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Abstract: Let κ/(///(T)) denote the negative eigenvalues of the operator Hι(V)u :=
(-Δ)lu - V(x)u, V ̂  0, x E R^ on L2(^d). We prove the two-sided estimate

£(</,/)/ V(x)dx ^ Σ \Xk(Hι(V))\l~κ ^ £(</,/,1 - K) f V(x)dx9 K = d/2l < 1 .
iR.d k TRd

We discuss bounds on the Riesz means Σk\κk(Hι(V))\μ if 0 < μ < 1 — K.

1. Introduction

1.1. We consider the quadratic form

hι(V)[u,u] := / \Vlu\2dx - / V\u\2dx, 0 g V 6 ̂ (R^), / € N+ ,
Rrf R^

defined on functions u G Co°(lRd). If the function V vanishes properly at infinity,
this form can be closed. Its closure generates the self-adjoint operator

H,(V):=(-Δ)l-V(X) (1)

on ^(IR^), the negative spectrum of which is discrete and bounded from below. Let
(xjt(///(F))} stand for the non-decreasing, finite or infinite sequence of the negative
eigenvalues of the operator ///(F).

Estimates on the negative spectrum of operators Hι(V) in terms of the potential
V have been studied for many years, see e.g. [3, 6, 17, 16, 8, 14, 13, 9]. For given
d, I define

):= v = v ( r f , / ) : = l - . (2)

The first author was supported by the EPSRC grant GR/J 32084. The second author was supported
by Deutsche Forschungsgemeίnschaft grant We 1964-1.
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In [15] Lieb and Thirring proved the inequalities

:= Σ \Xk(Hι(V»\μ ^ £ ( d 9 l , μ ) f W+K(x)dx , (3)
k R'

for potentials 0 ̂  V G Lμ+κ(]Rd) with μ > max{0, v} in the case 1=1. Their argu-
ment can easily be extended to arbitrary / G N+, see also [10]. In [16,8,14] the
respective inequality was shown for μ = 0 if v < 0. On the other hand it is known
that (3) fails for 0 ̂  μ < v if v > 0 and for μ = 0 if v = 0. In [20] the author verified
(3) for / = d = 1 and μ = v(l, 1) = 1/2, where in fact the two-sided estimate

\$Vdx^ Si ι/2(V) ^ 1.005 f Vdx, d = l=l, 0 ̂  V G Lι(IR) , (4)
4 R R

holds, cf. [11]. In this note we prove (3) for the remaining case of a positive critical
power μ = v(d, /) > 0 for arbitrary d, / G N+, such that 21 > d. In analogy to (4)
we find a two-sided estimate

, (5)

which holds for all summable, non-negative potentials 0 ̂  V G Lι(IR^) with certain
constants 0 < fi (rf, /) ̂  £ ( rf, /, v) < oo.

It is well-known that (3) is of sharp order in the limit of large potentials. This
follows from the Weyl type asymptotical formula

Sι9μ(aV) = α£cV, /, μ) / Vμ+κdx + o(α) as α ̂  oo , (6)

,.+1) ««•
which can be obtained for sufficiently regular non-negative potentials, and which can
be closed to all potentials 0 ̂  V e Z,/1+K(IR';') if (3) holds. On the other hand for
v > 0 the operator ///(αF), 0 ̂  F, Oφ V has negative spectrum for arbitrary small
α > 0, and for sufficiently regular, non-negative potentials the asymptotics

S, μ(a.V) = αfi V, I, v) / Vdx] + o(α"/v) as α -̂  0, μ > 0 , (8)

smπκ;

can be calculated.1 In the case of a positive critical power μ = v > 0 this asymptotics
is of the same type as (5), and we can close (8) with μ/v = 1 to all potentials
0 ̂  V G L\(^\ Comparing (8) and (6) we see that a two-sided estimate can hold
only in the critical case.

Naturally formula (6) agrees with the estimate (3) for supercritical powers
0 < v < μ. However, in the scale of subcritical powers 0 < μ < v we find μ/v <

include the proof of (8) in the Appendix.
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μ + K, and (6) disproves (3). Hence a proper substitute of (3) for positive sub-
critical powers should contain two terms on the right-hand side: one of homogene-
ity order μ/v serving for small coupling constants, and one of Weyl type order
μ + ft, serving as α —> oo. In the final section of this paper we shall prove such
estimates.

