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Abstract: This paper considers the relation between the periodic KdV hierarchy and
the limit of the periodic Toda hierarchies. By choosing the initial data of the Toda
flows in a canonical way, the behavior of a certain Toda flow can mimic KdV flows.
Conjecturally, a method of deforming the KdV hierarchy is given.

McKean and Trubowitz [2] showed that the theory of the KdV equation

~dtg(X'^ = diέg(X'^ ~ 6g("X'^~dx^'^

is intimately related to the geometry of a related hyperelliptic curve of infinite genus,
the Bloch spectrum $gt of the operator

d2

Lgt-Ψ^ —2\l/(x) + #(

where gt = g(x,t). As was known classically, &Sgt is independent of t, when g(x,t)
evolves according to the KdV equation. Our purpose in this paper is to develop a
theory of finite difference operators and their Bloch spectra and isospectral flows
which mimics the KdV theory. The basic idea of this paper is to use the theory of
the periodic Toda chain of length TV. Here again, the periodic Toda chain can be
understood in terms of a finite genus hyperelliptic curve and isospectral deforma-
tions, as van Moerbeke discovered. For instance, see [3]. So one would like to see
what the relation of the Toda hierarchy is to the KdV hierarchy, how the conserved
quantities are related and so forth. A start on these matters has been obtained by
Toda in [4]. In this paper, the idea is that if we choose the initial data for the
periodic Toda chain very carefully, then the evolution of this data under the various
equations of the Toda hierarchy looks similar to the evolution of / under the KdV
hierarchy. Given /, we will find a canonical choice of the initial data of the Toda
equations so that the flow of this initial data under the Toda hierarchy looks like
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the flow of / under the KdV hierarchy, at least to high accuracy. This choice will
be given by an asymptotic series in N~l. The main result of this paper is the for-
mulation and partial verification of the conjecture given below. The method studied
here also gives a way of producing analytically approximate solutions to the Toda
chain hierarchy, at least conjecturally. My motivation is to use this case as a model
for constructing finite genus models for the KP hierarchy, which I have studied
in [1]. I also hope to use these methods to develop discrete models of the sine-
Gordon equation, the non-linear Schrόdinger equation and other infinite dimensional
integrable systems that are related to isospectral flows. At the end of this paper, I
discuss using the methods developed in this paper to construct a finite difference
equation to numerically solve the KdV equation. This finite difference equation has
many conserved quantities. A different approach to deforming the KdV hierarchy
can be found in E. Frenkel, Deformations of the KdV hierarchy and related solίton
equations, IMRN, 1996, 2, pp. 55-76.

We first review the KdV hierarchy from an isospectral point of view. Let T be
the translation operator defined on real valued functions on R by

Let # be the set of functions g so that g is analytic on R and T(g) = g, i.e. g is
periodic with period 1. If g G #, then we can define an operator

on the space of infinitely differentiable functions ψ on R. We define the Bloch
spectrum £8g of Lg to be the set of (λ, α) G C x C* so that there is a non-zero
function \j/ with Lg(\l/) = λφ and T(ψ) = oίψ. The KdV hierarchy is a sequence of
non-linear differential operators Dl , \ %> — > # so that for any / if we have an analytic
function g(x,t) and we define gt(x) to be g(x,t) and

then 3Λgt is independent of t.
The Toda hierarchy is quite similar to the KdV hierarchy. Let us fix a positive

integer N. If A : Z — > C, then we can again define the translation operator T by
T(A)(n) = A(n + N). Let <VN be the set of (A,B) with T(A) = A and T(B) = B.
Given (A9B) G %y, we can form an operator on the space of all functions ψ : Z — > C
by

We define the Bloch spectrum 08(A,B) of ^(A,B) to be the set of (/ί,α) G C x C* so
that there is a non-zero function ψ with L(A,B)(Ψ) — λψ and T(\l/) = on//. Then there
is a sequence of non-linear difference operators Di^(A,B) and D2,k(A,B) so that if
At and Bt are in ΉN and ^(w) and ^^(w) are differentiable functions of t and we
have ,

^ , . ^ . « .

