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Abstract: We introduce a class of stochastic models of particles on the cubic lat-
tice Z¢ with velocities and study the hydrodynamical limit on the diffusive space-
time scale. Assuming special initial conditions corresponding to the incompressible
regime, we prove that in dimension d = 3 there is a law of large numbers for
the empirical density and the rescaled empirical velocity field. Moreover the limit
fields satisfy the corresponding incompressible Navier—Stokes equations, with vis-
cosity matrices characterized by a variational formula, formally equivalent to the
Green—Kubo formula.

1. Introduction

One of the main open problems in nonequilibrium statistical physics is the deriva-
tion of the hydrodynamical equations of fluids from the microscopic Hamiltonian
dynamics. The main fluid equations are the Navier—Stokes equations and the Euler
equations. The Euler equations represent the conservation of macroscopic mass,
energy and momentum and have an obvious hyperbolic scaling invariance

X — ax, t— ot (1.1)

The Navier—Stokes equations are more complicated and have no obvious scaling.
They are given by correcting the Euler equations with viscous terms described by
second order derivatives of conserved quantities such as energy, momentum and
mass. In the incompressible regime, the Navier—Stokes equations become

divu =0,
O+ u-Vu+ Vp =vdu (1.2)
with u the velocity field, p the pressure and v > 0 the kinematic viscosity.
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Since Euler and Navier—Stokes equations involve macroscopic quantities, deriva-
tions of these equations from microscopic Hamiltonian dynamics are understood in
the sense of law of large numbers, as the number of particles tends to infinity. We
fix the space and time scales by choosing the typical interparticle distance as the
unit length scale and the mean free time of particles as unit time scale. Suppose
the range of molecular interactions are of the order of the typical interparticle dis-
tance. Then each particle typically interacts with an at most finite number of nearby
particles. Let ¢ denote the ratio between the microscopic and macroscopic length
units. In order that particles travel a unit macroscopic length in a unit macroscopic
time, the macroscopic time scale is chosen to be ¢~!¢. The derivation of Euler equa-
tions can be stated as proving that the Euler equations are exact in the scaling limit
x — & 'x, t — ¢~ ¢. This scaling is usually called the Euler scale or hyperbolic
scaling.

We now sketch Morrey’s idea [1] for the derivation of the Euler equations. Since
the Hamiltonian dynamics is conservative, the time derivatives of conserved quanti-
ties are given by microscopic conservation laws characterized by the corresponding
microscopic currents. The currents involve microscopic interactions of particles and
are not functions of local conserved quantities. To obtain closed equations, one has
to represent these currents as functions of the local conserved quantities through
some law of large numbers. If we assume that the system is locally in equilibrium
and described by Gibbs states characterized by local conserved quantities, from the
law of large numbers for Gibbs states these currents can be replaced by their expec-
tations with respect to Gibbs states depending on local conserved quantities. Hence
we obtain closed equations.

The basic ingredient in the previous heuristic derivation is a strong ergodic
theorem for Hamiltonian systems. Though this ergodic theorem is a basic problem
in the theory of Hamiltonian systems and is very easy to state, without further
assumption, it is nevertheless still an open question. If certain random perturbations
are added to the Hamiltonian dynamics, or if certain assumptions are made, it can
be rigorously proved [2]. Alternatively, if instead of Hamiltonian dynamics one
starts from the Boltzmann equation, very detailed derivations of Euler equations
are available ([3, 4, 5]). Of course the Boltzmann equation is not a microscopic
equation and, because the Boltzmann equation describes the low density regime, the
state equation obtained in this case is just the one of the perfect gases. It should
also be noted that all these derivations are valid only up to the times such that the
Euler equations have smooth solutions.

The similar program for the Navier—Stokes equations is much harder to carry
out. First of all, the Navier—Stokes equations have no obvious scaling and thus they
cannot be a scaling limit. Furthermore, although the basic equations in the classical
physics are hyperbolic and completely reversible, the Navier-Stokes equations are
irreversible due to the viscosity.

The first difficulty is more of a technical nature and there are several possible
solutions. One of them is to consider the following incompressible limit. The diffu-
sive effects, like the viscosity and the heat conduction are hard to detect, because
they are small corrections to the Euler equations. They become relevant on the
diffusive scale, i.e.

x — & lx, t— et (1.3)
The Navier—Stokes equations are not invariant under such scaling, so the prescription
of the diffusive scaling (1.3) cannot be used in full generality. In order to restore
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the scaling invariance one needs to scale also the velocity field u as
u—eu, (1.4)

and, consequently, the pressure as p — p -+ &?p with p an arbitrary constant. In
other words, we consider a regime where macroscopic velocities are very small
compared with the sound speed. To summarize, the incompressible Navier—Stokes
equations (1.2) can be understood as the scaling limit under the the rules given
by (1.3) and (1.4). This limit is called the incompressible limit. It is used in [6, 7]
to derive the incompressible Navier—Stokes equations (1.2) from the Boltzmann
equation and in [8] to derive the viscous Burgers equation as a diffusive limit of
the simple exclusion process.

The second difficulty is a deep conceptual question and relates to the origin of
diffusivity in classical physics. Up to now, there is no good mathematical under-
standing for a derivation of diffusive behavior from reversible systems. A heuristic
explanation, however, can be given. We follow [9] where a formal derivation of the
equations (1.2) from the Hamiltonian systems are given. From Morrey’s heuristic
argument or from the recent work of [2], the many body Liouville equation can
be approximately solved using an ansatz of local Gibbs states, i.e., Gibbs states
with slowly varying chemical potentials. Let us strengthen the local equilibrium as-
sumption by demanding that the Liouville equation can be solved asymptotically
in orders of ¢. Then locally the solution of the Liouville equation is given by a
Gibbs state with an ¢ order correction. Therefore, the currents should be replaced
by their expectations with respect to this state. The leading order contribution to the
currents will be the same as in the Euler equation case; the & order correction will
give rise to the viscosity. The difficulties in carrying out this approach rigorously
are obvious. First of all, there is no rigorous proof that local Gibbs states give even
the leading order solution of the Liouville equation unless some noise are added
to the Liouville equation. Furthermore, it is in general hard to quantify the mean-
ing of the asymptotic expansion involving an infinite number of variables. One
way to make sense of this asymptotic expansion is through the use of relative en-
tropy [2, 10]. But lack of analytic tools for general Hamiltonian systems force us
to consider lattice gases models.

The models we consider are defined as follows. Let ¥~ be a finite set of vectors in
R? of fixed length k > 0, invariant under reflections and exchanges of the coordinate
axes. It will represent the set of the possible velocities of the particles. For each
v € ¥ we consider a species of particles moving on the lattice Z¢ according to
a simple exclusion process (SEP), with jump intensities such that the resulting
drift is v. This means that a particle of the species v in a site x € Z¢ jumps with
exponential law to one of the neighboring sites x + e € Z¢, |e| = 1, with intensity
Ppe(v), if x + e is not already occupied by a particle with velocity v. We denote by
n(x,v) = 0,1 the occupation number of particles of the species v in x. The intensities
p.(v) are chosen so that the drift of the process for the v-particles is v. The jumps of
each particle are independent of the particles with different velocities. They are also
independent of the particles with the same velocity, as far as the exclusion condition
is satisfied. The changes of velocity are due to collisions. Particles collide when
they are in the same site and have suitable velocities. The essential condition on
the collisions is that they conserve the number of particles involved in the collision
and their total momentum, and nothing else. In the next section we define two
models, called Model 1 and Model II, by giving the set ¥~ and the collision rules.
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Our method can be extended to a wider class of models and also to more general
lattices.

We take the set ¥~ for Model I to be the smallest possible by including only the
2d unit vectors parallel to the coordinate directions; for the Model II the set 7~
includes several vectors with non-coordinate directions to make the model as
isotropic as possible. In both cases the jump intensity is chosen of the form

1
P) = 1+ J0-e, (1.5)

with y big enough to make positive all the jump intensities. Note that we allow a par-
ticle with velocity v to jump also in “wrong” directions, as the one orthogonal to v.
This is convenient to prove ergodicity, but the assumption that such a jump happens
with intensity bigger than x/2 is unnecessary: any positive intensity would work.

As for the collisions, we consider binary collisions, which exchange the velocities
of any pair of particles at the same site into another pair of velocities having the
same total momentum chosen at random among all the possible ones (if any),
provided that the exclusion condition is not violated. The evolution of our model
will be described in terms of a generator . which will be the sum of the exclusion
part £ and the collision part £°.

Lattice gas models for the hydrodynamics have been widely considered before.
We refer to [11] and references quoted therein for a comprehensive review. The aim
of these works was to construct simple models for hydrodynamical equations which
could be carefully and quickly simulated on the computer. Hence the effort is to
make them as deterministic as possible. The numerical results provided a remarkably
good agreement with hydrodynamical equations. The macroscopic behaviors were
also analyzed theoretically, under the assumption of propagation of chaos. This pro-
duced a type of Boltzmann equation for the models, although no explicit low density
condition was introduced and no proofs were given. After adding a small amount
of stochasticity, the Euler regime was studied in [12] using the approach of [2].
In [13, 14] the Euler and Navier—Stokes regimes were considered for models with
discrete space, time and velocities, and with stochastic free motion and determinis-
tic or stochastic collisions. However the kinetic limit was used as an intermediate
step. In the present paper we deal directly with the hydrodynamic limit and no
intermediate step or low density assumption is needed.

As discussed before, our analysis is confined to the incompressible regime. The
incompressibility assumption corresponds to choose the chemical potentials of the
local equilibrium suitably small, i.e. of order ¢. Following the heuristic derivation of
viscosity in the previous paragraph, we have to compute the next order correction
term of this state, which is of order ¢2. This is the key element of this paper. The
viscosity will be determined through this correction term.

This analysis allows us to prove our main result, the validity of the law of large
numbers for the empirical density and the rescaled empirical velocity field as the
scaling parameter ¢ goes to 0. In fact, Theorem 2.1 states their weak convergence in
probability to deterministic fields solving the incompressible Navier—Stokes equation
with the viscosity determined according to the previous argument. A very short
sketch of the idea of the proof is the following.

Recall the dynamics has two parts: the exclusion part £ ¢ and the collision
part €. Without the collisions our process is just the asymmetric simple exclusion
process. The parallel problem for the asymmetric simple exclusion processes has
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been studied in [8] using the spectral gap and the logarithmic Sobolev inequality.
Unfortunately, these estimates are hard to prove for the present models. We use
an alternative approach. Let p? denote the “local density” of particles with velocity
ve Y. We first use the spectral gap and the logarithmic Sobolev inequality of
the exclusion part of the dynamics, £, to reduce the local relevant parameters
to pY,v € ¥". On the other hand, only certain linear combinations of p?, ve 7~
representing local mass and momentum are conserved by the collisions. We then
use the collision part to eliminate the irrelevant modes. Details will be presented in
Sects. 4 and 6. We also notice that the analysis of the asymmetric simple exclusion
process presented in [8] contains an error which has been fixed in [15] using some
estimates on the Green function of the simple exclusion process. Similar estimates
are also needed in our setting here. We obtain such estimates using a method partly
based on [15] and the extra difficulties due to collision are resolved in Sect. 4.

Finally we comment on the history of the methods used in this paper. The first
mathematical rigorous proof of hydrodynamical limit for reversible nongradient mod-
els is the pioneering work of [16]. Though the Green—Kubo formula has widely been
used to derive the hydrodynamic equation and certain mathematical rigor had been
achieved before (see, for example, [17]), this work represents the first completely
mathematical rigorous proof of the Green—-Kubo formula and it gives a variational
formula which is much more stable to work with. The key assumptions of this
work are the reversibility of the process and the spectral gap of the dynamics. The
spectral gap, though difficult, is more of a technical nature. It is proved in several
models by [18,19,20] and a general approach is outlined in [19]. A class of nonre-
versible models is treated by [21] but the final hydrodynamical equation is required
to be a nonlinear heat equation without drift. The restriction on the drift is removed
in [8] provided the space dimension d > 2 and the logarithmic Sobolev inequality
can be proved. A general argument to obtain the logarithmic Sobolev inequality is
given in [22]. The restriction on the space dimension d > 2 in [8] is optimal and
one expects completely different behavior for d < 2. In this case, the scaling is not
diffusive and the hydrodynamical equation probably is nonlocal. There is no math-
ematical results concerning this phenomenon up to now. A similar phenomenon is
expected also in the real hydrodynamics for d < 2, due to the long time tails which
cause the divergence of the transport coefficients [23].

We conclude with a few remarks on the viscosity matrix. The viscosity matrix
we obtain does not reduce to the contribution due to the stochasticity of the
model, corresponding to the symmetric part of the generator. Actually, we prove
that the contribution due to the “deterministic motion,” i.e. to the anti-symmetric
part of the generator, is nonnegative and nonvanishing. For the real incompressible
Navier—Stokes fluid all the eigenvalues coincide, but we cannot prove that this is
true for Model II. We do not know if this is due to the lack of our analytic tools or
due to the anisotropy of the underlying cubic lattice. Our analysis can be extended
to lattices with other geometries, but we do not formulate an abstract framework
for all possible lattices.

2. The Models and the Main Theorem

Let A, € Z¢ be the cubic sublattice {—L,...,L}¥ with periodic boundary conditions.
Let ¢ = L~!. We denote by ¢;, i = 1,...,d, the coordinate vectors with component

(ei)j =6 -
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Moreover, we put & = {e = +e; for some i = 1,...,d}. Ryv will denote the reflec-
tion of the vector v € RY w.r.t. the plane m; orthogonal to e;, i.e. the vector with

coordinates o
(Riv) —v; ifi=j
V) = .
e v;  otherwise .
Denote by ¢ any element of ¢, the permutation group of the set {1,...,d}, and let
00 = (Vg(1), Vo(2)s - - - » Vs (d) )-
Let ¥ be a finite subset of R? representing the possible velocities and N be its
cardinality. Assume that ¥~ is symmetric w.r.t. reflections and permutations:

RV =7 i=1,...,d, oV =%V, ceg.

For our purposes it will be sufficient to consider velocities of fixed modulus, so we
also assume
o] =x foranyve ¥ .

On each site of the lattice at most one particle for each velocity is allowed, with
no exclusion rule between different velocities. A configuration of particles on the lat-
tice is denoted by n = {ny, x € A}, where 5, = {n(x,v), v € ¥} and n(x,v) =0, 1,
x € Z% v € V is the number of particles in x with velocity v. The generator of the

dynamics is defined by
Lf =L“f+L°f. 2.1)

L is the generator of the exclusion process for particles with several colors
(velocities), without exclusion between different colors

Lefmy= > > p(ymy+ew,n) f(n) — f(n)], (22)

wey yeld
ecé

where n(z,v) ifv$Eworz=+x,y

oYz v) = nxw) ifv=wandz=y .
n(y,w) ifv=wandz=x

The jump intensity is given by
p(xa Y, W, ’7) = 'I(x, W)P(x - W)a

p(x—y,W)=[x+%(y—x)-W], ve Y, (2.3)

for some y > k/2. The constant y has to be chosen large enough so that the jump
rates are nonnegative.
The collision operator is defined as follows: let

Q:{q:(l),w,vl’w,)e“/‘4:v+w=v/+w/}‘

We call the quadruples g € 2 “collisions.” 2 is the set of all the possible collisions.
The first two arguments of g,v and w are the incoming velocities, while v/, w’ are
the outgoing velocities of the collision g. We define

Lfm= 2 L) = fml. (24)

y€EZ4 €2



Navier—Stokes Equations for Stochastic Particle Systems on Lattice 401

Here, for ¢ = (v,w,v’,w') we put

P(yq.m) = n(y,0)n(y,w)(1 = n(p,v"))(A = n(y,w") (2.5)
and
n(z,u) ifz+y orudqor p(y,q,n) =0
9 (z,u)=1 0 if p(y,gn)=1andz=yand (u=v or u=w)

1 if p(y,g,n)=1andz=y and (u=7" or u=w')

Note that if # does not contain in y two particles with the incoming velocities v
and w, or there are particles with outgoing velocities v’ and w’, #”*9 = 5. Putting

(@3N =[S ("9 — f(n)], we rewrite (2.4) as
L) =222 Q7)) (2.6)

Y q€2

Specific choices of the set ¥~ will be given later on in this section. For the
moment, we simply note that the collision operator conserves the total mass and the
total momentum at every site. More precisely, the quantities

Io(nx) == > n(x,v), (2.7)
veEY
and, fora = 1,...,d:
L(nx) = %:V (v-ex)n(x,v) (2.8)

are conserved in a collision, i.e., L[ f(Iy,(nx))] =0 for all x € A; and for any
function f. The choices of ¥~ will ensure that these are the only conserved quantities
during a collision.