The authors are grateful to M. Birman, B. Davies, D. Edmunds, A. Laptev,
G. Rosenblyum and D. Vassiliev for many stimulating discussions.

1.2. Notations. Below QJ = {x = (xι,...,xd) G R^ : |jcy| ^ 1/2,7 = !,...,</}. More-
over M = {n G TL : n ̂  0}, while N+ = N\{0}. For a multiindex i G N^ we use

the notations |ι| = Σ*j=\lj and *• = Π7=:i zy The vector V* consists of the ele-

ments Λ / f f J^ with |ι| = k. Further Ωdίk stands for the (^)-dimensional lineal of

all polynomials over R^, the order of which does not exceed k.
Throughout the paper K and v are defined as in (2).
Finally, if the self-adjoint operator T is semi-bounded from below and its lower

portion of the spectrum is discrete, then (%^(Γ)} denotes the non-decreasing se-
quence of the respective eigenvalues (according to their multiplicity).

2. The Lieb-Thirrίng Inequality for Positive Critical Powers

2.1. Main result. In this section we shall prove

Theorem 1. Assume djζ N+ and v = 1 — d/2l > 0. Then for all potentials V(x)
^ 0, V G Lι(ΊR.d)9 the inequality

£(</,/)/ Vdx^SιtV(V)^£(d9l9v)f Vdx (9)

holds.

2.2. Two covering Lemmata. We introduce

Definition 1. Let 0 ̂  V(x) G Lι(Ί^d) have compact support. A family Q = {Jτ}
of cubes Qτ = xτ + ^τQ^? -̂ τ G R^, ατ > 0, w called a A-proper covering of supp V
of multiplicity Ξ(Q), if supp V C |Jτ^τ,

αf- ί //raΛ:=Λ ^(>0, αnrf Ξ(Q) := sup Σ l < °° (10)

The following result dates back to Besikovic [5]. For the convenience of the
reader we give its proof and follow the argument of de Guzman [12].

Lemma 1. For each non-trivial potential 0 ̂  V G Lι(R^) of compact support and
any fixed A > 0 there exists some finite A-proper covering Q(V) of supp V of
multiplicity Ξ(
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Proof. We can assume FφO. Then for each x G IR^ there exists a unique a(x) > 0,
such that for £x = x + a(x)Qd the equality

au-d(x)fVdx=A
Άx

holds. The function a : IR^ — > R+ is continuous and bounded from below by

\ ώ
1 f Vdx] >0. (11)

Choose Q = { &χ : x G supp V}. We shall select the sought finite proper covering
as an appropriate subset from Q. Assume we have already chosen the points jtz ,
/ = 1 , . , . , / w and the respective cubes ΆXι. Then let xm+\ be one of the points x,
where the continuous function a(x) achieves its maximum value on the compact set
c 6 supp V\\J™=lmt Άxr Since the interiors of the cubes ;cz + ^lQ^ do not intersect
each other, by (11) this process stops after a finite number of iterations, and we put

Evidently supp V C \J^Xi. Let us show that Ξ(Q(K)) ̂  2^ Each of the points
Xi does not belong to the interior of any other cube than Άxr Fix some point
y G IR^, y^Xi Assume y G [\=λ\ΏίΆXlr with c^ Φjc/? for all l ^ / ? = t = ^ ^ ^ and
r >2^. Let Γ= (zi, . . . , !^) denote vectors of the type ik G {0, 1}, & = l, . . . ,r f . Then

one of the 2^ sectors Z^r:— ^ + ®f=ι[0,(— l)z*c>o) should contain more than one
of the points xip, p=l,...,r. On the other hand, if xip,xiq e Σ^b-^/J ̂
|_y — Xig\9pφq9 and 7 G intJ^ Π int Ĵ . , then c^ G intJ^ , which contradicts the

construction. Thus r ^ 2d. D

We supplement Lemma 1 by

Lemma 2. Assume 21 > d. Then there exists a positive constant c(d9 /) such that
from each finite A-proper covering Q(V) = {£>i}"=\9 &i — Xi + <z/Q of supp F o/
multiplicity Ξ(Q(K)) ̂  2^ /or a non-trivial potential 0 ̂  V G LiOR/*) o/ compact
support one can extract a subset QS(F) = {=2/}/G/> ^ £ { l j 5 w} ^^ ̂  /^'Ό
perties

