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Abstract: We consider zeta functions and heat-kernel expansions on the bounded,
generalized cone in arbitrary dimensions using an improved calculational technique.
The specific case of a global monopole is analysed in detail and some restrictions
thereby placed on the A$β coefficient. The computation of functional determinants
is also addressed. General formulas are given and known results are incidentally,
and rapidly, reproduced.

1. Introduction

In this paper we refine and generalise techniques developed earlier for the evaluation
of heat-kernel expansion coefficients and functional determinants of elliptic operators
on manifolds with boundary. We concentrate on ball-like manifolds because precise
answers can be found and, apart from illustrating our method, the results for such
specific manifolds are often useful in restricting the general forms of heat-kernel
coefficients.

One of the motivations for this paper is to compute for a particular curved
manifold whose boundary is not geodesically embedded. The resulting restrictions
are a little more informative than some others available [28-30]. The manifold also
possesses a singularity, which increases its interest.

For calculational simplicity the operator is taken to be the modified Laplacian,
A — ζR, acting on scalars. The analysis could be extended to forms without difficulty
and also to other fields with a certain amount of extra work [23,5,24-26,38,31]. It
is possible that our techniques will be of value in areas of physics where finite size
systems and boundary effects play a role, such as quantum cosmology and statistical
mechanics.

In the next section we outline the geometry we have in mind and discuss the
eigenmodes. The ^-function is next constructed in Sect. 3 and its properties trans-
lated into heat-kernel language in the following section. In order to make this paper
reasonably self-contained the techniques alluded to previously are restated in im-
proved and compactified form. The general method is applied to a global monopole
in Sect. 5 and the results used in Sect. 7 to place restrictions on the numerical
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coefficients in a heat-kernel coefficient of some current mathematical interest [10].
Sections 9,10 and 11 describe the evaluation of the functional determinant.

2. The Geometry and Eigenmodes

The manifold in question can be termed the bounded, generalized cone and is de-
fined as the (d + 1 )-dimensional space M = I x Jf with the hyperspherical metric
cf. [14]

ds2 = dr2 + r2dΣ2 , (2.1)

where dΣ2 is the metric on the manifold J ,̂ and r runs from 0 to 1. Jf will be
referred to as the base, or end, of the cone. If it has no boundary then it is the
boundary of Jί .

We note that the space is conformal to the product half-cylinder R+ x Jf ,

ds2 = e~2x(dx2 + dΣ2\ x = - Inr , (2.2)

which allows the curvatures on Jί and Jf to be related. The only nonzero compo-
nents of the curvature on JK are, with obvious notation,

κ>u = ~φkl - (4dj -

R=\(R-d(d-l)). (2.3)
r2

These measure the local deviation of Jf from a unit d-sphere and indicate the
existence of a singularity at the origin. Finally, the extrinsic curvature is KJ — δlj
and we recognise (2.3) at r — 1 as the Gauss-Codacci equation.

Turning to analysis, the Laplacian is

4* = 7Γ2 + - 7Γ + ~2Δ^ ' (2 4)

or2 r or r2

Boundary conditions are imposed at r = 1 as will be described in the next section.
The nonzero eigenmodes of Δjg that are finite at the origin have eigenvalues

— α2 and are of the form

r(d-\}/2

where the harmonics on N satisfy

A^Y(Ω) = -λ2Y(Ω) (2.6)

and

v2 = λ2 + (d-l)2/4. (2.7)

It is easiest to allow for the addition of the term — ξR to Δjg when R is constant
and we shall assume that this is so in the detailed calculations presented later in
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this paper. The obvious example is the sphere, discussed passim in Sect. 5. If we
are interested solely in the Laplacian (ξ — 0) this restriction is unnecessary.

The modes will still be as in Eq. (2.5) with now

2 = 2
(d - l)2/4 + ξ(R -d(d-l)) = λ2 + ξR + d(d - l)(ξd - ξ) , (2.8)

where ζd = (d — 1 )/4d. For conformal coupling in d -f 1 dimensions, the last term
disappears, as it also does when d — 1.

More generally, if R is not constant, we write

or* r or rΔ rz

and introduce eigenfunctions, F, of the modified Laplacian on J ,̂

(As - ξR)Ϋ = -λ2Ϋ ,

so that the eigenfunctions on Jί are again of the form (2.5) with Y replaced by Y
and

We assume that v ^ 1/2 in order to avoid the appearance of types of solution other
than (2.5).

