
Commun. Math. Phys. 182, 319- 354 (1996) Communications JΠ

Mathematical
Physics

© Springer-Verlag 1996

Quantization of Solitons and the Restricted
Sine-Gordon Model

O. Babelon1*, D. Bernard2*, F.A. Smirnov1**

1 Laboratoire de Physique Theorique et Hautes Energies***, Universite Pierre et Marie Curie,
Tour 16 \er etage, 4 place Jussieu, 75252 Paris cedex 05-France
2 Service de Physique Theorique de Saclay****, F-91191, Gif-sur-Yvette, France

Received: 24 March 1996 / Accepted: 25 April 1996

Abstract: We show how to compute form factors, matrix elements of local fields, in
the restricted sine-Gordon model, at the reflectionless points, by quantizing solitons.
We introduce (quantum) separated variables in which the Hamiltonians are expressed
in terms of (quantum) τ-functions. We explicitly describe the soliton wave functions,
and we explain how the restriction is related to an unusual hermitian structure. We
also present a semi-classical analysis which enlightens the fact that the restricted
sine-Gordon model corresponds to an analytical continuation of the sine-Gordon
model, intermediate between sine-Gordon and KdV.

1. Introduction

About 20 years ago the work on quantization of integrable models of Quantum Field
Theory started with the idea of quantizing the classical soliton solutions [1, 2].
Important results were achieved in this way, in particular for the sine-Gordon
(SG) theory, the semi-classical spectrum of excitations (which happens to be exact
quantum-mechanically) and the semi-classical approximation for the soliton S-matrix
were found. The semi-classical S-matrix allowed to guess the exact S-matrix in the
reflectionless case [2], and this was used further as a fundamental input in the boot-
strap construction of the S-matrix for arbitrary coupling [3]. Later, however the idea
of direct quantization of solitons was abandoned in favor of other approaches such
as Bethe Ansatz and its algebraic formulation in the Quantum Inverse Scattering
Method (QISM).

Whatever the original motivations and methods were, it is fair to say that the
most significant results in the theory were obtained by bootstrap methods. Exact
S-matrices [3, 4] and exact form factors [5, 6] were found by this method. Since
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the bootstrap calculation of the S-matrix is based on semi-classical results from
quantization of solitons, and since the S-matrix defines the form factors through the
set of form factor axioms [6], one may imagine that there is a direct path from
quantization of solitons to form factors. Our attraction by this way of thinking does
not mean, of course, that we reject the achievements of QISM which revealed the
mathematical structure hidden behind the integrable models and led to the discovery
of quantum groups.

In recent years two important pieces of information were added to the theory
of sine-Gordon. The first of them is the relation with the perturbations of the mini-
mal models of conformal field theory (CFT) [7, 8]. The second is the discovery of
the algebra of non-local charges, which is isomorphic to the ^-deformation of the

universal enveloping algebra of the loop algebra sli [9]. Actually these two fea-
tures are closely related: the restricted sine-Gordon (RSG) model coincides with the
Φι?3-perturbation of minimal CFT [10, 11], but the restriction is intimately connected
with the existence of the non-local symmetry.

In the present paper we shall show that the results obtained by the bootstrap
methods for sine-Gordon can be understood directly by quantizing solitons. Namely,
we shall interpret the form factors of the restricted sine-Gordon model as matrix
elements in a quantum mechanical «-soliton system1. This will allow us to underline
the connection between profound structures in the classical and quantum theories:
τ-functions and separation of variables on the one hand and the space of the local
fields on the other hand. Although we present the general structure for generic values
of the coupling constant, we will reconstruct the sine-Gordon form factors only at
the reflectionless points. We hope to return to the general case in another publication.

For each «-soliton solution we shall introduce pairs of conjugated variables Aj
and Pi (i = !,...,«), which in the quantum case satisfy Weyl commutation relations.
Every local operator Θ can be considered as acting in this ^-representation, and
therefore can be identified with a certain operator (9(A,P). The typical formula for
the matrix element of (9 between two «-soliton states can be presented as

(B'\Φ\B) = / Ψ(A,B'yθ(A,P)Ψ(A,B)dμ(A), (1)

where Ψ(A,B) is the wave-function of the state of n solitons with momenta
B\,...,Bn. The measure dμ(A) will include a specific weight admitting a natural
interpretation in the w-soliton symplectic geometry. We shall give explicit expres-
sions for Θ(A,P} corresponding to the Virasoro primary fields.

In formula (1), the variables A will be complex. Choosing the integration domain
is a non-trivial issue. It corresponds to choosing a real sub variety, which specifies
the configuration space of the theory. This configuration space has a natural inter-
pretation in the restricted sine-Gordon model where it can be understood as an an-
alytical continuation of the sine-Gordon or KdV configuration space. The hermitian
conjugation f is not the naive complex conjugation inherited from the sine-Gordon
dynamics, but a more subtle one adapted to this choice of real subvariety.

The local integrals of motion will be rewritten in the ^-representation. They
are difference operators which can be expressed in terms of "quantum τ-functions."
We will describe how to separate the variables in the associated Schrόdinger equa-
tions. The fact that these Schrόdinger equations are difference equations provides

!A side motivation for this study was to learn how to directly quantize solitons with potential applica-
tions to theories where soliton-like solutions (monopoles) are known.
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just enough room for the existence of the non-local charges commuting with the
Hamiltonians. Recall that these charges do not allow direct classical limit. The
importance of the coexistence of two commuting Weyl subalgebras was pointed out
in [12].

2. The Classical sine-Gordon Theory

2.1. Sine-Gordon solitons. In this section we introduce a few useful notations for
the sine-Gordon (SG) equation and its solutions. Let x± — x ± t be the light cone
coordinates and d± = \(dx± dt). The sine-Gordon equation is

It is convenient to introduce two τ-ίunctions τ±, in terms of which the SG equa-
tions can be rewritten in Hirota form. The sine-Gordon field φ is related to the
τ-functions by

exp(/<p) = — .
τ+

Let us describe the τ-functions of the w-soliton solutions of the SG equation.
Consider the function

V ) , ( 3 )

where V is a n x n matrix with elements:

The ft-soliton τ-functions τ± (*_,#+) are written in terms of τ as follows:

τ± (*_,*+) = τ±(X(x-,x+)\B) ,

where
τ±(X\B) = τ(±X\B) .

The x± -dependence of X is quite simple:

_ + BΪIX+)) . (4)

The quantities Xl and Bt are the parameters of the solitons: βt ~ log(/?/) are the
rapidities and Jζ are related to the positions. For the sine-Gordon equation, they
satisfy specific reality conditions. For solitons or antisolitons, the rapidity B is real
and X is purely imaginary, i.e. X — iεey with ε = +1 for a soliton and ε = — 1 for
an antisoliton. We shall not consider "breathers" in this paper but for completeness it
should be mentioned that they correspond to pairs of complex conjugated rapidities
(B,B) and positions (X9—X). Notice that these conditions are preserved by the
dynamics.

The sine-Gordon equation is a Hamiltonian system. The symplectic form is the
canonical one:

+ 00

ΩSG = / dxδπ(x) Λ δφ(x)
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with π(x) the momentum conjugated to the field φ(x). Above, δ denotes the varia-
tion on the phase space. The space of «-solitons can be viewed as a 2«-dimensional
manifold embedded into the infinite-dimensional phase space. The restriction of the
symplectic form on this finite-dimensional submanifold gives the w-soliton symplec-
tic form. In the coordinates Xt and BΪ it reads, cf. eg. [13, 14]:

» dXi dBt 4BtBj dBj dBj
ω = Σ^ΛΊΓ + Σ ^2 — £2 -JΓ Λ n ' ^

i=\ Jίi &i i<j t>i — Jjj ϊ>i t>j

The commuting conserved quantities are precisely the #'s. In the following we shall
always assume that the B have been ordered: Q <B\ < - - - <Bn. A complete set of
commuting Hamiltonians Hk can be chosen as the set of elementary symmetric
functions

Hk = σk(B) . (6)

We recall that the symmetric functions σ>C#) are defined by: Πy(z + ̂ /) =

^kz
n~kσk(B). The local integrals of motion which are given on «-soliton solu-

tions by

τ±
4 =

7=1

can be expressed in terms of///. In particular for the light cone components of the
energy-momentum we have /_ = /f = H\, and 7+ = 7j+ = H~lHn_\.

The variable Yj canonically conjugated to Bj is defined by Yj = Xj Πjtφ/ (s^F")-

The symplectic form is then written as ω = V . -γ~ Λ -̂  . The equations of motion

are very simple in the variables {Y,B}, which furthermore have the nice property of
being separated. Other sets of variables have also been introduced, in particular those
which lead to Ruijsenaars models [15, 14]. However, for the purpose of comparison
with the existing exact form factor formulae we need to introduce in the next section
still another set of variables.