Xi + 2α, Q Π Xj 4- 2α7 Q = 0 for all i Φj, 1,7 G / , (12)

Σ fVdx^c(d9l)f Vdx. (13)
«e/ j, Rrf

Proof. Put /o =/o = 0? MO = {!,...,«}. Assume the sets I^J^Mk have already
been constructed. If M^ = 0 we abbreviate the process and take / = 4 Otherwise
choose ik+ι such that αίjt+1 — miny-6MA βy5 and take

4+ι = 4 U {ί*+ι}, Λ+i = {7 G Mk : Λ> + 2

Obviously Λ:// + 2αz / Q n Λ:/// + 2αz // Q = 0 for all / ' ,/"£/. Moreover notice that
αy ^ «4 for 7 G ./£• Thus we can decompose J^ as

Λ = U Jΐ, Jk = {J e Λ : 2"α4 ^ aj < 2»+1α/t} .
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If j G J f , then Άj C xik + (1 + 3 - 2wχtQ. Since Ξ(Q(F)) ̂  2d and vol Άj ^ 2mdad

k

we find

Moreover

Σ / vdx = Σ Σ X-2/

mGN - <2ljt

Since 21 > d we conclude

« card / / λ 1

Svdx^ΣSvdx- Σ ίvdx+Σ,ίvdx}^^Ύτι
^ i=\^ k \£,k j^JkΆj / C\a,l) k

with c(rf, /) = (!- 2ί/~2/)/(l - 2ΰf-2/ + 8J) > 0. D

2.3. The negative spectrum of the "Neumann" problem on the cube. In what fol-
lows put Ά = aQd for some a > 0. Let H^(V) be the self-adjoint operator on

)? corresponding to the closure of the hermitian form

«,u] := / \Vlu 2dx - / V\u 2dx, 0 ̂  F G Lι(Ά)9 u G C°°(^).

For the negative spectrum of this operator the following standard fact holds.

Lemma 3. Assume 21 > d, l,d G N+. Then there exists a positive finite constant
c(d, /) such that, for all potentials 0 ̂  V G L\(Ά) with

c(d, I)a2l~df Vdx^l, Ά = a^d, a > 0 , (14)
Ά

the operator Hf^(V) has not more than (l+d

d~
l) negative eigenvalues.

Proof. By homogeneity we can take c(d, /) as the sharp constant in the inequality

, a > 0, u G WfrΆ) θi+w f*dti-\ U , (15)

which holds in view of the Sobolev embedding for 21 > d and the theorem on
equivalent norms. Because of (14) and (15) the form h^JX u] is non-negative on

u G C^°(J) Θι2(j2) Ωdj-\. This subspace is of codimension (l+d

d~
l) in L2(£), which

by Glazmanns Lemma completes the proof. D
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2.4. The Bίrman-Schwinger principle for Hf^(V). If 21 > d the resolvent of the

unperturbed operator //^(O)

((#&(0) - ^Γ1 u)(x) = / GA(x,z, κ)u(z)dz
Ά

is an integral operator with a bounded continuous kernel G&(x9z, κ) G C(Ά x J) for
any κ < 0, see [1]. The Green function G^(JC,Z, κ) obeys the homogeneity property

z,βκ), J = α Q , a > 0, κ < 0 . (16)

From Huberts resolvent identity one immediately concludes that

^j(κ) := max GJ(JC,JC, κ)
JCGJ2

is a continuous, strongly increasing function in κ < 0. Moreover

^(*0 — * 0 as κ — > — CXD, ^(κ) — > +00 as κ — » —0 ,

while (16) implies

lκ\ £ = a<$d, a>0. (17)

Now let {κ;t(//^(F))}jt denote the non-decreasing sequence of eigenvalues of

H^(V). Consider the counting function

N(κ,Hb(V)) :=^l:{k: κk(H^(V)) < κ}, κ < 0 ,

for the common multiplicity of the spectrum of HfΆ(V} below κ < 0. According to
the Birman-Schwinger principle [6, 17] this quantity can be estimated by

