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Abstract: In this paper we study the space TM of triangulations of an arbitrary
compact manifold M of dimension greater than or equal to four. This space can
be endowed with the metric defined as the minimal number of bistellar operations
required to transform one of two considered triangulations into the other. Recently,
this space became an object of study in Quantum Gravity because it can be regarded
as a "toy" discrete model of the space of Riemannian structures on M.

Our main result can be informally explained as follows: Let M be either any
compact manifold of dimension greater than four or any compact four-dimensional
manifold from a certain class described in the paper. We prove that for a certain
constant C > 1 depending only on the dimension of M and for all sufficiently large
N the subset TM(N) of TM formed by all triangulations of M with ^ N simplices
can be represented as the union of at least [CN] disjoint non-empty subsets such
that any two of these subsets are "very far" from each other in the metric of 7/ι# As
a corollary, we show that for any functional from a very wide class of functionals
on TM the number of its "deep" local minima in TM{N) grows at least exponentially
with N, when N —> oo.

0. Introduction

Let M be a compact PL-manifold, TM be the (discrete) set of all triangulations of
M. (By a "triangulation of M" we mean in this paper a simplicial complex such that
its space is PL-homeomorphic to M. We do not distinguish between simplicially
isomorphic triangulations and regard them as identical.) There are many ways to
introduce a natural metric on TM For example, the results of Pachner imply that
any triangulation of M can be transformed into any other triangulation of M by
a finite sequence of bistellar operations ([P1,P2]). (A bistellar operation can be
defined as follows. Let n denote the dimension of M. Consider a subcomplex K
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of the considered triangulation of M with the following property: K is simplicially
isomorphic to a subcomplex of the boundary of the standard (n -f 1 )-dimensional
simplex Λn+λ which consists of k /7-dimensional simplices and all their faces, where
& E {1,2,. ,« + 1} A bistellar operation consists of removing this subcomplex K
from the triangulation and replacing it by the complementary subcomplex of the
boundary of Δn+λ containing all remaining w-dimensional simplices and their faces )
Therefore one can define the distance between two triangulations of M as the mini-
mal number of bistellar operations required to transform one of them into the other
Thus, TM becomes a metric space. (Alternatively, one can use, for example, the
Alexander simple transformations ([A]) instead of bistellar operations to introduce
a metric on TM ) Let TM(N) denote the set of all triangulations of M with not more
than TV simplices. In this paper we prove several quantitative results describing
"bad" properties of geometry of subsets TM(N) of the metric space TM for large TV.
For example, we prove that for any n §; 5 there exists a constant C(ή) > 1 such
that for any compact n-dimensional manifold M and any Turing computable func-
tion Θ(N) (say, [expexp exp(TV)] (TV times)) for all sufficiently large TV there
exist [CN(n)] triangulations T\, ^[cN(n)] °f M with S N simplices such thai
dist(ΓZ5Γ, ) > Θ(N) if iή=j (Corollary 1.2). (However, this result is false without
the assumption about Turing computability of θ. Also, we would like to stress that
C(n) does not depend on 0, although the minimal TV for which such [CN(n)] trian-
gulations exist depends on θ.) Informally, this result implies that for large TV TM{N)
is a union of at least [CN(n)] disjoint non-empty subsets which are "very far" from
each other This result can be generalized for a very wide class of metrics on TM

(see Corollary 13). Some further generalizations of this result (including a general-
ization for a class of four-dimensional manifolds) and related results are described
in Sect 1 In particular, we consider a class of discrete variational problems on TM
and show that these problems have "many" solutions (Theorem 1.5). Our interest
in geometry of TM and in discrete variational problems on this space is partially
motivated by the fact that it can be regarded as a "toy" discrete model of the space
of Riemannian structures of a fixed volume on M (for smooth M) (The idea is
that given a triangulation one can define a singular metric on the manifold assuming
that all one-dimensional simplices are of the same length. This informal approach to
discretization of the space of Riemannian structures is well-known in String Theory
and Quantum Gravity (cf [AM, AJK, J]), where it is called the "dynamical triangu-
lation approach " This approach is a simplified version of the Regge calculus (see
[CMS] and references there) Theorem 1.5 implies that the action functionals con-
sidered in [AM] or [AJK] will have infinitely many "deep" local minima in TM and
the number of these minima among triangulations with ^ TV simplices exponentially
grows with TV ) Thus, it is not surprising that the results of the present paper have
differential-geometric analogues For example, a differential-geometric analogue of
Corollary 1.2 is Conjecture 1.6 in Sect 1 This conjecture describes the geometry
of the sets of Riemannian structures of volume one and injectivity radius greater
than ε on a fixed compact manifold of dimension greater than three, when ε —» 0,
and can be approached using the methods of the present paper (see [N2,N5]).

The method of investigation of TM used in this paper is a quantitative version
of the method used in [ABB and NBA] (and also in a different context in [NO, Nl
and N4], see also [Grl, p 212]) and based on S Novikov's theorem establishing
the algorithmic unrecognizability of the sphere S" for any n ^ 5 This S Novikov
theorem is proven using the algorithmic unsolvability of the triviality problem for
finitely presented groups which, in turn, follows from the algorithmic unsolvability
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of the halting problem for Turing machines. The crucial technical idea of the present
paper is to replace the unsolvability of the halting problem for Turing machines in
the foundation of this approach by Barzdin's result providing an exponential lower
bound for the time-bounded Kolmogorov complexity of the halting problem for a
certain Turing machine. It turns out that this modification leads to much stronger
results. The time-bounded Kolmogorov complexity of an unsolvable decision prob-
lem is, roughly speaking, the minimal amount of an auxiliary oracle information
required to solve the problem for all instances of size ^ N in a time bounded
by a prescribed computable function of N. (This amount is regarded as a func-
tion of N. We assume that there is a natural notion of size of instances of the
problem. The auxiliary information is represented as a binary sequence. Its amount
is just the length of the sequence. Informally, one can imagine that the decision
problem must be solved using a program, say in FORTRAN or PASCAL, where
only integer data type is allowed. This program is supposed to work as follows.
For every N it receives as input data a certain amount of arbitrary auxilliary oracle
information which can be, for example, a partial list of answers for the decision
problem, etc. Then the program must be able to find the answer for the decision
problem for any given instance of size ^ N. Moreover, it must be able to complete
this computation in a time not exceeding a prescribed Turing computable function
of N. A formal definition of time-bounded Kolmogorov complexity will be given
in Sect. 3.) Barzdin ([B]) has shown that there exists a recursively enumerable set
/ C N with the following property. Consider the decision problem P "Whether or
not a given positive integer number is in /?" Let us regard the length L of the
binary expansion of an integer number N (i.e. [log2(7V)] + 1) as its size. Then for
any computable (i.e. recursive) function t(L) for all sufficiently large L the Kol-
mogorov complexity of the decision problem P with time resources bounded by
t(L) is at least ct2