and
_ d

2,k( t, t) - faί

then $(At,Bt) is independent of t.
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The Toda hierarchy can be defined in the following way: We first inductively
define a sequence of complex valued functions 4 on Z as follows: We take 4 = 0
for / < 0 and db = 1. We also take 4(0) = 0 and finally

The first Toda equation is defined by

and
D2λ(A,B)(n) = B(n)(A(n) - A(n -

To define the £th member of the Toda hierarchy (k > 1 ), we define a sequence of
functions fl£-ι, ,flo by descending induction on p by

k-l

ap(n) = 4-/>O + *) - dk-P(n) - Σ ar(n)dr-p(n + r) .
r=/H-l

We define
A,*(Λ,£)(/ι) - (*ι(*)*(/ι + 1) - B(n)aλ(n - 1))7V

and
D2,k(A,B)(n) = B(n)(a,(n) - aQ(n - l))N .

The numbers di(N) are conserved quantities of the flow. If necessary, we denote
di(N) by di(N,A,B\l

Given g G #, our question is whether it is possible to find N and (A,B) e ^W
so that the Toda flows with initial data A and B look like the KdV flows for g and
so that $g looks like $A,B Rather than define precisely what we mean by looks

1 While it is not necessary for the rest of the paper, here is the algebro-geometric interpretation of
the Toda lattice equations above. The curve £$A,B is a double cover of the λ line. It can be compactified
by adding two points P and Q over λ — oo and λ~l — z is a parameter at these two points. Further,
the function α has a pole of order N at P and a zero of order N at Q. Let h(z) — αz^, regarded as a
function of z in a neighborhood of P. To simplify notation, let's assume that /z(0) — 1. If A and B are
generic with /z(0) = 1, then given a generic effective divisor D of degree g, the genus of &A,B> we can
find unique functions sn in L(D + n(P — Q)) so that the top coefficient of the Laurent expansion of sn

is one. Thus SQ = 1 and s(N) = α. We define 4(«) to be the zth Taylor coefficient of z"sn at P. Thus
(%(N) is the ith Taylor coefficient of h(z) expanded as a power series in z. In particular, di(N) does not
depend on Z), but only on the curve &A,B It is an easy consequence of Riemann—Roch that sn, sn+\,
sn-\, and λsn satisfy a linear relation, which turns out to be of the form

λsn -f- Sn+ι = ApSn + #£>•?«-! ,

where AD and BD are functions which depend only on the linear equivalence class of D. Further, there is
a divisor DQ so that ADO is the original A and BDO is the original B. It is easy to find a recursive formula
for the di(n) in terms of the AD and BD We can map the curve &A,B t° the Jacobian Jg of &A,B by
y( c) — DQ + P — x. The derivative of j at P is an element of the tangent space of Jg at DO, which can
be extended to a translation invariant vector field on Jg. The first Toda equation is just the derivatives
of the functions AD and BD as functions on Jg with respect to this translation invariant vector field. The
higher Toda equations come in a similar way. Instead of using the tangent vector to J(&A,B), one uses
vectors in the higher osculating subspaces of J(&A,B) at P. The calculation of the Toda equations from
this point of view is essentially worked out in [1, Sect. 3]. The Toda equations are the case M = 1 of
that paper. The paper shows how to calculate the third Toda equation, but the other Toda equations are
similarly worked out.
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like, we will just try to solve the problem through a series of attempts. We first
define

1
S=N

We will use this notation consistently throughout the paper. We first consider the
problem of making 38AtB look like 38 g. We try the following:

A(n) = 2 + ε2g(εn)

and
B(n) = -l.

Suppose that Lg(ψ) = λψ and T(ψ) = αi/f so that (A,α) G 38 g. Define φ(n) = ψ(nε).
Plugging this A and B into

-φ(n + l)+A(n)φ(n) + B(n)φ(n - 1)
L(A,B}(φ)(n) = - 2 -

o

and using Taylor's theorem to expand ψ(ε(n + k)) around εn, we see that

d2

g(εn)ψ(εn) + O(ε) .

Since Lg(ψ) = λψ, we have

and Γ(</>) = αc/>. Thus (/> is an approximate eigenfunction of LA,B and T. It is at least
plausible that there is a true eigenfunction φε of LA)B and Γ with LA,B(φε) = λεφε

and T(φB) = aεφε and
lim (λe,αe) = (λ,α).

