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Abstract: This paper is a continuation of [5]. We consider the Euclidean massless
free field on a box V^ of volume Nd with 0-boundary condition; that is the centered
Gaussian field with covariances given by the Green function of the simple random
walk on Ίίd, d ^ 3, killed as it exits V^. We show that the probability, that all the
spins are positive in the box VN decays exponentially at a surface rate Nd~l. This
is in contrast with the rate Nd~2logN for the infinite field of [5].

1. Introduction

The object of this paper is to analyze the asymptotical behavior of a Gibbsian
Gaussian field, under the condition that the variables are positive in a large finite
box. These asymptotics play an important role in the construction of droplets on a
"hard surface", cf. [1, 6, 10], and in related questions dealing with quasi-locality,
cf. [7], and entropic repulsion [7, 11].

More precisely, let A = [-1, l]d be the unit box in R^ and set VN = NΛ Π Zd.
Next consider the Gaussian field P^ on ΩN = 1R^ with density with respect to the
Lebesgue measure λ^(dX) = Π/ePV < (̂0 °f the form

(i.i)

where Z/v is a normalizing constant, Qd(i9j) = ^/l|z-y|=ι ^s the transition matrix of

the simple random walk on TLd , and we set X(j) = 0 for j ^ VN. Thus the spins are
"tied down" at the boundary of V^. P^ can be viewed as the finite Gibbs distribution
on ΩN to the nearest neighbor quadratic interaction

with 0-boundary conditions on V^. We will be working in the transient dimensions
d ^ 3; then P^ converges weakly to P0, the infinite Gibbs distribution, sometimes
called (discrete) Euclidean massless free field. PQ is the centered Gaussian field on
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j/d
Ω = R with covariance matrix G, the Green function of the simple random walk
in Zrf, cf. [8].

Let
Ω+ = {X G ΩN:X(k) ^ 0, k G VN} .

In a previous paper with E. Bolthausen and O. Zeitouni, we have shown,

(L2)

where G = lim^oo^^O)2] = E°[X(Q)2] and C' = capRrf(yl) is the Newtonian
capacity of A in R/*, cf. [5]. The presence of the logTV factor in the exponent, is
best explained by the fact that, under the "hard wall" condition Ωχ9 the spins are
repelled to the height y^G log N as N -> oo, cf. Prop. 1.3 of [5] or (1.6) below.

In this paper we replace the infinite Gibbs measure P° by the finite Gibbs
measure P^ in (1.2). In particular we describe the effect of the 0-boundary condition
on the entropic repulsion. We differentiate between two regimes, depending whether
one looks

inside the box, i.e. far from the boundary: Ω^N for some δ G (0, 1) , (1.3)

up to the boundary: Ω^ . (1.4)

In the first regime (1.3), we have a convergence very similar to (1.2):

where C(δ) = capA(δA) is the Newtonian capacity of δA = [— δ, δ]d in A, cf.
Theorem 2.2 below, and the same entropic repulsion as in [5]:

lim sup P°N(X(k) ^ ^alogN\Ω+)
N-*°°kevδN

= lim sup P°N(X(k) ^ v/MogTV | Ω+) = 0 , (1.6)

for each a < 4G < b and δ G (0,1).
Note that C(δ) = O((\ — δ)~l) as δ | 1, so that we expect a faster decay for

δ = 1. This is due to the 0-boundary condition, which makes it less likely for the
variable to be positive. In fact, in the second regime (1.4), we have a surface order
which can be interpreted as a purely boundary effect: let d/, V^ = VN \ VN-L = {k E
VN : dist(*, F£) < L}, and set

dLΩ+ = {X G ΩN:X(i) ^ 0, / G dLVN} ,

then we show in our main result, Theorem 4.1,

JUS, W=i tog^(Pί) = Jim ̂  ̂  log^^flj) = - ίd Λet), (1.7)

where κQ(et) is a certain "surface tension" in the direction of the /th unit vector et

in 1RΛ
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The major tool in the derivation of (1.7) is the following interpolation in the
"intermediate regime": let {L^,N G N} be a monotone increasing sequence with
2 ^ LN and lim^f^^ ^ = 0, then

LN

= - -

cf. Prop. 2.5 and 2.9. In fact, we can show that, under the condition Ω^, we have at

distance L/y from the boundary of VN an entropic repulsion of the order O( >/log LN ).
The rest of the paper is divided into 4 sections. Section 2 gives a proof of (1.5)

and (1.8). Our main tool is the random walk representation of the covariance of
P^j and a conditioning argument. In Sect. 3 we prove the entropic repulsion (1.6),
here the argument is based on the FKG property of the conditional field P^( |Ω#).
Section 4 deals with the convergence (1.7) in the boundary regime. Finally, the
Appendix contains some useful estimates for the random walk.