Since jumps conserve the total number of particles for each color, we have

g[zla(rlx):l=0, O(=O,...,d.

As a consequence, the following measure is invariant for ¥

d
dpr,rn = ZL—,rI,n H exXp {Flo(’?x) + Z nala(ﬂx)} (2.9)
XEAL a=1
with n the d-dimensional vector {n,, « = 1,...,d}. All the measures we will con-

sider in the sequel are absolutely continuous w.r.t. the global equilibrium measure p,
corresponding to n = 0, namely the one defined as

w(n)=27" T1 exp{rio(ns)}, reR. (2.10)
xEAL

When possible we also omit the subscript » and denote by (-) the expectation
w.r.t. W,
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The generator . is not symmetric w.r.t. this measure, because the generator of
the exclusion part is not symmetric. However, one can check immediately that

EM[fZ 9]l = E* gL f],

so L€ is symmetric W.r.t f,.
The formal adjoint w.r.t u is given by

g* :__(geX)* +$C

with
(LY fm = X poy+ewmf(*")— f(n)] (2.11)
weY? yez?
ecé
and 1
P xy,wn) =n(y,w) [x ty0r—x)- W] . (2.12)

There are d + 1 locally conserved quantities 7, (2.8) for this dynamics and the
corresponding currents wy g U= 0,...,d are defined by

d
L(n:)] = ﬁ; Vi wig (2.13)

with
Vg g(x) = g(x) — g(x — ep), Vig(x) = g(x + eg) — g(x) .

Note that the collision operator plays no role in (2.13) because £°[I,(n,)] = 0.
Similarly we define w’; as

d
L ()] = 3 Vg wey (2.14)
p=1
Since the current depends only on the exclusion part of the process and the exclusion
dynamics is defined for each color separately, we can compute the currents using

formulae for the asymmetric simple exclusion. More precisely, we can compute the
current of the asymmetric simple exclusion process by

d d
LEn(x,0) = BZI Ve wep(v),  Ln(x,v) = ;;Zl Vi wi p(v) .
The currents wy,g(v) and wy 4(v) are given explicitly by
1
Wi p(0) = 5 (pleg,v) + p(—eg,0))Vp(x, v) + wig(v)
2 .8

1
Wip(0) = 5(plep,0) + P(=ep. 1)) Vpn(x,0) = wi(0)
w(v) = (pleg,v) — p(—ep, )by p(v) (2.15)
with )
bep(v) = 1(x + eg 0N, 0) = 5 [1Cx + eg,v) + 0, v)] (2.16)
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Here p(ep,v) is the jump rate of the color v in the direction es. With the conven-
tion (23)5 P(eﬁ, U) - p(_eﬂa U) =ep-v and %(p(eﬂa U) + p(—eﬂav)) =X
Using these equations, we obtain the mass current wg’ B and the momentum
current wy ; as
W= 2 wap(v) = xVslo(n:) + X (ep - v)byp(v) ,
vEY” vEYV

Wip = Y (ea V)W p(v) = xVplu + Y (ew-v)(ep-v)bep(v), o, f=1,....d.
vEY vEY

(2.17)
Similarly,

wg = 1 Vglo(n:) — 5 (e 0)be(v)
ve

wig = Vgl — 30 (ex-)(ep - 0)bip(v), wf=1,...d. (2.18)
’ vEY

It is convenient to introduce also the symmetric and antisymmetric part of the cur-
rents

o *, 00 o *, 00
() _ W, B + Wi B (a),0 Wi~ Wi B
Wef = Wep =5 (2.19)
We will need to compute averages w.r.t. distributions of the form
d
pnr=2Z""T] exp {no(x)fo(nx) +2 na(X)Ia(nx)} : (2.20)
X€AL a=1

Define the velocity distribution at x as
ro)HnE) v
— JFHn -
f(x7 U,n) - E [1’]()(.', U)] - 1 + e’lo(x)+£(x) ep ?

with n = (n,...,n4). The average of the currents w? p W.I.t. a measure of this form
are given by

Ef[wy 5] = Z;V(eﬁ-v)E“"[bx,ﬂ(v)] + 2 VpE* 1]
ve

= Zﬂ/f(v-e,;) [f(x,v,n)f(x+eﬂ,v,n)— %(f(x,v,n)%—f(x-l—e,;,v,n))
vE

+ xVBE* o],
Ef[wi gl = EZV(ea -v)(eg - V)E*[by g(v)] + X VE"[1,]

= Z (eot * U)(eﬁ ¢ U) I:f(x’ v,n)f(x +€ﬂ,l),ﬂ) - %(f(x,v,n)

veEY

+ f(x + ep, v,n)] + (VBEM[1,] . (2.21)

Let us give now a heuristic derivation of the hydrodynamic equations.
We start with the Euler scale. We choose as initial state for the system the
local equilibrium measure (2.20) with chemical potentials 7i(ex,0) slowly varying
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in space. Then we look at the system on the Euler time scale, i.e. at times of order
¢~ !, that corresponds to replace the generator £ with ¢~!.%. Then the hydrodynamic
equations are recovered from the conservation laws
d d
T8 DI @B L)) = o' 5 30 ()G B w ] (2.22)
X x p=1
where f;u, denotes the distribution of the process at time ¢.
Assuming that f; is still well approximated by a local equilibrium with chem-
ical potentials 7i(ex,t), by (2.21) and (2.22), in the limit ¢ — 0 we get the Euler
equations

0 d 0 d
=P+ 0ja=0, —u+ > 0yn =0, (2.23)
ot o Ot =1
where 0,, denotes the partial derivative w.r.t. the macroscopic coordinate z,,
plex,t) = EM'[Io(n)] = > f(x,v, /i) (2.24)
vey
is the mass density,
iy (ex,1) = E*"[L(nx)] = 3 (v-eq) f(x,0, i) (2.25)
vey”

is the momentum density,

jot(ex’t) = Z (U * ea)(f(x’ v, ;l) - f(x9 v, ’7’)2)

veYy

is the mass current and

n*Pex,t) = EM[(I(ny) — E* [L(n:)))p(nx) — E* [1g(n:)])]
= ;V (eoc * U)(eﬁ * U)[f(x’ v, ﬁ) - f(x’ v, ﬁ)z] (226)
is the stress tensor.

A more explicit expression for p, ii,, j, and n*f is obtained from the symmetry
of ¥ in the exchange v — —v. We have:

e?o 1 e cosh(7 - v)

P = & T1 e 1 2eMcosh(ii-v)

i e sinh(7 - v)

iy = v;/(v €y) 1+ &2 4 2¢/ cosh(7i - 0) °
Jo= 2 (v-ey) e™ sinh(/i - v)(1 — &*™)
. = o

vy (1 + €27 + 2efo cosh(fi - v))? ’

2e™ cosh(7i - v)(1 + e?™) + 4?70
b _ e )(u- 7i-o)1
T UE:V(U eot)(v eﬁ) (1 + e2n0 + 2en0 COSh(ﬁ' U))2

Next, we consider the incompressible limit; we follow the same strategy. We
choose as initial state for the system the local equilibrium measure (2.20) with
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chemical potentials 7(ex,0) given by

o =+ &0o(ex),  fia = £alex) 2.27)
such that J
divi:=>0,,4,=0.
a=1

The conservation laws are the same as (2.22) except a change of scaling is needed,
i.e. we replace # by ¢ 2.¥:

d
%ed S J(ex)E M [I(n:)] = /7230 30 J(ex) VT ES M [wy ] (2.28)
X X ﬁ:l

Assume that a local equilibrium measure with chemical potentials like in (2.27)
describes the system also at time f. With this choice of the local equilibrium,

we have .

_ 2 __°
p=NO+ 0(e), 9_1+e” (2.29)
E*i[n(x,v) 4+ n(x, —v)] = 20 + O(¢?) . (2.30)
Moreover, the assumption on ¥~ imply that
> (ex+v)(ep-v)=Kéyp,
vEY
2{/ (ex - v)(ep V)L 0)* = 3y pA|A]* + 84 pBAE + Clolp
ve
where 4,B,C and K are constants independent of A.
Therefore,
ity = et(0)Ay + O(E) (2.31)
with
t(0)=K0(1 —0). (2.32)

We have used the following identities:
exp[r + &b + £%¢]
1 + exp[r + &b + &2c]

explr +eb+e’c] [ explr+eb+ec] g
1 + exp[r + &b + &c] 1 + exp[r + &b + 2c]

2
— 0+ e0(1 — 0)b + %0(1 —O)[2¢ + (1 — 20)B%] + O(F®) ,

= 0(1 — 0) + 6(1 — 0)(1 — 20)b + 82—29(1 —0)[2(1 - 20)c
+(1 = 6(1 — 0)0)b*] + O(£%) , (2.33)
where 0 = ¢’/(1 + ¢”). From this identities and (2.27),
f(x,0,n) =0+ ed(1 — 0)(A-v) + ?0(1 — )24 + (1 —20)(A-v)*]1 + O(),
fx,v,n) — f(x,0,n) = —0(1 — 0) — eb(1 — 6)(1 — 20)(A-v)
—82—29(1 — 0)[2(1 — 20)Ag + (1 — 6(1 — 0)0)(A - v)*] + O() . (2.34)
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Equations (2.29)—(2.31) are direct consequences of the last identities.
From (2.21) and (2.34) one can check that

d
gd2 zxj /;; Vi E"[wiglJ (ex)

d
=’y 2 @20 = DOy + 22 2P 06, (235)

because
Vi [Me(x + ep)) + Aex)] = 260,,A(ex) + O(s’) .

From (2.29) the average of the Lh.s. of (2.28) with a = O is O(&?). Moreover,
the last term on the right-hand side of (2.35) is of order ¢2. Hence we have to
assume divA =0 to assure the continuity equatlon Also, the leading order cor-
rection to (2.35) is of order &2, hence it is consistent with the assumptlon that
the density correction is of order &2 (2.27). We remark that, if there is a first or-
der correction to the density, which can be achieved by adding a term el;(ex,?)
in the first equation of (2.27), then the leading contribution to the last term in
(2.35) is

d+1 Z Z 2p2p J(sx)pl s

where p; is the corresponding first order correction to the density (i.e., p=po + €p1).
Note that this term appears because of the stochastic nature of our dynamics (more
precisely, because we use asymmetric simple exclusions to replace the deterministic
dynamics).

The averages of the momentum currents in (2.28) can be computed as

d
.3 2 BV [wiy] = —H(0)(1 — 20)2 doh0 + xt(e)z 2

——(1 —0)(1 - 66(1-10)) > Z (ex - 0)(eg  0)0z,(A-v)* + O(e) . (2.36)

vVEY p=1

Recall that ¥~ is invariant under the reflection w.r.t each coordinate axis. Hence, by
(2.36), the equations for A, are of the form

O, 1 Bh(0) , ,» _ Ch(60) &
at}.a— t(@)aza t(@) }» t(0) Zlﬁ@zpl -}-XZ ZﬁZﬂ (2.37)
where

p(0,4) = t(0)(1 — 20)40 + ARO)AP,  h(0) = 2(1 —0)(1 — 60(1 — 0)).

We obtain the usual Navier—Stokes equation (up to a scale factor) if the coef-
ficient B = 0. An example of ¥ such that this is true will be given in Model II
below.
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This heuristic derivation is not entirely correct. The diffusion coefficient appearing
in (2.37) comes completely from the stochastic fluctuation, namely, the fluctuation
associated with the simple exclusion process. Therefore, if (2.37) were correct,
there would be no contribution to the viscosity from the “deterministic part”
of the dynamics. We shall prove that (2.37) still holds but the diffusion coefficient
is not given by y. The true diffusion coefficient is always bigger than y and
this accounts for the viscosity from the “deterministic part” of the
dynamics.

We now choose the space . First notice that, because of the symmetry prop-
erties of 7, the constants 4,B,C and D have the more explicit expressions

A= S i =C2, B= Y [f-3003], K= 2. (2.38)
veY veEY vEY

Model 1. The simplest choice is the following: Let
VvV =€.

With this choice, the only possible collisions are those g = (v,w,v,w’) such that
v+w=0and v +w' =0.
For this model, one can easily check that

A=C=0, B=2  K=2. (2.39)

Model II. Let d =3 and ¢ denote any element of ¢, the permutation group of
{1,2,3}. Let
¥ ={v:ov=(x1,%1,+w) for some 6 € £},

where @ is the positive solution of
o' —60*—1=0.

" is invariant under reflections w.r.t. any coordinate plane and permutations of
coordinate axes. Moreover, with the above choice of @, one gets:

B=0

and
A=8(1+2a%), C=16(1+2w%), K=8Q2+w?). (2.40)

The proof that the only collision invariants are total mass and total momentum is
part of the ergodic theorem proven in next section.

Now we are ready to state our convergence result. Let f; be the distribution
density, w.r.t. u,, of the process on the diffusive time scale, namely the solution of
the forward equation

0
—fi=e L. (2.41)
ot
We consider the initial datum f;—g = g given by
d

W = Z; 'exp [s > /Ia(ex)la(x)} (2.42)
1

X€EAL 0=
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with A, smooth periodic functions. Recall the definition of the specific relative
entropy of two densities f and g w.r.t. p,:

s(flg) = & <f log §> (2.43)

and let
s(f)=s(f1).

The rest of this paper is devoted to prove the following

Theorem 2.1. Assume d = 3 and ¥~ as in Model 1 or Model 11. Let f; the density
w.r.t. the measure ,, defined in (2.10), at time t. Then there is a matrix D
with coefficients D; o B,y,v=1,...,d, such that D = Dy = yIl (as matrices) and
the following holds: given a smooth solution p(x,t),u(x,t) of the incompressible
Navier—Stokes equations

divu =0, (2.44)

h(0)

at oy 103

d d
{Bazaug +C> uﬁazﬂua} =—-0,p+ > Dz ;@Ba Uy, (2.45)
p=1 By, v=1

we define the following density ¥, w.r.t. [,

d
¥, =7 'exp [e D Aa(sx,t)la(x)}, Jo = 1t(0) " 'uy . (2.46)
x€AL a=1
Then:
1)
lim e 2s5(f|¥) =0. (2.47)

2) Defining the empirical fields Vi, for « =0,...,d, as

v, t) =67 Y 8z — ex)lo(nx(2)) » (2.48)
x€AL
Vit t) = e S 8z — ex)L(n:()), a=1,....d, (2.49)
x€AL
we have that, for « = 1,...,d, V% converges weakly in probability to u,, solution

of the Navier—Stokes equation, and v, converges to the constant NO.
3) The matrix D = D; is diagonal and has the form

D;z; = 0,905, y[D1 + D204, ] + D304,80,,5 + Dade,,0p,y .