3. The Zeta Function on M

Let us first see how far the analysis can be taken without specifying the base
manifold JΛ A boundary value problem may still easily be posed due to the form
of the chosen metric. Both Dirichlet and generalized Neumann (or Robin) boundary
conditions are to be considered and in the notation of, for example, [30], these read
explicitly

Λ(α) = 0 (3.1)

for Dirichlet and

' D \
l---β] Λ(«) + α./v'(α) = 0 (3.2)

2 /

for Robin. We set D = d -f 1 and use D or d, whichever is convenient.
A handy way of organising eigenvalues is the Minakshisundaram-Pleijel

ζ-function. Let d(v) be the number of linearly independent scalar harmonics on
JΛ Then the base zeta function is defined by

- l)(ξd - ξ)Γs, (3.3)

and our first aim will be to express the whole zeta function on M,

as far as possible in terms of this quantity. That is, we seek to replace analysis on
the cone by that on its base in the manner of Cheeger for the infinite cone, [14].
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We start with Dirichlet boundary conditions, the discussion for Robin conditions
being virtually identical.

Following the analysis of [7, 8] the starting point is the representation of the
zeta function in terms of a contour integral

U(*) = Σ^(v)/^-25^ h-M*) > (3.4)

where the anticlockwise contour γ must enclose all the solutions of (3.1) on the
positive real axis (for a similar treatment of the zeta function as a contour integral
see [27, 6, 9]).

As was seen in [7, 8] it is very useful to split the zeta function into two parts. To
actually perform this separation, some notation for the uniform asymptotic expansion
of the Bessel function Iv(k) is required. For v — > oo with z — k/v fixed one has,
[35, 1],

_ ,
V2πv(l + z2)* L k=\ v J

(3-5)

with t = 1/λ/l + z2 and η = \Λ + z2 + ln(z/(l + vTTz2)). The first few coeffi-
cients are listed in [1], Higher coefficients are immediately obtained by using the
recursion [35, 1]

«*+ι(0 = \t2(\ - t2)ur

k(t) 4- \ }dτ (1 - 5τ2H(τ) ,
2 δ o

starting with uo(t) = 1. As is clear, all the Uk(t) are polynomials in t. We also need
the coefficients Dn(t) defined by the cumulant expansion

,
which have the polynomial structure

AΛO = ί> '̂n+26 (3-7)
6=0

From the small z behaviour of Eq. (3.5) one derives the important value Dn(l) —
ζR(—n)/n, which will be seen later on in Eq. (9.2).

By adding and subtracting N leading terms of the asymptotic expansion,
Eq. (3.6), and performing the same steps as described in [7, 8] one finds the
split

= Z(s) + £ At(s) , (3.8)Z—/

i=-\

with the definitions

N Γ) (f\

=— r -Σ — > (3-9)'
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and

(3.11)

The function Z(s) is analytic on the strip (1 — 7V)/2 < ^Rs1, which may be seen by
considering the asymptotics of the integrand in Eq. (3.9) and by having in mind
that the v2 are eigenvalues of a second order differential operator, see Eq. (2.7).

As is clearly apparent in Eqs. (3.10)-(3.12), base contributions are separated
from radial ones. We will see in the following section that this enables the heat-
kernel coefficients of the Laplacian on the manifold Jt to be written in terms of
those on «ΛΛ

In order to treat Robin boundary conditions, only a few changes are necessary.
In addition to expansion (3.5) we need [35, 1]

2πv

with the Vk(t) determined by

vk(t) = uk(t) + t(t2-l) [^*-ι(0 + Λ4-ι(θ] (3.14)

The relevant polynomials analogous to the Dn(t), Eq. (3.6), are defined by

and have the same structure,

b=Q

One may again introduce a split as in Eq. (3.8) with A^^s) = A-\(s\ AQ(S) =
—AQ(S) and Eq. (3.12) remains valid when x^a is replaced by z^a.

4. Heat-Kernel Coefficients on the Generalized Cone

The previous formulas are already sufficient to give the heat-kernel coefficients on
the manifold Jί in terms of those on JΛ However, before giving the relation,
some special circumstances of our situation must be explained and, for expository
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purposes, a conventional short-time expansion of a generic heat-kernel will now be
displayed,

*(0~ Σ cnt
n-D'2. (4.1)

/z=0,l/2,l,...

For a geometric operator, such as the Laplacian on a Riemannian manifold, the
coefficients Cn are integrals of polynomials in the curvatures and their derivatives.
Typically, the volume integrand of Cn contains terms ~ Rn and it can be seen from
the form of the curvature in the present case, (2.3), that the naively integrated
coefficients Cn forn^D diverge. For this range, Cheeger [14] and Briming [11]
show that the relevant quantity in (4. 1 ) is the partίe finie of the integral. This is
obtained, in our case, by restricting the radial integral t o ε ^ r ^ l , ε > 0 , and
taking the finite remainder as ε — > 0. An equivalent procedure for a given n is to
evaluate in a dimension D > n and then continue to the required dimension, a la
dimensional regularisation.