N(κ,H%ι(V)) ^ Tr JF1/2(jc)/ G^(jc,z,κ)F1/2(z) dz\

^ ^j(κ)/ F(jc)Jjc = fl2/-^(β2/κ)/ K(jc)rfjc . (18)

j ^

If we put κ = κι(//^(F)) + 0, we find

The monotone decreasing continuous function I/^Q : 1R?_ — >• 1R+ has the monotone

decreasing inverse 2F : JR.+ — > R?_. Thus for the lowest eigenvalue the estimate

holds.
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2.5. Proof of Theorem 1 - The estimate from above. We start with potentials
0 ̂  V G Lι(JR.d) with compact support. Let Q(F) = {ΆXλ,...,ΆXn} be a ,4-proper
finite covering of supp V with multiplicity Ξ(Q(F)) ̂  2d and A = 2~d/c(d, /). Ac-
cording to (14), (19) and (10) each of the operators Hf^ (2dV) has not more than

(l+d

d~
l) negative eigenvalues κj(H^χ (2dV)\ Put J(i) = {j : κj(H^χ (2dV)) < 0}.

Then

^ 2* " c(d, l)\P(c-d, /))|v / Vdx . (20)

Using the variational principle and the estimate on the multiplicity of the covering
it is easy to verify that

κk(Hι(V)) ^ κk(H) for all k : κk(Ht(V)) < 0, H := ®tH^(2dV)9 (21)

where H acts on 0^2(^) The negative eigenvalues {κk(H)} of H coincides as
set and in its multiplicity with the union of the sets {κj(Hf^χ (F)) < 0}. For the

sum of powers of negative eigenvalues of HI this implies

^ Σ l**(#)|v= Σ
k:κk(H)<0

The constant on the r.h.s. does not depend on the support of V. A standard
argument allows one to close this inequality to all potentials 0 ̂  V G L\(JR.d). D

2.6. Proof of Theorem 1 - The estimate from below. Let J be some cube in R^
and let H^(7) be the self-adjoint operator on L2(£), corresponding to the closure

of the hermitian form

hf j(O[w, u] '-= I |V 7w 2dx - / V\u\2dx, 0 ̂  F G Lλ(Ά\ u G C0°°(i) .
J J

Below {κk(H^(V))}k denotes the non-decreasing sequence of eigenvalues of

). Fix a function φ G C0°°(2Q), such that ψ = 1 on Q. Put

ς :=
2Q 2Q

For the lowest eigenvalue of HfyV) with Ά = αQ + 7, 1 = 2αQ H- 7, a > 0,

^ G R^ the variational estimate

ad~2lς - L Vdx (22)

holds.
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For potentials 0^ V eLι(Kd) of compact support we choose a finite κ~lς-
proper covering of the support of V, and according to Lemma 2 extract the subset

with the properties (12), (13). From the variational principle we find that

^ κk(H) for all k : κ*(#/(K)) < 0, H := ®ieIH(V) , (23)

where H acts on ^(UeA) with ^ = Xi + 2α*Q as z G 7 For = ̂  (22) tums

into
/ y/v

κ, (#f j ( K)) g -1?-' vfc* V01 [ f V d x ] .
V, J

The quantity on the r.h.s. is negative, thus κ\(H^,(V)) < 0 and

|κι(//fj (F))|v ^ ̂ -vvvκKς-K/ FΛ . (24)
' ' *

Hence from (24) and (13) we conclude

^ Σ

with
) - c(rf, Otf-VK^ς-* > 0 .

Closing this estimate to all 0 ̂  Fe LiίlR^), we complete the proof of Theorem 1.
D

2. 7. Positive supercritical powers. Following an argument of Lieb and Aizenman
one can easily show that Theorem 1 implies

Sιtμ(V) := Σ \*k(Hι(V))\μ ^ fi(rf, /,/ι)/ Vμ+K(x)dx

k ^

for all powers μ ̂  v > 0. As usual the condition V ̂  0 in the r.h.s. of Theorem 1
can be dropped, if we substitute V by max{F(;c), 0} in the integral in the r.h.s. of
(9). Then

1

Thus £ (rf, /, μ) is finite for all μ ^ v. D
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2.8. Asymptotics for small coupling constants.

Theorem 2. Assume K = d/2l < 1. Then for the critical power v = 1 — K the
asymptotical formula

5/,v(αF) = α£ V, /, v) / Vdx + o(α) as a -> 0,
Rrf

£ V, '. v) = „ ... T - (26)
2<V/2Γ(f -hl)sinπκ; V '

holds for all potentials 0 ̂  K G LiOR/*), awrf

= o(a) a j a - > 0 . (27)

This theorem is based on the following two known results. For the benefit of
the reader we attach the proofs of these lemmata in the Appendix.