A simple explicit expression for the τ-functions can be obtained by expanding
the determinant:

τ(X\B)= 1 + Σ Σ Π
p=ι /c{i,...,«

\I\=P

Γ> _ D

with βij(B) = j^- In Appendix B, we gather a few useful formulae concerning

these τ-functions. In particular a very useful formula is the recursion relation satisfied
by the «-solitons τ-functions:

&\X\B) = τ(n~l\X\B) + τ(n-l\βl(B)Xk\B)Xn . (8)

2.2. The analytical variables. We now give a parametrization of the w-soliton phase
space in terms of new variables {A,B}. The variables Bj can be considered as poles
of the lost function for the auxiliary linear problem, and the variables Aj are zeroes
of the lost function. The importance of these variables is better understood in the
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more general situation of quasi-periodic finite-zone solutions from which the soliton
solutions are obtained by a limiting procedure. In the finite-zone case the analogues
of BJ describe the moduli of the hyper-elliptic spectral curve, while Aj give the
divisor of zeroes of the Baker-Akhiezer function. The general rule that the zeroes
of the Baker-Akhiezer function give the correct set of variables for quantization was
called the "magic prescription" in [16]. We discuss the relation to the finite-zone
solutions in Appendix A. Because of the nice algebro-geometrical meaning of these
new variables we call them the analytical variables.

The set of analytical variables {A,B} is related to the variables {X,B} introduced
above by

m
This relation can be considered as a system of equations for the symmetric functions
σk(A) as functions of the {X,B} variables. The solution to this system is given
in Eq. (80) in Appendix B.

In these analytical variables the symplectic form becomes

We shall need the Liouville measure ωn = det(ω)dAι Λ Λ dAn Λ dB\ Λ Λ dBn

with

It is useful to write the non-vanishing Poisson brackets,

,_IW*?-^)IW^-ag)
{ h ' } ~ - - ' j)

Remark that the products in the right-hand side can be written in terms of cross-
ratios. This is the first manifestation of the conformal properties of these variables
that will reappear in the following.

One can express the τ-functions in terms of the variables Aj and BJ. The result
is the following surprisingly compact formula

( n \ ΓT. .(Λ. +AΛΠ. .rf l . + fl.Λ'^uH^rd

The symplectic form as well as the τ-functions enjoy an intriguing A <->• B dual-
ity. The proof of these formulae is given in Appendix B. They lead to a formula
expressing the sine-Gordon field in the {A,B} variables:

r

-τ+
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Let us now introduce the variables Pj conjugated to Aj,

k=\

In terms of Aj and Pj the symplectic form takes the canonical form:

We can express the hamiltonians Hk = σk(B) in terms of the variables {A,P}
using Eqs. (14) as a linear system for the &k(B)> Surprisingly, the solution of these
equations can be written in terms of the τ-function as follows:

Hk = σk(B) = - , where Zj = ( - I f P j Π ~ (15)
-

The functions τ^ are defined by

τk(Zι,...,Zn\Aι,...9An)

/ i < /2 < < ik

In particular τ(Z\A) = τ0(Z\A) and τ-(Z\A) = d[Aj)-lτn(Z\A). We delay the proof
of Eq. (15) as it turns out to be a limiting case of a more general quantum formula
which we shall prove in Appendix E. It is convenient to introduce the generating
function of the τk. Let T(u) = X^=0 u

kτk. It can again be expressed in terms of
τ-functions as:

T(u) = τ(Z(u)\A) TT (1 + uA, ) with Z/(M) = Z/ . (17)
7Jiv JJ J^ ' 1+uAj J

This follows from the quantum relation Eq. (53) proved in Appendix E.
Notice the unusual feature of our approach: the local integrals of motion (15)

are given in terms of τ-functions.
The equations of motion written in the variables Aj are as follows:

0 -i—r -I

d+At = {I+9At} = Π l Π -j-p
j ΰj j*ίΛi ~Λj

These equations provide a particular case of the general equations of motion for the
divisor of the zeroes of the Baker-Akhiezer function (see Appendix A). This kind
of equation is commonly used in the theory of quasi-periodic solutions of integrable
equations; they go back to Neumann and Kowalevskaya. One can show directly that
(18) together with (13) imply the sine-Gordon equation [17, 18].

To finish the discussion of the variables At we have to explain their trajectories.
For one soliton the condition \eιφ\ = 1 shows that the ^-trajectory lies on the circle
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of radius B. Under the classical SG dynamics of τ?-soliton solutions every variable
Ak runs around a curve going in the lower half-plane from —Bk to Bk. When
B\ <^BΊ<^- - <C#« the trajectories are semi-circles, for finite Bk they are getting
deformed, but not too much. For antisolitons these trajectories are replaced by their
complex conjugate.

2.3. Reduced action and the relation to the KdV equation. Our goal is to quantize
of the (R)SG theory in the soliton variables. The first step could be a semi-classical
quantization. To perform it for w-soliton solutions, we need to compute the reduced
action fgpdq since we are restricting the system to the level of Hamiltonians, as
in the Maupertuis principle. The symplectic form (11) can be rewritten as

We discuss the relation of this symplectic form to the general theory of analytical
Poisson structures [19, 20] in Appendix A. The 1-form α is defined up to an exact
form dF(A,B). In this paper, we shall only consider the possibility of a function
F(A,B) independent of B (in order that α expends only on dAj, the coordinates) and
of the special form F(A\,...,An) — ̂ kFk(Ak) (to preserve the separability property
of the Aj). Hence the most general form of α is

= Σ log Π + EdFk(Ak) . (19)

The functions Fk have to be fixed by additional considerations.
Now we face a serious challenge: with these choices, the form α cannot arise

in the full SG theory for the simple reason that the reduced action S(A\,...,An)
constructed from α

k=l

cannot be made real along the sine-Gordon soliton ^-trajectories by any choice
of Fk. This circumstance looks very discouraging and the variables Aj seem
to be useless. But, as we shall later see, these are exactly the variables in which
the comparison with the quantum form factor formulae is straightforward. We shall
argue that the choices made for α correspond in fact to the restricted sine-Gordon
(RSG) theory. For this, we first need to describe the connection with the KdV
equation.

Let us discuss briefly the relation between SG and KdV solitons. The KdV
equation allows soliton solutions in the form

where τ is exactly the same as before. In other words, the KdV soliton τ-functions
are identical to the SG soliton τ-functions but with all the chiral coordinates x+
set to zero. The difference between the two cases lies in the reality conditions: the
variables X} which were imaginary for sine-Gordon become real in the KdV case.
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Before going into the details of these reality conditions, let us discuss the relation
between the two cases in the fully complexified situation.

In the variables Aj the equations for KdV solitons are exactly the same as for
one chirality of SG (see Appendix A):

-Bj) Π
j j*i

The field u reads in these variables as

It should be stressed that all the KdV fields are expressed in terms of even powers
of AJ. The relation between the SG field φ and the KdV field M is given by the
Miura transformation:

φ_) = -(d_<X*_,0))2 - i&_φ(x-,0) . (22)

It is a nice exercise to check directly that (21) follows from eiφ = ΓL ^ using

Eq. (20).
As it has been said we are rather interested in the RSG than in the SG theory.

The RSG model describes the Φ\^ -perturbation of the minimal model of confor-
mal field theory (CFT). The reason why the KdV equation appears in the context
of two-dimensional CFT is well known: the second Poisson structure of KdV is
a classical limit of the operator product expansion for the light-cone component of
the energy-momentum tensor in CFT. (For the minimal models of CFT the classical
limit is understood as the limit c — » — oo.) The second Poisson structure for KdV is:

{u(x. ), «(jcl )} = <5'(jc_ - x'_ )(u(x- ) + u(x'_ )) + <S'"(*_ - *'_ ) . (23 )

The KdV field u is identified with the classical limit of T ___ As explained in
Appendix A, it turns out that the second KdV Poisson structure restricted to the soli-
ton manifold in the {A,B} variables is identical to the symplectic structure (10) that
we have derived from the sine-Gordon theory. It is remarkable that the conformal
KdV Poisson structure appears in the (massive) sine-Gordon model when restricted
to the soliton solutions. Again, this is only true on the soliton sub-manifold.

Thus we are considering the light-cone hamiltonian picture, and the lines jc+ =
const, are the space directions. The coordinate ;c+ has to be considered as time.
Globally we cannot introduce the jc+ dynamics in KdV theory, but this can be done
perfectly on the «-soliton solutions: the corresponding Hamiltonian is /+ = ΣBj~l

and the equations of motion have the familiar form

5+Λ = Π^Γ^Π^2 (24)J ΰj J*lΛi ~Λj

For real solutions the x+ -dynamics of At is organized as follows (see
Appendix A). Each At (ί ^ n — 1) moves inside either of two segments (Bi9Bi+\)
and (— Bi+ι, — £/), the points Bj and — Bj being identified (recall that the observables
depend on A? only). The point An moves in two segments (Bn,oo) and (— oo, — Bn)
the points ±00 being identified, notice that oo is a regular point for Eq. (24).