A further aspect of singular problems is the existence of logarithmic terms in the
heat-kernel expansion, [12]. We introduce these via the important (-function value
ζ(0) which is finite for a nonsingular elliptic operator on a smooth manifold. In the
present case, (3.8) and (3.10) show that ζjt(s) has a pole at s = 0 provided Cκ(s)
has one at s = —1/2. According to a standard relation, the residue is proportional to
the heat-kernel coefficient A^+λ^2 on Jf, and so, if Jf is closed, vanishes for even
d, being then a pure boundary term. A pole at s — 0 in the (-function translates
into a "nonstandard" logarithm term in the heat-kernel expansion as we now show.

Let Kj((f) be the heat-kernel associated with the modified Laplacian on M, and
define now the coefficients by the convention

00

Kji(t) ~ Σ Af t"-D/2 + A1 log t . (4.2)

A Mellin transform argument relating the heat-kernel to the (-function, going back
to [33], see also e.g. [39], gives

A$2 = Res U(s)Γ(s)\s=(D_n)/29 n ΦD , (4.3)

while

A$2 = PPζjr(0), and Λ' = -Res £*(<)). (4.4)

From (3.10)-(3.12) we find in particular

- l)ResCX-l/2)- i

(4.5)

and

= -^ResLK-l/2). (4.6)
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The singularity evidences itself in contributions to the constant and logarithmic terms
in the expansion, cf. [14].

In the later calculations it will be arranged that the logarithmic term does not
occur. Its absence permits a standard evaluation of the functional determinant.

We consider an arbitrary dimension, Z), and so, in practice, it will be enough to
work with n < D in order to determine any coefficient. In consequence we use

Affz = Γ((D - «)/2)Res ζ*((D - «)/2), (4.7)

in the following and continue in D as described above.

Denoting by A^f the heat-kernel coefficients associated with ζ^ by the corre-
sponding equations, we may write as an immediate consequence of Eqs. (3.10)-
(3.12) and (4.7) the basic relation,

- n("-'-°/2 "b Γ((D - n + i)/2)Γ(b + i/2) '

with A^_λy2 = 0 for n = 0. Thus, given the coefficients on ̂  Eq. (4.8) re-

lates them immediately to the coefficients on M. The boundary condition at
r = 1 is encoded just in the sum over b. This relation can be used to restrict
the general form of the heat-kernel coefficients as will be explained briefly in
Sects. 6 and 7.

Equation (4.8) remains true for Robin conditions once the sign of the second
term on the right-hand side is reversed and the jc's replaced with the z's.

5. The Global Monopole

Let us illustrate this formalism with a bounded version of the simplified global
monopole introduced by Sokolov and Starobinsky [36] and discussed more physi-
cally by Barriola and Vilenkin [4].

The manifold Λf is a ^/-sphere of radius a and is the boundary dJί of M at
r — 1 . If a is not unity, this produces a distortion which exhibits itself as a solid
angle deficit, or excess, at the origin. The d + 1 -space is not flat, unless 0 = 1 ,
having scalar curvature

There are two useful conformal transformations. The first takes the metric into
a product form (as in (2.2))

ds2 = dr2 + a2r2 dΩ2 = e~2x(dx2 + a2dΩ2\ x = - In r ,

which is that of the (Euclidean) Einstein universe, IR+ x S%, where S% is a sphere
of radius a. This is conformally flat and so, therefore, is the monopole metric, a
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direct statement being

dr2 + a2r2dΩ2 = (Π * (dr2 + r2dΩ2) ,

where α is given by (d φ 0, 1 )

and / is an arbitrary scale parameter. This is reminiscent of a Schwarz-Christoffel
transformation, the conformal nature of the map breaking down at the origin.

The first conformal relation gives the nonzero curvature components in terms of
those on the unit sphere, (see (2.3)),

Sfιδb (5.2)

As explained earlier, the mode decomposition goes through exactly as in the flat
case except that the order of the Bessel function acquires an extra shift,

2 λ2 (d-l)2 ^^ ,,1-fl 2

v2 = - + Λ + ξd(d - 1)-̂ - ,
a2 4 a2

where λ2 are the eigenvalues of the Laplacian on the unit ^/-sphere. Hence (see
(2.8))

vί = (. + (.-l)/2)i+ .-^

a1 aλ

so that if ξ = ξd we obtain the usual simplification (cf. [32] for d = 2)

and the base (-function is given by a simple scaling of the unit sphere (-function,
which is the one appropriate for the uncompressed ball,

ζ^(s) = a2sζsd(s). (5.3)

A point to note is that there is no pole at s — 0 in ζ^(s). As stated, this can
only possibly occur if d is odd (for a closed ΛO and we know that the (-function
(5.3) is a finite sum of Riemann (-functions and has no pole at s = —1/2. This is
actually a consequence of our choice of conformal coupling.