Λ^^ oo

Conversely, if λ is fixed and N is large, it is reasonable to assume that if we have
(A, α) G &N, then there are points of 38 g nearby. Thus &g looks like 38A,B with this
choice of (A,B). More precisely, we conjecture that if K is any constant and

we can make the two sets SK Π ̂  and SK Π ̂ ,5 be as close together as we want
by making N large.

The problem with this approach is that the above choice of A and B is somewhat
arbitrary. If we let

and

B(n) = -1 + ε

the same argument shows that 38 g looks like ,̂5 with this choice of (A,B). How-
ever, the first conserved quantity

Σ A(k) = 2N + εf \g(x} + q(x) dx + O(ε2)
k=0 0 Z
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depends on our choice of q. That is, we know what A + B is to order ε3, but we do
not know how to define A and B. But the conserved quantities depend on A and B,
not just on A + B. So given g, we want to have a canonical choice of A and B in
terms of g. Then we can hope that the conserved quantities of the A and B will just
depend on g. However, we want this canonical choice of A and B to be in some
sense invariant under the various Toda flows.

We will first concentrate on the first Toda equation:

and
D2,ι(A,B)(n) = B(n)(A(n)-A(n -

Let us consider two functions ft(x) = f(x9t) and ht(x) — h(x,t). Set

At(n) = 2 + ε2(/0, 0 + h(εn, 0)

and

Bt(ή) = -1 + έ(f(εn,t) - A(fiM))

and assume that /(jc,0) = g(x)/2. With this choice of A and B, &g still looks like
the Bloch spectrum attached to AQ and BQ. In general, &2ft looks like $At,Bt Let's
consider the equations

and

That is we ask that At(n) and Bt(n) be approximate solutions to the Toda flow
problem. This means that $At,Bt presumably do not move much as t changes and
hence J*2/, also does not change much with t. Plugging in and using Taylor's
theorem, we get

jt(f + h)(m) = -^(/ - A)(fi/ι) + 0(ε)

and

jt(f - h)(εn) = -^(/ + K)(en) + O(ε) .

So if / and h are going to produce solutions to the Toda flow that are even
approximately correct, then we should ask that

(f + h)(x, t) = - (/ - *)(*, 0

and

Obviously, we cannot achieve this by taking / = Λ, which corresponds to the case
of 5 = — 1 . However, we can take h = 0 and then we do get an approximate solution
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to the Toda flow with the choice

Λ(«) = 2 + e2(/(8B,0) (1)

and
Bt(n) = -l+£

2(f(εn,t)) (2)

with

Equations (1) and (2) define a canonical choice for A and B in terms of / = g/2
modulo ε3. Of course, this is a rather uninteresting solution.

Equations (1) and (2) only define A and B to order ε3. We next ask if we can
modify (1) and (2) to be canonical to order ε4,

At(n) = 2 + s2f(εn,t) - ε3Φ3(/)(β«,0 (3)

and
Bt(n) = -1 + έf(εn,t) + e3Φ3(/)(fi«,ί) , (4)

where Φs(/) is an unknown polynomial in / and the derivatives of /. We want to
choose Φs(/) in such a way that

^-At = (B(n) - B(n +\)}N + O(ε4)
at

and

Bt = B(n)(A(n) - A(n - l))N + 0(ε4) (5)

for some choices at least of f(x,t). It is not obvious that such a Φ3 should exist.
Using Taylor's theorem to evaluate A(n + /') and B(n + /), we should have

df dΦ3(f) _ df

dt

df

dt dt ~ dx 2dx2

and
.

dt dt - d x 2 d X

2 dx

In particular, adding (6) and (7), we see that f(x,t) should satisfy

. (8)

Now since

~f(x,t) = -^f(X,t) + 0(ε),

we have

d_^ = _d^ndt dx
by using the chain rule to evaluate

dt
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So assuming that (8) holds, then (6) will hold if

dΦ3(f) = 1 d2f

dx 4 dx
2
 '