L for a certain positive constant ct (depending on t but not on
N). (That is, one requires at least ct2

L — const bits of oracle information to be able
to solve the problem P for all integer numbers of length ^ L in time not exceeding
t(L)). This result of Barzdin can be used to show that for any Turing computable
function t(N) for all sufficiently large N the Kolmogorov complexity of the prob-
lem of recognition of Sn (or any other compact ^-dimensional manifold M) for
n ^ 5 among triangulations with ^ N simplices in time bounded by t(N) is not
less than const(w)A//constί, where const(«) > 1 is a constant depending only on n
and const, > 0 depends only the time bound t and on the manifold M. To prove
this lower bound one must find an "economical" effective reduction of the halting
problem for Turing machines to the recognition problem for M. This reduction is
provided by Theorem 2.1. Although its proof essentially follows the known proofs
of the unsolvability of the triviality problem for finitely presented groups and of
the S. Novikov theorem, a serious difficulty arises due to the fact that S. Novikov
uses a technique from homology algebra making one of his constructions not very
effective. To overcome this difficulty we provide an explicit and economical (albeit
tedious) construction of a homology sphere such that its fundamental group is the
universal central extension of a prescribed perfect finitely presented group.

Starting from this point our method works as follows. Consider some character-
istic of geometric complexity of TM(N) C TM (for example, the minimal number of
metric balls of radius Θ(N) with centers in TM(N) required to cover TM(N)). Then
we try to prove an upper bound for the Kolmogorov complexity of the problem
of recognition of M with a specific Turing computable time limit in terms of the
chosen geometric complexity exhibiting a specific algorithm "quickly" recognizing
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M using a specific oracle information. For example, we can request from an oracle
a description of a representative from every ball in a collection of balls of radius
Θ(N) with centers in TM(N) covering TM(N). It is not difficult to see (see the proof
of Lemma 3.2) that one can "quickly" recognize M among triangulations with ^ N
simplices using this collection of representatives. Now the juxtaposition of this up-
per bound for the Kolmogorov complexity and of the lower bound following from
the Barzdin result implies a lower bound for the minimal number of balls of radius
Θ(N) required to cover TM(N) (or, more generally, for a considered characteristic
of geometric complexity of TM(N) C TM). A detailed description of this method is
given in Sect. 3.

This technique based on Theorem 2.1 and on the usage of time-bounded
Kolmogorov complexity can be applied to study geometry of various moduli spaces
arising in differential geometry. I discuss some potential applications of this tech-
nique at the end of Sect. 1 (see also [N2,N3,N5]).

1. Main Results

Using the unsolvability of the triviality problem for finitely presented groups (proven
independently by Adyan and M. Rabin, cf. [Mi]) Markov has constructed a trian-
gulation To of some compact 4-dimensional manifold MQ such that there is no
algorithm recognizing whether or not a given triangulation T of a PL-manifold is
combinatorially equivalent to TQ (i.e. the space of TQ is PL-homeomorphic with
MQ). Several years afterwards SP Novikov proved that for any n ^ 5 the sphere
Sn is algorithmically unrecognizable (in particular, in the sense above). His proof
was published in 1974 as ch.10 of the paper [VKF]. His result easily implies that
any compact PL-manifold of dimension ^ 5 is algorithmically unrecognizable (It
is not known whether or not S4 is algorithmically unrecognizable ) In Sect. 2 we
prove a quantitative version of this result of Novikov. Namely, we demonstrate
the existence of an algorithm which for any given n ^ 5, any given compact PL-
manifold M", any recursively enumerable set / C M, presented as the halting set of
a given Turing machine Γ, and any natural number k constructs a triangulation of a
compact PL-manifold Ml such that: 1) Ml is PL-homeomorphic to Mn if and only
if k G /, and 2) The number of «-dimensional simplices in the constructed triangu-
lation does not exceed const(#, T)lnk + \Mn\, where const(n,T) does not depend
on neither k nor Mn and \M" | denotes the number of the /^-dimensional simplices
in the given triangulation of Mn This result then is applied to a study of geometry
of the space of all triangulations of Mn as follows.