Moreover
D=+D; .
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The proof of this theorem is given in Sect. 3 and it is based on the lemmas and
theorems of Sects. 4—6.

Remarks.

(i) The matrix Dy is the diffusion matrix which appears in the limiting equations
when one considers only the symmetric part of the generator ¥, = 1/2(% + &£*).
The true diffusion matrix D is bigger than Dy, as stated in the last part of
Theorem 2.1 because of the contribution of the deterministic motion.

(ii) The second part of the theorem is a consequence of the relative entropy
estimate by means of the following entropy inequality. If f and g are normalized
densities w.r.t. du, then

E'IX] < y7'e7s(flg) + v ' log Eexp{yX }] (2.50)

for any positive y and for any random variable X. See [24, 10] and Lemma 2.2
below for details.

(iii) The factor #(0) is due to the relation between the momentum density # and
its conjugate chemical potential / at the first order as in (2.31). Here &t = eu 4+ O(&?).

(iv) We need the specific form of ¥~ only in the proof of the ergodic theorem,
Theorem 3.3 in the next section. The rest of the proof is valid under quite general
conditions. Therefore Theorem 2.1 holds for any model in d = 3, with 7~ a finite
set of vectors of given length, invariant under reflections and permutation of axes,
for which the ergodic Theorem 3.3 is valid.

To conclude, we recall a lemma from [8] (Lemma 2.2 of [8], p. 1239).
Lemma 2.2. Let f be a density satisfying
lim e=%s(f[y) =0,
&E—

where \ is a density of a product measure of the type (2.46). Then for any J and
any bounded local function F one has

linr(l)[Ef — EY] [gd—l ZJ(sx)ﬂ:xF] =0.

If instead of e 2s(f|¥) — 0 one has e~ 2s(f|) < const., then the following bound
holds:

‘[Ef —E"] [sd_l ZJ(sx)TXF} 1 < const.
X
In particular, \y can be the equilibrium measure ..
Finally, a direct computation shows that
s(¥) = e’E* [y log ] < const. &,

so that the previous lemma assures that |[EY — E#][e9=! 3" J(ex)t,F]| < const.
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3. The Relative Entropy Estimate

The strategy of the proof of Theorem 2.1 is similar to the one used in [8]. The
first step is to choose a local equilibrium density, ¥, (and suitable corrections) to
compare to the density f; of the actual time evolution. This density will be chosen in
such a way that its parameters to the first order satisfy the hydrodynamic equations,
while the second order terms take into account the contribution of the fast modes.
More precisely, we put

¥ = Z " exp [8 > Xd: (A * D)(ex, 1)y (11x)

x €A a=1

3.1)

+ ¢ ( ZA (Ao * D)(ex, 1)o(nx) + <D('1)>
xe€AL

Here Z, is the normalization,  is the convolution product on Z¢, and J,(z,t), @
and @ are chosen as follows:

(3.A) Let ¢ and k = /672 be integers, / = /“*? and suppose that A is di-
vided in disjoint cubes of size (27 + 1), with centers ¢ € (2¢ + 1)Z?, |o| < k. Let

7y =¢ — ¢"% and consider the cubes A;, , and Ay = Ulsi <k 47,5 1s the region 4y

without corridors of width 2£1/#. Define & and ® to be the normalized characteristic
functions

o) = |4l M€ A), @) = 2k + 1) (x € A).

(3.B) The chemical potential 4,, « = 1,...,d, are solutions of

d
divi=3>10,4 =0,
a=1

0 1 h(0)

— = - 2
atia t(e)aza t(g) {Bazall +CZ /1/5' }+ Z Dﬂ} zl;z}' S (32)

with Dg, given as in Theorem 2.1, -

(0, A0, Ay) = t(0)(1 — 20)4g + AR(0)A% ,
H0)=K0(1—0), hO)= g(l - 0)(1—66(1 —0)).

(3.C) Choice of @ : B(n) = — 3, c 1, o 51 dup(ex, 1)(cd * 1,Ff ) where FY are
local functions satisfying the conditions in Definition 4.1 of the next section.

The choice of @ is for the convenience that no boundary terms arise in the
multiscale analysis; one can simply use w but a few steps are needed to bound the
boundary terms. The multi-scale analysis is an important tool in proving Theorem 4.6
of [8]. Its extension to the present setup will be used extensively here.
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For the convenience of later reference, recall for our models the currents are
given by

wop = wis;“ - w)(f;“, wfj}f = xVil, (3.3)
and
wi® = Y (e v)ep - 0)bep(®).
@ o (3.4)
W0 = S (ep-0)byp(v)
vVEYS
where

1
by, p(v) = n(x + ep, v)n(x, v) — S [n(x + €g,0) + n(x,v)] -

Furthermore, the density, velocity, stress tensor and the pressure are related by

7

P=NO+0), 0=——)  u=et(0)y+O),
1+é€"
1P = (1(0) + &p(0,1))35, 5 + E*H(O)(BA2Sy g + Chalp) . (3.5)

We return to the proof of Theorem 2.1. The density ¥, differ from ¥ only at
the second order in &. The following lemma shows that the difference of s(f|¥)

and s(f|¥) is small.

Lemma 3.1. Suppose that f is a probability measure on Ay. Let

>

x€AL 0=1

¢ =z! €Xp |: Z i eSa(ex, ), (1)

>

¢ =27Z""exp [ > Zd: (eSu(ex, ),(1Ny) + 62t,(ex, )T, F)

x€A a=1

two densities w.r.t. u, where S, and t, are smooth functions of (z,t) and F, local
functions of the configuration such that E[F,) = 0. If ¢ 2s(f|¢) — 0, then

lim &2[s(f]$) — 5(/1¢/)] = 0. (3.6)

The proof is an obvious extension of the one given in [8].
From this remark, to prove Theorem 2.1 we shall only prove

lim e 2s(f,|¥)=0. (3.7)

To state the main theorem of this section, we need the following definition.

Definition 3.2. Let G be a local function such that E*#[G] = 0. For any vector
m = {m,}?_, we define the “variance” V,(G,m) by

(_gs,t’)_]

V(Gym) = (241 +1)7° < [ > (G —a(G))

[x[ =4
x [ > (1:G — 0,(G)) > : (3.8)
Heom

[x| S
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where ¢y = ¢ — "'" and p, ,, is the canonical Gibbs state of (2¢ + 1)¢ sites with
parameters such that the mean of I,, « = 0, on the block A, are equal to my,
namely,

d
Heom = E/_rln [T 6(Zor — mo)ue .
=0

Here i, denotes the counting measure on the configurations in Ay, Es . is the

normalization and )
a/(G) = EM[G|I}]

where E*[G|I 11 is the conditional expectation given the averages I-;l:

Tt = N OV Gy 2 ) =0 G9)

The generator %, is the symmetric part of the generator restricted to Ay, in
the sense that the sums in (2.2) and (2.4) are restricted to the sites and bonds
contained in Ay. We define also the “variance” of G by

V(G,r) = limsup E*[V,(G,I/)].
{—00
In order to make the above definition meaningful, one needs to give sense to
5,’1? ;- This is a consequence of the finite volume ergodicity of the generator, sum-
marized in the next Theorem 3.3. We will use the following notation: given a

configuration # on a box A, of size /, we put

Na(n): Z Ia(nx), a:O,...,d.
xXE€A,

Moreover, for any choice of m,, we denote by Q, , the set of configurations # in A,
such that N,() = m,(2/ + 1)? for « = 0,...,d. Note that there are many choices
of the m,’s such that Q,, is empty. We consider only the non-trivial choices.

We have the following

Theorem 3.3. The process generated by ¥s; on Qs,, endowed with the measure
Ue.m s ergodic.

Proof. Since the process is a finite Markov chain, it is sufficient to show that it is
transitive, in the sense that, given any couple of configurations # and 7 in @/, it
is possible to find a sequence of jumps and collisions which transform # into 7.
We first consider Model 1.
Let

U

N, (n) = E [n(x,ex) +n(x,—ex)], a=1,....d, ZN (1) = No(n) .
€A, =

a=1

Step 1. If n,17 € Q4 , then N (n) — N, (77) is even.

Proof of Step 1. If N; (1) — N, (i) were odd, then there is at least x € A,
such that n(x,e,) — 7(x,e,) = +1 and n(x, —e,) — 7(x, —ex) = 0 or viceversa. Hence
[n(x, ex) — n(x, —ex)] — [11(x, €x) — 7i(x, —ex)] = £1. But Ny(17) = Nu(i7), so for each

UIn Sect. 4 we will introduce other quantities I, with negative indices. We use here the + exponent
to emphasize that o here is non-negative.
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such x there is an y € A, such that [1(y, ex) —1(y,—€a)] = [7(, €2) = 71(y, —ex)] = F1,
to compensate the discrepancy of momenta in x. But this means that N (n) — N, (7)
is not odd.

Step 2. Let N7 () — N7 (1) = 2ky,. If ky > 0 for some o = 1,...,d, then there is a
sequence of jumps and collisions which transform # into 7.

Proof of Step 2. To simplify the argument, let d = 3. We have No(n) = No(77),
hence Zi=1 ky = 0. Without loss of generality we can assume k; <0 and k, = 0,
k3 = 0. Therefore, with a suitable sequence of jumps, we can transform # into
a configuration #; with N,(1:) = Ny(n) and N, (1) = N7 (n) such that there are
at least —k; sites xj,...,x_y,, where there is no particle both with velocity e; and
with velocity —e;. In the same way, one can construct a configuration #, such that
Nu(m2) = No(77) and N, (n2) = N, (17) such that there are k, sites yi,..., yp, without
particles with velocity e, and —e, and k3 sites yy,11,. .., Vi,+k Without particles with
velocities e3 and —es. Since k; + k3 = —k, there is no loss of generality assuming
that the two sets of points coincide, because otherwise extra jumps can be done to
reduce to this situation. Then we are in position to make a collision in each of the
sites x;, transforming #; into #;.

Step 3. If ky, =0 for each a =1,...,3 then a sequence of jumps is sufficient to
transform # into 7.

Proof of Step 3. In fact, if ky =0, > ., n(x,0) =3 4 fi(x,v) for each v € ¥".
Therefore jumps are enough to transform # into 7.

As for Model 11, we sketch the proof. Define 5 ~ { iff there exist a collision
g€ 2 and a site y € A, such that Q)n = (. This defines an equivalence relation
and we say 1 and { are connected if they are in the same equivalence class. If % is
a configuration in 0, we will also denote by # the subset of ¥~ such that #(v) = 1.

Lemma 3.4. For any two configurations v and { at 0, n and { are connected iff
I*(n) =1"(0).

Proof.

Step 1. We claim first the same result holds on the space # = {(£1,41)}. This
can be checked easily.

Step 2. Next, we claim Lemma 3.4 holds if we restrict ourselves to the subspace
v ?) = {(£1,£1,+w)}. This can be checked easily too. We give a brief sketch.
From the previous claim, the projection of # and { onto the space #~ are connected.
Let #f = the number of {v € # with v; = +@}. Since the momenta of # and { are
the same, 11§E = C3i. Hence we only have to prove the following:

Suppose {u,v} Cn with usv. Let { =\ {u, v})U{(u1,ua,v3),(v1,02,u3)}. Then
{ and n are connected.

But u + v = (uy,uz,v3) + (v1,v2,u3), hence we have proved the claim. This
proposition is obvious and will be used repeatedly in the following proof. It
basically means that the third component can be changed freely in 7~ (23).

Step 3. Suppose # and { are two configurations in ¥~ (23) with the same momentum
but not the same number of particles. Suppose Io(17) > Ip({). We claim that # is
connected to { U A for some A satisfying that AN{ = ¢ and 4 is reflexive, i.e., if
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v € A then —v € A. We first claim that Iy(n) — Io({) = 2n for some n € A" since
otherwise () +13({). We now follow previous arguments by first considering the
projection onto the space ¥ and then adjusting the third components. In more
details, we first prove our claim in the two dimensional space #". This can be
checked directly. We can then use the remark from Step 2 to adjust the third
components. This proves the claim.

Step 4. Finally, the general case. Let 0 = {v €  : v; = £w}. Clearly, L(#") =
L,({®) for o > 0. Hence #” and (@ differ only for pairs of opposite vectors. Since
any pair of opposite vectors can be brought into any different pair of opposite vectors
by a collision, it is not hard to check # and { are connected.

We now consider the general cases:

Lemma 3.5. For any two configurations v and { on Ay, n and { are connected iff
I*(n) =1"(0).

Proof. The proof follows almost exactly the same arguments as in the previous
lemma except some explanations are needed for the use of the simple exclusion.
Let us illustrate it by proving Step 1 carefully. We are now in the setting of two
dimensional configurations n and { with the same momentum and number of par-
ticles. We now bring particles with opposite velocities to the same sites as much
as possible. We can then decompose # as the union of two configurations #Pirs,
consisting of pairs of opposite vectors at the same sites, and the rest, #5"€'°S, Since
we have only four directions and no pairs are allowed, we can assume, without
loss of generality, with obvious changes to cover the different situations, that 5*el°s
contains o particles in the direction (1,1) and f particles in the direction (1,—1)
and nothing else. Similarly, we can decompose { in the same way. Since (1,1) and
(1,—1) are linearly independent, we can check that {*"8'®s contains exactly the same
number of particles in the directions (1,1) and (1, —1) and nothing else. Hence #P
and (P4 contain the same number of pairs because the total number of particles
of n and { are the same. We can connect #P*™ and {P*™ by simple exclusions and
collisions and we can also connect 7*"€ and (*"&*s by simple exclusions. This
concludes the proof of Step 1.

Step 2 is obvious. We now prove the claim in Step 3. First we check if instead
of having the same number of particles and momentum in Step 1, # and { only
have the same momentum (note they are now configurations on #"). From previous
arguments we still have that #*"8*s and (*"gls have the same number of particles.
Hence 7 and { can be brought into configurations #’ and {’ such that ' \ {’ consists
of pairs (assuming Ip(n) = Ip({)). With this comment, we can prove Step 3 easily.
Finally, Step 4 is by now straightforward.

The main theorem of this section is
Theorem 3.6. Let P, be defined as above, k = £¢7%% and f, as in (2.31). Then,
for d = 3, and for any y >0,

~ T ~
lim lime™2s(fr|Pr) £ C lim lim [e72s(f,|¥;)dt
[—o0 6—0 l—o0 e—0 0

CT 4
+T S V(HP,r)+ const.y. (3.10)
o, f=1
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Here C is a positive constant, V is defined in (3.8) and

d
~B. *
B =H!, HE,=w9P— Y DLV - L FL (3.11)
y,v=1
Wwhere 5
Dy, = Dg‘y — %00y -

We need the following lemmas. The first one is a large deviation bound; the
other two are bounds on the entropy and the Dirichlet form.

Lemma 3.7. Let \y be the density given by (2.46) and let, for « =0,...,d,
M = EV @) L) =Q@k+1)7" 3 Lm),

lx—y|<k
% = BV (x); Lk (0)] = EV [T (x) — 2 )71,

where E[A;B] = E[AB] — E[A]E[B]. Then, for k = (=% and for any q < qo with
qo a small fixed constant,

lim hm g2 log EY [exp {qZ[(Ia k(x) — 7 () — ;C,k]}] =0. (3.12)

{—o0 e—0

In general, if G, = Gy(yo,-..,yq) is a family of bounded smooth functions such

that
0G,

0y

then for any smooth function J, there is q¢ such that for any q < qo,

G, (mx,k ) =

Y=y i

Jim lim &4~ log £ [exp {qZJ(sx){G Toi(x)) — E‘P[Gx(ia,ku))]}}] =
(3.13)

This proof of Lemma 3.7 is similar to the one for Lemma 3.1 in [8], p. 1241.
We omit the details.