Thus we can take

Thus if (8) holds and

A
t
(ή) = 2 + ?(f(εn

9
t))-f'

 l

and

5,(fl) = -l+ε
2
(/(εM)) + '

V

then A and B satisfy the Toda equations to order ε4. Next we attempt to continue
this process. That is, we try to find a function

W)

of / and the derivatives of / so that if we define

At(n) = 2 + ε2(/(ε«, f)) - ε3 (- \ %-(en, t)} - ε4Φ4(f)(εn,t) (9)
\ 4 ax j

and

+ ε4Φ4(/)(εM), (10)

then A and B satisfy the Toda equations to order ε5, provided that f(x,t) satisfies
some condition. To find this condition on /, we plug (9) and (10) into

jAt = (B(n) - B(n + l))N + <9(ε5) (11)

and

—Bt = B(n)(A(n) - A(n - l))7V + O(ε5). (12)

Adding (11) and (12), we see that / must satisfy:

Assuming (13) and using the fact that

dΦ4(f)
dt dx

some computation shows that

+ 0(ε),

dΦ4(f) ^ 1 df

dx 4J dx '
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then both (11) and (12) will hold if (13) holds.
When we say that / satisfies (13), we mean that (13) is satisfied in the asymp-

totic sense. More generally, consider the equation

+ + εnΨn(f) + 0(sn+l) , (14)

where the Ψk are polynomials in / and the z-derivatives of /. Of course, it can be
extremely difficult to solve

So instead we try an asymptotic solution of the form

(15)

/(*, 0 = Mx9 0 + fι(x, f + MX, (16)

To solve our problem, substitute (15) into (16) and multiply everything out and
denote the coefficient of εk by Fjt. Then we can easily find fk for k from 0 to n so
that Vk = 0 for k from 0 to n. Indeed, all we have to do is to solve

dfk d

where the L^ are polynomials in the known /o, . . .9fk-ι and their derivatives. Given
initial conditions, we can then easily solve these equations. So an asymptotic solution
in this sense to (13) will solve (11) and (12) to order ε5 for t in any given bounded
region. That is, for any given Γ, there is an integer N and a constant C so that if
n > N, then

and

-At-(B(n)-B(n+l))N

-Bt - B(n)(A(n) - A(n -

<

< Cε5

if \t < T. Of course, these estimates may break down over long time intervals, i.e.
C may depend on T. However, this kind of asymptotic analysis provides a tool for
guessing the behavior of the equations of the Toda hierarchy, although rigorously
connecting the asymptotic analysis and the behavior of the equations is probably
extremely difficult.
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I conjecture that this process of finding Φk can be continued indefinitely. At any
rate suppose we define

4 dx 8 1 9 2 dx3

64 dx

256 dx 512 d

1 d4f(x) 3 d2f(xf 1 d f ( x ) d 3 f ( x )
/ W1536 dx4 2048 ^ 384 dχ

and / satisfies

df _ df(x) ( 1 d^f(x} 1 4Γ(x

dt~ dx +( 24 JX

3 +2J(X) dx

1 dsf(x) 1 2 d f ( x ) 1 d f ( x ) d 2 f ( x )

1920 dx5 16/W dx +32 Λ Λ2

4- _ 4.+ +
28 ^ 128 Λ dx3

dΊf(x) 1 df(xγ 1 d2f(x)d3f(x)

322560 rfx7 128 ώc 1536 dx2 dx3

_ _
3840 dx5 1536

If we define
A,(n) = 2 + ε2(/(ε«,0) - e3Λ(/χβ«,0 (17)

and
B,(n) = -1 +ε(/(ε«,0) + ε/?(/)(ε«,0, (18)

then

- (̂ = -(S(« + 1) - B(n))N

and

-Bt = B(ή)(A(n) -A(n - 1))7V
αί

These computations were carried out using Maple, as is described in the Appendix.
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Next let's consider the second pair of equations in the Toda hierarchy. Actually,
the answer is more comprehensible if we try to solve the equations:

(19)

and

φ2,2 + 2D2,ι )(At,Bt) = jEt + 0(ε9) . (20)

Now define At and Bt by Eqs. (17) and (18). In order for (19) and (20) to hold,
we must have that

ε2f" = (A'2 + 2A'! + ̂ 2'2 + 2Z)2,ι)(^>^) + 0(ε9) .