Before concluding, let us state two important remarks. First it should be noted
that the above results can be easily generalized to arbitrary finite range interactions
Q and fixed boundary conditions a G Ω, cf. [5, 1]. That is, in the definition (1.1)
of Pχ9 we can replace Q& by the positive finite range matrix Q of an irreducible
symmetric random walk on Zd and set X(k) = α(A ), k ^ V^ In particular, using
monotonicity one can show that, for any log-tempered a G Ω, (1.5) and (1.6) hold
with the same constants1 C(δ) and G, cf. Remark 2.4. Also (1.7) is true for any
constant boundary condition a(k) = a G IR, k G TLά ', with fc°(e/) replaced by the
corresponding κa(βi).

Second, much of what we have discussed above holds with some modifica-
tions for the recurrent dimension d = 2. The main difference here is the logarithmic
divergence of the variance G^(0, 0) = O(logTV) as N — > oo. This of course implies
that the infinite measure P° does not exist. We will treat this case in a separate paper
with E. Bolthausen. In particular, we show that the boundary behavior (1.7) is the
same as for d ^ 3, however, in the interior of the box, we have a (log N)2 -decay.
More precisely, we show in [4], for each δ G (0, 1),

-2GC(<5) £ lim inf

(log N)

where C(δ) = capΛ(δA) as above, and G = li

2. The Behavior Inside the Box

In this section we give a proof of (1.5) and (1.8). Our main tool is the random walk
representation of the covariance matrix of P^: Let {ξn : n G NO = N U {0}} be the
simple random walk in 7Ld generated by gd We denote by Fz and E/ the probability

!Of course, in case Q + Qd, the constant C(<S) has to be adapted to the corresponding capacity, cf. [3]
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and expectation for the walk with start at / G TLd . Let τN = inf {n G N0 : ξn ^ VN]
be the first exit time of F#, then the covariance of P^ is given by

= GN(iJ) =
/ι=o

cf. Appendix of [3]. Let G(iJ) = E/E^o lj(£n)]> ij ^ %d, be the Green function
of the discrete Laplacian, then, for each δ G (0, 1 ),

lim Gu(iJ) = G(iJ) uniformly on VSN (2.1)
N— +00

This implies the weak convergence liniA^oo PN = PQ, where P°, the infinite Gibbs
state, is the centered Gaussian field with covariance G.

Let us fix some notation: cι,C2,c3,... G R+ are generic constants which do not
depend on N or L^9 but are not necessarily the same at different occurrences. Also
for A C ΊLd we write

Ω+(Λ) = {X G Ω : X(k) ^ 0, k G A} .

Our first result is the proof of

Theorem 2.2. Let δ G (0, 1), then

where

C(δ) = capΛ(δΛ) = inf j -̂

is the Newtonian capacity2 of δA in A.

Proof. The proof follows exactly the argument of [5], so that we don't go into
details and rather concentrate on the identification of the new constant C(δ) =
capA(δA), which is alternatively given by

C(δ) = sup{2 (0, lδA)A - (φlδA,<δA(lδΛφ))A : Φ e C(Λ)} ,

where ( 9 )A is the scalar product in L2(A) and (5Aφ(x) — JAQA(X,y)Φ(y)dy,
is the Green operator associated with the brownian motion, killed as it exits A,
cf. [1].