Lemma 3.8. The density f, satisfies the following bounds:
(1) p
7 s(f;) £ —const. "Dy, (\/11)
where Dy, (g) = (Df + D§ )g) is the Dirichlet form. Here
i@ =Y 3 Z 1 IV2ug(DT duy(n) (3.14)
xEAL vEYV a=
with
Viad(n) = gor=>") — g(n)
and Dj (g) is given by
Di()= X X [IQI)m]* dur(n) .

xXEAL gE2
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(ii) For any t = 0, £~ 2s(f;) < const.
(iii) For any local function F and any J,

[E — EM] [sd"l ZJ(sx)erH < const .
X

Lemma 3.9. The relative entropy s( f,|‘I~’,) satisfies the bound
(1)
1s(f|lif) < sdff'f/_l g = 2 P,dy,
at t| ) = t 4 ot 1ally .

(ii) There is a constant c; independent of f, such that
., |d - 5 . 0 N
lim ¢ 2 Es(f,l'f’,)—sdfft (e 2 — E) log'P,du,] —¢ <0.

(iii)
~ 0 ~

Lemma 3.8 is obtained by adapting arguments from [24]. The first equation of
Lemma 3.9 is proven in [2, 10]. The last equation is obvious. The second equation

differs from the first one only because the term ¥, 13 P, is replaced by £* log P,
From Lemma 2.2, their difference is small. Details were given in [8], Lemma 4.4,
p. 1245.

From now on we use the notation “const.” for any constant independent of f,
and of the configuration (but may depend on the initial state and the parameters 1).
We shall not compute these constants at each step but will use Eq. (iii) of Lemma
3.9 to determine the final constant.

Proof of Theorem 3.6. By Lemma 3.9 to estimate the derivative of the relative
entropy it is enough to compute the quantity

S = ¢4 2ES [(8—23* - (—%) log ‘f@du,} .

We first compute ¢4 %* log ¥,
et P log ¥, = 4H L (log ¥, — D) + &2 LD

1 (Ao * D)X, 1)V i

— 8d—3 Z
P

T~

a,

d
697203 (ho x DNex, )V why + 672 L7
X

oa=1

=A1+A4,+4;5. (3.15)

The term A, is easier than A; because of the factor ¢?~2. We first sum by parts.
The difference operator is thus moved to act on A¢* @. Recall the expression
of the current given by (3.3). We can separate the current into the symmetric part
and the asymmetric part. Let 4, = B; + B, with By (B, resp.) related to the
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symmetric (asymmetric resp.) part. Hence

d
By = e 23 > Vi Vghold * L)
x f=1

d
By = %23 3V do(ex,t)(d x W@ 0y,

x a=1
where [0 * [,], = Zy @(x — y),(ny). From the Taylor expansion we can approxi-
mate Vj Vg by szézl,ﬁzﬁ with a negligible lower order term.

Since our density f; is very close to the equilibrium, we can compute B; to
great accuracy. Because E#[B;] = 0, we have from (ii) and (iii) of Lemma 3.8,

|E/(B))| = |[E/(B)) —E"[B]] S ¢.

Hence B; is negligible.
We now examine the difficult term A4;.

A = —Ed—?’z
P

—

o

d
ﬁzz (Vpda)(ex, 1) w3k ],

d d
= 7% >V Vide(@x b =P 50 Vphddxwi ..

2 1 o, 1

As remarked after (3.15), we can replace ¢ 2V, V, by d,,0,, up to a negligible
error term.

To deal with the currents appearing in 4; and in B;, we need to look at their
expectations w.r.t. suitable grand canonical measures modeled according to empirical
averages of the conserved quantities. To this end, for any ¥ = (¥y,..., ¥y), let u1y
be the grand canonical measure such that

ENL] =Y, o=0,..d. (3.16)

The measure y;,y is uniquely defined because it is required to be an invariant mea-
sure of the dynamics (exclusion+collision). Explicitly, u;,y is the product measure
with marginal at one point given by

d
p,y(n) =Z7, exp { Z_Ioniy)la(n)} (), (3.17)

for n = {n(v),v € ¥'}. The chemical potentials n$!) are suitably chosen to give the
correct averages (3.16). The subscript 1 is used because we will need the grand
canonical measures for the symmetric simple exclusion which will be introduced
later on and carries a subscript 2.

Given an integer £ > 0 for any configuration # in Az, we consider the local

empirical averages I, (x), « =0,1,...,d, defined in (3.9). The measure 7+

is defined according to (3.17), with Y, ?I-a,k(x). _n&y) = ny—"(x)), a=20,...,d the
corresponding chemical potentials; here I} (x) = {[,x(x),x =0,...,d}. Moreover
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we put
D4 e v

Y)y.. _€°
S = G19)

With above notations, we have, for Y, :=1, o (x)

lox(x) = EM 0[] = Y f(v,n"),
vEY

_ _ (3.19)
Tyi(x) = EMIO[L] = 3 (v-e)f(0,n) .
veY

We can now define

Gip = (@ W} — EMIO[(@ Wi ;

9By = (@xw) ) — EMio[(d«w@)%),), a=1,..,d (3.20)
From previous definitions we have,

EMT[( % wip *)] = > (v-ex) (- ep){[ /(0" )] = f(o,n )} = —n*(Y),
ve

EM (@ + Wi ©)] Z(v ce [ f(0,n)]2 — f(o,n D)} := —nd(¥). (3.21)

Equations (3.21) are not explicit in terms of the conserved quantities. To obtain
an explicit expression one has to solve (3.19). For our purpose, some approximation
will be sufficient. This will be carried out later on in this section.

Summarizing, we have

d d
Ay = 'Y %: 02, Agld * Igl, —e 3% %j (Vdp )ex, )mP (I (x))
X a, =1 x o, f=1
d
+67 Y Y (Vadp)(ex, 1)gh , + o(1) .
X a,fp=1

Let
Db, =Pl + 6,1 (3.22)

We can rewrite

d
A =Y Z DE(8,,0, p)(ex, ) x 1]«

d

ﬂzl(azﬂﬂ)(e&f) gxa E Da y(a) * v I (’1y))
o, f= p,v=1

d
2
B=

(Vikp)(ex, )n*B (I (x)) + o(1) . (3.23)
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Similarly, B, = C3 + B3 where
C3 = Bd_l Z aza/logg,a ,
X, 0
By = ¢ Y Vi dono(I{ (x)) .
X, 0

From (3.15), (3.23) we rearrange the remaining terms as

A1 +A4,+43=C+Co+C3+ B3 +0o(1),

where
d-3 ¢ B d =p . A 8
Cl =& Z ﬁz](aza/lﬂ)(gxat) Gxa — Zl Da,y(w * Vylﬁ(’?y))x - (CO * g*(TyFac ))x ’
X o, p= V=
(3.24)
and
d d _ _
C=3 > |73 Db (8,,0.4p)(ex, ) ga(x) — £973(Vudp)ex, )n* (I} (x)) |
x o, f=1 y=1

(3.25)
We also need to compute

0 o
—ed2pS {5 log ‘P,}

d _ -
= —E/ {sd—‘ D %la(ex L) +e? S %Ao(sx,t)lo,k(x)] + const .

x o=l

Using an argument similar to the one explained in bounding B;, one can prove that
the second term on the right side is negligible up to a constant.
Summarizing these computations, we have

# = E[C1 4 C3 + C4] + const. + o(1), (3.26)

where
Co =2 Y LU (x)) (3.27)

and

a=1

d F d )
[(Y)=¢Y {(‘5’1“ + ﬁ%;]D;‘;y az,jazyza> (ex,1)Y,

—&2 f Vidp(ex, )n*P (V) — s_IValo(sx,t)no(Y)} . (328)
p=1

The terms E/[C;] and E/[C3] are dealt with by using the following theorem.
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Theorem 3.10. Suppose h is a local function, J is a smooth function and  is a
local Gibbs state with smooth slowly varying chemical potentials Ay(ex):

x€AL a=1

v(in) = CXP I:s > Z A (Sx)la(”x)jl .
For any normalized positive f and for any y >0,

Jim lim {a“ [f Y JEx){(@* th)(x) — E ™ HO R} dug

JCEAL

—const. y7! [J(z)’dz V(h,r) — ye® " Da,(\/f) — 67 e 2s( f|.p)} <0, (3.29)

provided & is small enough. Here ! = (%2 k = /¢~ and V is defined in (3.8).

Corollary 3.11. For any y >0, any f and any Gibbs state yy such that ¢~ 2s(f|r)
is bounded,

hm 11m e[S J(ex){(d * th)(x) — E™ KR} fduy

XEAL
< z—ly [J*(z)dz V(h,r)+7y lim e Dy, (V) + 07! llim lim e 2s(f 1Y) .

In particular, if f; is the density in Theorem 2.1 then for any y >0,

fhm glm fdt{ =2 5™ J(ex)[(d * Tg)(x) —E”"’_:“)[g])]ﬁdu,}

XEAL
T ~
<y 'crv(g,r)+ 67! Jim lim [ dtes(f,|¥,) + const. y, (3.30)
— —> 0

where C is some constant depending on J and Y.

The proofs of both the theorem and its corollary are postponed to the last section.

From Corollary 3.11 we can bound E/[C,] by a variance term and the Dirichlet
form of the density f. Because we are interested in a time integrated inequality in
Theorem 3.6, the Dirichlet form will be integrated in time and we can use (3.30).
Hence

d .
E/[C1] < const.y™! S V(HE, )+ 67'e72s(£,|¥,) + const. y + const. + o(1) ,
o, f=1

where the o(1) denotes an error negligible after time integration.

Similarly, we can bound Cs. This time we have an extra ¢ factor and the variance
term vanishes in the limit ¢ — 0.

Summarizing,

d ~
# <const.y”' 3 V(Hf,r)+5_18'2s(ﬁ|‘1’,)+const.y + E/[C4] + const. + o(1) .
o, f=1
(3.31)
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The constant is determined by the condition
E¥ [8‘1_2 S LI (x)) + const.| = o(1).
P

By Lemma 2.2 one can replace ¥ by ¥,. Let m =ENI, ()], «=0,....d.
From the central limit theorem for the product measure ¥, mf, = m} + O(k~?),
with m* = E%[I(x)] . Hence the constant in (3.31) equals to

E" [eH > rx(f,t(x))] +o(1) = e 2 Y B [L(m)] + o(1) .
X X
Using the entropy inequality (2.50) with y = &2~ we get

~ d ~
I < e72%(f; | W) +const.y™! S V(HE, r) + 67 e 2s( | W) + const.y
,B=

o 1

+e/ " log E" [exp {Z[rx(i:(x)) — F;‘(m;‘)]}] +o(1). (3.32)

We will use the large deviations Lemma 3.2 to bound last term in (3.32). To apply
it, we have to check that the function I', satisfies the following condition:

ory

Tl = w=0.a. (333)

—m
Yy=m?

To check this we have to evaluate derivatives of n*(Y), defined in (3.21). To
this end we compute n*/(Y + 6Y) — n*f(Y) to the first order in 6Y. We use the
notation 0Y = (8Yy,0Y). From (3.18) and (2.33) (and a simple computation), to
the first order in 6Y we have

f,n+0n) = f(v,n+6n)* = (f(v,n) = f(v,n)*)
= (0ng + on - v)[ f(v,n)(1 — f(v,n))(1 = 2f(v,n))]
with on = n7+°7) — (") Hence
(Y +6Y) — n*h(Y)

= 21:/ (v-e)(v-ep){ f(v,n+on) — f(v,n+ on)* — (f(v,n) — f(v,n)")}
S

= 2 (v-ex)(v+ep)[dno + (0n- V)] f(v,n)

veYV

x(1 = f(v,m))(1 —2f(v,n)) + O(n*) . (3.34)
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Recall (2.34). Hence for Y, = m, we have
(Y + oY) — n*h(Y)
= 2 [0ng + (6n - 0))(v- € )(v - ep) f(v,)(1 = f(v,n))(1 — 2 (v,n))

vEY

=[S + O(*)]0n9dup + T 3 (v-ex)(v+ep)(A-v)(Jn-v)
veY

AaOng + Agony
2

= S6noSy,p + 26h(0) | BAy0nyd, 5 + C +0(8), (3.35)

where S and T are constants depending on 6 and can be computed explicitly. The
analogous computation for 70 is much simpler because an extra factor ¢ appears
before n0. We have

Y +0Y) —nd(Y) = 3 [dno + (6n-v)](v- ex) f (v,n)

vEY
X(1 = f(v,n))(1 = 2f(v,n)) +o(1)
= H6)(1 — 20)dn, + o(1). (3.36)

Moreover,
oY, = t(0)ony, + o(1),

oYy = t(0)ong + o(1) .

Therefore, up to order o(¢) we have

oI, B 0 d "
EA & (—Eia(zat)+ﬂ£l(azp0z.,ia)(2,t)l)gy t(o)azap(z ,t)
_h(0) 2
o) |+ C Z (200,22, 1) | | + o(e) ,(3.37)
d
L =const.& Y, 0,,A(2,1) + 0(¢) .
a),0 a:m: a=1

The leading terms in the right sides of (3.37) vanish when A, and p are classical
solutions of the incompressible Navier—Stokes equations.

Assuming this, the last term in (3.32) vanishes as £ — oo. Applying Lemma 3.9
integrated on time we get

lim sup limsup ¢~ 2s( f7|¥r)

£—00 e—0

T
< lifm inf lim i(r)lf i [(const. + 6 Ve 2s(f|P,) dt

CT

IEP

d
S V(HP,r) + const.y| .
p=1
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The proof of Theorem 3.6 is then achieved by the use of the Gronwall lemma. We
shall prove that there exists a positive diffusion matrix D such that

d
inf 3 VHE Py =0, (3.38)
B=

a, f=1

with Hf defined in (3.11). Hence Theorem 2.1 follows from Theorem 3.6. Sections 4
and 5 are devoted to prove that (3.38) holds with F, in a suitable class of local
functions.

4. The Structure Theorem

In this section we define the spaces of functions we will work with, and characterize
their elements. We use several results of [8 and 15] for the simple exclusion. We
first introduce some notations. Since the reference density is fixed, we shall use the
symbol E* instead of E#.

With any x € A; fixed consider the following alternative description of the
configurations in x. Recall that #(¥") = N. We introduce N? numbers c,(v) with
o=—-N+d+1,...,0,1,...,d and v € ¥". We put

L(n) = 3 ca(vIn(x,v). (4.1)

vEY”

To be consistent with the previous definition of the conserved quantities I,(x,)
for « =0,...,d, we put

co(v) = a, cy(V)=bey v, a=1,...,d

with the constants a and b specified by the normalization conditions below. The
constants ¢,(v) for « < 0 are chosen so that the mapping 7, — {I,(n,)} is invertible
and the orthogonality conditions below are satisfied. Define

s

A0 =C20) =0, 0= (n(0)) = 1

o
For any f and ¢ functions of #, define the scalar product
(f>9) = E*[f(nx); 9(n)) = E*Lf ()9 ()] — E*[f (n:)IE* [ g(n:)] -
Then we have the orthogonality relations:
(n(-,0),n(+,0")) = 05,0 0(1 — 0) .