Let M be an algorithmically unrecognizable compact PL-manifold (for example,
M can be any compact manifold of dimension greater than four). Then, as it is
known, there is no algorithm which constructs for any given N the list of all
triangulations of M with ^ N simplices of all dimensions (see [ABB and NBA]
for this and related results). (Indeed, assume the opposite. Then it would be possible
to recognize M using the following algorithm* Let T be a given triangulation with
N(T) simplices Construct all triangulations of M with ^ N(T) simplices. Now
we can compare T with all the triangulations on this list checking every time
whether or not T is simplicially isomorphic to the considered triangulation Since it
is clearly possible to check whether or not two simplicial complexes are simplicially
isomorphic (cf [ABB], Proposition 2.16), we have an algorithm recognizing M.
This yields the desired contradiction with the unrecognizability of M.)
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Having this in mind, it is natural to consider algorithms providing for any given
N and any given triangulation 7Ό of a compact PL-manifold M with ^ N simplices
a partial list of triangulations of M with ^ TV simplices and completing this work in
a time bounded by a Turing computable function of N. Formally speaking, the term
algorithm" means in this context a partial recursive function from the product of
N with the set of finite abstract simplicial complexes (regarded as sets of subsets
of the set {l,...,v} of vertices of the simplicial complex) of a fixed dimension
n — dim(M) to the set of finite sets of finite abstract simplicial complexes. The
domain of this function must include all pairs (N, T), where T is a triangulation of
M with ^ N simplices, and, moreover, this function must be Turing computable in a
time bounded by a recursive function of N. The requirement of Turing computability
of this function in a recursive time is not automatically satisfied since, in general,
the set of all simplicial complexes triangulating M is not a recursive subset of
the set of all finite abstract simplicial complexes. However, this requirement will be
automatically satisfied if the algorithm is defined not only for all triangulations of M
but for all finite simplicial complexes of the dimension dim(M) with ^ N simplices
(or even just for all finite simplicial complexes with ^ N simplices triangulating
pseudomanifolds). This will be the case for all specific algorithms, considered in
this paper.

Let A be such an algorithm. For any N we introduce the relation ^A on the set
TM(N) of all triangulations of M with ^ N simplices as follows: T\ ^A T2 if and
only if the triangulation T\ of M is on the list of triangulations of M obtained by
the application of A to T2 and N. The reflexive transitive closure of this relation
denoted by ^A is a quasi-order on TM(N). AS usual, we write T\ =A T2 if and only
if Γi ^A T2 and T2 ^A T\. The relation =A is an equivalence relation on TM(N).
The set TAiM(N) of equivalence classes of this relation is a poset with the order ^A

inherited from TM(N). We conjecture that the number mAiM(N) of minimal elements
of TA,M(N) grows at least exponentially with N for any compact manifold M of
dimension at least four and for any algorithm A. The main result of this paper is
that this conjecture holds in the case when the dimension of M is greater than four
and also for a class of four-dimensional manifolds:

Theorem 1.1.

A. For any n ^ 5 there exists C(n) > 1 such that for any compact n-
dimensional PL-manifold M and any algorithm A there exists NQ(A, M) with the
following property: For any N ^ No(A, M),

mAM(N) > CN(n) .

B. There exists a constant C(4) > 1 and an integer number k such that for
any algorithm A and any compact four-dimensional PL-manifold MQ there exists
NO(A,MQ) with the following property: Let M be the connected sum of MQ and
k copies of S2 x S2. Then for any N ^ N0(A,M$l

Remark 1 We define TM(N) as the set of triangulations of M with ^ N simplices
of all dimensions. Alternatively we could define it as the set of triangulations of M
with ^ N simplices of the maximal dimension and then define the poset TA,M(N)
exactly as it was defined. Theorem 1.1 will remain true in this case with virtually
the same proof.
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Remark 2 Note that many of the results of [ABB] can be interpreted as the state-
ment that for certain algorithms A and for any compact PL-manifold of dimension
^ 5 for all sufficiently large TV ^Λ,M(TV) > 1

The proof of Theorem 1 1 is based on the analysis of time-bounded Kol-
mogorov complexity of the decision problem, "Is a given compact PL-manifold
PL-homeomorphic to M?"

Consider an algorithm A satisfying the following very mild restriction. There
exists an algorithm A~x constructing for a given TV and a given triangulation
T e TM(N) the list of all triangulations T\ e TM{N) such that T is on the list
A(N, T\) (All algorithms considered in this paper satisfy this condition. This condi-
tion holds, for example, when the algorithm A can be applied to arbitrary triangula-
tions (not just triangulations of M) producing triangulations of the same polyhedron,
or when ^ is an equivalence relation. In this last case one can take A~ι = A.)
Consider the algorithm A producing for given T and TV the union of the lists A(N, T)
and A~ι(N, T). (Note that if ^ ^ is symmetric, then^ = ^4.) It is clear that ^A is
an equivalence relation on TM(N), and TM(N) can be represented as the union
of mA-M(N) disjoint equivalence classes with respect to this relation. We will call
these equivalence classes A-simple sets (It is clear that there exists an algorithm
constructing for a given TV and a triangulation T e TM (TV) the A -simple set con-
taining T This observation justifies the name ^-simple sets.) Theorem 1.1 implies
that for all sufficiently large TV the number of ,4-simple sets in the representation
of TM(N) as a union of disjoint non-empty A -simple sets is greater than [CN(n)]
Informally speaking, ^-simple sets (for a fixed algorithm A) can be regarded and
used as an analog of connected components of TM(N) (see Remark 1 after Corol-
lary 1.3 and the proof of Theorem 1 5) Therefore, it is desirable to know more
about general properties of partitions of TM(N) into ^-simple sets. The fact that
one can prove an independent of A asymptotic lower bound on the number of sets
in such partitions (provided by Theorem 1.1) encourages me to ask several further
questions:

What can be said about the possible distributions of sizes of A-simple sets when
TV -> oo?

(This question can be compared with the discussion in Sect. AB\ of [Gr2]. The
question is of interest also for specific algorithms A, for example, for the algorithm
A which for given TV and T produces all triangulations of M with ^ TV simplices
which can be obtained from T by one bistellar operation or, alternatively, by a

sequence of, say, 22 bistellar operations.)

How large is the number LA,M(N) of elements in the maximal A-simple set in

comparison with the number 4f(TV) of all triangulations of M with rg TV simplices?

In particular, is it true that sup^ l imsup^^^ ^'M(N) < 1?

(In other words we ask how large is a part of the set of all triangulations of
M with ^ TV simplices which can be recovered using some fixed algorithm, when
N —> OG? This question is of interest also for Quantum Gravity; see the discussion
at the end of [NBA].)