We start with the lower bound

1 , w,,^ , ^ -2GC(δ).
rd~2\ogN

A glance at the proof of [5], shows that the only two new ingredients are, the
uniform convergence (2.1), and the convergence of the relative entropy:

<">

2//0

1(yl) is the usual Sobolev space
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here HVδN(P$N) \P^) is the relative entropy of P$N} with respect to P^ restricted to

the box VSN and PN is tne Gaussian field on ΩN with covariance GN and constant

mean E$N\X(k)] = a(N) = ^a log TV, k G VN, for some a G R+. In order to prove
(2.3), first note the identity

where GΛΓ?($ is the covariance matrix G^ restricted to V^N, G^\ the inverse of

and { - , )VN is the scalar product in £2(VN\ cf. [3]. Next, (lvδN9G^l

δlyδN)VN =
capyN(V$N) is the capacity of V^ in F)v with respect to the simple random walk,
and using the same argument as in the proof of Lemma 2.2 of [3], one shows the
convergence

which yields (2.3). As far as the upper bound is concerned:

-

one again uses the convergence (2.1) and the fact that, for each / G Cb(Λ), with
/*(*) = fWN), k € VN,

lim N-d-2(fN,GNfN)VN = (f,<&Λf)Λ ,
N— >00

cf. [1]. Now the result follows from the equality

C((5) = sup < -r - ' Λ — -— : h piece wise constant on a uniform grid> . D
l(hlδA,^Λ(hlδΛ))A )

Remark 2.4. Note that we do not use explicitly the geometry of VN or V$N in
the above argument. Also, using monotonicity, we could consider any log-tempered

boundary condition a G Ωιog = {a G Ω : lim^^^ ^L = 0}. Thus, let Γ, A be two

bounded open domains of IR^ with piecewise smooth boundaries. Set

ΓN=NΓΠ TLd, AN=NAΠ Έd and P°Aff = P\ \X(k) - a(k\ k $ ΛN).

Then if Γ C A with dist(Γ,Λc) > 0,

= -2GcaPyl(Γ),
\ogN

where cap^(Γ) = inf ί ̂ | |VA||J2 ( y l ) : h G H$(Λ)9 h ̂  1Γ| is the capacity of Γ in A.

Our next step is the upper bound in the intermediate regime.

Proposition 2.5. Let ^j- \ 0 with LN ^ 2, then

LN
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Proof. Let WN = WN(LN) = {k G VN : LN ^ dist(&, F£) ^ 2LN}, denote by 0$
the odd points of WN and by W^ the even points in the interior of WN. Let J^ =
σ{JΓ(A:) : k G J^} be the sigma algebra generated by the odd points. By the Markov
property of P^, conditioned upon J ,̂ me {X(k\k ^ ^vl are independent Gaussian
with variance 1 and mean X(k) = ]Γ\ Q&(kJ)X(j\ cf. [3]. Thus

Π

where
1

i-* /2 = (2π)-1/2 / g-' /2 Λ ^ — e~x /2, (2.6)

For given /w = m(LN) ^ 2, let IN = {k &:X(k) ^ m] and set ^w = {X '•
I . Then

τr°ZN Π {ι- =4

g (1 - 0(w)) +

For the first term, we have, in view of (2.6), the a priori estimate

-cιNd'lLN-
m

(2.7)

On ί2+(^)Πv4L we have

/
^ ^ 2") ^ exp ί -*<*) ^ , with

since S&

N is centered Gaussian. Set S^ = τ£ηΣkewe ^(*0> ^en' since

conditional expectation of ^Γ(A:), var(5^) ^ var(/S^) with

var(^) =

cf. (A.3) below. This yields

1
Σ GN(iJ)^

(2.8)
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In view of (2.7) and (2.8) we may choose m(LN) = ^alog(LN) for some 0 < a < 2
and conclude the proof. D

We now turn to the proof of the lower bound in the intermediate regime:

Proposition 2.9. Let ^ \ 0 with LN ^ 2, then there exists a constant K < oo
such that

Proof. It will be enough to prove the existence of K' < oo such that

liminf ff logP°N(Ω+(WN(LN))) ^ -K'. (2.10)
a l

Namely, once (2.10) is proved, we can cover V(N-LN) with {WN(2^LN\£ =
0,...,/max}, Cax ^ - log(LN/N)/ log 2. Then by FKG property, for large N,

P°N(X(k) ^ Q,k G V(N-LN})^ UP°N(X(k) ^ 0, k G

-KNd

for some AT < oo. In order to prove (2.10), we use a conditioning argument, which
is quite different from the proof of the lower bound of [5]: For given LN and ε > 0
let