We also require the conditions

La(Mx), 1p(1x)) = 00, 4, f=—-N+d+1,...,0,1,....,d. “4.2)

For Model I for example we have N = 2d. Let
L(ny) = [26(1 — 0))'/* ;/(ea o), a=1,...d,
v

Io(ny) = [2d0(1 — )72 3 n(x,v),
veYV
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and define I,(#y), « = —d + 1,...,—1 by
d
I, = ;32 Aopln(x, ep) + n(x, —ep)] ,
=1

where 4,5 are chosen so that
EM[L(nx); Ig(nx)] = 00,3, o, f=—-d+1,....d. (4.3)

The relation (4.3) for « =0,...,d holds because of the definition of I,(#,), o =
0,...,d. It remains to choose 4,p so that (4.3) holds for & < 0. This can be done
easily for d = 2. In particular, for d = 3 one can choose

A_yp =401 — 0)]7"2(1,-1,0);  A_pp=[120(1 - 0)]""2(1,1,-2)

In general, we will use the notation /=, /" to mean the sets {/,,a <0}, {I,,x =0}
and I, will denote the centered variable

I,=1,- E"[L]. (4.4)
Definition 4.1. Let
4 = {g local function of n satisfying (4.5)},
E'[gl =0, > E"g;L,(n)]=0, a=0,....d. (4.5)

Let v be the product measure such that E'[I,] = m, for o = 0 and §(m) = E’[g].
Then the second condition is equivalent to

9g(m)

6m°‘ m=m

=0, a=0,...,d, (4.6)

where m is the vector {my, 0 =0,...,d} and my, =E"[l,], a=0,...,d, are the
values corresponding to the equilibrium measure [i,.

To make the index notation more transparent, we will reserve latin indices i, J,...
to coordinate directions: i,/ = 1,...,d; greek indices will be used as color indices.
Moreover, we will use the notation:

Vig(n) = g(te,n) — 9(n) ,

Whelie (Tm)(y,0) = n(y +x,v) and (2 )(n) = f(Tn).
et

d d .
90 = { Z aoc,jvjla(HO)a ay,j € IR}
1

=0 j=
be the space of the gradients of the conserved quantities. Define the semi-norm
-] = ¥ ()

with V7 defined in Definition (3.2). It is not obvious that ||g||-; < oo for g € 4.
This is part of the next theorem, which is the main result of this section. We will
say that two elements of % are equivalent if they differ by an element of %° and
will denote by 4\%° the quotient of ¥ w.r.t. this equivalence relation.
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Theorem 4.2. For all g € %, one has ||g||-1 < oco. Furthermore, let % denote the
closure of 4 under the seminorm ||-||~, and define

1
(g, h) = Z[”g +hl[—1 4 |lg — A]|-1]. (4.7)

Then ({-,+)) is an inner product and G equipped with this inner product is a Hilbert
space. Moreover 4 can be decomposed as

G=Z[9\D oD = H. (4.8)

To prove this theorem, we first introduce the concept of degree. Denote by B a
finite set of couples (x,v) € Z¢ x ¥" and |B| is its cardinality. We put
ne= [ [m(xv)—0].
(x,v)EB
For each positive integer n, we denote by .#, the space generated by all monomials
of degree n:
My=he€Y, h= Z 0gNB o -
|B|=n
Notice that in this definition all but a finite number of coefficients oz vanish because
h is a cylindric function. We shall refer to
G, = U ﬂ]
1<jsn
as the space of cylindric functions of degree n. All cylindric functions % can
be decomposed as a finite combination of cylindric functions of finite degree:
4 C Uy, Ay Let m, be the projection onto .#, and # =73 .,m, Then, #Y
is the space of functions of degree two or higher. We introduce on %% the fol-

lowing bilinear form and the associated seminorm, based on the symmetric simple
exclusion generator

(9 Mo = 305G+ =V =) lgle = (agde.  (49)

with V*(g) defined similarly to ¥ (g) in Definition 3.1 of the previous section, but
with the generator .%; replaced by £¢*. More precisely, let

fo(g,m)=(2/1+1)“d< Y wg(~Z3) X Txg> (4.10)
He,m

Ix|=4 Ix|=#

with £/, =4 —¢ 14 Here ps,, is the canonical Gibbs state of (2 4+ 1)? sites with
Iy =my, 0 =—N+d+1,...,d. Explicitly

d _
Heom = ZE,:, H 5(101,/ - ma),ut’ .
a=—N+d+1

Here u, denotes the counting measure on the configurations in A, and Z; ,, is the
normalization. With this notation,

Ve(g,r) = 1i;n sup E* [V (g,1))] -
— 00
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We also introduce on ¥ the inner product defined as

(g, h)ro = <g, ; TXh>u, = <;rxg,h># )

"

We omit the label » because it is fixed throughout this section.

Recall the following result from [8]. It is proved in [18] when the function %
is a current of a process. The general case is formulated and proved in [8] using
a multiscale integration by parts lemma.

Theorem 4.3. The bilinear form ((-,-))ex is a scalar product on %Y. Moreover, we
have the variational formula

1
(g, ex = sup |{g,u)o — 7 (u, (=L o - (4.11)
UERY
Furthermore, the subspace L&*RY is dense in Y under the norm ||« ||-1,ex asso-

ciated to the scalar product (4.11).

The subspace 2% is also denoted by %% because of the similarity with the
space 9. Clearly, if we replace (—%¢) on the right-hand side of (4.10) by (—%)
we have a lower bound. From the definition of ||g||—;, we have for all g € 29,

lgll-1 = llgll-1ex - (4.12)

Let us summarize what we have so far. The space ¥ C |J,-, #, can be de-
composed into degrees, and the subspace of degree two or higher is

RG = J M, .

n=2

Let ¥_ C ./, be the space of functions

G_ = { S aul (o), ax € ]R}.
a<0
From condition (4.5) the subspace of degree one is a subspace of .#; and is given
by
Gnh=9_09.

Note that as a subspace of the space ¢ with inner product (-, -)o, the space 4 is in
the kernel of the inner product. We shall denote the completion of 4/4° w.r.t. ||-|—;
by . Note that we have not yet proved the norm |-||_; is finite on %/%°. This
will be proved later on in Lemma 4.5. By definition, )¢ is generated by 2% @ % _.
To prove Theorem 4.2, the key estimate is contained in the following theorem:

Theorem 4.4. The bilinear form ((-,-)) is a scalar product in A and we have the
variational formula

«g’g» = Ssup <gau>0 - %(u,(—,&%)u}o . (413)
ueA

Furthermore, the subspace %A is dense in A~ w.r.t. the norm ||-||_.
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Assuming this result, we can conclude the proof of Theorem 4.2. Clearly, (4.8)
follows from Theorem 4.4 and the decomposition of degree discussed in the previous
paragraph before Theorem 4.4. We next show that ((,-)) is an inner product. Let
v € 4°. By definition,

| — Lu+ 0%, = limsup ¥ (—ZLu) + limsup(2k + 1)~¢
k— o0 k—o0

x:|x| <k k— o0

X > —fx.,%u,—,fs_kl > 10 ) + limsup Vi (v) .
x:|x| <k ’

The first term converges to (u, —%u)o. The second vanishes. The last term can be
computed explicitly since —i’;"klv has an explicit expression. This gives a formula
for | — Zu + v||_ showing that the variational formula holds for —%u + v. From
Theorem 4.4 and the previous argument, elements of the form —%u + v are dense
in ¢. Hence the variational formula holds in general. This proves also that ((-,-))
is an inner product and concludes Theorem 4.2.

Proof of Theorem 4.4. We first note that it suffices to prove that the subspace £, A"
is dense in " under the norm |-||_;. Assuming this, we only have to check (4.13)
with g replaced by Z,g. But this follows from the definition (4.7) of ((-,)) and
Definition 3.1.

We now outline the proof that £, # is dense in . The detailed proofs of
lemmas will be presented at the end of this section. We first state the following
lemmas.

Step 1.

Lemma 4.5. Put Qf = qug Q! f. Then, given I,(n,), for o < 0, there exist a lo-
cal function h and a function g € Y such that

L) = (Qch)(1:) + 9(nx) - (4.14)

Proof of Lemma 4.5. Fix x = 0. For any G € ¢, we have QG € #9 & %_, because
the null space of Q is generated by [, for « = 0,...,d. Therefore, for any z € ¥_
we can find a g € #%9 and w € ¥_ such that

Qz=g+w.

This relation defines a linear map from %_ to itself. Our goal is to prove this map is
surjective. Suppose it is degenerate. Then there is a z such that Oz = g. Multiplying
both sides by z we have

(z,0z)o = 0.

Clearly, %_ has no nonvanishing intersection with the kernel of Q. This concludes
the proof of Lemma 4.5.

Corollary 4.6. For any constant a, € R,

S ald,|| < oo. (4.15)

a<0

—1
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Hence for any constant c,; € R,

d
S e Vilh|| =0. (4.16)

<0 j=1

-1
Moreover, the seminorm ||+||—1 is finite on A

Proof of Corollary 4.6. From the definition of the norm ||-||—;, it is easy to
prove that (4.16) follows from (4.15). We now prove (4.15). Clearly, ||Qh||—; is
bounded for any bounded local function A. In fact, Qh = Fh — L&h. But || Zh| -
is finite from its definition. On the other hand, £&h € ¥ so that || L¥h||_; <
| LEh||—1,ex < 00 by (4.12). Also, for g € £% one has ||g||—1 = ||g|l-1,ex < 0.
Together with Lemma 4.5, this proves the boundedness of ||/,(1;)||—1 and thus
concludes Corollary 4.6.

Step 2.

Lemma 4.7. For any local function g € RY and any ¢ > 0 there is a local function
u € RY such that
”%%u - g”—l,ex Ze.

The proof of Lemma 4.7, will be given later on. Now we conclude the argument
for the proof of Theorem 4.4.

Step 3.
Lemma 4.8. For any w € 9_ and any ¢ > 0 there is a g € A such that
lw— Ll < e. (4.17)

Assuming this lemma, we now prove Theorem 4.4. Let u € #%. Then from
Lemma 4.7 there is g € £9 such that

lu—RZLyg|-1 < e (4.18)
Let w = (1 — #)%,g. From Lemma 4.8, there is an 4 € A such that
[w— Zhl|-1 S e. (4.19)
We have thus proved that
lu—ZL(g—h)-1 <. (4.20)
This concludes the proof of Theorem 4.4.

Proof of Lemma 4.7. The proof follows from three steps. The first two steps es-
tablish a priori estimates on the solution, the third is a compactness argument that
provides the conclusion. The a priori estimates hold for the full generator, not only
for its symmetric part and they will be used in the most general form in next sec-
tion, while in this section we only need the ones for the symmetric part. To shorten
the formulas, we will use the notation

1 1
S — 5[agex _l__(geX)*], A — E[gex _ (gex)*]’ Q — gc .
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Moreover, we write
0=>0x.
X
Step 1. First a priori estimate.

Theorem 4.9. Let g be as in Lemma 4.7. For any A > 0, let u; be the solution
of the following equation in %%:

(= +S+RA+ RO); =g . (4.21)

Then for any = 0 there is a constant Cy(B) such that

S (a+nP)y S D(uy) £ Cyy sty = mauiz (4.22)

for sufficiently large a > 0. Recall that D is the Dirichlet form associated to the
generator £.

Proof. Our goal is to estimate the collision term Q. The asymmetric part 4 is dealt
with in the same way as in [15]. We write

u=> Bz .

B

We can interpret a(B)?, up to some normalization, as the probability of finding
“pseudo-particles” at the set B. We denote by B, the set of x such that (x,v) € B,

ns, = I (n(x,0) = 0),

XEB,

so that
Np = H nB, »

veV

with 0 the expected value of #(0,v) w.r.t. the equilibrium measure. Moreover, for
U C 7 we set
ny = I1 (n(x,0) - 0).
velU

Recall that the cardinality of ¥~ is N. Below, U and ¥V will always denote
subsets of ¥~. We can write

N
u=73y > > uBUUMmsny . (4.23)
i=0 |U |=i B$x

Given any positive integer n we take the scalar product (-,-)¢ of the (4.21) times
—u,. We get

Atn,tin)o — (ttn, Qu)o — (thn, Su)o — (tn, Ai)o = —(Un, g)o - (4.24)

In this proof we will drop the index from the scalar product (-, -)o.
The right side of (4.24) vanishes unless n < N,, with N, the cardinality of the
support of the local function g. Moreover, for any ¢ > 0 we have,

[{uns 9)] = &ttn, (=S)tn) +&7{g,(=5)7"9) < (un, (=Shtn) + Clg,6), (4.25)
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and hence
> @+ ") (un, g)| < &3 nPD*(ua) + C(g, )

because the sum is finite; later on ¢ will be chosen as a small constant.
We now bound the left-hand side. The terms involving —S give the Dirichlet
form associated with symmetric simple exclusions, i.e.,

(Un, —Su) = D*(uy) , (4.26)

because S preserves the degree of the polynomials and monomials of different de-
grees are orthogonal.

The terms involving Q can be bounded as follows. We assume n = 2, because
Ruy = 0. Writing Q = > O, for any fixed x we have

(tn, RQxut) = (tn, Osxt)

N
=> ¥ S aBUU)UBUVYYnR Y, 0uml).
i,j=1 |U|=i’|V|=j B$X, |B|=n_i

Hence
S (a+ 1) (uy, Oru)
N
=Y+ Yy ¥ S «BUDABU VYR nY, 0unl)
n i,j=1|U |=i,|V|=j Bx,|B |=n—i
N
=YX Y @+@+ify 2 S wBUUYMBUYYmE)(nY, Ouml)
n ij=l1 |U|=i,|V|=j B3x,|B|=n
=-Y(a+n+1H0,, +0F, (4.27)
where
N
Own= Y (> X («BUUn,(—Q)u(BUV)n,)
B, |B|=n Lj=1|U|=i,|V|=j
= X () < S «BUUMYL (=00 S wBUV ), >
Bdx,|B|=n ucy vcy
and
Qx = Z Qx,n 5
with
Qni= ¥ X [+ |UY —(n+ D IBUU)nE)

Bx,|B|=n UCY"

><<11§’,Qx > oc(BUV)nxV> :

vey
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Since |U| < N, there is a constant C depending on N and S, such that
(n+ U=+ 1) < Cn+NYF'(JU[-1).

From the Schwartz inequality we have,

Q] < Cln+ N1 3 () 3 [«(BUD))|
Bdx,|B|=n |U|22
1/2
x< S aBUVMY, (=00) X «(BU V)nf>
vcy vy
12
< C(n+N)F! [ > X oc(BuU)2<f7§>]

|UI22 Bdx,|B|=n

1/2
x[ > <n§>< S wBUVM,, (—0) VZya(Bu Vi, >] :
C

Bdx,|B|=n vey

From the expression of u (4.23) we have:

S aBUUY(E) <C E[21{n, = 2}],
UcY,|U|22 B,x¢B,|B|=n |m—n|<N

where 1{n, = 2} is the characteristic function of the event that there are at least
two particles at x. The definition of Q. , and previous inequality show that

Im=nl =N

1/2
|Qx,n|§C(n+N)’f“{ > E[ufnﬂ{nxzz}]} S

The following lemma can be proved with a technique introduced in [15].