In order to apply Eq. (4.8) to the monopole, the residues of the base zeta
function, (̂ , are needed. These may be obtained most easily using its representation
in terms of the Barnes zeta function [2] defined by the sum

oo 1

, < ^ -> ~s > -^(a + m r)s

valid for yts > d, with the J-vectors m and r.
It is shown in [13] that the zeta function on a portion of the J-sphere determined

by the degrees r corresponds to the value a — Σ rl •< — ( d — 1 )/2 for Dirichlet and to
a — (d — 1 )/2 for Neumann conditions on its perimeter. However we do not need
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the full generality of these statements and can limit ourselves to the case f = I
corresponding to the hemisphere,

'ί-lOίΓΠF <5 5>
It is easily shown, algebraically, that the full-sphere zeta function is the sum of

the hemisphere Dirichlet and Neumann functions, [16]. To see this, remember that
the number of independent scalar harmonics on Λf is equal to

(5.6)

For reasons of space, we do not give any history of sphere zeta functions.

Using the notation ζ#(s,a | Γ) = ζ&(s,a) one finds

(5.7)

which reduces the analysis of the sphere zeta function to that of the Barnes function.
Using the integral representation

p _ 7 -

fdz - - V — . (5-8)
rf

,
2π i

where L is the Hankel contour, one immediately finds for the base function

2π(d-l) J

L ^ '

For the residues this yields (m = 1,2,...,J)

2—fl£'-I)

(5.9)

' ' (d-\\m-2)\(d-m)\

with the D<?~1) defined through (cf. [15])

(5.10)

sinhz
(511)

^ }

Obviously D? — 0 for v odd, so there are actually poles only for m = 1,2, ... ,d
with d — m even. The advantage of this approach is that known recursion formulas
allow efficient evaluation of the D? as polynomials in d, [34].
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Using Eq. (5.10) in Eq. (4.8) we find for the heat-kernel coefficients A^2,

( d - k - ί ) fd+l-k\ (</-! ) ,_*

2 Λ/2 * a

2
i-k d+2-k+

< _ d+1+ί_,

^ '

where (jO« = Γ(y + n)/Γ(y) is the Pochhammer symbol. Equation (5.12) exhibits
the heat-kernel coefficients as explicit functions of the dimension d and, although
derived for k < D, they can now be extended beyond this range.

For a = 1 (5.12) reduces to the coefficients on the ball and is in full agreement
with the results of Levitin [30]. The polynomials up to Af are listed in Appendix A.

For Robin boundary conditions one has to make the modifications outlined
at the end of Sect. 4. The results are summarized in Appendix B, once more
up to Af.

6. Comparison with Usual Expressions

The intention is to put restrictions on general forms of the A^2 using the particular

results for the monopole. There is however the possible problem of a contribution
from the singularity at the origin. Does a piece have to be added specially to the
usual forms to account for this? The effect of the singularity appears only in the
constant and logarithmic terms in the heat-kernel expansion and so only A^,2 is

affected. However the calculation provides unique polynomials in D for all k. Does
anything special happen for k = DΊ We show that it does and that singularity terms
do not have to be added to the usual smooth forms. An example will illustrate the
general point.

For D = 2 the compressed ball is an ordinary cone of angle 2πα. Consider now
the usual Dirichlet smeared expression for a smooth D-manifold

= 1(1 - 6ξ)fRf + 1 / ( Kf - IH df] (6.1)
b M $dJί \ Z /

and, to avoid the log term, set ξ = ξd = (d — l)/4d. Substituting R from (5.1) and
K = d, (6.1) becomes, on the compressed ball,

(6.2)

where we have assumed that the smearing function / depends on r2 only.
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Note that the (d — 1 ) factor, making R vanish on the disc, cancels against a
corresponding factor from the integration over r for j — 0 so that the volume term
remains nonzero at D — 2. Then, evaluating at D — 2 gives

which can be compared with the standard expression for a 2-manifold with a conical
singularity of angle β at the origin,

(6.4)

usually derived from the Sommerfeld-Carslaw heat-kernel on the cone. (It can be
generalised to any dimension.)