Let us now normalize the 1-form (19) in order that it is real over x+ -trajectories.
To do that we have first to fix the branch of logarithms. For further convenience
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we put n cuts over semi-circles in the upper-half plane connecting the points Bj and
—Bj and require that the logarithm

is real when —B\ <A <B\. With these conventions one easily figures out that the
following choice of F^ corresponds to a 1-form α, real over x+ -trajectories:

(25)

The reduced action is real as well because the trajectories are real.
Returning to the relation with the sine-Gordon model, it is obvious from (22)

that real SG solutions do not correspond to real KdV solutions. One important
consequence of the comparison with the form factor formula is that we are actually
considering an analytical continuation of the sine-Gordon and KdV dynamics. More
precisely, the semi-classical quantization exactly brings out the 1-form α as defined
above in Eq. (25). But the trajectories for A^ lie on the semi-circle of radius B^ <
\Ak < Bk+\. In other words, the 1-form needed for the quantization of the RSG
model is obtained by analytical continuation of the 1-form (25). In this analytical
continuation we identify the variable AI which runs from Bt to —Bι in the SG case
with the variable running inside (#/,#/+1) U (— Bt, —Bί+\) in the KdV case (we put
Bn+\ = GO). Selecting the trajectories in the complex ^-plane is just choosing the
real phase space of the theory.

Following our logic the form (25) must be understood as a restriction to the
n-soliton submanifold of a globally defined 1-form related to the Poisson structure
(23). We are not able to define such a global 1-form, but we conjecture that it
exists. We can only refer to certain self-consistency checks (such as reality of (25))
to support this conjecture.

3. The SG Form Factors in the Absence of Reflection of Solitons

3.1. Sine-Gordon versus Restricted Sine-Gordon. The sine-Gordon equation follows
from the action:

S=-f& d\ & = (dμφ)2 + w2(cos(2φ) - 1) ,
y

where y is the coupling constant, 0 < y < π. The free fermion point is at 7 = f . In
the quantum theory, the relevant coupling constant is

πy

π-y

We shall always use the constant ξ, which plays the role of the Planck constant.
Only the mass is renormalized but not the coupling constant y [22].

The SG theory is invariant under the quantum affine loop algebra U^(sΪ2) with

g = exp(/^). This symmetry algebra is generated by the topological charge and

four non-local charges of spin s = ±f. (By convention, q here is the inverse square
of that of ref. [9].)
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The canonical stress tensor of the SG theory is T^ = (dμφ)(dvφ) -^&. The
SG theory contains two subalgebras of local operators which, as operator algebras
are generated by exp(/φ) and exp(—iφ) respectively. Let us concentrate on one of
them, say the one generated by exp(zφ). It is known that this subalgebra can be
considered independently of the rest of the operators as the operator algebra of the
theory with the modified energy-momentum tensor:

(26)

This modification changes the trace of the stress tensor which is now

This modification corresponds to the restricted Sine-Gordon theory (RSG). For
rational | it describes the Φ\t 3 -perturbations of the minimal models of CFT, but
it can be considered for generic values of ξ as well. The central charge and the
dimension of the operator Φ\^ are given by

6π2 ξ-π

Modifying the stress tensor as in Eq. (26) modifies the Lorentz boost and hence
the spin of the non-local charges. Under this modification two of these charges
become spinless. Together with the topological charge they then form a represen-
tation of the finite quantum algebra U^(sl2). The restriction of the Sine-Gordon
model consists in gauging away this symmetry subalgebra. The physical states of
the RSG model are annihilated by these spin-less non-local charges. The physical
operators of the RSG model are those which commute with these charges. In par-
ticular, eiφ which commute with them is a physical operator, but e~iφ is not since
it does not commute with these charges.

The asymptotic states of the RSG theory are constructed as follows. Consider
the states in the SG theory containing n solitons and n anti-solitons:

where βj are the rapidities of particles, and ε7 is + or — for soliton or anti-soliton
respectively. For the RSG theory one introduces the states

. 5j82/ι)ε ε ε - (27)

The extra factor in \β\9β29 9β2n)) is an echo of the modification (26) of the stress
tensor. In the new basis the S-matrix becomes manifestly invariant under U^(sl2).
The asymptotic states of the RSG model are then the t/^ (s72 )-scalar in the Hubert

space spanned by the states |/?ι,/?2,...,/?2«}}
In the restricted theories one generally cannot introduce a positively defined

Hermitian structure. Obviously the SG hermitian conjugation * maps the RSG model
into the symmetric restricted model constructed from exp(—iφ). On the other hand
the SG charge conjugation (φ —> — φ) is also broken in the RSG model. However,
one can introduce an anti-linear involution for the RSG model as the combined CT
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reflection. For any local operator the combined transformation (which we denote
by f ) corresponds to hermitian conjugation and reflection φ — > — φ. This operation f
does not give a positively defined scalar product for the SG theory, but it does not
lead to contradiction if one stays within the RSG theory. In particular, since the
modified stress tensor Γ™od is hermitic in the RSG theory, one has

This is a simple but fundamental remark.

3.2. Form factor formulae. In what follows we shall consider the case ξ = ^ for
v = 1,2,..., when the reflection of solitons and anti-solitons is absent. In these cases,
the two parameters q and q are

The S-matrix is diagonal and given by

We shall use the following notations:

B = exp(β), b = exp ί^j-β j - exp(2vβ) .

Consider any local operator (9(x) for RSG. Its form factors are defined by

Mβl,β2, ..,β2n\l,s2,...,s2n = ((0\Θ(0)\βl>β2, , fe)k£2,.,β2M (29)

The form factors are given by the formulae

no _ βΛΓΓ FT _ ! _
b v p / PjJLL 11 ι π / / ? D _7 \

ι=i7=«+ι smn ξ(Py - ft - πι)

- + ...+ . (30)

The function ζ(β) is regular in the physical strip 0 < Im β < π, and satisfies ζ(—β) =
ζ(β — 2/π) = S(β)ζ(β). It can be found in [6]. We shall not consider this prefactor
in Eq. (30) since it is the same for all operators: it is related to the normalization
of the wave function which we hope to discuss sometime. The most interesting part
of the form factor is given by

^ 1 n 2n

Π

(31)
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Some comments are needed for this formula. The function ψ(A,B) is given by

ψ(A,B) = Vγ[(B-Aq-J). (32)
7=1

This function satisfies the difference equation:

). (33)

As usual we define a = A2v. The contour C is drawn around the point A — 0. Notice
that the right-hand side of the formula (3 1 ) does not depend on the partition of the
particles into solitons and anti-solitons; this is a peculiarity of reflectionless case.

Different local operators are defined by different functions L®(A\9...9An\B\9...9

B2n). These functions are symmetric polynomials of Aι,...,An. For the primary
operators Φ^k — exp(2fa'φ) and their Virasoro descendants, L@ are symmetric Laurent
polynomials ofB\,.. .,B2n. For the primary operators Φ2k+\ = exp((2& + l)/φ), they

are symmetric Laurent polynomials of B\,...,B2n multiplied by Π^/ Our defini-
tion of the fields Φm is related to the notations coming from CFT as follows: Φm

corresponds to Φ\tm+\. The explicit form of the polynomials L® for the primary
operators is as follows: 2n

LΦm(Al9...9An\Bl9...9B2n)=flA?lίB-!! .
ι=l 7=1

We explain in Appendix C that this definition agrees with the formulae for the form
factors of the operators Φi and Φ2 given in [6]. We shall return to this definition
in the following sections.

Usually the formulae for the form factors are written in a slightly different
way [6, 24]. First, the integrals are (n — l)-fold, second, instead of the polynomi-
als Π(A? — A 2 j ) L ( ( ) ( A \ , . . . , A n \ B \ , . . . , B 2 n ) under the integral, one usually has poly-

nomials of the type }\(Ai — Aj)Lφ(A\,...,An-\\B\,...,B2n) with the limitation

deg^ (Z,0) ^ n. The conventional form of the integrands is important for generaliza-
tion to the case of the arbitrary coupling constant because, in this case, the integrals
become more complicated and the above limitation is needed for convergence. In
Appendix C we explain briefly how to rewrite formula (31) in the conventional way.

There are two important facts that we learn from the calculations of Appendix C.

1. The substitution into (31) of the polynomial Lj(A\9...9An) = 1 which corre-
sponds to the unit operator, gives zero because there is no simple pole in the con-
tour integral, in agreement with the fact that the matrix element of the unit operator
between the vacuum and an excited state vanishes. Also if we try to substitute
into (31) the functions

which must correspond to the operators Φ-m — exp(— miφ\ the integral vanishes.
This means exactly that our formulae suit rather the RSG than the SG model. This
does not mean that the formulae for the form factors of Φ-m do not exist: they are
obtained by SG charge conjugation, we want to say only that these formulae cannot
be obtained by putting Lφ_m into the integral formula.

2. Consider any polynomial M(A\ 9A2,...,An)9 anti- symmetric with respect to
A2,...9An. The value of the integral (31) does not change if we add to
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Π (A] - A] )LΘ (A i , . . . ,An) an "exact form"

* ίΣ(-l)* [M(Ak 9Al9...9Ak9...9An)H(Bj+Ak)
k \ J

\
-qM(qAk'9Aι9...9Ak9...9An) l[(Bj - Ak) , (34)

^ 7 /
where Ak means that Ak is omitted.

