) for A(k) = [(—2)*,2¥]? . Then the remain-
der term of A” is absent in (4.15). So when Ay C A(ky) and [ > k > ko,

ean(s) = equy(s) +e. 4.17)
Set

ex(s) = sup ey j(s), e(s) = lim &(s).
Jiizk k— o0
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Equation (4.17) tells us
ex(s) = ea(s) +¢ = e(s) +e,
and for k£ > k) = kj(s) we have
leau)(s) — e(s)| < 2e,
which implies the convergence,
li/fn eqry(s) = e(s).
The convergence (4.12) can be shown by estimation of A” in (4.15) and the

convexity follows from the approximate convexity of e4(s) in (4.13),

er(s) < Aeq, (s1) + (1 — Den,(s2) + '—fl—l

; S 7 U B R O /P3|
w1th/1—|A|,1 )°_|Al'

The approximate convexity and the uniform boundedness (4.16) also imply
equicontinuity of e4(s). As e(s) is convex and bounded, it is continuous. Thus by
equicontinuity of e4(s) and continuity of e(s), uniform convergence of lime,(s) =
e(s) is implied by the 3¢ argument. [J

Lemma 4.10. We assume the conditions of Proposition 4.6. Let ¢ be a transla-
tionally invariant ground state of /Y"V) with density s. Then,

o(Hy)
Al.zd W =e(s). (4.18)

For any translationally invariant state \y with density s, we have

(4.19)

Proof of Lemma 4.10 We use Proposition 4.1. Let ¢ be a ground state of V(1)
with density s. Then due to Proposition 4.1, if A is sufficiently large,

COUT+B) £ 3 0B es) 5.

By (1.19),

P(Bi(s,0) = > @B >1-¢,

|s'~s] <o

> o)) se.

Is' =525
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Thus

|H“m+&)

< lim > @(Bu(s"))ea(s’) + 2¢
A—Z4 |s'—s| <68

1
A1—>Z ¥ IGD(HA)

< lim  sup (eq(s’)) +2¢

A—Z4 |s'—s| <6

< sup (e(s')) +2e. (4.20)

|s'—s]<d
This implies (4.18).
Let i be a state of «/Y)) with density s. Then

ﬁwm>22wmwmw>

I

> B eals’) — €

|’ —s|<d

v

(1— 8)‘ /i_nf B(eA(s')) —¢. (4.21)

This implies (4.19). O

Proof of Proposition 4.6. Due to Lemma 4.10, it suffices to show 2 = 1. So we
assume that ¢ satisfies condition 2. We again use the Markov semigroup technique
of our proof of Theorem 3.5. Let Q = Q* be an element of /YW N .o, and

consider cx, of (3.26). If we show the state ¢ o oc has the density s, condition 2
of Proposition 4. 6 implies that ¢ is invariant under the time evolution o, We now

show that ¢ o oc, has the density s. Due to Lemma 4.5, we have only to show
hm @ oo (nAk) =gt

In fact,
wow(m1r—wmf)+f¢oa%U@Jm]ww (4.22)

However,

[Ho,ni"1 = 3 [5(0), ma"] .-
J

As 1;(Q) is gauge invariant [7;,(Q), ns*] = 0 unless j is near the boundary of A. So
we have a constant C such that

g1l < &l jsupporio) o) 423)

In the thermodynamic limit,

hm @ ooy (nA )— 11m o(ngt) =sk.
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Next we show that ¢ is a ground state. Take Q€ .oV N o, and consider the
Markov semigroup S; generated by L of (2.20) with E(4) = O*AQ. Then as is the

case of @ o oz,Q, the state ¢ o S; has the density s and

poSh') = (W),  o(L(H") = o(0*[H,0]) = 0,

which suggests that ¢ is a ground state. O

For our proof of Proposition 4.8 we need some more preparation. For a transla-
tionally invariant state @ of .o/ or /Y, we set

s(¢) = @(no) (= @(n) for any j). (4.24)

We also define E(u) as the mean ground state energy (3.25) of H(u), so for
a translationally invariant ground state ¢, of (&7, a,(1)),

E(1) = @u(h") + 1s(g) - (4.25)
Lemma 4.11. Let ¢, be a translationally invariant ground state of (,o,(1)).
Then,

e(s(pu)) = E(u) — ps(pu) - (4.26)
Proof of Lemma 4.11. Consider the restriction of ¢, to «/Y(!) which is a ground
state for (/Y™ o). The decomposition of ¢, to the states ¢(s) with density s

gives rise to that of ground states for (oY1), a,)(cf. Remark 4.4 and the proof of
Proposition 4.3)

o= [ @(s)dv(s) .

Thus by (4.18) and the convexity of e(s) we have
e(s(@) =e ([ sdv(s)) < [ e(s)v(s)
= [ ()R )av(s) = pu(h")

=E(w) - ps(p). O (427)

Lemma 4.12. Let ¢ be an ergodic ground state for (YD, ). Suppose there
exists a translationally invariant ground state ¢, for (o, (1)) with the property,
s(@u) = s(¢). Then the gauge invariant extension ¢ of ¢ to o is a ground state

Sor (o, 0u(1)).

Proof of Lemma 4.12. Set sy = s(¢,) = s(¢) = @(ng). Due to Lemma 4.11, and
Theorem 3.5,

@u(h") = E(u) — pso Z (o) » (4.28)

so by Proposition 4.6 we have

B(h" + pno) = @(h") + pso = e(so) + puso < E(n) . (4.29)



750 T Matsui
By Theorem 3.5, @(h” + ung) can not exceed E(u), so

G + png) = E(p) ,
which tells us that @ is a ground state for o, (). O

Proof of Proposition 4.8. Due to Lemma 4.12, it suffices to show that for any
s (0 <s < 1) there exists at least one translationally invariant ground state ¥ of
(o, 0,(1)) with s = s(y) for some p. For any u we have at least one translationally
invariant ground state, say, ¢, for (o7, a,(u)).

Consider s(¢,). We claim that it is non-increasing as a function of u. To see
this recall Theorem 3.5 and Definition (4.25) of E(u). Then

E(W) = @u(h" + pno) < @u(h* + ung)
=@ (h" + 1'no) + (1 — 1)pw(no) = EW) + (u — w)s(@w), (4.30)

and by interchanging u and y’ we have

E(W) S E(w) + (1 — ws(on) - (4.31)
Adding these inequalities (4.30) and (4.31) we obtain
0= (W = 1)(s(@u) = s(pw)) - (4.32)

So we have proved that s(¢,) is non-increasing.
The set of discontinuity for s(¢,) is at most a countable set. Suppose at u = po,
s(¢,) is discontinuous. Set

lim s(¢py) = s_, lim s(q,) = s, (4.33)
ulwo ulpo
lim ¢, = @_, lim ¢, = @4 . (4.34)
Jay wlpo

The convex combination ¢ = t¢_ + (1 — t)¢@+ is a ground state for (o7, (o)) and

s(¢) = ts(p-) + (1 = )s(p) .

So for any s with s_ < s < s, there exists a translationally invariant ground state
for (o, a(1)).
To complete the proof, we have to show

lim s(¢p,) =0, lim s(p,)=1. (4.35)
#—)OO ‘u—)—m

Consider the mean ground state energy £(u) and the energy expectation of the Fock
state @ (@r(n,) =0 for all j). Then by Theorem 3.5,

ou(h") + us(pu) < @r(h’). (4.36)

Thus
0 < () < 2[H"), (4.37)

and we obtain the first identity of (4.35). If we take the anti-Fock state ¢4r
(@ur(n;) =1 for all j) we obtain the second identity of (4.35). O
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