Evaluated directly on the compressed 2-ball where R = 0 now and K — 1, (6.4)
agrees with (6.3). We see that the singularity part of (6.4) arises as the D -^ 2
limit of the volume integration over the monopole curvature densities in the usual
smooth expression. In this way the detailed analysis of the cone heat-kernel could be
avoided. This is also true if ξ Φ ξj because of the (d - 1 ) factor in the eigenvalues,
Eqs. (2.8) or (2.9).

The D = 4 case can be investigated in a similar fashion by examining A2. In
the general case, a value being fixed for k, the volume integrand of Ayi (if there is
one) vanishes at D = k because of the conformal flatness. However the integrated
volume A^/2 remains nonzero and is the contribution of the singularity.

Another application of the A2 coefficient presents itself. For the ordinary cone,
it is known that the smeared heat-kernel expansion consists of a series of rational
functions in the apex angle which are straightforwardly calculated as residues from
the Sommerfeld-Carslaw expression. The singularity term in (6.4) is the first of
these functions. The second will come from the smeared A2 evaluated at D = 2.
If /(r2 ) is Taylor expanded about the origin, because of the factor (d — 1 ) in
(5.1) all terms in / in the volume part will vanish except that proportional to r2

which yields a factor of (d — 1 ) in the denominator giving a nonzero result. This
would allow one to obtain the second of these residue functions, although this is not
the best way. The upshot is that the conical singularity in two dimensions can be
exactly simulated by a monopole in D dimensions as the D — > 2 limit of the smooth
formulation.

The main conclusion of this section is that the polynomial forms deduced in the
present paper for the monopole can be compared immediately with the usual smooth
general forms, in so far as these are known. This we proceed to do in a particular
case.

7. The A5I2 Coefficient

Branson, Gilkey and Vassilevich [10] (Lemma 5.1) give the general form of this
coefficient and determine many of the numerical coefficients. Looking at the A5/2

expression for the global monopole, Sect. 5 and Appendices A and B, we are able
to fix some additional numbers. We do not give here a comprehensive treatment
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of this question, intending only that it should illustrate our general method. It is
possible that the restrictions could be found by easier means.

Using Lemma 5.1 of ref. [10] for the global monopole, inserting the geomet-
ric tensors given in the previous sections and comparing with the polynomials in
Appendices A and B, we find for Dirichlet boundary conditions,

___65_ Λ-__1H. 327
3 6~~l28' 3 7~~Ί32~' 40 ~~ 8~ '

together with the relations,

rf- + </- = 1049/32 ,

d~ + 2d~Ί - 2d~9 = -504 ,

d~ - 4dϊ - 2d~5 = -360 . (7.1)

For Robin boundary conditions the results read

'2

+,=-60;

'£, = 360;

35 = 150;

4, = 2160;

d+3= 885/4;

d+6 = 2041/128;

4, =23 1/8,

rf+ = 1080

44 = 315/2;

d+, =417/32

(7.2)

with the additional relations,

< / + + < / + = 1175/32,

2rf£ = -130 . (7.3)

For Dirichlet conditions our example thus reduces the number of unknown numerical
coefficients effectively by 6, and for Robin by 13.

Equation (4.8) also allows one to place restrictions on the general form of the
coefficients which we want to describe briefly. Assume that Jf is closed and thus
has no boundary so dJt = Jf and A^2 = 0 for n odd. The idea will already be
clear from the lowest example n — 1. Then Eq. (4.8) gives

~

which is of course the known result. As a rule, knowing the volume coefficient A^',
relation (4.8) puts restrictions on the coefficient ^^1/2 Let us illustrate this a bit
more. Choosing the operator —(A + E), E depending only on the coordinates on
jV*, Af,2 has the structure (we use no smearing function this time)

Afj2 = -(384)~1(4π)(D-1)/2 / (dλE + d2R + d3Rab n
anb + d4κ

2 + d5κabκ
ab).

dJί

Employing Eq. (4.8) again,

λJt — AjY~ Δ^(\λ 19 Π l 5 Γ)2 Λ
SLlf) — "Γ-'1! ~7T-^lΠ \ A 1 IZ,!̂  ~Γ JJ-S I ,
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and also the Gauss-Codacci relations between the intrinsic and ambient geometries
of Jf, one finds the known numbers,

dι=96; d2 = l6 d4 = 7; ds =-10 ,

just from a knowledge of the volume term A"f. Several numerical coefficients might
also be determined for the A^2 coefficient in this way but, taking the computations
of ref. [10] and the previous results together, probably nothing new would emerge.