Lemma 4.10. Let w be a bounded function satisfying for some fixed constant
¢ that o(xi, ..., x,) = 0 unless |x; — x;| < ¢ for some i % j. Then there is a constant
C > 0 independent of n such that

S E[i2w] — CnD%(u,) £ 0. (4.28)

Given Lemma 4.10, we have

Y 1Qnl £ COANY TV X 0on+ Ci+NY ' 8 D¥(up) . (429)

|m—n| <N

Hence, for » sufficiently large the error term can be bounded with a small fraction
of the Dirichlet form; more precisely, for any 6 > 0 we can choose a > 0 sufficiently
large, so that
S 1Q0n| £ 8(a+nP)D(uy) - (4.30)
P

The term involving 4 is bounded in a similar way following a procedure intro-
duced in [15] where the following proposition is proved:
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Proposition 4.11. For any uc %Y, there is a constant C independent of n such

that
[(unRAu)] < vn 3° D¥(up) (4.31)

|m—n|=1
From (4.25), (4.26), (4.27), (4.30) and Proposition 4.11, by choosing ¢ and §
sufficiently small we get the estimate (4.22).
Step 2. Second a priori Estimate

Theorem 4.12. For any A >0 there is a constant Cy such that the solution u; of
(4.21) satisfies the estimate

Puz, (=S) uy)o £ Cy .

We first introduce some notation. Note that the operator S restricted to a function
of degree » is the generator of symmetric random walks of » particles with Neumann
boundary conditions whenever two particles of the same velocity are next to each
other. We now introduce a new generator S representing the generator of symmetric
simple random walks of n particles. Explicitly, if we write

”n(ﬂ): Z Z u(x1,...,x,,; Ul’”-’vn)'f[l[n(xisvl)_,ﬁ],

X150y Xn Ubyees Up

for some function u(xy,...,x,; v1,...,0,), the action of S on u, corresponds to the ac-
tion on u(xy,...,X%,;vy,...,0,) of the discrete Laplacian on the coordinates xi,...,x,.
The following corollary of Lemma 4.10 is proved in [15]:

Corollary 4.13. There exists a universal constant C such that for any cylindric
function g of degree n

(9,(=8)g9)0 < {9,(=S)g)o < Cnlg,(—=S)g)o ,

(Cn)"Hg,(=5)""9)0 = (g.(=8)""g)0 < (9,(=5)""g)o -

Proof of Theorem 4.12. From the definition
(—A+84+Q0+uy =g+ S —S)u, :=h.

Since (S — S)f (1) = 0 whenever 5 is a configuration that no two particles are at
distance one from each other, from Theorem 4.9 and Lemma 4.13 the H_; norm

of (§ — §))u; is bounded in the following sense:

I8 = S)uall -1 < Cn~* (4.32)

for any integer o« > 0. Note that from Corollary 4.13, the H_; can be taken w.r.t.

either S or S.
If u; is a solution of 4.21, we have

(A +S8+Q+Dup,(=8) (=2 +8 + @+ Duz)o = (h(=S)'h)o < C;
(4.33)
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where we have used (4.32). Expanding the left-hand side we get

(h,(—=8)""h)o = 22(uz, (—=8) uz)o + (Suz, (—8) ' Suz)o
+ ([0 + AJuz, (—S) 'O + AJuz)o
+2(Suz, (=8) 7O + Aluz)o — 2A{uz, (—=8) "' Suz)o

— 22z, (—8) ' [Q + Aluy)o -

But
(Suz, (—8) " 'Suz)o = —(uz, Suz)o -
Moreover
(uz, Auz)o =0,
hence
(Suz, (=8)'[Q + Aluz)o = —(uz, Quz)o -
Finally,
(3, (=8)""Suz)o = —(uz,uz)o .
Therefore

(9.(=8)""g)o = 22wz, (=) Muz)o — (ur, Suz)o + ([Q + Aluz, (=) ~'[Q + Aluz)o

~2{uz, Quz)o + 22(uz,uz)o — 22{us, (=) ' [Q + Alus)o . (4.34)
All the terms in (4.34) are non-negative but the last one. We now bound
the last term. It contains two contributions, one due to collisions and the other to the
antisymmetric part of the generator. The second one is estimated in [15], where the

following proposition is proved:

Proposition 4.14. There is a constant C,, growing as a power of n, such that,
for 1>0,

. 22
)”<u7~9(—S) lAu/ é Z Z ”nnu;~||2—1,ex + Z Cn”nnu”%,ex >
n n

where
”uHI ,ex <u’(_S)u>0 .

We now bound in a similar way the term involving collisions.

Proposition 4.15. There is a constant C,, growing as a power of n, such that,
for >0,

22(up, (—8) "' Quz)o <

NS

Z 17421121 e + 32 Call |17 o - (4.35)
n n
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Proof. Write Q = > Ox. By definition of O, we have

l(”b(_g)_l>qul>0 = —(1/2)A<Qx(—‘§)_lub qu/1>0
= — [, (=8) "z, Quttn)o — (1/2)AM{Qxtts, (=) ' Qutts)o . (4.36)

The last term is nonpositive and can be omitted to get an upper bound.

The commutator term is bounded as follows: the function u(xi,...,X,; v1,...,0,)
is defined only when the hard core condition is satisfied. We set u(xy,...,x,; v1,...,
v,) =0 whenever the hard core condition is violated. For any nonpositive
matrix B on the velocity space let

Biu(x1,...,%p5 01,0, 00) = D B0j, wu(x1, ..., Xn3 U150y Ujm 1, W, Vi1, U)
wevy

Note that since we have defined u everywhere by setting u = 0 on the undefined
set, B; is well defined and independent of the position coordinates. From explicit
computation there exist a nonpositive matrix B and an operator @, with w,u =0
unless x; = x; = x for some i#j, i.e. there are two particles at the same site, such
that (Qyu) = Zj Bju + wyu. Note that w,u may change the degree of w.

By definition, S is an operator independent of the velocity indices. Hence S and
B commute and thus [S, B] = 0. Hence

MI(=8)"", Oudug, Oxuz)o = Muy, [-S71, 0x]0:13)0
= Mg, (—=8) ' ox — 0:(=8)")0xus)o
=001+ Q. (4.37)

Clearly, Qf and Q3 are similar and we only bound ;. From the Schwartz inequality,
IQII = ()-2/8)<u/1’ (_S~)—]u/1>0 + 8<waxub (_g)_lwaxuﬂ>O . (4.38)

Let @y = w,;Q,. Clearly, @, vanishes unless there are at least two particles at the
same site. Hence from Lemma 4.10 we have

8<waxub (_g)—lwaxui>0 =8 Z Cn”nnul”%,ex (4.39)

for some constant growing with # as power law. From (4.32), (4.36), (4.37), (4.38),
(4.39), we conclude this lemma.
Returning to the proof of Theorem 4.12, we have thus proved that

9 (=8)"'g)o = (/)22 wi, (=)o — X X Call W2

n |n—m|=N
Using the (4.22) to estimate Hu(l")ll%, with 8 sufficiently large, we have
P, (=8)Muzdo £ €

This concludes the second a priori estimate of Theorem 4.12.
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Remark. Of course the a priori estimates we proved are true also if the asymmetric
part of the generator 4 is absent. We are going to use them in this form in the next
Step 3, to get the proof of Lemma 4.7. In the next section we will use them in the
full form to get a new structure theorem based on the operator %

Step 3. This step is similar to the analogous one in [15].

We have constructed solutions to the equation (—A+ S+ ZQ)u; =g with
llusll1 + Alluz||=1,ex uniformly bounded. Then u, converges weakly to some ug in H,
and Au, converges weakly to some wy in H_; .. We claim that wy = 0. To prove
this, we have for all functions ve H) N H_1 ¢,

(v,u;) — (v,up); Mo,up) — (v, wp) .
Hence
(v,wp) =0,

since Hy N H_1 . is dense in H;. We have thus proved that wy = 0 in H_, .. Hence
Au; converges weakly to 0 and thus (S + Z£Q)u; converges weakly to g in H_j .
This implies that some linear combination of (S + ZQ)u; converges to g strongly
in H_j .. Hence for any & > 0 there exist constants o, equal to 0 for all but a finite
number of A such that ‘

<e.

H%: (S + RQ)u; — g|

—lex

We put u =, o;u;. As a consequence, for any ¢ > 0 there is u such that
IS+ 20— gl -1,ex < €,

and this concludes the proof of Lemma 4.7.

Proof of Lemma 4.8.

Step 1. Since nondegenerate norms on ¥ _ are equivalent, we choose arbitrarily one
of them and denote it by || - ||. Let z =, _,axl, be any element of ¥_ of norm
one. By Lemma 4.7, for any ¢ > 0 there is g€ #9, such that

”‘@%Z - gzvg”—l,ex <e.

Let
w=(1-R)%(z—-9g) (4.40)
be the projection onto degree one space. We claim that for any z fixed,
wl = C

for some constant independent of ¢. To prove it we take the inner product of (4.40)
by w and use the fact that w is of degree 1 to get

(wow)o = W, (1 = B)Z(z — 9))o = (W, Z(z — 9))o -

By definition, (w, %(z — ¢))o = (%w,(z — g))o. Since w is a conserved quantity for
the exclusion process, we have (Zw,(z — g))o = (Ow,(z — g))o. Hence

[(w, Zi(z — D)ol = [(w, 0z — g))ol
< 5w, (—=Q)who + 9 {(z — 9).(=Q)z — 9o -
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Hence
(w,w)o — | (w,(=Q@)w)o| < 267" (z,(—0)z)o + 267 (g,(—Q)g)o -

From Theorem 4.9, (g,(—Q)g)o is uniformly bounded. By choosing ¢ small
enough, we have (w,w)o is uniformly bounded. For future purposes, we note also
that this argument applies if % is replaced by %

Since w is uniformly bounded, by letting ¢ — 0 we can define a linear map from
%_ to itself. Denote this map by . In order to prove Lemma 4.8 it is sufficient to
show that % is nonsingular.

Step 2. Suppose that % is singular. Then for any & > 0 there is z of norm one and
g such that

2Lz - 9ll-1ex <& (1= BVLEz -9l <.
Note that these two bounds imply that
%Gz -9l = 2%z - 9)ll-1 + (1 = BYL(z — 9l -1
2%z — g)ll-1,ex + C|(1 = B)ZL(z — 9)|| = Ce,

A

where we have used the triangular inequality for the norm || ||—; and the equivalence
of norms on ¥_.
Hence we have

[z — 9, (=Q)[z — gl)o < Ce.

Again, the same estimate holds if % is replaced by %

Step 3. We claim that the last bound implies that ||z|] < Ce. Once proved, the
claim implies Lemma 4.8. In fact, assuming the bound, for ¢ small enough we get
contradiction with the assumption that ||z|| = 1 and hence % is nonsingular.

We now prove the claim. From the definition of (u,(—Q)u)o we have
2
(Qo > rxu) ] .

2 2
(lz=9).(=0)z —gl)o = %E [Qo Tz — g)] = %E [Qo (z - erg)] .

(u,(=Q)u)o = E [Z Txu(—Q)u] = %E

Hence

By convexity, we have for any local function u, E {QoE[u]ﬂo]}2 < E[Qyu)?,
where  is the g-algebra at the site 0. Note that since g is degree two or higher, so
is h = E(u|#,). Our goal is to prove that Ez> < Ce given that E[Qy(z — h)]* £ Ce
for some # degree two or higher. This is an elementary estimate. Let 7 denote the
vector space of all measurable functions on the site 0. Let ¥ be the kernel of QO
consisting of functions depending only on /; and m. be the projection onto ¥+ with
inner product E[u; v]. Since E[z;&] = 0 for all £€ V't we have ntz = 0. Therefore,

E[Qo(z — (1 = m")W)]* = E[Qo(1 — 7+ )z — )]’ = E[Qo(z — W] < Ce.
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(Since Qont(z — h) =0 by definition of ¥'.) Because z — (1 — n*)h is ortho-
gonal to V'™, there is a uniform constant y such that

E[(z — (1 = 2" £ yE[Qo(z — (1 — )W) .
Since 4 is degree two or higher,
Ez* S E[(z— (1 —ahHh)]? < yCe.

This proves the bound and concludes the proof of Lemma 4.8.

5. The Diffusion Coefficient

The space %, (see Definition 4.1 and Theorem 4.2) with the scalar product (4.7),
is a Hilbert space and it can be decomposed into 4° and %% (4.8). The structure
theorem as well as the scalar product {{-, - )) are based on the symmetric part of
the generator, .%. The strategy of the non-gradient method, introduced for the first
time by Varadhan in [16] is to decompose the currents into the sum of a gradient
term and a term of the form #¢. We want to adopt a similar strategy. To do this
we need a new structure theorem based on the complete generator .. We get such
a theorem following the procedure already used in [8 and 15]. As a consequence
we identify the diffusion coefficient and characterize it by a variational principle.
We will use also in this section the indices o, 8,y =0,...,d to denote the “color”
indices, while latin indices i,j,k = 1,...,d will denote the d coordinate directions.
We recall the notation:
Vig(n) = g(ze,n) — 9(n) ,

where (7,7)(¥,v) = n(y + x,v) and (7, f)(n) = f(1xn). This should not be confused
with the other notation we use:

Vo 9(n) = gn>9") — g(n) .

For any local function g, we set

1i(g9) = %lgrgoE“ [g 2 (¢ 'x)ioc(”x)] : CRY)

XEA;

Here / and 7 denote the centered variables introduced in (4.4). Note that the
sum in the right-hand side of (5.1) is independent of ¢ for ¢ large enough, since
E*gL(n)] = 0 if g does not depend on 7. Recall that for any functions f and ¢,

(fr9)0 =2 (f1e9), (Vik(10),9)0=0, «=0,j=1,....d. (5.2)

X

It is often convenient to replace the space ¥ with a different dense subset of %,
namely the space %¢ defined as follows:

Definition 5.1. Let
%° = {g local function of y :E[g|1_,:r] =0 for some k>0
and for all values of Ty, o = 0} .

Here EF[ - |1 k+ ] means expectation conditioned to fixed values of Avy ¢ 1, 1.(1x) for
«=20,...,d.
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We claim that ¥¢ = 4. To prove this, suppose that g € 4. For any k fixed
and large enough, we have g — g, € 4¢, where g, = E*[g lf k+ ]. Also, by definition,
gk € 9. One can easily prove that ||gi||—; is uniformly bounded. Clearly, by the
equivalence of ensembles we have gy — E[g] = 0. This proves our claim.

The following lemma provides the expression of the scalar product ((-,)) on %*.

Lemma 5.2. The scalar product ((-,-)) defined by (4.7) is such that for any

g,h € g

(g, h) = —(h,9)0 » (5.3)

9149, (5.4)

d
(a2 =38 | T 5 (%) (Ve St
veY j=1 x x
+ <Q3 > Txg) (QS > Txh)} , (5.5)
qE€2 x x
(Vilu(no), 9)) = £7(9) (5.6)

1
(NVidu(n), Vidp(n0))) = 61 (Vilp(n)) = Eiai,jéa,ﬁEu[(Vila(”O))z] NN

Proof. Equation (5.3) follows from the definition of the scalar product and the
arguments used in the proof of Theorem 4.4. The orthogonality relation (5.4) follows
by using (5.3) to get

(Zg, Vilu(no))) = —(Vilu(10),9)0 =0, « =0,

the last step being a consequence of the fact that 4 is in the null space of the inner
product (-, -)o. Again using the definition of the scalar product and the structure of
%, we get (5.5). Relations (5.6) and (5.7) are consequence of the definition of the
scalar product and of the relation

%22 (e - 0)Lu(nx) = —xVilu(10) -

Finally, (5.7) follows from explicit computation.
We have the following variational formula for the variance V.