ΛN(ε) = * : ^ dist(^, ̂ ) g n [βZ ]Zrf ,

\ ΛN(εl and set

^(7) = P*(&. = y; τε < τ^), y G ^(ε), t G WN ,

where τε = inf {« G NO : ̂  G yl^(ε)}. Note that

C^Nd~l

|̂ (8)| g^-— . (2.11)
fc ^7V

In the Appendix (Lemma A. 9), we show that one can choose ε > 0 independently
of N, such that

inf F*(τβ < T*) = inf Σ ^0') ^ \ - (2-12)

Let ^^(ε) = σ{X(j), j G ̂ (fi)} Then, conditioned upon &ΛN(B), {χ(k}> k G WN}
is a Gaussian field with positive covariance and conditional mean
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Thus for given m = m(Lx) ^ 2,

X(j) ^ m, j G

In view of (2.11) and (2.12), we have on {X(j) ^ mj G Λ#(ε)}, by the FKG
property and the fact that var(JT(A;) | J%(ε)) ^ GN(k,k) ^ G, k G fΓ#,

Π (1 - Φ(X(k)/VG))

1 ^ exp(-c2N
d-lLNe-m2/*G).

Also, again by FKG, (2.11) and GN(jJ) ^ IJ G ^(ε),

P°N(X(j) ^ mj G ΛN(ε» ^ Π Wy) ^ ^) ^ exp -

Thus

-

^ ̂and choosing m(LN) = ^blogLN for some b > 16G yields (2.10). D

Remark 2.13. For m > 0 and a G Ώ, consider the measure P ?̂ on £2^ given by

:-^yexp \~ £

where Zβ is a normalizing constant. Then, for each tempered

a G Ωf = \X G Ω : lim \k\~e\a(k}\ < oo, for some ε > 0 i ,
I |£|->oo J

PX converges weakly as TV —> oo to the centered Gaussian measure P^ with

covariance G(m) — (1 + m)~λ Σ^o (^ + m)~"δd' called Euclidean free field with
positive mass m. In this case the fixed boundary condition plays no role, in particular,
one shows that, for each δ G (0,1),

for some K(m) > 0, cf. Sect. 3 of [5].

3. The Entropic Repulsion

The aim of this section is to prove the entropic repulsion (1.6). The crucial step in
the proof will be the following FKG property of Pχ( Ω^):

Lemma 3.1. Let 0φ V C W c VN, then, for all k G V and a > 0,

^ a Ω+(F)) ^ P»N(X(k) ^ a \ Ω+(W)). (3.2)
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Moreover
Pfv(X(k) ^ a I Ω+(V)) ^ P*w(X(k) ^ a \ Ω+(7)) , (3.3)

where V = {k G TLd : dist(k, V) ^ 1} and P°w = P°N( \X(k) = 0, k G VN \ W\

Proof. Note that Ω+(W) = Ω+(V) Π Ω+(W \ K). Thus, since (3.2) is equivalent
with

P°N({X(k) ^a}nΩ+(W\ V)

^ P°N(X(k) ^ a Ω+(V))P°N(Ω+(W \ V) \

it suffices to show that P^( | Ω+(V)) is positively correlated. We use a simple
approximation argument: for β > 0, define

where ZN(β) is a normalizing constant. Then for each β > 0, by Theorem 1.3 of

[9], cf. also Sect. 10.6 of this paper, we know that P^N is positively correlated.
Moreover, with respect to the weak convergence, we have

This implies (3.2). As for (3.3), let dV — V\V and note that, by continuity and
the Markov property,

^ a I β+<7)) = Pw(X(k) ^ ^ I Ω+(V\ X(j) ^ 0, j e dV)

= \imPQ

w(X(k) ^ a \ Ω+(V\ X(j) ^ ε, j e dV) .
ε\0

Thus in order to prove (3.3), it suffices to show, for all ε > 0,

P°w(X(k) ^ a Ω+(V\X(j) ^ ε, j G dV) ^ PQ

w(X(k) ^ a \ Ω+(V)) .

This is equivalent with

P°w(X(k) ^ a,X(j) ^ε,jedV\ Ω+(V)}

^ P°w(X(k) ^ a I Ω+(V))P»w(X(j) ^ ε, j G dV \ Ω+(V)) ,

and follows from the positive correlations of the measure P^( | Ω+(V)\ D

Remark 3.4. Note that the FKG property of the conditional field P^( | Ω^), which
was implicitly used in Sect. 4 of [5], does not follow immediately from the positive
correlations of the original field P^, since Ω+(V) is not a cylinder set.