Now I am going to describe several specific applications of Theorem 1.1 A
class of the algorithms of the considered kind is based on the usage of elementary
moves (or elementary transformations). The most well-known examples of such ele-
mentary moves are the Alexander simple transformations of arbitrary order (see the
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definition in [A, p. 299] or in [G, p. 8], where the Alexander simple transformations
are called "elementary starrings") and their inverses (called in [G] "elementary weld-
ings"). These operations do not change a combinatorial equivalence class of the
simplicial complex. Alexander proved that any two triangulations of a compact PL-
manifold can be transformed one into another by a finite sequence of the Alexander
simple transformations (elementary starrings and weldings) (see [A, Theorem 15.1]
and [G, Theorem 11.17]). Another such set of elementary moves is called "bistellar
operations" or "Pachner's moves" (cf. [P1,P2].) (The definition of the bistellar op-
erations was given in the Introduction above). U. Pachner proved ([P1,P2], see also
[GV]) that any two triangulations of the same compact manifold can be connected
by a sequence of bistellar operations. Given a set of elementary moves and a re-
cursive (i.e. Turing computable) function Θ(N) (say, Θ(N) = NN ) one can define
an algorithm which will apply all possible chains of ^ Θ(N) elementary moves. Its
output is the list of all triangulations with ^ N simplices which can be obtained
in this way. Denote this algorithm in the case when the set of elementary moves
is the set of all bistellar operations for the considered dimension by b̂istellar, θ The
relation ^wsteiisM [s a symmetric relation on TM{N). Hence, the resulting poset
-̂ bisteiiar Θ.AK^) W^ t>e a n antichain and all its elements will be minimal. Being
applied to b̂istellar, Θ Theorem 1.1 A easily implies that:

Corollary 1.2. Let n be greater than four and C(n) > 1 be the constant defined
in Theorem 1.1 A. For any compact PL-manifold M of dimension n and for any
Turing computable function θ there exists NQ with the following property: For any
N ^ No there exists triangulations T\, Γ2,..., T[cN(n)] °fM with not more than N
simplices such that there is no sequence of less than Θ(N) bistellar operations
transforming one of these triangulations to another of these triangulations.

As it was noted in the introduction one can define a metric on TM as the
minimal number of bistellar operations required to transform one of two considered
triangulations of M into the other triangulation. Corollary 1.2 can then be regarded
as a lower bound for the number of balls of radius θ(N)/2 required to cover TM(N).
This version of Corollary 1.2 can be stated for a very general class of metrics
on TM:

Corollary 1.3. Let M be a compact PL-manifold of dimension n ^ 5. Let dist:
TM x TM —> IR be a metric on TM satisfying the following condition: There exists
an algorithm constructing for a given triangulation T of M and given integer
numbers N and K the set of all triangulations S of M with ^ N simplices such
that dist(S, T) ^ K in a time bounded by a recursive function of N, K and the
number of simplices in T. Then for any recursive function θ for all sufficiently
large N the minimal number of metric balls of radius Θ(N) in TM required to
cover TM{N) is not less than [CN(n)\ where C{n) > 1 is the constant defined as
in Theorem 1.1 A.

Indeed, one can immediately prove Corollary 1.3 applying Theorem 1.1 to the
algorithm AάiStf2θ which for any triangulation from TM(N) finds the intersection of
its neighborhood of radius 2Θ(N) (in the metric dist) with TM(N).

Remark 1. One can better understand the geometric meaning of Corollary 1.3
considering the partition of TM(N) as into disjoint y4diSt20-simple sets. The dis-
tance between any two triangulations from different ^dist, 20-simple sets will be
more than 2Θ(N). Thus, informally one can regard these A&sti Q-simple sets as
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connected components of TM(N) Corollary 1.3 says that for large TV there will
be at least [CN(n)] sets in this partition.

Remark 2 The techniques of [NO] and [ABB] immediately imply the following
result explicitly stated (in an equivalent form) in [NBA]: The diameter of TM(N)
in the metric considered in Corollary 1 3 cannot be majorized by any recursive
function of TV This result is much weaker than Corollary 1.3

Another class of algorithms A has the following property The relation ^A de-
fined as above on TM(N) is antisymmetric for any TV. (Thus, the relation —Λ is
trivial, and every equivalence class of —A contains only one triangulation.) For
some non-trivial algorithms A the minimality of a triangulation with respect to ^A

has interesting combinatorial interpretations This suggests the following idea For
a combinatorial property of interest we can try to find an algorithm A such that the
relation ^A on the set TM(N) of all triangulations of M with g TV simplices is
antisymmetric and the minimality of a triangulation with respect to ^A is equiva-
lent to the considered combinatorial property For example, if we are interested in
triangulations which are not rectilinear subdivisions of another triangulation, then
the corresponding algorithm will be the algorithm described in [ABB], finding all
rectilinear subdivisions of a given triangulation of M with ^ TV simplices. Thus,
Theorem 1.1 will immediately imply the existence of infinitely many triangulations
M which are not rectilinear subdivisions of another triangulation for every com-
pact manifold M of dimension ^ 5 (Let us call such triangulations prime. More
formally, (a simplicial isomorphism class of) a (finite) simplicial complex C\ is
called a prime triangulation if there is no simplicial complex C2 with the following
properties1 (a) The number of simplices in C2 is less than the number of simplices
of Q , and (b) There exists geometric realizations of C\ and C2 in an Euclidean
space such that the geometric realization of C\ is a rectilinear subdivision of the
geometric realization of C2.) Actually, it is not difficult to construct explicit exam-
ples of prime triangulations even in the case when the dimension of M is equal
to three (Such a construction can be found, for example, in [Ca]. See also [CH]
for a discussion of related questions. I would like to thank Prof R. Connelly, who
informed me about this construction and pointed out the references ) However, the
described approach permits, for example, to prove the existence of a "large" set of
prime triangulations such that no two of these triangulations can be transformed one
into another by a "not very long" sequence of bistellar operations More precisely,
consider for any Turing computable function Θ an algorithm, which for any given
triangulation of M produces the union of the list of all triangulations of M with
^ TV simplices which can be obtained by not more than θ(N) bistellar operations
and the list of all rectilinear subdivisions of M with ^ TV simplices. We can apply
Theorem 1 1A to this algorithm. As the result we immediately obtain the following
corollary:

Corollary 1.4. Let n be greater than four and C{n) > 1 be the same as in the text
of Theorem 1 1 For any compact n-dimensional PL-manifold M, for any Turing
computable function θ for all sufficiently large TV there exists at least [CN(n)]
prime triangulations of M with ^ N simplices with the following property No
two of these prime triangulations can be transformed one into the other by less
than 0(N) bistellar operations

Observe, that Corollaries 1.2, 14 will remain true for elementary starrings
and weldings instead of bistellar operations One just needs to change the set
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of elementary moves used in the algorithm Aisteiiar,0 Theorem LIB implies that
Corollaries 1.2-1.4 are also true for all compact four-dimensional PL-manifolds rep-
resentable as the connected sum of a PL-manifold and k copies of S2 x S2, where
k is the same number as in Theorem LIB. Note also, that the expression "for all
sufficiently large N..." in the text of Corollaries 1.2, 1.4 has the following meaning:
"there exists a number NQ depending on M and θ such that for any N ^ No..."

We already mentioned in the introduction that TM can be regarded as a discrete
analogue of the space of Riemannian structures on M (for smooth manifolds M).
Moreover, it is used as an easier model for study of the space of Riemannian struc-
tures in some papers in Quantum Gravity (e.g. [AM, AJK, J]). These facts provide
a motivation for a study of variational problems on TM. Let M satisfy the condi-
tions of Theorem 1.1 A or B. Consider the set TM of all triangulations of M as the
metric space with the metric defined as the minimal number of bistellar operations
necessary to transform one of the considered triangulations to another. Alterna-
tively, one can use any other set of elementary moves, for example, the Alexander
simple transformations or, more generally, any metric dist satisfying conditions of
Corollary 1.3. Let F : TM —> IR be a functional and θ be a Turing computable func-
tion. We will say that a triangulation T of M is a θ-dίstίnctive local minimum of F
\ΪF(T) ^ F(S) for every triangulation S G TM such that dist(S,Γ) ^ Θ(\T\). (Here
\T\ denotes the number of simplices in Γ.) Similarly, one can define θ-distinctive
local minima and maxima of the restriction of F on the set TM(N). Consider the
algorithm ^dist,0 which finds for any TV and T G TM(N) the intersection of TM(N)
with the ball of radius Θ(N) around T (in the dist metric). Consider the decom-
position of TM(N) into the union of disjoint ^st^-simple sets. Denote these sets
by D\,...,Dι. By virtue of Theorem 1.1 for all sufficiently large N I > CN(n).
Minima of F on sets Dt will be ^-distinctive local minima of the restriction of F
on TM(N). Indeed, let T be a minimum of F on Dj for some /. The definition of A
implies that if dist(5, T) ^ Θ(N) and S G TM(N) then S G Du Hence, in this case
F(S) ^ F(T). Hence for any computable θ for all sufficiently large N the restric-
tion of F on TM(N) has at least [CN(n)] ^-distinctive local minima. Applying a
similar but more sophisticated argument one can prove the following theorem (the
proof will be given at the end of Sect. 3):

Theorem 1.5. For any n ^ 4 there exists a constant C*(«) > 1 with the following
property. Let either n ^ 5 and M be any compact n-dimensίonal manifold, or
n = 4 and M be any compact four-dimensional PL-manifold representable as a
connected sum of a compact PL-manifold and k copies of S2 x S2, where k is the
constant defined in the text of Theorem LIB. Assume that F : TM —> IR satisfies
the following condition: There exists an increasing unbounded Turing computable
function γ(N) ^ N such that for any sufficiently large N, any triangulation T\
of M with ^ y(N) simplices and any triangulation T2 of M with ^ N simplices
F(T2) ^ F(T\). Then for any Turing computable function θ and for all sufficiently
large N the number of θ-distinctive local minima of F (on TM) with ^ N simplices
is not less than [C*(«)y( iv)]. In particular, if for some positive constant const and
for all sufficiently large N y(N) ^ const TV, then there exists a constant C**{n) >
1 such that for all sufficiently large N the number of θ-distinctίve local minima
of F is not less than [C^(n)].

Theorem 1.5 is applicable, for example, to the "regularized action" considered in
some papers in Quantum Gravity (e.g. [AM], formulae (1) and (9)). It implies that
if M satisfies the conditions of Theorem 1.5, then this action has infinitely many
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"deep" local minima and that the number of these minima among the triangulations
of M with :g N simplices grows exponentially with N

As it was mentioned in the introduction, the proof of Theorem 1 1 is based on
the following idea involving the notion of time-bounded Kolmogorov complexity.
Barzdin found a Turing machine τ such that the time-bounded Kolmogorov com-
plexity of the halting problem for this machine for any prescribed Turing computable
time bound t is not less than ct2