4. The Semi-Classical Analysis

4.7. The semi-classical analytical quantization. In this section we show that the ex-
act formulae for the form factors in the semi-classical limit can be obtained from the
semi-classical quantization of solitons in the analytical variables. We shall proceed
to the exact quantization of solitons in the next section.

We shall consider the matrix elements of the operator Θ calculated between two
fl-soliton states, instead of the ones calculated between the vacuum and the state
with n solitons and n anti-solitons. This is because they have a more direct semi-
classical interpretation. Crossing symmetry relates the connected parts of these two
kinds of matrix elements. The essential piece of the n solitons to n solitons form
factor is given by

ψ(At, -^(A^U (A] -A]} Π αf'
c c i=ij=ι ί<j i=ι

xL0(Aι9...9An\-B'l9...9-B'n9Bι9...9Bn)9 (35)

where ψ(A,B) is defined in Eq. (32). We would like to present this formula as

(36)

where the various terms should be interpreted as follows. The function Ψ(A,B} is
the /2-soliton wave function in the Schrodinger ^-representation. The scalar product
in the Hubert space is written in terms of a non-trivial weight W(A) and a possibly
non-standard conjugation f. The integration domain 3) has to be compared to the
configuration space of the classical theory. The quantity Θ(A,P) is the operator
0 realized in terms of A and the conjugated variables P. The detailed discussion
of the operators A and P will be given in the next section. Let us first make a
semi-classical step in this direction.

Consider the semi-classical approximation of the function ψ(A9B). Asymptoti-
cally we have (see Appendix D)

(37)

where the integral is taken over a contour which does not cross the cut going
along the semi-circle in the upper-half plane from B to —B. The logarithm is real
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when —B < A < B. An important property of the reflectionless situation is that the
integrals over different contours of this kind give the same result when substituted
into the exponent. Indeed we have,

where the contour y is drawn around the cut. Therefore, when v is integer there
is no ambiguity in the exponential in Eq. (37). This is similar to the topological
ambiguity of the WZNW action.

Let us now construct the semi-classical wave-function in the ^-representation
for given values of B. The general rule is [21]:

, (38)
in

where dμ(A) = ωn is the Liouville measure at the point A. Let us give some expla-
nation. Integrable models provide examples of a situation which is usually described
in textbooks only for the case of one degree of freedom (i.e. when there is only one
integral of motion: the energy). In our case in order to construct the semi-classical
wave-function in the ^-representation, we have to consider the polarization corre-
sponding to the A variables and the integrals of motion B. In these variables the
Liouville measure can be written as

dμ(A,B) = [det ω(A,B)] dA\ Λ - Λ dAn Λ dB\ Λ - Λ dBn .

So (dμ(A))ι has to be understood as (detω(A,B))τ. In this measure the terms which
depend only on B will be omitted since they correspond to the normalization of the
wave-functions which we do not consider.

In Eq. (38), S(A) is the semi-classical action. We choose as the semi-classical
action the analytical continuation of the KdV reduced action discussed in the pre-
vious section, which in the analytical variables A is S(A) — Σksk(Ak) with

Ak > —

sk(Ak) = / log Π IT— 7 -r - πίk lo«(4t) (39)
o

where the integrals are again taken in the plane with cuts going along the semi-
circle from BJ to —Bj for all y. The ambiguity in the definition of the contours is
irrelevant for semi-classical quantization at the reflectionless points as it has been
explained above. For the case of the generic coupling constant we cannot manage
with the variables Aj9 instead the variables α/ = log^ ) will have to be considered.
We shall return to this point in a future publication.

We now have all the necessary ingredients: the classical action and the Liouville
measure. So, up to normalization depending only on the Bj, the semi-classical wave
function is

Ψ(Al9...9An\Bl9...9Bn)~

(40)
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The Planck constant is identified with ξ = ^ . We shall divide Ψ into the wave func-
tion Ψ and a ̂  -independent piece which will be put into the integration measure:

where

W(Al9...9An)= U(AΪ-A*)flaϊk

9
i<j k=\

Ψ(Al9...9An\Bl9...9Bn) = f l f l Ψ ( A i 9 B j ) 9
ι=l 7=1

where we recall that ak = A2^ '.
Notice that choosing the reduced action as we did, i.e. as the analytical con-

tinuation of the KdV action, was crucial for producing the factors Y[k a^k in the

weight W(A). Identifying Ψ(A9B)i = Ψ(A9-B) and the integration domain 9 with
the contour integrals over C we see that the form factors in the semi-classical limit
admit a representation as in Eq. (36).

It remains to find a more physical and geometrical interpretation of the inte-
gration domain and of the conjugation f in the semi-classical regime. Under the
classical dynamics of «-soliton solutions, every variable Ak runs around a curve
going in the lower half-plane anti-clockwise from —Bk to Bk. As we already know
there are two difficulties:

1. The action s(Ak) is not real along the classical trajectory.
2. The trajectory itself is complex, and its exact geometry depends on Bk which

must become the spectral data after the quantization.

On the other hand the exact quantum formula show that the integration domains
should be small circle around the origin. This suggests the following prescription
for fixing these problems.

1. Because of quantum-mechanically possible penetration through the barrier one
has to consider the closed trajectories, i.e. to add to the classical trajectory of Ak the
piece running in the upper half-plane anti-clockwise from Bk to — Bk. Classically
this extra piece corresponds to an anti-soliton trajectory.

2. In order to eliminate the geometrical dependence of the trajectory of Ak on Bj
(leaving the topological one) we replace it by an arbitrary closed curve along which
Bk < \Aj\ <Bk+\. There is one more reason for considering the configuration space
as the one composed of closed cycles. If we regularize the theory putting it onto a
large but finite interval with periodic boundary conditions the trajectories of Aj will
become the closed cycles of the same type as described above (see Appendix A).

3. Last but not least, the reality condition is taken as follows:

(41)

Let us explain that this condition is satisfied by (39). If we take
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over conjugated contours, then (41) would be true if the integrands were continu-
ous over these contours. However, we defined the logarithms in such a way that
they have cuts in the upper half plane, and to reach Ak we have to cross k cuts.
The addition of ~πik\og(Ak) in (39) is needed to compensate the corresponding
discrepancy.

The function Ψ^ is constructed from s^. The choice of the conjugation f ensures
that Ψ(A\B'}ϊ = Ψ(A\-B') as it should be.

Let us discuss the condition (41). This condition provides the usual reality con-
dition

sk(Ak) = sk(Ak)

if Ak is real and such that Bk<Ak<Bk+\. The latter segment is the trajectory
of Ak which corresponds to real ^-soliton solutions of the KdV equation. So, we are
dealing with an analytical continuation of KdV mechanics, as it has been explained
in Sect. 2.3. This fits perfectly with our assumption that we are actually doing not
SG but RSG model, which has to be considered as a continuation of KdV. Also
the fact that the involution (41) connects the soliton and the anti-soliton part of the
trajectory has a physical explanation: as we already said RSG is neither C nor T
invariant, so one has to consider the combined CT invariance. The involution (41)
corresponds exactly to the combined CT reflection.

It now is clear that the formula (35) allows a semi-classical interpretation by
means of this semi-classical wave function. We stress once again that this semi-
classical analysis forces us to introduce the analytical continuation (41). The inser-
tion of a local operator corresponds to the insertion of a polynomial L@ which can
also be understood from the expression of the classical local observables in w-soliton
variables. We shall return to this point in the section on exact quantization.

Let us emphasize one circumstance. In order to put together two semi-classical
wave-functions Ψ(A,B) and Ψ(A,B')^ into the matrix element, one has to be sure
that the contours of Ak can be identified. Recall that for these two wave functions the
contours are inside Bk < \Ak <B^+\ and B'k < \A^\ <B'k+l respectively. This shows
that the semi-classical quantization works nicely if the soliton states are not very far
from each other in the following sense. The sets Bj and Bj are ordered Bk < Bk+\

and B'k <B'k+l. The semi-classical formulae are applicable if in addition B'k <Bk+ι
and Bk <Bk+l. In the next section we shall discuss this point further.

4.2. Stationary point calculation of the semi-classical integrals. In this section we
shall show that the semi-classical integrals for the form factors are actually given
by stationary point contributions. This result, which is interesting by itself, will also
provide some justification of the compactification of the configuration space made
before.