Plugging in our definition of A and B and using Taylor's theorem many times, we
see we must have

df(x) 1 dsf(x) , 11 <//(*) rfV(*)\ 4

3 c/2/(x) 3 <
64 Jχ2 +64

dΊf(x)

2560 dχ7 64 die 768 dx2 dx3

_ 5 2<Pf(x) 7 df(X)
HX)

64""' dx3 32 dx " ' dx2 32""' dx

, 35 df(x)d4f(xT

Conversely, if (21) is valid and we use (17) and (18) to define A and B, then (19)
and (20) are valid.

Next we repeat this process for the third set of equations in the Toda hierarchy.
Here the result is that if

df _ 5 d*f(X) 15 2 d f ( X ) 1 d5f(X) 5 df(x

dx 16 &5 ^2 rfjc dx2

dΊf(x) 5df(Xγ I55d2f(x)d3f(x)__
192 dx7 4 dx 192 ̂ 2 ^

45 ^3/(^) 85 rf/(x) , / ( * ) 15

d5f(X) "H UJ\Λ)U J \ A ) \ 6

64""' dx5 96
I __ f( \ J V ^ _J_ J V 7 7 V 7 ί c(

"T" ^^/V^^ , 5 + n^ J_ , 4 δ
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and we use (17) and (18) to define A and B, then

(A,3 - 2D l f l + 2Dlf2)(Λ,*,) = *, + 0(ε9) (19)
α/

and

(Z)2,3 - 2/>2fι + 2D2.2XΛ,,*,) - ̂  + <9(ε9) . (20)

Finally, for the fourth Toda equation, we have that

(A,4 + 4DU - 2DU + 2DU)(Λ,S,) - ̂ 4, + 0(ε9) (19)

and

(£>2)4 + 402,1 - 202,2 + 202,3 )XΛ,β/) = 5, + 6>(ε9) (20)

if

64 dx1 8 dx 16 dx2 dx3

35 Λ2^3/(jc) 35 ̂ ( c) d2f(x) 35

7 _ .rfVW 2ldfMd4f(:

This suggests the following conjecture:

Conjecture. There are polynomials Φ*(/) and Ψkj(f) in f and the derivatives
of f so that if

R(f) = Σ

= Σ «

and
Bt(n) = 2 + ε2(/(ε«, 0) + ε3^(/)(ε«, 0

/ satisfies the equation

ί(w) satisfy the /h Tbίfo equations to order ε1^. Further, by
taking suitable linear combinations of the Z}(/), we can produce asymptotic series
whose leading terms in ε are the KdV hierarchy if L is large enough.
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For the rest of the paper, let us assume this conjecture is true. Then we can also
calculate out the conserved quantities asymptotically. First, let's consider d\(N\ the
first conserved quantity. We have

dι(N) = *Σ A(n) .
n=0

By the Euler-Maclaurin summation formula, we have that asymptotically

o

So we can write out the first few terms of the expansion of d\(N):

o

In particular, the following quantity is conserved asymptotically:

Cl = / /(*) dx+^f f(X)
2 dx + -U4 / f(x)3 dx+ .

0 δ 0 ^z 0

Next consider d2(N). We can write

N-l \ 2 N-l N-l

A(n) + Σ BW + Σ Λ(«)2 .
«=o / «=o «=o

Again the Euler-Maclaurin summation formula allows us to calculate each of the
terms as an integral. In order to make the formulas look nicer, we consider the
conserved quantity

Then we have an expansion for C2,

Thus if we solve a given Toda equation asymptotically to high enough order, we
can expect

o

to be conserved to order ε4.
The third conserved quantity is C3 which has the expression:

- —(-16 + 72ε - 56ε2 - 24Clε + 60Clε2 - 36Clε3 + 12Cl2ε2

12ε

+ 18C2ε2 + 2Cl3ε3 + 18C2ε3 - 9ClC2ε3) .
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We have the following expression for C3:

f (-5.