8. Lens Space Bases

Examples of locally spherical bases, Ji , are the homogeneous spaces Sd/Γ, where
Γ is a discrete group of free isometries of Sd. The corresponding infinite cone
(0 ^ r < oo ) has been treated in [17]. For simplicity the sphere radius is set to
unity to make the cones locally flat and we consider only the value ζ^(0) in detail.
Because of the homogeneity, the heat-kernel coefficients on Sd/Γ are simply a factor
of I/Ί smaller than those on the unidentified sphere and, therefore, so are those on
Jί computed according to (4.8).

For even D, Eq. (4.5) reduces to

£ -C*(-/)ResLH//2) , (8.1)

the first part of which we recognise as being the negative of the total Casimir
energy on Jf . The second part is written by homogeneity in terms of the full sphere
value

ι/2) . (8.2)

To obtain the contribution due solely to the singularity, 1/|Γ| of the complete
sphere value must be subtracted from (8.1). We see that the last term cancels
and so

Gng(0) = -\ (W(-V2) - |̂ (-l/2)) . (8.3)

As a simple case consider the three-dimensional lens space (Γ — %m). Then

n}> (8 4)

using the Casimir energy calculated in [18]. This agrees of course with the value
in [17]. The higher-dimensional cases, and other groups, can be treated by various
means.
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9. Dirichlet Functional Determinants

As a further application of the ideas presented in the previous sections, let us con-
sider the functional determinant on the generalized cone. To avoid problems of
definition, we must assume that A^+λy2 vanishes. This eliminates the possibility of
a pole in ζjt(s) at s = 0 and the determinant is then conventionally defined to be
exp(-G(0)).

For the calculation of the determinant we have seen in [8] that the first D — I — d
terms in the asymptotic expansion are to be removed. Thus, from now on, we
set N = d in Eq. (3.8). The contribution of the ^/'s to the determinant may be
immediately given,

4(0) = -~^ (yResCKi/2) + PPO(ι/2))

- Σ xι,b W + 1/2) ResCKi/2) , (9.1 )
6=0

with ψ(x) = (d/dx)\nΓ(x). Following the procedure in [8] we find

oo / d Γ) /ι \

z co) - ΣW/* ( Σ g±

which is well defined by construction, as is seen explicitly using the small t asymp-
totic expansion,

1 1 1 °° tn

and the value Dn(l) — ζR(—n)/n. This expansion may also be used to obtain a kind
of asymptotic series for Z'(0),

n=d+\ n

However, as a rule, ζjy(n) can be determined only numerically once the eigenvalues
are known.

Introducing the "square root" heat-kernel associated with the eigenvalue v,

Eq. (9.2) can be written in the form



Heat-Kernels and Functional Determinants on Generalized Cone 385

Let us calculate the individual pieces, as far as possible. For this puφose, introduce
a regularisation parameter, z, and define

This leads to

(9.4)

which we need at z = 0. Here we have introduced, as seems natural, the zeta
function

co I co e—tv

n=\ Γ(z) Q e — I

Equation (9.4) may be expanded around z = 0 and the required derivative ex-
pressed in the intermediate form

= ΣResCK//2)
6=0

lim

(9.6)

Several nonlocal pieces, difficult to determine, have cancelled between Z'(0) and
the Af(s).

The small z expansion,

must now be employed where the value of CyΓ+ι(0) follows from the fact, [39],
that it equals the CD term in the asymptotic t — » 0 expansion of

^ A n=0

and can be found using (9.3). Explicitly

(9.7)
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Using the above results and notation, the derivative emerges in the final form

G/(0) = CV+ι(0) + In2 (cK-1/2) + 2Σ ResCX//2)AO))
V 1=1 /

1

k^\ k o

after some minor manipulation. It is seen that all γ-dependent pieces have cancelled
and, in short, apart from contributions coming from the ζ^+\(z) piece, the func-
tional determinant is determined through the leading heat-kernel coefficients on the
manifold JΛ

It does not seem possible to proceed much further for the general case because
there is no explicit expression for £^/>i(z). The best we have found is the integral
representation

c+ioo Γ(?}Γ(r — ^
(9.9)

with SRc > d, which one may find starting from (9.5) using the Mellin Barnes
integral representation of the exponential function. Equation (9.7) is recovered in
this representation closing the contour to the left.

However, for the example of the monopole, one can continue directly, as will
be shown in the next section.

10. Monopole Determinant

A situation of possible physical significance is the global monopole. In the infinite
case, Mazzitelli and Lousto [32] have evaluated some local vacuum averages on
R x M. In the bounded case we can find the effective one-loop action on Jί in the
guise of the functional determinant and so we now specialise Jί to be the global
monopole of Sect. 5.