It is convenient to return to the form factor taken between the vacuum and
the state with n solitons and n anti-solitons. One can show that the semi-classical
limit allows the necessary analytical continuation. Let us consider the exact quantum
formula:

Λ(/fι,j82,...,j82π)-...-+...+ = γ^—JdA, '"fdAnflU Ψ(Ai,Bj) Π (£ -A])
(zπi) Cι Cn i=\j=ι ί<j



Quantization of Solitons and Restricted Sine-Gordon Model 335

In the quantum formula the contours of integration are arbitrary. However, to
perform the classical limit we need to take them as follows: if Ak e Ck then
B2k < \Ak <B2k+\ The point is that the asymptotic of ι//(A,B) is not a single-
valued function of A, so one cannot move the contours of integration after the
asymptotic of the integrand is calculated. The above prescription for the contours
agrees with the semi-classical considerations of the previous section. The justifica-
tion of this choice of contours follows from further stationary phase calculations.
The momentum Bi corresponds to either soliton or anti-soliton. The matrix element
is related to that considered in the previous section by analytical continuation. The
concluding remarks of the previous section show that it is exactly the choice of
cycles described above which corresponds to the semi-classical matrix element, and
the momenta Bj are partitioned into pairs B2i_\,B2i such that in every pair we find
one soliton and one anti-soliton.

The asymptotic of the integrand is written down using the formulae from the
previous section. Let us consider the integral with respect to Ak. It contains the
divergent exponent:

exp - / log Π dAk - 2πiklog(Ak) ,
~

where the last term comes from Πka^k. One has to consider the stationary phase
point at A = —ίFk which solves the equation

It is easy to see that all Fk are real and positive, moreover B2k <Fk < B2k+\ for
k = !,...,« — 1, Fn — oo. The calculation of the second derivatives shows that the
integrals over Ak for k = ! , . . . , « — 1 are given by stationary point contributions
coming from —ίFk if the contour of integration goes through the point Fk being
topologically equivalent to a circle lying inside the domain B2k < \Ak\ <B2k+\. Ob-
viously the contours Ck from (42) can be drawn like this. The point oo for the «th

integral is not a true stationary point, but for the nih integral the divergent exponent
vanishes when An — > oo, and the integral is sitting on the residue just like in the
exact quantum calculation (Appendix C).

The equations for the stationary points can be summarized into the Bethe Ansatz
type equation

Consider any polynomial M(A\;A2,...,An) anti- symmetric with respect to
A2,...,An. The main contribution into the asymptotic of the integral (42) does not
change if we add to Y[ (Af — A'j )L@ (A\,...,An) the expression

Yi(-\^M(Ak9Al9...9Ak9...9An)(l[(Bj+Ak)^l[(Bj^Aky) (43)
k

because it vanishes on the stationary point if k £Ξ n — 1, and cancels residue
if k — n. Comparing this formula with the exact quantum formula (34) we ob-
serve the following nice circumstance. The semi-classics is of course not exact like
it happens in geometrical quantization, however one can think of the exact quantum
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relation (34) as of deformation of (43) which in turn is nothing but the consequence
of the equation for the stationary points. The factorization over (43) and (34) leave
the same number of independent polynomials of Ak.

The stationary phase calculation fits nicely with the classical picture. The point
—iFk lies in the region acceptable by analytical continuation from the classical soliton
trajectory. This fact gives an important justification of our semi-classical methods.

5. Έxact Analytical Quantization of Solitons

5.1. Hίlbert space and Hermitian structure. In this section we do not specify ξ to
the values ^ until the last subsection in which we shall reconstruct the RSG form
factors. Consider the variables αy = \og(Aj) and πy = log(/}) The symplectic form
is canonical in terms of these variables:

n

ω = 2Σ dπj Λ doij .
7=1

We quantize them in a canonical way: α/ act by multiplication and πy by differen-

tiation, i.e. αy —>• αy and πy —> iζ^ Here ξ plays the role of Planck constant. The

operators A and P are defined as:

Aj = exp(αy), PJ = exp ( iξ— 1 .

They satisfy Weyl commutation relations with q = exp(zξ):

Pk Aj=Aj Pk, j*k. (44)

This definition is rather formal since we have not yet defined the Hubert space
of functions of αy. Staying on the same formal level one realizes the following
important circumstance [12]. There is another pair of operators

f 2 π λ Λ d \
aj = eχP ~τ*j ' PJ = eχP 2π/^r

\ s / \ ooc//

which represent the Weyl algebra but with the dual quantum parameter # =

(^p), associated to the non-local symmetry algebra 6^(^/2):

^2 - t -
; - qz aj - Λ , with q = exp

(45)

The operators a} and /?y commute with Aj and /y. The existence of two dual algebras
will be crucial in the following.

All these operators act on wave functions Ψ(oc). In the reflectionless case ^(α)
is a single-valued function of ^'s so we shall write Ψ(A) in that case. The operators
Aj act by multiplication whereas PJ act by shifting the argument of Ψ by iξ:
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To complete the representation of the canonical commutation relations in the Hubert
space, we also need to introduce the scalar product. In order to take into account
the reality condition (eiφ)^ = eiφ, specific to the RSG model, we define the scalar
product in a rather unusual way. Let Ψ\(A) and Ψ2 (A) be two wave functions, then:

(46)

where the hermitian conjugate wave function ^/(α) is defined by:

<F/(α) = W^> (47)

Notice that although this definition involves two complex conjugations, it is anti-
linear as it should be. The operator Q(a\, . ..,«„, p\9 ...,/?„) inserted into the inte-
gral is not specified here, except for a simple constraint arising from the condition

(Ψ\\Ψ2) = (Ψ2\Ψ\) The exact form of this operator has to be fixed from additional
requirements. The role of this operator is similar to that of screening operators in
CFT. This analogy is not just a formal coincidence as it will be explained later.
Due to commutativity of A,P with α, p, the particular form of the polynomial Q is
irrelevant for formal properties of the operators A, P. The contour C is complicated
for generic ξ, but reduces to small circle around the origin in the reflectionless case.

As usual, given an operator Θ, its hermitic conjugated operator 0t is defined by
((^Ψι~)\Ψ2) = (Ψ\\(GΨ2)). For the canonical operators Aj and Pj this gives:

A=Aj, (48)

(49)
j ~ -

It is an interesting check to verify that these relations are compatible with the Weyl

commutation relations (44). The relation for A\ is obvious from the definition. The

formula for Pj can be deduced as follows:

(Ψl\(PjΨ2)) =fd*l' fd<*n EM, Π (A} ~4?)
C C i ί<j

i , . . . , an, pi,..., pn)Ψ2(. - , α/ + iξ, 0

C C i

x Q(a\,...an,pι9...9pn

The second equality follows from the first by changing variables αy —» α7 + iξ which
is possible if Ψ is regular as a function of α7 between C and C -f iξ. To obtain
these formulae we crucially use the fact that q is of modulus one, i.e. q~l =q.
(They will not be correct for real values of q.)

The fact that Aj is hermitian simply expresses the fact that the field eiφ is a real
field in the RSG theory since it has to be identified with the field ΦB of the minimal
conformal model. In other words, the quantum variables Aj are real variables leaving
on the unit circle!
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5.2. Hamiltonians and quantum τ-functions. We now introduce the quantum version
of the hamiltonians Hk defined in Eq. (15). Since the classical hamiltonians are
complicated functions of A and P9 we have to specify the order of the operators in
the quantum formula. We choose the following minimal deformation:

) (50)

and

Σ 0-(Pι9...9-Pil9...9-Pik9...9Pn\A)AilAi2 .Ait
iι< Ϊ2 < ik

= Σ AilAh Ait^(Pl,...,-qPίl,...,-qPit,...,Pn\A). (51)
/ i <i2 < ik

We shall refer to the operator ?Γ(P\A) as the "quantum τ-ίunction." Its explicit
expression is:

= 1 + Σ (-q Σ ΓUy ΠΛ (52)

with
_ qAj + AJ

Alternatively, &~(P\A) can be recursively defined by Eq. (84) in Appendix E. In the
limit q — > 1 this formula coincides with the classical τ-functions τ(Z\A) as defined
in Eq. (7). For two particles:

The operators y(P\A\ but not the hamiltonians Hn, are closely related to the
Mac Donald difference operators [23]. In particular the terms in 2Γ(P\A) of fixed
homogeneity degree in P form a family of commuting difference operators. More
precisely, the two generating functions ?Γ(μP\,...,uPn\A) and &~(vPι,...9υPn\A)
commute for any u and v. Note also that 3~n(P\A) = y(—P\A) (Π/^ό =

(ΠiAi)2Γ(—qP\A). It is convenient to introduce the generating function T(u) for

the quantum τ-functions ̂  T(u) — ̂ ^=0 uk$~k As shown in Appendix E, we have

the following expression for T(u):

^ n ^ 1 _ II A

Γ(n) = ̂ (P(n)μ) Πθ+«4 ) wίlhPχι/)=P r τ— -J-. (53)
j=\ 1 + uAj

This can be used to relate the generating functions of the symmetric functions of
the B and A operators as:

ft (1 + uBj) - <T(P\A) = F(P(u)\A) - ft (1 + uAj) .
7=1 7=1

It is important to realize that all the hamiltonians H^ commute with the op-
erators aj and PJ, since they are functions of the A and P only. As we already
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pointed out, the operators cij and PJ are associated to the quantum affine symmetry

U^(sl2). Thus, the fact that the Schrodinger equation is a difference equation just

leave enough room for this non-local symmetry. This symmetry does not have any
straightforward classical meaning, it corresponds to the choice of topologically dif-
ferent components of the classical configuration space (different cycles). The way
of encoding this topological information into quantum formulae through the alge-
bra which commute with all local observables is, in our opinion, a very interesting
feature of quantization of solitons.