Theorem 5.3. For any g € 9 the variance V(g) := ((g,9)) satisfies the variational
principle

1
%V(g)= sup [ > 67t,‘?‘(g)+<g,h)o—z{ > (@Y (Viu(n))

cj‘GlR,hE@c 20,21 20,521

+Eﬂ[ D x(vv,,-;rxh)2+ s (o erh)z] H LG

vEY,j21
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Proof. For g € 4 the following identity holds:

30.0) = swp { (g = 5w} (59)

uc%e

By the structure theorem, Theorem 4.2, for any ¢ >0 there exist a set {c}} and
h € 9 such that

d
u— 3> > ¢iVil, + %h

=0 j=1

<e.

—1

Hence, since ¢ is arbitrary, we get

—

Jod) = sw { = cava)+ (0.0

c}’.’,hegf 20,721

—1[ Sy c;‘cf<<vjza,\z1ﬁ>>+<<z§h,zsh»]}. (5.10)

21020721 p20,i21

Finally, using Lemma 5.2 in (5.10) we get the result.

We need another structure theorem for 4 so that its elements can be decomposed
in terms of a gradient and £'%. Theorem 5.5 below provides such a decomposition.
First of all note that the following inclusion relations hold:

LY C9Y, L*Y4YCY.

Recall the expressions (2.20) and (2.22) of the currents wf (we set x = 0 and omit
the position label) given by

[

j= L w@=w"+ T (g 0b),
; (5.11)

wh= 3 (e 0)W;(0) =W + 30 (eq-0)ej - 0)bi(v), a=1,....d,
vVEY vEY

with
1
W = gil(mo).  b(0) = n(e0In(0.0) = S[n(e o) +nO.0)] . (5.12)
Note that w? ¢ 9. It is obvious that there exist constants cf’ﬂ such that
ad=w - P ed.
Bz0
The explicit form of c?’ﬁ is not important and all the computations in this sec-

tion are independent of c?"ﬁ . In the same way, one can define ¢/* =w;* —
Zﬁgo c;‘a’ﬁf/g(no)e?. Note that from (5.3), for g € %, (g,wf)oz (g,af}o and

(9.0 = (g, 57" )o.
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Lemma 5.4. Suppose g € 4. Then for . =0,...,d and j=1,...,d,

1 ZLg) = —(9:w*)o = —(9,7%)o » (5.13)
1 (L*g) = —(g.w))o = —(9,7 )0 , (5-14)
(o () = £(6) = 0100 g2V (Vi) 0, Bij=1,....d. (5.15)

«0-?7 VJIO(”I)» = 5i,jXV(V[10), la./ = 13"'sd .
Proof. The relations (5.13) and (5.14) follow from the identities

LY e () = =L wik, LY (- eh(n(x) =~ wi,, (5.16)

and the same argument used in the proof of Lemma 5.7 in [8]. To prove (5.15),
from (5.1) and (5.16) and the definition of af we get

t*(¢”) = lim E*
xti(gj) = lim

o ¥ (x- ei)ia(n<x))}

x|

= lim E*

{—o00

wf; > (X'ei)ia(ﬂ(x))]

W=¢

= lim /~?E*
{—00

LY (x - ep)lu(n(x)); | ,Z;/ (x - eL(n(x))

Clearly, if j#i or a=%pf, then t,.“(af )=0 by the reflection symmetry. Hence we
assume [ = j and o« = . But under this assumption we can replace ¥ by %. On
the other hand, from (5.6) and (5.7),

Jim £ E" {3’2 CHNAUCN I IRCE ei)iaw(x))} = () = V(i) -
- x xl=¢
This proves Lemma 5.4.

Next we state the second structure theorem for %.

Theorem 5.5.

() P9 +% =%=2"9+%,
(it) Let G ={> ;50,51 bj07}. Then

G, + LG =49=9,+ L9 . (5.17)

Furthermore,

1 bW + 54g> . (5.18)

V( 4 b}‘a}‘—i—ﬁfg);V( Z
0=0,j=1 «=0,j

v
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Similarly, G + £*4 =94 and

V( ) b;.‘aj*wg*g)gV(szj

220,21

1 Brw* + %g) . (5.19)

v

Proof of (i). All the ingredients of the proof have been already presented in Sect. 4.
In fact, suppose first that g is of degree 2, namely g € £#%. Under this assumption
the analog of Lemma 4.7 hold:

Lemma 5.6. For any local function g € #Y and any ¢ > 0 there is a local function
u € 9 such that
|ZLu — gl-1ex = €.

The same statement is true with & replaced by L*.

Proof. The lemma follows from the same three steps of the proof of Lemma 4.7.
The first two steps are already given in Sect. 4 in a form which includes the present
case (Theorems 4.9 and 4.12). They provide a priori estimates for the solution u;
of (4.21). The third step is to show that we can find the function u as the limit
as A goes to 0 of u;. The argument in Sect. 4 is easily adapted to the present
context because the norm || « ||—; is bounded by || - ||—1,ex according to (4.12). This
concludes the proof of the Lemma 5.6.

To conclude the proof of (i) we have to show it for g of degree 1, namely
g € %_. This is the analog of Lemma 4.8. Once the previous Lemma 5.6 is proved,
as we already pointed out, the proof of Lemma 4.8 holds also with .% replaced
by .#. This concludes the proof of i).

Proof of (ii). Let g € %,,. By Theorem 4.2 for any &> 0, there are v, € 4° and
u € 4 such that
llg —ve — LGull-1 <e.

Since v, L Lu, ||ve]| 1 is uniformly bounded and we can take the limit ¢ — 0 of the
mapping g — v, to define a map 7. We claim that J is an invertible transformation
from %,, to 4°. In fact, since these two spaces have the same dimension, it is enough
to show that 7 is not degenerate. Suppose on the contrary that there is § € %,, such
that ¢ =0, i.e. for any ¢ > 0 there is a g € ¥ such that

1§ — %gll-1 <e.
Suppose ¢ = Za’ j gjo}. Then, choose p € %40 such that p = Za’ ; q;V;I*. We have

(g, PO = 1(q — %9, P)| < el pll-1 -
By (5.15) of Lemma 5.4, there is a constant ¢ such that

(@, p)1 2 cllpll-1ligll-1 -

Combining the last two inequalities and choosing ¢ arbitrarily small, we have § = 0.
This proves the invertibility of 7, which implies immediately the first of (5.17).
The second of (5.17) follows from this and the application of i) to .%4%. This
proves (ii).
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We now prove the bound (5.18) on V. By Theorem 5.3 the left side of (5.18)
is equal to

d

7 B
23}1p{ ' bit} < bjO'jﬁ—i-S’g) +< E
bh \az0,iz1 Bz0,jz1 =0, j

IIV

b a,/f + 3g,h>
0

1 B 2 2
— =E* [ _I(Vi]oc(yl))2 + Z X <vv,i Z Txh) + Z <Qg Z Txh> ] } .
4 =0,iz1 X VeV, i1 x qe2 x
In particular, let # = —g and 5* = b% y . Hence from Lemma 5.1 we can bound the

last expression from below by

2{ > xb?tf< > b +£’g> < > b}d,~7+$g,g>
B=0,1>1 21,920 i=1,y=0 0

1
—§V< >1§3> b~foy(11)+3§g>} -

By definition of %, (£g,g)0 = (%g,g)o. Also, from (5.13) £/(Lg) = —(g,w;" )ox.
To summarize, we have

1 *
| S pare)z ¥ w | X bl ) = (gw "
2 L7 B=0,i21 jziyzo 77

>0
1
—< >1Z b}a},g> —{%4g,9)0 — §V< >1Z> b}Vﬂv(nH%g). (5.20)
> o jz

IIV

20 720

Since g € 9, (g -,g)o =(w ,g>0 by (5.14). By definition wf +wjl.3* = 2wj(.s)ﬂ, and

hence (g, w; by w; £ro = 0. Together with (5.15)

lV< > bﬂf—l—iﬂg)
20 \jzip=zo0

1
4 < > b/.’w}“/f) —(%g.9)0 = 5V ( > w4 %g)
21,20 jz1,p20

v

1 s
:§V< IR )ﬂ+f/§g>. (5.21)

21,620
This proves the bound on ¥ and concludes Theorem 5.5.

To use this decomposition of the Hilbert space, one should introduce a scalar
product based on the inverse generator #~! instead of using ((-,-)) in which only
the symmetric part appears. Unfortunately, we do not know how to give sense
to £, so the arguments based on it are only formal and we have to introduce
a suitable map 7 below to make the computation rigorous. At a formal level one
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can think of the map T as T = £, so that formally (g, Th)) = (g, %~ 'h)o.
With this in mind, it is easy to understand the statements of Theorems 5.7 and 5.8
below and the calculus of the diffusion matrix.

Theorem 5.7.

(i) Let
ul = 1Vl . (5.22)

Define T to be the linear transformation from %4 to 4 s.t.
T ( ) bfo}’+$g> = ¥ b+ 4. (5.23)
jz1,p20 jz1,z0

Then T is bounded above by 1, hence can be extended by continuity to 9. Moreover

(a) TVi(n) L L% forjz 1L,a20,

(©) (TVika(n).0;") = 181005V (Vili)

(ii) Let M be the matrix (with double indices (a,i) and (f,)))
M = (il (n), TV, 1)) -
Then the diffusion matrix D is given by
B —1\o.p
D = M=V (Vill) (524)

As a quadratic form, D = D and D + Dy, where (DS)Z’jﬂ = X04,p9;,;. Furthermore,
there exist constants Dy, Dy, D>, Dy and D4 such that

D%f = 8404,5[D003,0 + D1(1 — 35,0) + D26y ;)] + D3du j0p.x + Dadjpdik - (5.25)

(iii) Since T is one-to-one and the image is dense, its inverse T ~1is well-defined
on a dense subset of 4. For any & in the domain of T,

(& (T™se) = (& T7E) = (&) -
A similar statement holds with T replaced by T*.

Proof of (i). The inequality (5.18) is precisely the statement that the map 7T in (i)
is bounded by 1. To prove (a), recall that V;/, as an element of ¢4 can be written as

> 520,721 a‘zljajﬁ + %g with g € ¥ (approximation arguments are needed here and
in the following). Then, by the definition of the map T,

(TVidy, L*B) =ﬁ>§>laﬁf§«u§’, L) + (Lg, L*hY) .

From Lemma 5.2 and (5.14) we get
(%9, L7h) = —(Lg. ko, (W, L*h) = (ol h)o
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Then
(TVily, L*h)y = (Vidy, h)o =0 .

To prove (b) of (i) we observe that, again by definition of 7,

<<Tv,.1u,a;;?>>:<< 3 af‘/juf,a,ty>>+((%g,o,’fy».

B20,j21

By Lemma 5.2 and Lemma 5.4 we have,

(%g.67) = (9.5 = [zgzu el (n(x»] — (Lo .

Similarly
CHARICGEVE
From the definition of u] (5.22) and the identity (5.7),
(TVil, 01?» = > :zf ]ﬁ + Zy, uk = «Vilaauz» = X01,k00y V(Vily) .
B=z0,jz1
Hence we get the result.

Proof of (ii). The diftusion coefficient is a matrix DZ’j-ﬁ characterized by

of = ¥ DiPNilye 7F.

<< (a}"“— ) Dg}ﬁvj1a>,Tvk1y>> =0 (5.26)
21,520

for all £ and y. From (b) of (i),

From (a) of (i),

Y DEIMEY = 30400,V (Vill) - (5.27)

jz1,20

Hence
Dpf =y~ Y (il,) .
Since T is bounded above by 1, so is M (as a quadratic form). Hence as a quadratic
form we have D = D;. The proof of D= Dy is similar to the one in [8]; D = D if
and only if (TVil,, Vilg)) = 0; ;05 sV (Vil,). This implies TV;l, = VI, + %¢. But
¢ = 0 because otherwise ||T|| > 1. Hence T'V,I, = V;I,. By (a) of (i) it follows that
Vil,(n) L £*% and this leads to contradiction.
Finally, we claim from symmetry arguments,

«Vi[a,TVjIﬁ» =0, if 5k,i + 6k,j + 5/(,“ + 6"’/3 =lor3forsomel £k <d.
(5.28)
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Consider the reflection symmetry

Ri(x) = (—x1,X2,X3), Ri(v) = (—v1,02,03),
Ri(n(x,v)) = n(Rix,Ryv), x€Z, ve?v .

Clearly, the commutator [R;, ¥]=0. Hence [R;,T] = 0. Furthermore, R; is an
isometry on % with inner product ((-,-)). Together with [R;,7] = 0, we have

{(Rig, TRiR) = (g, Th) .

By definition of R;, if i%1, then R;(Vil;) = —V[;. Similarly, if a=1, then
Ri(Vi1,) = —ViI,. On the other hand, if a1 and i#+1 or if a=i=1,
then R(Vi1,) = ViI,. Hence if the indices satisfy the condition of (5.28) for £ =1
then

(Vily, TN} ) = (RU(Vily ), Ri(TV 1)) = —{(Vilo, TV;1p)) .

Hence ((Vil,, TV;lp)) = 0. This proves (5.28).
Furthermore, there are permutation symmetries. Let Ry, (k+7/) denote the per-
mutation of the coordinate axis £ — . Then

(Vilas TVHRY) = (Vi ke yor TV R AR ) (Reet = if a=0).  (5.29)
Since D inherits the symmetries of ((V;1,, TV;lp)), (5.25) holds. This proves (ii).

Proof of (iii). Suppose ¢ = Ziél’ﬁéob?ufi + %g. From (5.23),

erta=(( 5 hiss 5 et es)

l’ﬂg

Hence (iii) follows from explicit computation using Lemmas 5.2, 5.4 and the defi-

nition of uf .

Remark. The inverse of T, R, was considered in [8]. The proof of its boundedness
given there, based on open mapping principle, is incorrect. But the operator R was
only used to derive a variational formula for the diffusion coefficient. The variational
formula in [8] is indeed correct and only minor modifications are needed to prove it.

Starting from [26] one can get variational characterizations for the diffusion
coefficient and for its inverse. These formulas have been given in [26] for the
asymmetric simple exclusion process.

Theorem 5.8. The following variational representation for the diffusion matrix D
holds: For any a = {aj-‘ eR, a=0,....d, j=1,...,d},

1.
a-Da—g;relg((a-a—i-o?’h,a-a-}-gh)), (5.30)

1
a-D—‘a:5 ggg((VI-a+$h,V1-a+$h)). (5.31)
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Here © = yV(Vil,) is the “susceptibility.” Moreover, we used the notation

d
VI={Vil, a=0,....,d, i=1,...,d}, a-v= > ab,
0 k=1

Proof. The proof follows closely the arguments in [26], taking advantage of the
fact that M and D are symmetric because of the isotropy. We report it for sake
of completeness. First note that, because of the isotropy, V(V;l,) is independent
on i,d.

From part (a) of the statement (i) in Theorem 5.7 #*% 1 T%°, where

d d
T9° = {E > i TV, (no), aj € IR} .

a=0 j=1

Note that the dimension of 4° and ¥, defined in (ii) of Theorem 5.6, are the
same. From part (b) of (i) in Theorem 5.7 and (ii) of Theorem 5.6, we have the
following orthogonal decomposition of ¥:

G=L*GDTY .
Hence the current can be represented, up to some approximation, as

d* =A(TVI)+ %*g,

for a suitable g € 4 and a suitable matrix 4. It is easy to check that 4 can be
identified with D~!, by multiplying previous relation by TVI and using (ii) of
Theorem 5.7. As a consequence, we have

inf V(a-[0* — D(TVI)] — £L*g)=0.
geY

From (iii) of Theorem 5.7,
(& TE) = (T & (T")'T*E) = (T*ET7E)) -

Hence, taking into account (i) and (ii) in Theorem 5.7, one gets (5.30).
To prove the formula for D~! we recall that by definition D is such that, up to
some approximation,

" —DVI—%*g=0
for some g. Substituting this in (5.30) we get

1
a+-Da= inf =V(a-DVI — %*g).
9€D ¥

Put 5 = Da. The previous formula becomes (5.31). This concludes Theorem 5.8.
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Remarks.