L for all sufficiently large L, where a positive con-
stant ct depends on the available time resources and L denotes the length of the
considered inputs for τ (These inputs are binary sequences on the tape.) This re-
sult of Barzdin and Markov's proof of the algorithmic unrecognizability of certain
manifolds imply for compact four-dimensional manifolds satisfying the conditions
of Theorem 1 IB that the time-bounded Kolmogorov complexity of the recognition
problem is bounded from below by an exponentially growing function of the number
of simplices of a given triangulation (Lemma 3 1 (b)) Also, Theorem 2.1 together
with the Barzdin result imply that a similar lower bound for the time-bounded
Kolmogorov complexity of the recognition problem is valid for all compact mani-
folds of dimension greater than four (Lemma 3.1 (a)). On the other hand it is not
difficult to see that if one knows a collection of representatives from all minimal
elements of TA,M(N) then one can construct all triangulations of M with ^ N sim-
plices and, thus, recognize M in the class of all simplicial complexes with rg N
simplices Moreover, this can be done in a time a priori bounded by a computable
function of TV (depending on A). This observation implies an upper bound for the
time-bounded Kolmogorov complexity of the recognition problem linearly depend-
ing on MA,M(N) (Lemma 3 2). The juxtaposition of these two results implies an
exponential lower bound for the number niA,M(N) of minimal elements of TA,M(N)

Now I would like to describe several potential applications of the methods of
this paper in differential geometry As it was noted, the space TM is regarded in
some papers on Quantum Gravity as a discrete analogue of the space of Riemannian
structures (i.e. isometry classes of Riemannian metrics) on M because one can as-
sign for eveiy triangulation T of M the same length to all one-dimensional simplices
of 7, obtaining in such a manner a singular piecewise flat metric on M. We can
choose this length such that the volume of M in this metric will be equal to one.
If the number of simplices in T is equal to N, then the contractability radius of the
resulting metric space is not less than const(«)-χ, where n = dim(M) Thus, in-
formally, for large N TM(N) can be regarded as a discrete analogue of the space of
Riemannian structures on M of volume one and of contractability or injectivity ra-
dius greater than ε, where ε ~ —{̂  is small. The corresponding differential-geometric
analogue of Corollary 1.2 will be the following:

Conjecture 1.6. For any n g: 4 there exists a constant C\(n) > 1 with the fol-
lowing property Let M be a compact smooth differentiable manifold of dimen-
sion n greater than four Let for any positive ε Riemε(M) denote the space of
Riemannian structures on M of volume one and injectivity radius greater than ε
For any Turing computable function θ for all sufficiently small positive ε there ex-
ist [Cf(n)] Riemannian structures from Riemε(M) such that no two of them can
be connected by a continuous path in the space Riemi/^i/^M) of Riemannian
structures of volume one and injectivity radius greater than l/θ([l/έ]) on M

In particular, Conjecture 1 6 implies that Riemε(M) is disconnected and the
number of path connected components grows at least exponentially with ^ , when
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ε goes to zero. Some results in the direction of Conjecture 1.6 are proven in [N2].
I am going to present a proof of Conjecture 1.6 for n ^ 5 in my paper [N5] which
is currently in preparation.

In [Nl] I proved the following theorem (Theorem 5.1 in [Nl], see also
Theorems 5.2 and 4.1): Consider the space of compact C1'1-smooth hypersurfaces in
IR72"^, diffeomorphic to the sphere Sn, where n is any number greater than four. Con-
sider the functional K on this space defined by the formula κ(Σn) = vo\»(Σn)/i(Σn),
where i(Σn) denotes the injectivity radius of the normal exponential map of a hy-
persurface Σn in JR"+1 (or, informally, the maximal radius of a non-selfintersecting
open tube around Sn in R " + 1 ) . Then the set of values of K at its local minima
is unbounded. This result was obtained using the algorithmic unrecognizability of
Sn, n ^ 5. The method of Sect. 3 can be used to obtain a quantitative information
about the distribution of values of K at its local minima.

Another possible application of the technique of the present paper (based on
an analysis of the time-bounded Kolmogorov complexity of a relevant membership
problem) was suggested to me by Prof. M. Gromov. Namely, in [Grl] Gromov
noted that if the fundamental group of a compact Riemannian manifold has an un-
solvable word problem then this manifold has infinitely many geometrically distinct
contractible closed geodesies. In [Gr2, Sect. 5.C, p. 102-103] he asks how one can
estimate the number of contractible closed geodesies of the length ^ x in terms of
the fundamental group π\(M). In [N3] I described the relationship between time-
bounded Kolmogorov complexity of the word problem for the fundamental group
of M and the distribution of lengths of contractible closed geodesies on M. In
particular, if the fundamental group of a compact Riemannian manifold has a suf-
ficiently "logically complicated" word problem, then the number of contractible
closed geodesies of length ^ x grows at least exponentially with x.

2. An Effective Version of the S. Novikov Theorem on Algorithmic
Unrecognizability of 5 Λ , n > 4

The goal of this section is to prove the following theorem:

Theorem 2.1. There exists an algorithm which for any n ^ 5, any compact
PL-manifold M of dimension n {presented by a triangulation), any given Tur-
ing machine T and its input w constructs a triangulation Rτ(w) of a compact
n-dimensίonal manifold Mτ(w) such that:

(i) Mτ(w) is PL-homeomorphic to M if and only if T eventually halts, when
it starts to work on w. If T does not halt with input w, then the fundamental
groups of M and Mτ(w) are not isomorphic.

(ii) There exists cn{T) > 0 depending only on T and n (but not on w and M)
such that the number of simplices in Rχ(w) does not exceed cn(T)(\w\ + 1) + \M\,
where \w\ is the length of w and \M\ is the number of simplices in the given
triangulation of M.

Proof. The theorem is an effective version of S. Novikov's theorem on algorithmic
unrecognizability of the standard sphere Sn, n ^ 5 first published as ch. 10 of [VKF]
(see also the detailed exposition in [N4]).