The conditions for the /4 to be hermitian are bilinear identities on the quantum
τ-functions:

(54)

Furthermore, the quantum τ-functions behave nicely under hermitian conjugation.

More precisely, the definition of Pj implies that the quantum τ-functions are not
hermitian for our scalar product but that their hermitian conjugates are again quantum
τ-functions:

for any real parameters λ\9...9λn. Here, once again we use the fact that q is
of modulus one. In particular, 9~(P\A$ — 3~(qP\A}. This allows us to rewrite
Eq. (54) directly in terms of the quantum τ-functions. For example, for k = n we
have &n(P\Ay = (^A^ y(-P\A)^ = ([[.A^^-qPlA). The hermiticity condi-
tion of Hn is then equivalent to

which is a consequence of the identification of the quantum tau function as the
generating function of the Mac Donald difference operators. Besides the case k = n,
we also checked the hermiticity conditions (54) for all two-particle hamiltonians.

The conditions that the hamiltonians Hk commute can also be rewritten as
bilinear identities for the quantum τ-functions:

(55)

To rewrite these conditions in a simple form, we used the hermiticity of the
hamiltonians. The hermiticity condition (54) corresponds to Eq. (55) with / = 0.
Equation (55) can be rewritten as a bilinear identity on the quantum generating

function T(u)9 cf. Appendix E, Eq. (86). We are missing a complete algebraic proof
of these conditions for arbitrary n. Although we do not have any doubt that it is
true because the hamiltonians admit simultaneous eigenfunctions.

5.3. Quantum separation of variables and solίton wave functions. One of the magic
aspects of these quantum hamiltonians is that the corresponding Schrodinger equa-
tions admit a separation of variables. As a consequence, they admit simultaneous
eigenfunctions. Consider the set of n Schrodinger equations for a state Ψ(a\β):

σk(B) ^(P'\A)Ψ(x\β) = ̂ (/>'μm«l/0, for t = l , . . . , / ι (56)

with eigenvalues σk(B). (Recall that Pf — (—l)nP.) As shown in Appendix E, we
can look for eigenfunctions Ψ(a,\β) in a factorized form:

Ψ(u\β) = £(αι|j8)£(α2|/0 φ(an\β) , (57)
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provided the function \j/(<y\β), which depends only on one of the α variables, is
a solution of the following separated difference equation:

Pj $(*j\β) = £(αy + iξ\β) = ft
k=\

This is the quantum analogue of the classical separation of variables. A remarkable
fact of Eq. (58) is that its solution can again be factorized into the product of
functions depending separately on only one β^:

k=\

where ψ(u\β) satisfies Eq. (33). This probably reflects the duality symmetry bet-
ween the α and β variables. It is clear that the function ψ(<x,\β) is defined by the
difference equation up to multiplication by any /f -periodic function. The way to fix
this ambiguity is the following: one requires that the function ψ(a\β) is regular for
0 < Im(α) < 2π, ψ(<x\β) = O(exp((π/ξ - l)α) when α -> +00.

5.4. Exact form factors in the reflectίonless case. Let us return to the case ξ = π/v
for integer v. In this case the wave-functions Ψ(&) are 2πz-periodic, that is why
we denote them by Ψ(A). Moreover Ψ(A) are polynomials of A, so we take the
Hubert space as the space of polynomials. The operators PJ are identically equal
to 1 because they correspond to shift of α's by 2m. Thus the formula for the scalar
product must be of the form

In the reflectionless case the contour C are small contour around the origin. We
recall that for ξ = ^ with v integer the function ι//((x\β) is

It is time to discuss the local operators in this ^-representation. As we have
seen from the exact quantum formulae, in order to insert the primary field Φm into
the matrix element one has to put under the integral the expression

On the other hand, in the classical theory the fields Φm = eim(p are represented
on the «-soliton solutions by Φm = Y[j AJ1 Yl Bym. After the quantization we have

a self-adjoint operator Hn = Hn(A9P) such that HnΨ(A,B) = (HjBj)Ψ(A,B). So,

the comparison of the quantum and classical formulae shows that the classical ex-
pression Y[A™ H~m must be ordered for quantization as follows:

Φm(A,P) = H-ml2(A,P) \l\Af\ H~m/2(A,P). (59)
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This ordering prescription ensures that Φm is a real field, Φ^ = Φw, since Hn and Aj
are hermitic. We hope that the same notation for the operator Φm acting in all the
space of states of RSG or restricted to 72-soliton subspace is not misleading.

Now we can fix the function Q(a). The contours of integration are drawn around
A — Q, so Q(a) has to be taken as Y\^mk: positive powers of a^ would give
zero scalar product. It is also clear that the m^'s must all be different for the anti-
symmetry coming from Π/</04? ~^/2) Considering the form of the function ψ one
realizes that if one of the πik is greater than n then the matrix element corresponding
to the operator Φj vanishes because the contour of integration with respect to Ak
can be moved to infinity. Thus we are left with the only possible choice

mk=k .

This is exactly what we have in the formulae known from bootstrap.

6. Concluding Remarks

Let us describe possible directions of future developments.
We have constructed the local integrals of motion in terms of the operators A

and P. One can consider the descendants of the primary fields with respect to these
operators. However, to consider the full space of local fields we need to construct
the Virasoro algebras in terms of A and P and to consider the descendants of the
primary fields. We are sure that it can be done. In this way we must be able
to identify the SG local operators described in [24] with those coming from the
CFT description. For these computations we do not really need to study deeper
the situation of generic coupling constant since the formulae from Subsect. 5.2 are
absolutely general.

There is another point for which the consideration of the generic coupling con-
stant is important. We have seen that there is a dual Weyl algebra composed
of a and p which commute with the operators A and P. It is easy to argue
that the non-local integrals can be expressed in terms of a and p. The commu-
tativity of local and non-local integrals follows from the commutativity of A, P

with a,p. The non-local charges represent the quantum loop algebra U^(sl2\ It

would be very interesting to find their expressions in terms of a and p. On the
other hand the non-local charges in the conformal limit correspond to screening
operators.

We want also to remind the reader that we were actually not working with
complete form factors. We omitted certain multipliers which are the same for all
operators, the normalization of the wave functions in the logic of this paper. We
hope to explain how this piece appears in our approach in a further publication.
Here we just would like to stress the analogy with the method of orbits in coadjoint
representations. Every orbit is quantized independently giving an irreducible repre-
sentation of the group, but combining them in the regular representation requires to
take into account the Plancherel measure: this is exactly the analog of the omitted
normalization factors.

There are amusing coincidences between many tools used in this paper and
those existing in the works on lattice quantization of SG [25]: the Weyl algebras,
the functions of the type of ι/r(α,j8). The latter are now called quantum dilogarithms
because they provide a deformation of dilogarithm functions. It might be possible
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that this coincidence is not occasional. The classical soliton is similar to the step-
function, so one can imagine that exact quantum mechanics of w-solitons is related
to the theory on the lattice with n sites.

These is also a no-empty intersection with recent works on the Calogero models,
Mac Donald polynomials and affine Hecke algebras. We realize that techniques very
similar to those we used to deal with the quantum τ-function, i.e. the generating
function of Mac Donald difference operators, may be used to separate the variables
in these operators. One potential application of this remark would be a more detailed
description of the algebra of the Mac Donald polynomials.

7. Appendix A: The Analytical Variables and Finite Zone Solutions

Let us explain the origin of the A variables as a remnant of the parametrization of
the finite zone solutions, when they degenerate to the soliton case. We shall do it in
the simplest case of the KdV equation, cf. e.g. [27]. We start with an hyperelliptic
curve Γ of genus «, and a divisor D of degree n on it.

Γ:s2 =R(λ), R(λ)=ΐl(λ-λj),
7=0

D'= (vι,v 2 , . . . ,v π ).

We describe Γ as a two sheeted cover of the λ plane. We put cuts on the real
axis on the intervals (—00, ΛO) and (λ2i-\,λ2i), i= !,...,«. The quantities Vj in
the divisor D denote the λ coordinates of the points of the divisor. One should
keep in mind that to specify the points themselves, one has to choose the sheet
above λ = v/. With these data we construct the Baker-Akhiezer function which is
the unique function with the following analytical properties:

• It has an essential singularity at the point P+ above infinity: ψ(x,λ) = ekx(l +
O(l/k)) with k = Vλ.

• It has n simple poles outside P+. The divisor of these poles is D.