Lemma 4. Suppose 21 > d and assume the potential 0 ̂  V G L\(JR.d) has com-

pact support and is not identically zero. Then there exist exactly ( +^ ) negative
eigenvalues for the operator Hι(a,V) for all sufficiently small coupling constants
0<α<α 0 (F).

Lemma 5. Suppose 21 > d and O^FGlι(IR^). Then the bottom eigenvalue
κ\(Hι(uV)) of Hι(ccV) obeys the asymptotical formula

|xι(^/(αF))|v = αfiVJ,v)/ Vdx + o(α) α s α ^ O . (28)
R<*

//"/ + [f ] > d and V is of compact support, for the subsequent negative eigenvalues
the asymptotical estimates

\ κ j ( H l ( κ V ) ) \ = o ( \ κ l ( H l ( * V ) ) \ ) as α -> 0, 7 ^2, (29)
Ao/ά

Remark 1. The asymptotical formula (28) is accompanied by the well-known esti-
mate

α£V,/,v)J Vdx, (30)

which holds for all α > 0 and 0 g F G

0/ Theorem 2. The formula (32) is an immediate consequence of the two
previous lemmata. In view of Theorem 1 we close (26) to all potentials FGLι(IR^).
Finally comparing (26) and (28), we arrive at (27). D

Remark 2. Obviously

fi (d, /) g £CV, /, v) < fl V, /, v) ̂  fi (rf, /, v) .

For the case d = I = 1 the equality £(1,1) = £cl(l, 1, 1/2) = 1/4 is known [20, 11],
while Lieb and Thirring conjectured £°(1, 1, 1/2) = £(1, 1,1/2) = 1/2 [15]. This
conjecture and the question, up to what extent

) = £cl(έU>v) and U,\d,l,v) = &(d,l,v) (31)

hold for general d, I with 21 > d, remains unresolved.
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Remark 3. If2l>d for compactly supported potentials 0 ̂  V G Lι(IR^) the asymp-
totics

S/,μ(αF) = αfiV, /, v)/ PS* + o(α"/v) as α -> 0, μ > 0 , (32)
V R' /

holds.

3. Lieb-Thirring Type Inequalities for Subcritical Powers

3.1. Main result. In this section we discuss substitutes for (3), if 0 < μ < v. Below
E denotes the sequence of shifted unit cubes

Moreover F stands for the sequence {&j}j&ι with ^\ = Qrf and J^ :=
2/Qίί\2/~1Qίί,y = 2,3,.... For a locally summable potential we introduce the nota-

tions β\V) := {βf(V)}feX<l and β¥(V) := {fi(V)}JeK with

:=S \V\dx and β*(V) := f \V\dx .

Norms of such sequences have been used by Birman and Solomyak [7] to give
estimates on the number of negative bound states for the operator ///(F) if 21 > d.
We shall prove

Theorem3. Assume that for 0 g V G Llf*(JR.d) the sequence βE(V) belongs to
Sμ/v, Q<μ<v=l-κ, K = d/2L Then the estimate

holds.

Theorem 4. Assume that for 0 ̂  V G Ll^(Rd) the sequence β¥((l + \x\)σV(x))
belongs to £μ+κ, σ := d(v - μ)/(μ + κ)9 0<μ<v=l-κ, κ = d/2l. Put θ(t) :=
tμ/v _j_ tμ+κ fa all t ^ Q

(\ + \x\)σV(x))\\^) (34)

holds.

3.2. Proof of Theorem 3. First we consider potentials 0 ̂  V G Z/^IR^) of compact
support. Let Q(F) = {£Xl}™=l be a finite A -proper covering of suppF,
A — 2~d /c(d, /). Combining (21) and (20) as in the proof of Theorem 1 one finds

(35)
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Put &.j = £Xi Π δj and /(/) := {/ : int ^/Φ0}, N(j) = card /(/)• Then

\μ/v / \ μ/v / \ μ/v

fvdx ϊ Σ I / ̂  ^ΣC^ί/))1-' Σ / vdλ

/v

. (36)

Next we estimate the value of N(J). Therefore we split the index set /(/) into

/'(/) := {/ € I ( j ) : vol ΆXι > 1 }, /"(/) = /0V)V'(/) (37)