We now turn to the entropic repulsion, first inside the box:

Proposition 3.5. Let δ G (0, 1 ) and a < 4G < b, then

lim sup P%f(X(k) ^

= lim sup P$f(X(k) ^ ^blogN\Ω+) = 0 .
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Proof. Let b > 4G, then, in view of (3.3),

sup P%(X(k) ^ ^blo&N\ΩU) g sup P°(X(k) ^

where the RHS converges to 0 as N —> oo by Prop. 1.3 of [5]. Next, let a < 4G
and k G VδN, then, by (3.2), for each δ < δ' < 1,

Now using Theorem 2.2 and precisely the same argument as in Sect. 4 of [5]
(noticing in particular, that the height of the entropic repulsion in [5] depends on
G only and not on the capacity C'), one shows that

lim sup P%(X(k) ^ Ω+N) = 0. D

be the "interior" of WN(LN\Next for δ G (0,1), let WNίδ(LN) = Uti WN,t
where

W^δ(LN) = {k£ WN(LN} : \kj\ ^ δN, j^i} . (3.6)

Proposition 3.7. Let ^j- \ 0 and lim^-^oo LN = oo, then there exist two constants
0 < b ^ B < oo swc/i ί/zαί, /or α// ^ G (0,1),

Jiim^ sup P°N(X(k) ^ ^/b\ogLN \ β+) - 0 (3.8)

and

Our first step in the proof of (3.8) is the following

Lemma 3.10. Let LW = ' ^W ^e ^e empirical measure of

(3.9)

WN(LN}, then there exist b1 > 0, such that, for all ε G (0, 1),

lim P L p r O , ^lo/^] ̂  ε Ω+) = 0 .

First note that by (3.2),

ε ^ ε | Ω+(WN)) .

(3.11)

We follow the argument of the proof of Prop. 4.1 of [5]: let W^ be the even

elements of WN, X(k) = ΣjQ*(WU) and
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be the corresponding empirical measures. Then, in view of the proof of Theorem 2.2
above, we can choose b' > 0 such that

P°N(Lw*N[Q^b'logLN] ^ ε;

for some c2 > 0. Thus, by Prop. 2.9,

lim P£(L^e[0,
N -+00 N

Next, we use the fact that, for each ε7 > 0,

1 , π / 1
lim sup \X(k)-X(k)\ ^εVlogljv

in order to conclude

lim P%(LW*[0, v/6'logLΛτ] ^ ε | Ω+(^v)) = 0 , (3.12)
TV—>oo ^

cf. Proof of (4.2) in [5]. Now the result follows from (3.11), (3.12) and

^ε/2}

^ β/2} . D

Proof of 3.8. It is enough to show, for each ί = 1,..., d and <5 G (0,1),

lim sup Pχ(X(k) ^ ^b\ogLN \ Ω^) = 0 .

Define Λ1

N = {f G Έd : |/7 | < δN/ΛJ*i, \^\ < LN/4}, VN = Γ\t€Λ*(VN + ^). Then,

for each * G W1

N^(LN\ Λ?N(k) = Λ^ + k c VN with dist(^(*), V^) ^ LN/4 for
large N. A simple modification of the above lemma shows that there is b > 0, such
that for each ε > 0,

where P°N = P^γ and Ω^ = Ω+(VN). On the other hand, by (3.3) for each { G A^,

PQ

N(X(k) g

~o

Thus, taking the average over Λ1

N yields

P°N(X(k) ^

for all ε e (0,1), and (3.8) follows from (3.13). D
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Proof of 3.9. For k <= WN(LN), let ί e {!,...,</} be such that N -2LN ^ |£, | ^