Considering the quantity — d^i// + λψ, we see that it has the same analytical
properties as ψ itself, apart for the first normalization condition. Hence, because ψ
is unique, there exists a function u(x) such that

+ u(x)ψ + λψ = 0. (60)

We recognize the usual linear system associated to the KdV equation. One can give
various explicit constructions of the Baker-Akhiezer function. The most popular one
is in terms of theta functions. However, for our purpose, another representation is
more suitable. Let us introduce the divisor Z(x) of the zeroes of the Baker-Akhiezer
function. It is of degree n:

Z(x) := (μι(x),μ2(x),...,μn(x)) -

One can find the equations of motion for the divisor Z(x). Consider the function
dxψ/ψ. It is a meromorphic function on Γ, it has poles at the points μt(x) and
behaves like k + O(l/k) in the vicinity of the point P+. Hence we can write

rπ a ur*»' (61)
ll, =ι (A- μi(x))
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where Q is a polynomial of degree n — 1 in λ. We determine Q by requiring that
^$- has a pole above λ = μi(x) only on one of the two sheets (say ^/R(λ)). Then

Hence

On the other side, in the vicinity of μ/(.x), we have:

β(*,A) = ΣV*(M*))

Comparing Eq. (61) and Eq. (64), we get the equation of motions:

(62)

(63)

(64)

(65)

One can now reconstruct the Baker-Akhiezer function itself. Indeed, inserting
Eq. (65) into (61) we get:

/R(λj 1

) 2tA-M*)™"

where the polynomial P(λ,x) is defined as P(λ,x) — Y[. (λ — fa(x)). Therefore [27]

(66)

One can also reconstruct the potential u(x) directly in terms of the data μt(
and λj. Inserting back Eq. (66) into Eq. (60), we get the polynomial identity

D DD''

Comparing the terms λ2n we obtain

O + λ)P2 .

2n

z=0

(67)

We are now ready to analyze the soliton limit. It corresponds to the following
limiting configuration:

= 0, λ2-ι = λ2 =
2j-ι 2j λ = A2; j = A2 . (68)

In this limiting configuration, Eq. (67) reduces to Eq. (21). Under the condition (68),
the full curve Γ becomes the A plane but with the points Bj and —Bj, j = !,...,«
identified. In this limit we have

ι̂  = -A (A1 - B]\ P(λ,x)\λ=Aι = (A2 -Af) .
7=1 7=1
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The equations of motion for the At become (compare with Eq. (20))

dxA, = U(^-BJ)Il-iΓΓ72 (69)
j j*iΛi Άj

We can also obtain the degeneration of the Baker-Akhiezer function. Noticing that

p^ ̂
we can integrate Eq. (66) to get

2 Y \A-Ai A-{-A,

ψ(A,xo) j=

As we see, in this limit the Baker-Akhiezer function contains a single exponential
factor instead of two as one would expect from the second order linear equation
Eq. (60). This corresponds exactly to the fact that for soliton solutions the potential u
in Eq. (60) is reflectionless. It is manifest in Eq. (70) that the variables Aj are the
zeroes of the Baker-Akhiezer function.

As we said, the points Bj and — Bj are identified. This means that the
Baker-Akhiezer function should satisfy the conditions \l/(Bi,x) = \l/(—Bi,x),
i = !,...,«. Writing these conditions, we get

where YI depends only on the initial conditions at x = XQ. Comparing with Eqs. (4, 9),
we recognize the solution of the equations of motion.

In the sine-Gordon soliton case, we identify x = X- . The x+ dependence is
simply reintroduced by replacing in Eq. (71)

Let us discuss now the motion of the divisor Z(#_,#+). In the finite zone case,
the point μt(x- ) has a quasi-periodic motion on the real axis in the interval λ2i-2 ^
μi(x~) ^ Λ.2/-1.

Consider the x+ motion in the soliton case when we have only two points.
When x+ — — oo, the points A\ and A2 start from B\ and B2 respectively. When
ΛJ+ increases, the points A\ and A2 start to move to the right. Notice that the point
A — oo is regular for Eq. (69), so the point A2 passes smoothly from +00 to — oo,
and then continues to move towards -B2 which is reached at some time x*. At the
same time jc*, A\ reaches B2 so that in the right-hand side of Eq. (71) the pole at
A2 = —B2 is cancelled by the zero at A\ = B2. Hence everything remains finite for
a finite time x*. At this time, the point A\ jumps to — B2 and ends its motion at the
point —B\. Similarly, A2 jumps to B2 and continues its motion up to — B2 again.
The case of generic n is similar. Altogether, Aj starts at B\ and ends at —Bj.

Equation (70) is easily related to the Jost solution of Eq. (60). In our context,
the Jost solution is defined by the normalization condition limΛ;__^_00 ι/oost(jc_) =
exp(— Ax-). Hence, we find

_ ) = lim
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where we used the fact that lim^0_^_ oo^yOto) — Bj- Therefore Bj are the poles of
the Jost solution and Aj(x) are its zeroes.

Finally, we would like to discuss the important question of the Poisson structures
of the KdV equation. As we know, we have a whole hierarchy of these structures.
One can describe the restrictions of the symplectic forms to the manifold of finite
zone solutions [27]. Let Ω^ be the restricted kih symplectic form. Then we have
in terms of analytical variables [19, 20]:

Λ-^L, (72)

where &(λ) is the pseudo momentum defined by:

= log
' ιl/(λ,x = -L) '

To compute the quasi-momentum in the soliton limit, we choose the normaliza-
tion point to be XQ — —L, and we send L —> oo. According to the previous discussion,
we have At(L) -> -Bi9 At(-L) -> Bt. Using Eq. (70), we get

= -2LA - logΠ ( ̂ —7 ) mod/π .
j \βj+ΛJ

Hence,

The form used in Eq. (25) corresponds to k = 2 i.e., to the second Hamiltonian
structure of KdV. We recall once more that the second Hamiltonian structure of the
KdV equation is precisely the Virasoro algebra.

8. Appendix B: From the {X, B} to the {A, B} Variables

Before explaining the proof of the formula for the τ-functions in the {A,B} variables
we need to gather a few facts concerning the τ-functions. The τ-functions are defined
by the determinant (3): τ± = det(l ± V). Most of the proof will be recursive using
the recursion relation (8) satisfied by them, cf. e.g. ref. [26]:

τ(n\X\B) = τ(n~l\X\B) + τ(n-l\β2

hl(B)Xk\B)Xn . (73)

For comparison with the quantum formula, it is also useful to know the
explicit expression of the τ-function not in the Xj variables but in the variables

τ(n\Y\B) = 1 + Σ Σ Π βyl(B) Π γi (74)

\I\=p J$f

with βtj(B)=
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Let us now prove the formula (12) for the τ-functions. We recall them to ease
the reading:

_ 2~

The upper index « refers to the «-soliton solutions. Eqs. (75) are two identities
between rational functions of A and B once the expression of X as a function of
A and B,

(76)

has been inserted into the τ-functions.
Let us denote by *ΐ±\A\B) the τ-functions with Xj expressed in terms of A and B.

Since τ±\X\B) are symmetric in Xj9 so is *τ±\A\B) as a function of Aj. Since

permuting the B permutes the X, the functions *τ±\A\B) are also symmetric in the B.
Thus, the identities (75) are equalities between rational functions symmetric in A
and B.

Let us first show that A\B) has poles only at Aj + Bk — 0. In view of the

explicit expressions of the τ-functions and of the Xj"\ *τ±\A\B) has potentially
simple poles at Aj + Bk — 0 and Bj ±Bk = Q. The expression (74) of the τ-function
in terms of Y shows that there are no poles at Bj + Bk = 0. Similarly, the expression
(7) of the τ-functions in terms of X shows that the potential poles at Bj — Bk = 0
are associated to Xj and Xk. Using twice the recursion relation (73) shows that these

poles cancel against β^(B). Thus, ^±(A\B) can be written as

where Q^\A\B) are polynomials, symmetric in A and ,̂ and of degree at most n
in each variable.

To prove the identities (75) it is then enough by symmetry to show that the
functions have identical residues and that they coincide at particular points. Again
by symmetry, it is enough to check it for the pole at An + Bn = 0 and at the point
An = Bn. To keep the size of this appendix reasonable we shall describe the proof
for τ+ only. The proof for τ_ is similar. We shall prove it by induction assuming
that the identities are true up to n — 1 solitons (they are obviously true in the one
soliton case). The recursive proof is based on the three following relations:

i) The τ-function satisfies the recursion relation (73).
ii) The r.h.s of Eq. (75) satisfies the following recursion relation:

rhs(») - » π » ; . rhs(«-υ (77)
rhs - 1 '
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iii) As functions of A and B the variables Xj satisfy the following recursion
relations:

*^U§^U("-!) «*j = !,..,»-1, (78)Bj+Aj J

Bn-An\ Bn+Bj\ Bn-Aj

-V Bn+Aj '
(79)

where ^"-1) is independent of An,Bn.
Let us first compare the values of both sides of Eq. (75) at the point An = Bn.