1) The variational formulas easily provide upper and lower bounds for D
(see [26]).

2) We can combine Theorems 5.8 and 5.3 to obtain variational formulas involv-
ing only the scalar product (-, - )¢ and expectations w.r.t. the equilibrium measure.
Since this formula is quite complicated and its derivation from Theorems 5.8 and
5.3 is straightforward, we shall not present it here. A similar formula for the simple
exclusion process has been given in details in [8].

3) Note that D; and D, in (5.25) contribute to the shear viscosity, while the bulk
viscosity is { = D3 + D4. The coefficient Dy does not play any role in the present
setup. In fact it would be relevant only in the behavior of the total density /y, which
differs from a constant for terms of higher order in & than I, for o > 0, because of
the incompressible limit. Therefore we do not need to discuss its evolution.

To conclude this section we note that it is possible to connect the diffusion
matrix we found to a Green—Kubo-type expression. The connection is only formal
because it is hard to give a rigorous meaning to such an expression. The formal
argument follows the one presented for the simple exclusion process in [27].

By the definition of D, 6 — DVI € #%. Therefore, there are local functions
g= {gj‘, 0=0,...,d, j=1,...,d} such that,

=0.

0% — 21; Dy, — 24
7

—1

Of course, such a relation is not literally true, but some approximation arguments
are necessary.
We claim that for any a = {ajF eER, a=0,...,d, j=1,...,d},

a-Da=jya-a+ 0@ '"(Lg-a Lg - a). (5.32)
In fact, from part (ii) of Theorem 5.7,
a-(OD) 'a= {a-VILTa-VI).

Replacing VI with D™'[¢ — Lg] and recalling that T(c + Lg) = yVI + %G, we
have

27'@a - Da = ((a-(c — ZLg).a- (VI—Zyg))
={a-0ga-VI)+{(Lg-a %y - a)
+{%Lg-a,VI-a)+{(o-a%g-a).

By Lemma 5.4 the first term is just Oa - a.
Now we use the fact that VI is equivalent to 0 in the scalar product (-, - )o.
We have

(&Lg-aVI-a)+{o-aLyg-a)=—(c"-ag-ay—{(06-ag-ap=0,

because ¢ + o* = 2y VI. This proves (5.32).
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By Lemma 5.2, and the relation #g = [¢ — DVI], we have
(£g-0a,%g-a) =—(ZLg-aqg-a)
= —([c=DVI-a¥ '[6 —DVI]-a)g= —(c-a¥ 'o-a).
Since —o = 0* — 2y VI, we have

a-Dazxa-a—%(o* ca¥ "o - a).

The formal relation (—%)~! = fooo dt exp[ #t] implies the Green—Kubo formula for
this model:

DZ’}; = %0008 — f dt{o} % exp gt]a Yo - (5.33)

Here
(o}* exp[ft]af)o =Y EM[ag} o‘(t)TxU}g(O)]

is the integrated current-current time self correlation.

In the Green—Kubo formula (5.33) the first term represents the contribution to
the diffusion due to the symmetric simple exclusion process, while the second one is
the deterministic diffusion, which is positive by part (ii) of Theorem 5.7, provided
that the integral is finite.

6. Eigenvalues Estimates

In this section we prove Theorem 3.10, which is parallel to Theorem 4.2 in [8]
for the symmetric simple exclusion process. If one can establish the spectral gap
and the log-Sobolev inequality for the full dynamics &, + £, then a parallel proof
will conclude Theorem 3.10. We do not follow this route because the spectral gap
and log-Sobolev for £ + ¢ are hard to obtain. Instead, we shall control the
fast modes /~, which are conserved quantities for £ but not for #¢, using the
following lemma.

Lemma 6.1. Put Of =3 .,00f. Suppose that I, a=-N+d+1,...,-1,
defined as in (4.1), satisfy

Ef[L(ne); Ip(nx)] =0, o <0, <0, akf, (6.1)

where u is any equilibrium measure for the whole dynamics, i.e.
d
n=1z; exp{ > nafa(m} . (6.2)
a=0

Let zy = E*[I,(ny)]. Then there exist a local function v and a function g € 4¢*

such that
L(nx) — 2o = (QU)(1x) + g(nx), o < 0. (6.3)

Here 9% is the analog of %°* with the measure y, replaced by p given by (6.2)
with chemical potentials ny chosen so that E*[I,(nx)] =z, a =0,...,d.
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Lemma 6.1 is exactly the same as Lemma 4.5 except that the measure is not
restricted to p,. Note the orthogonality relation (6.1) is the same as (4.3) except
that the reference measure was changed accordingly. The proof of Lemma 6.1 is
exactly the same as Lemma 4.5 and we omit it.

Recall the definitions of &, w and A in (3.A). Denote x € A, , by x € g, and

let I} =1 j{, For any local function #,, let
h, = E* [Av hx[f:] :
xX€o
From the definition of & we have (& * h)(x) = Av|,_y <kho, Where o € (27 + 1)Z°.
For the rest of this chapter, Av'g_x| </ takes this meaning and we shall not repeat it.
The following theorem is a restatement of Theorem 4.6 in [8]. Indeed, Theorem 6.2

summarizes the result for the “case 17 in the proof of Theorem 4.6 in [8]. The proof
given in [8] is somehow sketchy; details can be found in [25].

Theorem 6.2. Suppose h is a local function. Then for any constant y > 0 and
smooth function J,

lim lim {gH [f3 Jex) L iklv kizg—E"'{ Av Ealik,dem

/—00 £—0 xEAL lo—x| <k

- ye""“Dj’;(\/?)} <o0. (6.4)

Here k = e~ %" and E*[h|I} ] has been defined in Sect. 4, Iy = {I, y,a. = —N +
d +1,...,d}. Finally D** is the Dirichlet form associated to £¢*, defined in (3.14).

Proof of Theorem 3.10. Step 1. Consider the decomposition
Avh, = (Avhx—716>+l_10 =he +hg . (6.5)
x€o XEao

Since E*[hs|I;] =0, we can bound %, with standard perturbation argument so that

lim lim {s‘z ffAvJ(sx) [I AIV kiz,,] dy, — const. y~'e? > J?(ex)
X o—x| <

{—00 e—0 xEAL

o {’xlv<kf Ve(hA3) fp, — vs"—“DAw?)} <0.

From the entropy bound and the fact that s is a local Gibbs state defined in (3.1),
one can check that

lim lim {sd S Av J(exy? [VihI[))fdy, —S_IS(fll//)}

{—00 £—0 xeA, lo—x|<k

< const. [J(z)*dz V(h,r).
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Hence the second term converges to the second term in (3.29). This procedure
was carried out in details in e.g., [16, 8] and we omit the details (see Sect. 6 of [8],
pp. 1264-1266).

Step 2. We now bound %,. Applying Theorem 6.2, one has

{—o0 X €Ay lo—x| <

lim 11m {d Iy J(ax)[ AIV kilg—E“’ [ Av h |Ikx”du,g

- ygd—4DAL(\/7)} =0

Note that the conditional expectation is w.r.t. Jx on the block A and I = {I-a,k,
a=—-N+d+1,...,d}. We would like to replace the canonical expectation by the
grand canonical expectation. More precisely, let 1 ,, be the grand canonical measure
such that

ER[L]l=w,, a=-N+d+1,...,d;

explicitly i, is the product measure with marginal measure given by

d
w =2, exp{ > lala(n)} Hr - (6.6)

a=—N+d+1

Note that in the definition of u, ,, we specify the averages of I, also for a > 0,
while in the definition of 4y, in Sect.3 we only specified the averages of I, for
a < 0. Fixed the local empirical averages I, ; the corresponding grand canonical
expectation is defined by

E"“[ Av 710}

lo—x| <k
with w =T rx- Let ¥, denote the difference

ﬁx:Em-w[ Av 7:0] —E”’[ Av B, |1kx] )

lo—x| <k lo—x| <k

We claim that this difference is negligible in the sense that for any y > 0,

lim hm{ 2[0S J(ex)dpy — pe2s( f)} (6.7)

/=00 £—0 xXEAL

The strong equivalence of ensembles states that ¢, is small provided I kx 18 bounded
away from 0 or 1. A precise statement is given in Corollary 6.3 in [22]. We state
a simplified version in our context: For some small constant 7,

—d o = -
19| < {k i, < Tpx < 1K (6.8)

k=42 otherwise .
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The second bound is proved in [22] only if J; , is bounded away from 0 or 1 in the
sense that k=92 < I}, < 1 —k~9?. On the other hand, if I} , < k~%?, then the
number of particles for each color is less than k=42, Hence both E*>»[Av,_ <xh,]
and E*[Av|,_y <k he|li ;] are bounded by Ck~%2 and (6.8) holds trivially.

From (6.8) one has
e EM < Ck .

> J(sxwx}

X€EAL

From the entropy inequality the left side of (6.7) is bounded by

exp{ > J(sx)ﬂx}} .
X€EAL

It is now standard to bound the last term by

exp{ > J(sx)m?x}}
X€EAL

< 42EM [ S J(ex)d,

XE€AL

g2 log E*

g2 log E*

+Ce™2 Y EF[9A + Ce 2k < CemH .

xX€AL

Taking the limit and remembering k = £¢~%%, we have proved

Jim _lim {ad_sz S J(ex) [l A|V kﬁo—E"lv"k,x [ Ay iz,] ] djr
—00 £— o—x|<

XEAL lo—x| <k

- VS"“‘DAL(\/?)} =7l %s(fY) £ 0.

The change from s(f) to s(f|¥) is not important in the previous argument.

Step 3. We would like to replace the expectation E*2» with the one w.r.t. py
defined in Sect. 3, with y, = w, for « = 0,...,d. Let us consider the difference

u(w):EﬂZ-w[ Av 71,,} —E"”[ Av iz,,] . (6.9)

lo—x| <k lo—x| <k

To prove Theorem 3.10, it suffices to prove, for § small enough,

/lim lirr(l) {sd_sz S J(ex)teudy, — ye =Dy, (\V/f) — 5_18_2s(f|¢)} <0.
—00 & xeAL
(6.10)

Step 4. Since y; are product measures for i = 1,2, we can drop the average over o
and u is simply

u(w) = E*>*[E*[A[F]] — E*Y [E* [A|TF]] . (6.11)
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Note that from the definition of y;, i = 1,2, we have
EfvL ) =wy, =Y, =E"Y[L], a=0,...,d. (6.12)

But this equality fails for « < 0. Furthermore, even though (6.12) holds, it fails if
I, is replaced by nonlinear functionals of I, (a = 0).

Define
d
(W) = Tu(w) — ¢y = Tau(w) — > ctiax(lyx — Zax) (6.13)
a=—N+(d+1)
where
Ou
Zo,x = Ew[la,x]a Cliax = P
Wy lw=z,

From the entropy inequality one has for 6 > 0,
8—2ff Av J(ex)itedu
x€AL
< 6 lg 2 og EY {exp {5 ZJ(sx)ﬁxH +07 e 5s(flY) . (6.14)
X

By definition of ¢/, ., we can apply Lemma 3.7 to bound the first term on the
right-hand side of (6.14) provided J is small enough. Hence one has

lim lim 6~ 'e~2* log EY
{—00 =0

exp{é 3 J(sx)z}x}} =0, (6.15)

xX€EAL

provided J is small enough. Therefore, to prove Theorem 3.10, we only have to
bound ¢, defined by the second of (6.13), in the sense that for any y > 0 and ¢
sufficiently small,

Jim ling{a"‘zf [ 3 J(ex)edy, —vsd-“DAL(ﬁ)—6—‘8—2s(f|¢)} <0.

x€E€AL
(6.16)
Step 5. We claim the following estimates hold:
Cotx=0, 220, 6.17)
and
lim ¢y rx=0, a<O0. (6.18)
{—00

We shall prove these two estimates in Step 6. Assuming these two estimates, we
now prove (6.16).
From Lemma 6.1, one has, for all a < 0, I, x — z4x = Oy + &y x With &, , €

?ﬁxx From the integration by parts,

[/ Y OQwedu < const. Dy, (Vf) .

x€AL



Navier—Stokes Equations for Stochastic Particle Systems on Lattice 453

Hence (6.16) holds if we neglect the contribution of &, , € ?ﬁfx. On the other hand,
from the entropy bound,

e[ f xéXL J(ex)Es xdpt

< 67l g EY [exp{é b J(ax)éa,xH + 07 e 3(f W) . (6.19)

x€AL

Because &, , € @f, we can apply Lemma 3.7 and this concludes the proof of (6.16).

Step 6. Finally we have to prove (6.17) and (6.18). From (6.12), the value of u(w)
does not change if we replace % in the definition (6.11) by

hy:=h—{,=h— Z (e+ 8aa,x)(la,x - Zoc,x)

=0

for some constants e and a .

Since ¥ is a local Gibbs state given by (3.1), we can choose constants e and
a4,x such that i, €%, . Because the statements of (6.17) and (6.18) are local, we
shall drop the subscript x and assume that, without loss of generality, hxe?z‘.

By definition one has the identity

d
B D oF V- 2 s SV

Wy lw=z  po Nias1'=

— BB DT T ey }
Wa

(6.20)

w=z
By definition, p ; = y;,, := p, and

0
& =0, a<0.

w=z

0wy,

From the orthogonality relation E*:[I,;1g] = 0 for a# f, one has

Ow, .

G s =0, ifaff.
Hence

5 o, if ak B.

6Wa w=z

Since h € 4,, we have > EF[E* [hll—}'];txlﬁ] =0 if B = 0. Using these identities
in (6.19), we have proved (6.17).
For o < 0 we have

Ou

Bwa w=z

02y

6Wm w=z

= S EM[E*[h|I] ] L(nx)] (6.21)
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Using the Schwartz inequality we get

S EM[EM[RI s T(nx)] = E* {E"’[hll_?]; 2 r(’h)}

x| =¢

1/2
< E%[E[RI}EXTATIN2ES | S I (n); Y l—om}

Wl=<¢ W=¢

< PERES T EX ATV (6.22)
Next lemma shows that, since h € 4,, the last term approaches to 0 as £ — oo.
This concludes (6.18).
Lemma 6.3. Suppose h € %,. Then

Jlim LU ER[E R B4R =0, (6.23)
—00

Proof. Let h(Y) = E"¥[h], where u1,y was defined in (3.16). It is not hard to check
that the equivalence of ensembles implies that for some y > 0,

EF[(E*[W|I[1— Y = I}));(E*[hI}]—h(Y =1}))] < const.£™%77. (6.24)
From the assumption 4 € ?r one has

oh

—| =0, a=0,
aYa Y=z *=

where z, = E* [I,]. From the Taylor expansion we have
it(Y) = A(Y — z) + higher order terms,

where 4 denote the quadratic terms. Assume that I_j has a Gaussian distribution
with mean z. Then

E*[(I} ;)] ~ ERIQU} —2);,0UF =2 ~ 27, (6.25)

and we have proved (6.23). The proof of (6.25) is elementary and involves only
i.i.d. random variables. Since similar estimates were proved in [8] (Lemma 3.1) and
in more details in [25] (Lemma 11.3), we omit the details.
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