ΛΓ - LJV. Set yϊ^ = {ί e Zrf : ̂  = 0, \ίj rg Λ/4,yΦϊ}, ί/* = U/e^(^ + O and

^ = UφΊsi^Λr + /)• By (3.3) we have, for each f € Λ'N,

E°N[X(k) I β+] =E°(¥N+f)[X(k + /) I Ω+(VN + O] ^ E°UN[X(k + O \ Ω+(UN)}

^E°UN(X(k + f } Ω*(UN)] = E°N[X(k + £} I Ω(

+

w_iw)] ,

where P°N = P°ΰ and £(V£jv) = Ω+(^) Thus

E°N[X(k) Ω+] ^4[5 λ flj,.^)] (3.14)

with Sτι {1r. = -4rτ Σ/c >r ' X(k + ̂ )- F°r each α > 0, we have the relative entropyΛN(K) \Λ N\ *-^f<^ΛN

bound

cf. Lemma 4.7 of [5]. That is, taking the optimal α > 0,

In the Appendix, we show that

~ ~o
where GN is the covariance associated with PN, cf. (A.3). Also, in view of

Prop. 2.9 above, we can find K < oo, such that

Now, (3.9) follows from (3.14), (3.15) and (3.16). D

4. Behavior at the Boundary

In this section we study the behavior of the conditional field P^( | Ω^) close to the
boundary of VN. In order to formulate the main result, it will be useful to move the
boundary of V^ to the origin. Thus, let ez denote the /th unit vector in IR^ and write

-i = -ei9 i=l,...,d. Next, let Zf = {k e TLd : k et < 0}, P''° = P°( \X(k) =
f) and

ffLVN = {k e ΊLd : -L - 1 ̂  k βi < 0, \kj \ ^ N, j Φ/} .

Theorem 4.1. For each i — —d, ...,d and L G IN the following limits^

lim -ĵ  \ogPl'°(Ω+(d[VN)) = -κ°L(eι) with 0 < κ°(e,) = lim κ°L(e,) < oo ,
^ a i —L

3Actually, κ°(βι) does not depend on i, since Q& is isotropic
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exist. Moreover
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The proof of (4.2) requires some additional notation. Let V1

N — {k G TLd : —2N —
1 5Ξ k el < 0, \kj ^ N,iή=j}. Next, consider the centered Gaussian field P °̂ =

P°( - |*(*) = <UΦ F£) with covariances Gj^J) = E l̂o lj(ξ»)]> where τj, =
inf {n ^ 0 : ξn $ VN} Then jP^° converges weakly to P/>0, the centered Gaussian
field with covariance

τ'

Σ:
n=0

, where τ'' = inf{« ^ 0 : ξn $ X?} .

The main step in the proof of (4.2), is to show that we can replace P^ by P1'0:

Lemma 4.3. For each L G N, we have

I d 1
liminf —j—^ logPχ(dιΩχ) ^ J^ liminf—-^ (4-4)

N-+OO
E limsup -

/=— rf N-+OO W
(4.5)

Proof. Set d[ VN = {k G dL VN : N - L ^ et k g TV}, then

), and, by FKG and shift invariance, we have

Π

and (4.4) will follow from

-Γ-.r logPl^(Ω+(dlτ FTV)) ^ limi
Γβ 1 *-* J V ^ \ ^ - " X X A Γ log P''° ^ )) , (4.6)

for each i = —d, ...,d. For fixed δ e (0, 1 ), we have by FKG,

£ <U e W \

Thus, it suffices to show (4.6) with d/,Ω^+ replaced by <3/,Ω^, for each fixed

δ G (0,1). Let Fl

NtL(X) = P

pi°0

(^2 dLvι

δN> men

?

 for each p,q > 1 with I//? + 1/0 = 1,

we have by Holder's inequality
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In order to verify (4.6), it is enough to prove that, for each q > 1,

l™ sup τ^zγ log \\F^L\\L,(poi} = 0 . (4.8)
N—too IV

Let Gl

Nδ and Gl

δ denote the covariance matrices of P1^ and P1^ restricted to the

box dLVl

δN, then

*') = det(/ +

where / is the identity on the box 8ιVδN and RN = G1

N δ(Gl

δ)~l —I. Set \\RN\\ =
SUP*;Σ/ Rκ(k^)\. Then we will show in the Appendix (Lemma A.6) that, for
each fixed L G R+ and δ G (0, 1),

\\mJ\G^δ-Gl

δ\\=0 and IKG^Π ^ 2, \ \ ( G l

δ Γ [ \ \ ^ 2 . (4.9)

Therefore lim^oo \\RN\\ = 0. Thus, if {λj(N)9 j = l,...,£maχ} C R, with kmax =
\SιVδN\ denote the eigenvalues of the matrix RN, then as max/ | λi(N) \ ̂  | |^W||? we

see from the above, for N large enough with \\RN\\ < V^? that

I . J Λmax J #max

7=]