Observe that it is sufficient to construct the algorithm only for the case when
M — Sn (and is presented by the standard triangulation). In order to get the required
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triangulation Rγ(w) for an arbitrary M we take the connected sum of the given

triangulation of M and the triangulation Rf (w) constructed for the case M = Sn

To describe the algorithm for M = Sn we start from the observation that the
proof of the classical Boone-Novikov theorem stating the unsolvability of the triv-
iality problem for finitely presented groups given in [R] provides for any Turing
machine T and its input w an explicit finite presentation of a group Gj depending
only on T and a word v in Gγ such that (i) v represents the trivial element of Gj
if and only if T eventually halts when it starts to work on w; (ii) the length of v
is bounded from above by c(T)\w\, where c(T) > 0 depends only on T. We also
observe that the proof of the classical Adyan-Rabin theorem stating the unsolvabil-
ity of the triviality problem for finitely presented groups given in [Mi], pp. 13-14
actually gives for any finite presentation of a group G and a word VQ in G an
explicit finite presentation of a group GVQ such that (i) the number of generators
and the number of relations of GVQ depend only on G and the maximal length of
a relation of GUQ is bounded from above by a linear function of the length of VQ,
(ii) GVQ is trivial if and only if v0 represents the trivial element in G. This finite
presentation given by Lemma 3.6 of [Mi] can be described as follows: The set of
generators of GVQ contains all generators of G x\, . ,xqi (q denotes here the number
of generators of G), and also three new generators a,b,c. The set of relations of
GVQ includes all relations of G. Besides that it includes q relations

and the following three relations*

c~]b [ca~\b] = e,

[ba2c~2b~\c]ca~ι = e ,

and
[b,a3c-3][υo,b]b = e,

where for any x, y £ G [x, y] denotes the commutator of x and y. (These relations
are equivalent to the formulae ( l )-(4) on p. 14 of [Mi].) Observe that only the last
of these relations depends on VQ Note, that it is clear from this finite presentation
of GVQ that GVQ is perfect, ie that H\(GVQ) = {0}. Let us apply this construction
to the group G(T) and the word υ (depending on the given input w) discussed
above. Let us denote the resulting group by Gτw. Gγw will be trivial if and only if
T eventually halts, when it starts to work on the input w Below we will need a
slightly different finite presentation of Gτw. Namely, for every generator g of Gγw

we add a new generator g and a relation gg = e Now the inverse of every generator
of GTW will be equal to another generator of Gγw Also, for convenience we prefer
at this stage to redenote all generators of Gγw by / ] , . , / m , where m is the number
of generators in the finite presentation described above.

Another construction we need is a part of S Novikov's proof For every finite
presentation of a perfect group G by generators f\, / £ {1, ,m} and relators
r/5 / G { I . , p} he considers a group G defined as follows G is generated by the
same set of generators /,- Its set of relators includes all commutators [// ?ry], / e
{1, ,m}J ^ {1, , p} and besides that the elements gh ί E {1, ,m} defined
for every / as follows Since G is perfect (and, thus, coincides with [G,G]) every
generator // can be represented as a product of an element gt — \\kr]kι and an
element c, G \F,F\ where F is the free group generated by // It is not difficult
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to see that this group is perfect. Novikov notes that one can prove that H2Φ) is
trivial using homological algebra and shows that the kernel of the obvious surjec-
tive homomorphism G —> G is isomorphic to H2(G). (Both these statements are
consequences of the fact that G is the universal central extension of G; the proofs
can be found in [N4]. We will not need these facts in our proof.) The second
statement implies that G is trivial if and only if G is trivial. Hence, applying this
construction to Gχw

 w e obtain a finite presentation of a perfect group Gjw such
that H2(Gτw) is trivial, and Gτw is trivial if and only if T eventually halts when it
starts to work on w. Moreover, the number of generators and the number of rela-
tions of GTW do not depend on w, and the maximal length of a relator is bounded
from above by const(|w| + 1). Furthermore, the words cz introduced in the defini-
tion of cji can be represented as the product of not more than const commutators
of words in F of length bounded from above by a linear function of \w\. These
facts can be easily seen from the finite presentation of GTw described above. Now,
one performs the Dehn construction to build a compact ^-dimensional manifold
Mτw such that its fundamental group is GJW, its second and (n — 2)-th homology
groups are free abelian and homology groups H^MTW), -,Hn-3(Mτw) are trivial.
To construct this manifold one first takes the connected sum of several copies of
Sι x Sn~ι. Their number must be equal to the number of generators of Gτw> Then
one realizes relators of Gτw by embedded circles and performs the surgeries killing
these generators (i.e. one deletes small tubular neighborhoods of these circles which
are PL-homeomorphic to Sι x Dn~x and attaches instead Sn~2 x D2). The result-
ing manifold will have the required properties. Its second homology group will
be generated by the two-dimensional chains corresponding to the axes of the at-
tached 2-handles corresponding to the relators [furj\ in the presentation of Gτw

described above. The resulting manifold can be triangulated using not more than
const(Γ)(|w| + 1) simplices of dimension n for some constant const(Γ).

A classical result of M. Kervaire ([K]) is that if a finitely presented group
G is perfect and HiiG) is trivial, then for every n ^ 5, G can be realized as a
fundamental group of a smooth ^-dimensional homology sphere. Kervaire's con-
struction (for Gjw) is a part of Novikov's proof. Indeed, by virtue of H. Hopf s
theorem ([H]) the condition H2(GTw) = 0 implies that the Hurewicz homomorphism
%2{MTw) —• H2{MTw) is surjective. Thus, all generators of H2(MTw) can be repre-
sented by PL continuous maps S2 —> Mχw. These maps can be then approximated
by embeddings of S2 to MTw. Note that small neighborhoods of these embedded
2-dimensional spheres will be PL-homeomorphic to S2 x Dn~2. A priori knowledge
that these spheres exist enables one to find them by a trial and error algorithm.
(However, a priori we have no upper bound for the number of simplices required
to represent these spheres.) Then one performs surgeries killing these elements of
π2(Mτw) The result will be a homology sphere Sτw with the fundamental group

GTW NOW the application of S. Smale's h-cobordism theorem completes the proof
of Novikov's theorem.