For conformal coupling we had

d-\

and the base zeta function, Eq. (5.3), is

~2s

/=o

Furthermore we have

d — s

, (10.1)
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with f—(\,a), Γ being the J-dimensional unit vector. Thus, together with
Eq. (9.8), the functional determinant has been found in terms of derivatives of
Barnes zeta functions and a given polynomial in the radius a and the dimension d.
The polynomial follows from Eqs. (5.10) and (5.9),

For arbitrary radius a it seems that one cannot construct the analytical contin-
uation needed to find an explicit expression for ζ^+1(0). A numerical treatment
could start immediately from Eqs. (9.1) and (9.2) or from the formulas in Sect. 39
of ref. [2]. For a rational radius one can go further, as explained for example in
[19], however we proceed here only for the ball, i.e. a = 1. Then, the zeta function,
Eq. (10.1), may be expressed in terms of just Hurwitz zeta functions in the following
way.

First one finds

d 4-
+

/=o

with the "degeneracy"

Then, expanding e(l) in standard fashion as

α=0

the representation

d
ζj\r+\(s) = Σ eχ ζπ(s — α;(rf + l)/2) (10-2)

α=0

in terms of the Hurwitz zeta function, £#, follows. So finally (cf. [3], p. 432)

Cr+1(0) = Σ eα &(-α; (rf + 1)12). (10.3)
α=0

All quantities needed to calculate the functional determinant on the ball are
now provided. The results agree with previous ones presented in [8,19-21] for
dimensions D from 2 to 8. The structure of those results, such as the absence
of the constant y, the appearance of the derivatives of Riemann zeta functions
with arguments up to —d and a certain prefactor of the In 2 term, is made



388 M. Bordag, K. Kirsten, S. Dowker

completely clear with Eqs. (9.8) and (10.3) and is now shown to be true for all
dimensions D.

11. Robin Functional Determinants

Let us describe briefly the analogous treatment for Robin boundary conditions. Hav-
ing the comments at the end of Sect. 3 in mind, the contributions coming from the
Ai's are given by Eq. (9.1) with the mentioned replacements. Following once more
the lines of [8] we find

= Z'(0) + #(«), (11.1)

with N(u) given by

and u = 1 — D/2 — β. Thus for Robin conditions we have to treat only one additional
piece, the last one in Eq. (11.1), in order to reach the result analogous to Eq. (9.8)
for Dirichlet conditions.

To proceed, write N(u) in the form

«=o

and again introduce a regularization parameter z, as in the derivation of Eq. (9.4).
We find for the resulting function, N(u9z),

where we have introduced

1 00

/ dt
o

One easily obtains as explained previously

2 E (-iy^
/=! '

which guarantees that the limit z — > 0 is well defined. These relations lead to

+ Σ (-1)"+1 - (2Resζ^(»/2)(^(») + y) + PP CX»
«=ι n
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As in Dirichlet conditions, on adding up all contributions to the required deriva-
tive, several pieces cancel leaving the final compact form

/ odd

' <->•»
/=!

i even

where M/(l) = A(l) + (-ly'+V/z.
This completely parallels Eq. (9.8) for Dirichlet conditions. Again, the y-

dependence has disappeared, and the nonlocal pieces are clearly confined to the
first two terms which have to be seen as special functions as they stand. Nothing
more can be said without specializing to simple manifolds.

Let us briefly describe the simplifications occurring for the monopole. All pieces
are known from the Dirichlet case apart from

CK*, u) = as (ζ# (s, (d + 1 )/2 + aύ) 4- ̂  (s, (d - 1 )/2 + au))

/=o

However, using the procedure explained at the end of Sect. 10, we expand

d(l)= Σ *«(*") (* + (<*-l)/2 + <«Oα ,
α=0

and then, since the e^(au) are polynomials in au, ζjy(s,u) appears as a sum of
Hurwitz zeta functions

ζ^(s, u) = as Σ; eΛ(au) ζH (s-* 9(d-l )/2 + au) ,
α=0

its derivative at s = 0 being

(11.3)
α=0

where the ^(Λ:) are ordinary Bernoulli polynomials.
Thus, in this case also, the only contribution not readily available for arbitrary

radius a is the C^r+i one. As in Dirichlet conditions, the ball case, a = 1, is easily
extracted. Again, the structure of the result is completely clear from Eq. (11.2) and
the special cases of references [8, 21, 20] are very quickly reproduced.
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12. Conclusion

Our basic results are embodied in Eqs. (4.8), (9.8) and (11.2). The general form of
the determinants agrees with the more special expressions announced in [22].