Using Eq. (77), we have for the r.h.s.:

rhs(n)l

For the other side we remark that Xn vanishes for An = Bn. Therefore the recursion
relation (73) for the τ-functions implies that

Thus, both sides of Eq. (75) coincide at An — Bn.
Let us now compute the residue at the simple pole An = —Bn. The pole

in ^+\A\B) comes from the pole of Xn^ at An = — Bn. Its residue is

)l« =2B. Π

Furthermore, Eq. (78) gives for 1 ̂  j ^ n — 1:

γ(n) β—2fΏ\ v(n~l)
Xj An=-Bn = Pjn \β)Xj

Therefore the factor βJn(B) cancels in the recursion relation (73) and we get

On the other hand, Eq. (77) implies

Thus, the residues of both sides of Eq. (75) at An = —Bn coincide by the induction
hypothesis. This concludes the proof of the identities (75).

Let us now consider the formula expressing the symmetric functions σk(A) as
functions of the {X,B} variables. As pointed out in the main text, the defining
relations (9) or (76) can be considered as a system of equations for the symmetric
functions of A. We claim that the solution to this system can be written as:

, (80,
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where X' = (-l)»X and

τk(Xι,...,Xn\Bl9...,Bn)

: Σ >

/ I </2 <"•</*

Let us compare Eqs. (9) and (14). A quick look reveals that they are identical
provided we exchange A with B and Y with P. Hence, the proof of Eq. (80) is
identical to the proof of Eq. (15), which is a limiting case of the quantum formula
whose proof is given in Appendix E.

This somewhat mysterious formula can be related to well known results con-
necting the Baker function and the tau function. One first reintroduces all the times
by the substitution Xt -+Xi(t)=Xi(Q)exp(2ξ(Bi9t))9 where ξ(A,t) = Σi^2''"1^-!.
Next, using the generating function Eq. (17) we have

On the other hand, the multi-time Baker function reads

Combining these two formulae, we can identify the Baker function as

Since l±f| = exp(2£,. ̂  (f f"') we find

τ(0

and we recognize the well known Sato formula.

9. Appendix C: Information about the Integral Formulae

In this appendix we explain how the formulae for the form factors given in Sect. 3
agrees with the conventional ones [6]. We have to show how to reduce the number
of integrals and the degree of polynomials.

In order to reduce the number of integrals by one let us consider the integral with
respect to An in which we would like to move the integration contour to infinity.
When An —>• oo, one has

2n 2 2 _n_ _ / ?+1 _ l _ \

(Ai - An)anH ~ An Π ~ ~ ϊAn ΣBj + °(An ) (81)
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So, the integral over An is

xLG(Al9...9An-l9An\Bl9...9B2n)dAn. (82)

It is important that there are no contributions with an = A^v which means that the
integral is essentially independent of the coupling constant (it depends on v only
through the constants like |̂ | in (82)). The first two terms written in (82) are

sufficient to calculate this integral for

and

j ' J

the results being respectively

n—\ i
1 and

This calculation gives agreement with the formulae from [6]. To calculate the inte-
gral over An for a higher operator Φm one has to take into account higher contribu-
tions to (81), it would be nice to find these primary operators among those described
in [24].

Let us now explain why the reduction of the degree of polynomials is possible.

The formula for f0 is composed of one-fold integrals of the type

c j=\

One can reduce the degree of the polynomial L(A ) using the following circumstance.
Due to the fact that the function ψ(A,B) satisfies Eq. (33),

the polynomials of the form

L(A) = M(A)U (Bj+A)- qM(Aq) l[(Bj-A)^Q (83)
J J

for any polynomial M(A). Here L(A) ~ 0 means that L(A) produces zero when
substituted into the integral. This allows for any given polynomial L(A) to find such
a polynomial L'(A) such that L(A) ~ L'(A) and deg(Z/) ^ 2n - 1. To do that one
has to find a polynomial M(A) such that

L(A)=M(A)U(Bj+A)-qM(Aq)ll(Bj-A)+L'(A)
J j

with deg(//) ^ 2 ^ — 1 . This is always possible by induction.
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10. Appendix D: A Semi-Classical Limit

We start with

7=1

We recall the obvious formula

11=1 ^ /ι=0

<& - -(/(O) + /(TV)) + 0( A) .
Δ 0 Z

Using this formula we find

π o 2

The integral defines an analytical function of A in the plane with a cut which
is a semi-circle from B to —B in the upper half plane. Remark that for A = 0,
this integral is real and its value is πlog#. To proceed, we perform some formal
manipulations on the integral. We have

π A ΛΛ

] log(B - Ae~ix)dx = i / log(B + A)—
0 -A A

A JΛ -A ΛΛ
= i / log(B +A)— - / / log(5 + A)—

0 Λ 0 ^

where the last term has been added to normalize the function by its value at
^4 = 0, thereby fixing the ambiguities of the formal manipulations. Putting every-
thing together, we get

Bv Γ v A

P. fB-A\ dAΓ .v A (B-A\ dA]
exp — i- logl —P L *i *\B+A) A \

which is the result quoted in the text.

11. Appendix E: A Proof of the Quantum Separation of Variables

Before proving the separation of variables in the quantum theory, we present a proof

for the formula of the generating function T (u) = ̂ ku
k^n\ As it is defined

in (52), the quantum τ-function satisfies the following recursion relation:

Pn:, (84)
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where

The double dots : : mean writing the P's on the right. In the classical limit q — » 1
this is equivalent to the relation (8).

Let ̂  be the operators defined in Eq. (51) in the n solitons case. By conven-

tion we set: ̂ (Λ) = 3~(n\P\A) and ̂  = 0 for k < 0 or k > n. From Eq. (84),
we deduce a recursion relation for the 3Γk;

< -̂ _ arn—\ qrn~ p __
^k ~^k ~r ^k ^ / i " Γ / z j f c - i ~ k-\

where

_. I Γf v
— I 11 Jnj " " ' ^

Summing up Eqs.(85) and defining f(n~λ\u) = ̂  uk^k

(n'l) and f(n~l\u) =
λ\ we get

= f <-'>(„) + f<-')(«)pB 0

Comparing with the recursion relation (84) satisfied by the quantum τ-function
SΓ(P\A) proves the result quoted in Eq. (53).

Furthermore, the hermiticity properties of the quantum τ-function τ(P\A) implies:

n ^ ^ 1 _ tίA
t =Γ(«)t = Π (1 + uAj)<r(qP(u)\A\ with Pj(u) =

j=l i

We can use the generating function T(u) to write the commutativity relation
(55) in an alternative form:

ft (1 + uAj)(l + vAj

- (1 + H)(l + "40 f(q?(u)\A) . (86)
7=1

Let us now give a proof of the quantum separation of variables. Assume that we
are acting on the quantum hamiltonian /4 with a wave function *F(α|/?), Eq. (57),
satisfying the difference equation (58). Since the momenta operators Pj have been
ordered to the right in the definition of the quantum τ-functions, this wave function
will be an eigenfunction with eigenvalue o^(B) if the following relation is true:

P(n}\A} = Fk

(n\P(n">\A) (87)
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(88)

Recall that we define the Hamiltonians using P1 = (—l)nP. In Eq. (87) we used
the same notation for the quantum operator &~(n\P'\A) and the c-number function
obtained by inserting the values (88) of the momenta operators Pj. We recall that

the functions &£n\P\A) are defined by:

. (89)
ί\ </2 <ljfc

Once the specific values (88) of the momenta have been plugged into Eq. (87),
this is an identity between two rational functions in the variables A and B. Both
the l.h.s. and the r.h.s. of (87) are symmetric functions in A and B. They only
have simple poles at qAj + Bk = 0 and Aj = Ak, the former comes from P^ and
the latter from y^. Due to their behavior at infinity, to prove Eq. (87) it is enough
to check that these rational functions have the same residues at their poles and that
they are equal at specific points. By symmetry it is enough to check the residues
at qAn -f Bn = 0 and An = An-\, and the values at the point An = Bn. We shall do
it by induction assuming that the identity (87) is true up to n — 1 (it is of course
true for n — 1).

i) Consider first the residue at qAn + Bn = 0. This pole is associated to Pn .
To compute the residues of both sides of Eq. (87) we may use the recursion relation
(84). Using the fact that:

= /f~υ, for j =

the recursion relation (87) implies:

-1 Π

Similarly applying the recursion relation to the rhs, but distinguishing whether An

is a marked point in the sum (89) or not, we get:

Π j n

n π

Comparing these formula gives the equality of the residues by the induction
hypothesis.
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ii) Consider the residues at An = An-\. They are both vanishing, and therefore
equal. The proof of the vanishing of the rhs residue is similar to the proof of
vanishing of the Ihs residue, so we shall only present the latter. The potential pole
at An = An_\ is associated to y n > Λ _ι. Therefore, its residue may be computed by
using twice the recursion relation (84). We get

= const.

This vanishes since we have

p(«)| _ p(Ό IΓn \An=An-ι — Γ

n-\\An=An-\

iii) Consider now the value of the functions at the point An — Bn. At this point

we have P ( n } = 0 and:

yjnP^\An=Bn=P}n-l\ fσrj=l,...9n-l.

Therefore, the recursion relation (84) yields to

for the left-hand side and,

for the right-hand side. It clearly appears that they are equal by the induction hy-
pothesis.

Collecting the points i) to iii) proves the quantum separation of variables.
The classical formula corresponds to the case q — 1.
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