If / G /7(/) then the interior of QXι contains at least one of the corners of δj. Since the

proper covering Q(T) is of a multiplicity Ξ(Q(K)) ̂  2d, we have card I'(V) ^ 22d.
On the other hand / e //7(7) implies ̂  C 7"+ 3Q^. Thus from Ξ(Q(K)) ̂  2^ we
obtain

Σ vol ̂ . ̂  6rf, (38)
ίei"(j)

while from (10) we deduce

Σ (vol^)1"""1^^^,/) / Vdx. (39)

Together (38) and (39) imply

/ γ~l-ι

(card /"(/))*" ^ Σ vol ̂  Σ (vol

(40)
/+3Q*

thus

) [ f Vdx) . (41)
\/+3Q^ /

Inserting this estimate into (35) and (36) we arrive at

Σ

which is equivalent to (33). Since the constant in this estimate does not depend on
F, we can close the bound to all potentials 0 ̂  V with β(V) G £μ/v. Π
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3.3. Proof of Theorem 4. We consider potentials of compact support and choose
a ^4-finite proper covering Q(V) of multiplicity Ξ(Q(F)) ̂  2d of the support of V
with A = 2~d/c(d, /). We put ̂ tj = £Xi Π 3F^ j G IN, and /(y) := {/ : int ̂ , ,y Φ0}
is of cardinality N(j) — card /(y). In analogy to the previous proof we find

/ Y/V

S/, μ(F)^c 3 . 7(rf,/,/θΣ(N(J)Y~* ( f V d x ) . (42)
y Vv /

Choose the decomposition

JO') := {ί ^ /(y): vol ̂  > max {2^,2^-^}} , /^(y) - /(y)\/'(y).

If / G Γ(j) then
7+1

j=max{l,y—1}

and estimates similar to (38), (39), (40) give

v / Y
card I " ( j ) g c3 8(ί/, /) (vol ̂ , ) / Vdx] . (43)v^ /

A simple geometrical argument shows, that in view of Ξ(Q(F)) ̂  2d the estimate

(44)

holds. Inserting N(j) = card /'(y) + card 7/7(y) with (43) and (44) into (42), we
claim

ί / \"/v _ / \"+κ)
Sι,μ(V) Z c3ΛO(d, l,μ) { Σ, (I Vdx} + Σ (vol Jltf μ / Vdx] } . (45)[j u / ^ u / j

Notice that vol Mj x (1 + \x\)d on c G Mj. Thus the second sum on the r.h.s. of

(45) is bounded from above by c3.n(</,/,//) \\β¥'((1 + WΓ^OO)!!^ - The first sum
" " ̂ μ+/c

can be estimated by

Γ
J
^ , Vdx

where we applied Holders inequality with the powers p — v(μ + κ)/μ > 1,
^-1 = 1 — p~l. The sum of the negative powers of vol Mj converges, which com-
pletes the proof. D

3.4. Remark. From the proofs of Theorems 3 and 4 we see that in the respective
bounds the term of homogeneity μ/v corresponds to large cubes Άx. G Q(V)9 that
means areas of low density of the potential, while the term of homogeneity μ + K
corresponds to small cubes Άx. G Q(F), that means areas of high density of the
potential. This agrees with the fact that under the conditions of these theorems we
have Sι,μ(aίV) x o^/v as α -> 0, but S/,μ(αK) x α^+fc as α -̂  oo.
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4. Appendix

In the appendix we outline the proof of Lemmata 4 and 5.

Lemma 6. Assume 21 > d. Put Br — {x G 1R^ : \x\ < r} and let πk = Uk(r) denote
the orthogonal projection in L2(Br) onto Ωjίk\Br. Then the inequality

lir-^/llw^^^iC^^OUV'/lkίR^ m = [ / - ^ ] , /eC0°°(R r f), (46)

holds.

Proof. We start from the inequalities

l|VΛ/|Lχ j, ) ( Rrf) ^cA2(d,l9 p,n)\\Vlf\\L2(^ f G C0°°(R^) ,

2"1 - p~\ή) = (/ - n)/d, « G N : m+l^n^l , (47)

see e.g. [4] p. 153, Theorem 6.5.1. By the theorem on equivalent norms on Br we
have

\\9\\W,) ^c43(d,l,r)\\V'g\\L2(Br) = c43(d,l,r)\\Vlf\\L2(Br}, g := / - π,_,/ .