The techniques described here have certain technical and aesthetic advantages.
For example, Levitin determined the heat-kernel coefficients on the Z)-ball in terms
of polynomials in d by fitting their general forms using values calculated for specific
dimensions. Choosing Jf to be the unit (D — 1 )-sphere in the preceeding formal-
ism has allowed us to find these polynomial expressions directly and much more
quickly. It takes two minutes using Mathematica to evaluate the first ten polynomi-
als. A similarly rapid computation holds for the determinants.

The method is clearly capable of being applied to other situations. One may wish
to change the base Jf or to choose a different field for physical or for mathematical
reasons.

A generalisation of a slightly different character would be to replace the metric
(2.1) by ds1 = dr2 + f(r2)dΣ2 when one would be obliged to analyse the asymp-
totic behaviour of the new radial eigensolutions. A particularly important example is
the spherical suspension, ds1 = dθ2 + sin2 θdΣ2, 0 ^ θ ^ ΘQ. The asymptotic prop-
erties of the resulting Legendre functions derived by Thorne [37] have already been
employed by Barvinsky et al. [6] in a calculation of a one-loop effective action in
quantum cosmology.

We reserve for later, expositions of some of these extensions.

Acknowledgement. This investigation has been supported by the DFG under the contract number
Bo 1112/4-1.

Appendix A. Heat-Kernel Polynomials for the Monopole
with Dirichlet Boundary Conditions

In this appendix we list the leading heat-kernel coefficients for the monopole with
Dirichlet boundary conditions. From (5.12),

^=5d-3 d-3_
ad\Sd\ l/2 4 ' ad\Sd\ ' 12 12a2 '

(4π)rf/2 - (2 - d)(5d - 4) (d-iχr f-3)

ad\Sd\ 3/2 128 48 α2

(4π)0/2

 M _ -7875 + 14447Λ - 1293d2 + Π05d3 (d - \)(d - 5)(5d - 3)

ad\Sd\ 2 ~ 30240 + 1440α4

- 3X54-13)

144α2
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(4π//2 _ -4992 + 9552J - 5692J2 + 1356^3 - 113J4

5/2 " 49Ϊ52

5760α
4
 1536α

2

(4π)
D/2
 ̂  _ -28999971 + 57597489J - 3815Q066</

2

3
 "

51891840

11356742d
3
 - \513675d

4
 + 82825</

5
 (rf - l)(d - 3)(d - 7)(35d

2
 - ΊU + 9)

51891840 362880α6

- 3)(d - 5)(5d - 3)(5d - 23)

17280α4

- l)(d - 3)(11Q5J3 - 13923c/2 + 568789 d - 74781

362880α2

Appendix B. Heat-Kernel Polynomials for the Monopole
with Robin Boundary Conditions

The following is the list for Robin boundary conditions:

M _\_ (4π)D/2

 M _ -3 + 5d + 24β 3-d
1 / 2 ~ 4 ' ~^d\Sd\ l " Ϊ2 +Ί2^'

1 2 8 4 8 0 2 '

(4π)
D
/
2

 M
 _ 1035 - 871J - 75J

2
 + 295d

3
 + 21600 - 23Q4dβ

a
d
\S

d
\
 2
 ~ 4320

2448d
2
β + 516Qdβ

2
 + 5760j5

3
 (d - 1 )(d - 5)(5d - 3)

4320 1440α
4

144α2

(4π)d/2 ^ _ 24960 - 31344J + 1 1668d2 - 2836 d3 + 1587 'd4 + 3Q720ff

/̂
2
~ 245760

-I9200dβ - 3520d
2
β + 1456QJ

3
jg + 3Q720jg

2
 - 256QOdβ

2

245760

5632Qd
2
β
2
 + 92l6Qdβ

3
 + 61440jS

4
 (rf - l)(d - 3)(d - 5)(5d - 3)

2 4 5 7 6 0 5 7 6 0 ?

-3) (-56 + 6d- Id
2
 - 64β - 32dβ - 64β

2
}
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I144l09d5 5

ad\Sd ' 3 1920 259459200 16 3

(-190555 + 4176744)8) , ^ (

51891840

2 /1 300721 293 jS 7β2

1 V3706560 108° 45

/ 23787571 I94β
1 V 28828800 315 '

(d- \)(d - 3)(d - 7)(35<

362880fl6

,(^-1)^-3)^-5X5^

1 V

' 35 y

945

^2 - 28ί/

-3) (25

^ 3 ^ 15

1423133 2jβ 349jβ2

25945920 21 ' 945

i
8/?3 16jS4λ

35 ' 15 J

+ 9)

+ 5d + 24β)

1728004

(-10917+3367J-603J2-295J3-10800jS+576JjS

-516Qdβ2-516Qβ3) .
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