<

which yields (4.8).
We now turn to the upper bound (4.5), which will follow from

limsup-]ΓΓlogpθ(aiΩ+,)^ £ lim sup -̂  logP°fί

i(Ω+(di

LVδN)) , (4.10)
TV— >oo ™ i——d N-+OO IV

for each fixed δ G (0,1): Once (4.10) is proved, we can proceed as above using

(4.7) and (4.8), interchanging the roles of Plff and Pl'°. Note that for /φy' and large
N ^ 2L,

^ c2δN . (4.11)

Also using the estimate (A.2) in the Appendix one shows the existence of a constant
cs < ex) such that for all R ̂  2L,

sup Σ GN(k,j) ^ c 3 - . (4.12)

In view of (4.9), (4.11) and (4.12), we can then apply the hypercontractive estimate
derived in the proof of Prop. A. 18 of [5] and get

i=-d , =1

where liniΛΓ-^oo p(c20N) = 1. This implies (4.10) and concludes the proof. D
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Lemma 4.13. For each L E IR+ and i — —d, . . . , d, we have

TV— κx>
liminf - - p logpO 'CΩ+^l^)) = limsup -

— >

Proof. We use a simple subadditive argument: Take, for example / — d. For M =
(Ml9...,Md-ι)€Nd-1 let

dd
LVM = {k G TLd : -L - 1 ̂  kd < 0, 0 ^ ^ ^ MJ9 j = 1, . . . ,d - 1} .

Then by the FKG property and stationarity of Pd'Q, we have

where M,M' and M + M7 satisfy (M + M')j = Mj + My' for some l^j^d-l

and M - M[ = (M + M'\ for /Φj. That is, M -> - log^^Ω+ίSf KM)) is subad-
ditive in each coordinate Mj, j = l,...,d — 1, and therefore the limit

exists. D

Proof of (4.2). By Lemmas 4.3 and 4.13, we know that for each fixed L G N,

Also κ°(e, ) is increasing in Z with 0 < κ°(e/) ^ κϋ

L(et) ^ K < oo, cf. Prop. 2.9.
This implies lim^^ (c°(e,) = /c°(e,) e (0,oo). Trivially we have

limsup logpo (β+) ^

On the other hand by FKG,

where, by Prop. 2.9,

This shows

I d d
liminf —j^ l o g P χ ( Ω χ ) ^ — lim Σ κ:?(^) = ~ Σ κ^(ei) ?

and concludes the proof. D

Remark 4.14. Note that we can view Pl'Q as a Gaussian field on ί2z = (Rz )z ,
invariant under the shift on TLd~λ. Set P^L = P °̂( | Ω+(dί

LVN)\ Then, in view of
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(3.2) and (3.9) we have

lim
N->OO

for some constant c < oo and thus {Plχ+

L ' N ^ L G N} is tight. Using the mono-
tonicity (3.3), or a Gibbsian characterization, we can then show the weak conver-
gence on Ωf

lim lim PJ+L =r +, (4.15)
L— KX) TV— > oo '

for some Pl'+, stationary with respect to the shift on TLd~λ .

Remark 4.16. Let ω G S^"1 be a unit vector and set Zd

ω = {k e Έd : ω A: < 0},

d£K# = {A: G Z* : -L - 1 g ^c ω < 0, A: e/ 1 g TV, j = l,...,d - 1},

where (ω,βι,...,ej_ι) is an orthonormal basis of R^. Next, for fixed α G 1R, let
pω,α _ pα^ . |jf(y) = α,y φ Z^,), then using the same arguments as above, one shows
that the limits

exist and do not depend on the choice of the basis {^ι,...,^_ι}. Moreover

0 < inf κα(ω) < sup κα(ω) < oo .
-

Next consider a bounded open domain A in RJ with polygonal boundary

dΛ = \jf=ldiΛ and set ΛN =NΛΓ\Zd. Then a simple modification of the proof
of Theorem 4.1 yields

where wz is the unit normal of d/Λ. and |δ/yl| is the area.
Note that in the derivation of the above limit, one uses explicitly the fact that the

pieces of boundary diΛ are flat in the above argument. In particular a generalization
as suggested by D. loffe:

^™o W^ logP^(0+(^)) = -/ κ\nx)dx ,

where Λ is an open domain of IR^ with piecewise smooth boundary is not imme-
diate.
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5. Appendix

The object of this Appendix is to derive some useful estimates for the covari-
ance matrices, based on the random walk representation. The basic estimate is the
following

Lemma A.I. There exists a constant c\ < oo, such that for all kj G dLVN,

i ί \ k - j \ <
\k-j\ ^ 2L.

c (iri\< - - ,GN(k,j) ^ < (A.2)
2 -

In particular,
sup £ GN(k,j) ^ c2L

2 . (A.3)

Proof. First note that GN(kJ) ^ G(kJ), where

lim
(α —

cf. Sect. 26 of [12]. This shows (A.2) for \k - j\ < 2L. Next take kj with |£ -y| ^
2L. As above, let us move the boundary of VN to the origin. Thus suppose that
kj G dd

LVN with -L — \ ^ jd ^ kd < 0. Then, by the reflection principle,

Gd

N(kJ) ^ Gd(kJ) ^ Gd(kfJ) = G(k',j) - G(k'J) , (A.4)

where k1 = (*ι, . . .,kd-ιjd)9 j = (yΊ, . . . ,y</_ι, -jd). We claim that

limsup \k' -j\dGd(k'j) ^ c3\jd\
2 . (A.5)

\k'-j\-+oo

This will imply the second inequality in (A.2). In order to prove (A.5), we
use harmonic analysis as in Sect. 7 of [12]: let gd(0) = ik * ° =

cos(2jdθd))ψ(θ)dθ

where ψ(θ) = \ and A = \k' — j\. Thus, by (A.4) and rotation invariance

4d\id\2 \θd\2

limsmAdGί(k'n ^ J .i ί e~ίθll--^dθ < oo .

Finally, (A.3) follows from (A.2). D
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Next, recall the definitions of Gl

Nδ and Gl

δ: the covariance matrices of P °̂ and

P/)0 restricted to the box d^Vw, cf. Proof of Lemma 4.3.

Lemma A.6. For each fixed L > 0 and δ G (0,1) we have

lim |
TV—»oo

Moreover
;£2,

(A.7)

(A.8)

Proof. Using the random walk representation, we have

Σ \Gi(k,j)-G'N(kJ)\=]

Thus, by the strong Markov property of the random walk and (A.3),

Σ
Λ=τ»+

Σ Gί

N(k,j)-Gί(k,j)\=Έk Σ

lim sup Wk(τN < τ^) = 0 .

This implies (A. 7), since

Next note that {/X^,)-1/},,^ and (f9(&0T
lf)&Lvm,f e /2(5i^), are the

Dirichlet forms associated with the simple random walk embedded in the box
dl

LV$w and killed as it exits V1

N and Zf respectively. That is, if τ=inf{« ^ 1 :
ξn e 5[F^}, then (G^^Γ1^*) = (GjΓ'ί*,*) - 1 and, for y Φ*,

f =y;τ

Therefore

Σ

which shows (A.8). D

Finally, let us prove that a random walk starting at distance LN from the bound-
ary of the box FTV, is more likely to get trapped in a sub-lattice of mesh L%d

9 before
it exits VN. More precisely

Lemma A.9. Let ΔN = [Lχd], and set

ΛN(ε) =

Let τε = inf{« G NO : ζn €
such that

Γψ:f S

ε)}, then we can choose ε > 0 independently of N,

inf ^k(τε < T A T ) ^ j . (A. 10)
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Proof. Let ΪN = inf {« ^ 0 : dist(ξn, V^) $ [f , ̂ ]}, then

Vk(τN £ τβ) ^ P*(?tf ^ τ([β4y])) ^ Vk(τN ^ εL2

N) + Pk(τ([εAN]) ^ sL2

N) .

Note that sup^^^Py^T/v ^ ε^ίv) converges to 0 as ε \ 0, uniformly in N. On
the other hand by (A.8) of [3],

sup P*(τ([εz^]) ^ εL2

N) ^ exp -ci " ^ = expί-ciε1^) . D

Acknowledgements. Special thanks are due to Erwin Bolthausen for valuable suggestions. In par-
ticular, the idea of the conditioning argument in Prop. 2.9 is due to him.
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