The Sobolev embedding W[(Br) <-> C(5r) gives

||0lko(a,) ̂  c4.4(</, /,r)|| V'/Hi,^) . (48)

On the other hand, applying (47) with n = m + 1 to / and g, we find

liVπ/^/IU^) - HVίπ/-, - πw)/|Uχ>o(1,r) ̂

On the finite-dimensional lineal Ωdj-ι\Br &L2(Br) &d,m\Br the norms | |VW \\Lp(n}(Br)
and || lUoo^) are equivalent. Thus

(49)

From (48) and (49) we conclude (46). D

4.1. Proof of Lemma 4.1. Take r > 0 such that supp V C {x G R^ : |jc| < r}. From
Lemma 6 we conclude

/ V\u-πmu\2dx^cΛ.Ί(dJ,r} I / Vdx\ HV^H^,

Thus the form h/(αF)[w, u] is non-negative on all

u G Cg°(RJ) : πmu\Br = 0 , (50)

if 0 < α < l/(c4j(ί/5 l , r ) f V d x ) . The respective operator 7//(αF) has not more than

rank πm = (/+^1'1) negative eigenvalues.
2. Equip the linear space Ωd,k with the norm \p\ ι= max^^:),]^^ |c,|. Choose

some function ^ G C°°(R), such that ψ(t) = 1 for ί < 1,^(0 = θ"for ί > 2 and
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0 ̂  \l/^ 1 for 1 ̂  t^ 2. Define fa G C0°°(1R^) by fa(x) := ^(εln |jc|), ε > 0. A cal-
culation shows (cf. [19], p. 123), that

f\Vlfap\2dx<ε\p\M(d9l9ψ), p G ^?[/_f], 0< ε < 1 ,

while

for sufficiently small εo(F) > ε > 0 and suitable constants 0 < m(d, /, V\M(d, /, ψ)
< oc. The quadratic form h/(αF) is negative on all functions fap(x) φ 0 from

the (/+^ ̂  ]) -dimensional subspace faΩd_^ for 0 < ε <min{l,ε0(F),αm(ί/, /, F)/

M(d,l,ψ)}. Thus ///(αF) has exactly (+^1'1) negative eigenvalues for all sufficiently
small α > 0. D

4.2. Proof of Lemma 5. Let { , ) denote the standard scalar product in IRΛ For
V ^ 0 we put W(x) = A/TOO and

For ΓGl/ i ί lR^) and 21 > d this positive integral operator acts as a Hubert-
Schmidt operator on ^(IR^). Let {λn(Xκ(V))} denote the non-increasing sequence
of the eigenvalues of Xκ(V). Moreover {κΛ(α)} := (κw(///(αF))} denotes the non-
decreasing sequence of negative eigenvalues of 7//(αF). According to the Birman-
Schwinger principle the identities

*-, fceN, (51)

hold. In particular one finds

which turns into (30).
Assume now that 0 ̂  F(JC) G Lι(R^) is of compact support. We decompose the

operator XK(V) as

(v)u\
κ( ) J
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Evaluating the respective Hubert-Schmidt norms we find

+1

~ a s 2 / > ί / + l

Finally we represent Xκ(V) as

:=*(.)/ J
ξ^d y

Obviously

and
! ^4.11 (O, κ<0.

We underline that the constants c4.8,...,C4.n do not depend on κ < 0.
From standard perturbation theory we conclude that the operator

has not more than rank^(F) = 1 eigenvalue larger than ||7κ(F)||, or

as

From (30) and (51) we conclude that for compactly supported potentials 0^ V
e L\(^d} the asymptotical estimates

= 0(α1/v) as α -̂  0, k ̂  2,

hold. On the other hand for the leading eigenvalue we have

which mounts into

λι(Xκ(V))= κ\^-λΊrX^λ(V)^θ(m^{\κ\^-\ ln(e + |κ ~!)|}) as κ -> -0 .

Then (30) and (51) imply

κι(α)|v = αfiV5/,v)/F(x)djc + o(α) as α -» 0 . (52)

In view of (30) we can close (52) to all potentials 0 g V £ LiCR^). D

Remark 4. The technique of the extraction of a diverging operator of finite rank
is well-known. It can be applied to the case of non-signdefined potentials and the
asymptotics of the subsequent eigenvalues can also be calculated. In particular one
can show that (52) remains true for compactly supported non-signdefined potentials
V G Lι(JR.d), if only JVdx > 0. For the related results on the weakly coupled one-
or two-dimensional Schrodinger operator we refer to [18].
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