Let's use (19) and (20) to try to find a numerical method for solving KdV. We
first define a(n) = N2(A(n) - 2) and b(n) = N2(B(n} + 1). Then we define

= 2b(k -hi)- 2b(k) - a(h + 1 ) + a(k -

and
= 2a(k) - 2a(k - 1) - b(k + 1) + b(k - 1) ,

F0ίb(k) = b(k + l)a(k) + b(k + l)a(k + 1) - b(k)a(k) - b(k}a(k - 1)

and

Ga,b(k) = -2b(k)a(k) + 2b(k)a(k - 1) + a(k)2 - a(k - I)2 + *(*)*(* + 1)

-b(k)b(k - 1) + (-b(k)a(k)2 + Z?(£)fl(£ - 1)2)/7V2 .

Equations (19) and (20) become

βffl -,
— (t) - ^(L^ftίt) + ε2Fβ,,(£)) (23)

and

^(*) = N(Ma,b(k) + ε2Gα,,^)) . (24)

Let's suppose we have a function f(x) we want to use as initial data for KdV
where / is periodic with period 1. Define c(n) — f(n/N). Then we can mimic (17)
and (18) to define a(n) and b(n) to any desired degree of accuracy in ε. Thus let's
define

So we can approximate the first derivative of / by

Δ(c)-\ι
o

For instance, we could set

φ) = C(n) + -ε2 Δ(C)(Π) - έΔ\c) + - 3 c(«) 2 - ΛΔ\c) (25)
4

and

b(n) = c(n) ε2 ( Δ(c)(n) ε2J3(c) J c(n)2 -\ ε4z!3(c)), (26)

and use these a and b as initial conditions for (23) and (24) to get functions a(n,t)
and b(n,t). We can reasonably expect that
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will remain close to f(n/N,t\ where f(x9t) is a solution to

4 dx3

In fact, this method should be accurate to order ε4. Further, we can expect a whole
series of conserved quantities similar to (22).

There are serious problems in discretizing Eqs. (23) and (24) in time efficiently.
This problem can be seen by setting a(n) = ε2v(n/N) and b(n) = ε2w(n/N). Then
to order ε, we have

s ->£-*=
and

dw _ dv dw

ώ^-2ώc~2ώ^ (28)

So while arbitrary solutions tend to move with speeds on the order of magnitude 1 ,
the special solutions we have constructed with (25) and (26) tend to move with
speed ε2. Thus if one applies some explicit method such as Runge-Kutte, one is
virtually guaranteed that the differencing in time will produce instability if the time
step size is not small with respect to 1 . One can intuitively understand the situation
as follows: Eqs. (23) and (24) define a vector field on the space V of functions
a and b. For most of the a and b coming from smooth data, the vectors in this
field have order of magnitude one. But for the set W of those coming from (25)
and (26), the order of the magnitude of these vectors is ε2. Thus W is almost fixed
by the flow. In fact, W tends to act as a neutral fixed set, so solutions near W
tend to stay near W. A large step size will tend to push away from W9 and as more
steps are taken, the distance from W increases exponentially. In practice, the high
frequencies are most increased and so instability results. I believe that this problem
can be overcome using the Crank-Nicholson method. Given a and b we wish to
find a" and b", the results of propagating a and b using (23) and (24) over a time
step At. We try to solve the equations

= a'(k) - (

and

b(k) + (ΛfX^) + NGa,b(k)) = b'(k) - (

to obtain a Crank-Nicholson approximation a' and b1 to a" and bn '. If we take the
step size small with respect of TV2, then

is small. So in solving for a' and b' in terms of a and b, the non-linear terms are
small and so one should be able to find an algorithm to solve these equations using
some version of Newton's method. At any rate, I tried a rather ad hoc method
which was stable on the examples I tried.
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Appendix

The calculations in this paper were made using the computer algebra system
Maple V, Release 2. Here is an explanation of the functions in this program, fol-
lowed by the program:

• dt is a procedure designed to differentiate g by t, given that

£-*•dt

So dt acts as a derivation of sums, products and exponentials. Further,

d_ά_
dt dx

is replaced by
d_d_

dx dt '

• d(i,n) is di(n). It implements the recursive relation defining the df(n).
• translate produces the Taylor expansion of f(x + nε) to order N.
• R is defined in the main part of this paper.
• aa implements the recursive definition of the Toda equations.
• XZ[p] is £>u and YZ[p] is D2,k
• AA[p] and XX are the derivative of / for that particular Toda equation.
• check[p] checks that the time derivative of B is the same as the derivative cal-

culated using the pth Toda equation.
• The last three lines calculate the various linear combinations of AA[p] to get the

KdV hierarchy.

dt := proc(g,f,h)

local i,n,p;

if type(g,'+') then

P := 0;

n := nops(g)

for i to n do p := p+dt(op(i,g),f,h) od;

RETURN(p)

elif type(g,'*') then

P := 0;

for i to nops(g) do p := p+dt(op(i,g),f,h)/op(i,g) od;

RETURN(expand(g*p))

elif type(g,'**') then

RETURN(op(2,g)*op(l,g)**(op(2,g)-l)*dt(op(l,g),f,h))

elif type(g,function) and op(0,g) = f then RETURN(h)

elif type(g,function) and op(0,g) = diff then

RETURN(diff(dt(op(l,g),f,h),x))

elif type(g,numeric) or g = epi then RETURN(0)

fi

end

d : =

proc(i,n)
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options remember;

if i<0 then RETURN(0)

elif i=0 then RETURN(l)

elif n=0 then RETURN(0)

elif n<0 then RETURN(d(i,n+l)—A(n)*d(i —l,n)—B(n)*d(i—2,n—1))

elif 0<n then RETURN(d(i,n-l)+A(n-l)*d(i-l,n-l)+B(n-l)*d(i-2,n-2))

fi

end

>

translate :=

proc(f,n)

local i,y;

y := f(x); for i to N do y := y+diff (f (x) ,x $ i)*(epi*n)**i/i! od

end;

R : =

proc(x)

— l/4*diff (f (x),x)— l/8*epi*f (x)**2+l/192*diff(f(x),x $ 3)*epi**2+

epi**3*(l/64*f(x)*diff(f(x) ,x $ 2)+l/64*diff (f (x) ,x)**2-l/32*f (x)**3) +
epi**4*( —l/7680*diff (f (x) ,x $ 5)+l/64*f(x)**2*diff(f(x) ,x))+epi**5*(
3/256*dif f (f (x) ,x) **2*f (x) +3/512*f (x) **2*dif f (f (x) , x $ 2) —5/512*
f(x)**4-l/1536*f(x)*diff(f(x),x $ 4)-3/2048*diff (f (x) ,x $ 2)**2-l/384
*di f f ( f (x ) ,x )*d i f f ( f (x ) ,x $ 3))

end

N := 11;
F := proc(x) 2+epi**2*f(x)—epi**3*R(x) end;
G := proc(x) —l+epi**2*f(x)+epi**3*R(x) end;
XZ[1] := B(0)—
YZ[1] :=
for k from 2 to 4 do

aa := proc(p,n)
local r ,X;

X := d (k—p,n+k)—d(k—p,n) ;
for r from p+1 to k—1 do X := X—aa(r,n)*d(r—p,n+r) od;
X

end;
XZ[k] := expand(aa(l,0)*B(l)—aa(l, —1)*B(0));
YZ[k] := expand(B(0)*(aa(0,0)-aa(0,-l)))

od;
A := proc(n) options remember; translate(F,n) end;

B := proc(n) options remember; translate(G,n) end;

for p to 4 do

XX := convert(taylor(l/2*(XZ[p]+YZ[p])/epi**3,epi,12),polynom);

AA[p] := collect(expand(XX),epi);

YY := taylor (dt(G(x),f ,XX)— YZ[p]/epi,epi,9)

YY := collect(expand(YY),epi);

check[p] := YY;

print(p,check[p])

od;



Toda Hierarchy and the KdV Hierarchy 603

printlevel := 1;

AA[2] := collect (expand (AA [2] +2*AA[1]), epi);
AA [3] : = collect (expand(AA [3] — 6*AA [1] +2*AA [2] ) , epi)
AA [4] : = collect (expand (AA [4] +20*AA [1] — 6*AA [2] +2*AA [3] ) , epi)
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