An analysis of the described construction implies that Theorem 2.1 would
follow from the fact that there exist embedded 2-dimensional spheres realizing
the generators of H2(Mτw) and made of not more than consti(Γ)(|w| + 1) two-
dimensional simplices in a triangulation of Mχw with not more than const-2(Γ)(|w| +
1) simplices.

We are going to prove Theorem 2.1 in a slightly different manner. First, we need
a different finite presentation of GTW We start from the finite presentation of Gψw de-
scribed above. We will call the generators and relators in this finite presentation old
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generators and relators. Let υ G G(T) be the word depending on w and used in the
construction of Gτw Let v = Π/^i/t^ w n e r e s — length(v), fη are some generators
of G(Γ) (and hence of Gγw and Gjw) and ε/ = 1 or —1 Now we introduce new
generators v2, . .,ϋ/ and new relations v2 = f^ f^v^i = v\f\l J G {2, ...,£ — 1}

of GV-u;. Then we change old relators of the type [r, / ] , where r is the last relator
(involving [v,b]) of the finite presentation of GTw described above substituting vs

for v We also change the old relators of the form go replacing words v and v~x

entering g{ by vs and υ~ι. (The words υ and υ~ι can enter gt because gi are prod-
ucts of relators of GTW, and the last relator in the finite presentation of Gyw written
above involves υ.) At last, we add (s — \)p new relators of the form [r,Vj], where
r runs over the set of relators of G^v, Vj runs over the set {v2, . ,ι^} of all new
generators of GYW, and p denotes the number of relations in the finite presentation
of Gγw considered above (These new relations are consequences of old relations of
GTW °f m e form [r, / ] = e, where / are old generators. This can be easily proven
using the identity [w,xj/| = [u,x][u, y][[y,u]9x], valid for any elements u,x,y of any
group.) It is not difficult to see that we got another finite presentation of the same
group GTW The numbers of generators and relators of this finite presentation are
bounded from above by const(|w| + 1) and the length of every relator is bounded
by a constant (not depending on |w|). Note that every generator / of Gγw is repre-
sentable as a product of an element g which is a product of not more than const]
relators and of not more than const2 of commutators [ci,C2], where c\9C2 denote
some words in generators of Gγw and in υ of length not exceeding const3 (Here
const], const2 and const3 are some absolute constants.) This fact immediately fol-
lows from an examination of relations of GτλV written above The lengths of all
elements gt used as some old relators of GYU, became bounded by an absolute
constant, too

Now, as above, we use this finite presentation of Gτw

 t 0 construct a compact
^-dimensional manifold MTw such that π\(Mjw) = Gτw using the Dehn construc-
tion After this manifold is built, we are going to kill by surgeries its second
homology group and to get the desired homology sphere. It is easy to see that
H2(MTw) is freely generated by 2-cells corresponding to relators of GTw of the
form [r, / ] or [r, v], where r are old generators of Gjw and / and υ are old and
new generators of GTw We are going to represent these generators of H2(MTw)
by embedded two-dimensional PL-spheres and then to kill them one by one by
surgeries In order to make sure that we will not need more than const(|w| + 1)
simplices we must ensure that every of these embedded 2-spheres will contain
not more than Const simplices, where Const does not depend on \w\. We are
going to deduce this fact from the following lemma which will be proven later.
(This lemma is a constructive version of the statement that the second homology
group of the universal central extension of a perfect finitely presented group is
trivial )

Lemma 2.2. There exist absolute constants consti, const2 G N with the following
property Let F be the free group freely generated by / i , . .,fm Assume that for
every i G {1, .,m} mι G N and ^,c^i,c^2 £ F are such that

mι

fi = 9ιYl[cm,Cιi2\
l=\

Then for every element r G F and for every i G { l , . . . ,m} there exists a number

^ i ) + length(cd2)) and elements tik e F, j e {1, ,gz}
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such that

( m λ
length(tik) ^ const2 length{r) + Σ{length{dn) + length(cil2)) ,

V ι=\ J
and

[rji\ = [r,0f] ft [\rJ?kfKtik\
ωk ϊ[ Π[Q/i,Q/2]

where fik are generators of F,Sk,δk,ωk are equal {independently) to +1 or — 1.

Now we are going to explain how to represent the generators of H2{Mτw) rep-
resented by cells bounded by loops, corresponding to elements [ry , /,] of the fun-
damental group of Mjw- (Here f\ are old generators of this group, and rj are
old relators.) Consider one such cell C. Applying Lemma 2.2 to the free group
generated by old generators of Gτw for gt = gt and ry = r we can assume with-
out any loss of generality that the boundary of C is the loop corresponding to
the product (in some order) of commutators [ r ; ,^ ] , [ [ Q , ^ ] , ^ ] and not more than
const Y^Lλ {length{cii\) + lengthen)) commutators of the form [[rj,f^]δa,ta]

ωa (as
in Lemma 2.2). (Here and below we denote for brevity Π ^ i f e / i ^ π ] by ct.) We
are going to modify this product representation of [?>//] in order to get rid of
the commutators of the form [[rj,f~ι]δa,ta]

ωa. Recall that for every original gen-
erator fa of Gψw we introduced a new generator ft together with the relation
fa fb = e We can replace f~ι by fb r~b

ι, where rab denotes the relator fa ft,. We
can assume without any loss of generality that fa is one of the original generators
of Gfw and fb is the generator added together with the relation fa fb = e. Since
fb = f~ι rab and fb enters only the relation fafb — e> we can assume that the
element gb in the decomposition of fb is equal to g~λ rab (changing, if necessary,
the finite presentation of GTw)> Substituting fbg^1 %l for f~ι and using identities
(b)-(f) stated in the proof of Lemma 2.2 given below we can rewrite the commuta-
tor [[rj,f~ι]δa,ta]

ωa as a product in some order of the commutator [[rj,fb]δa,ta]
ωa

and several commutators of the form [[glk,rj]Xk

9Sk]Vk, where gk are ga or gb, Kk,
Xk and Vk are independently equal to -f-1 or to — 1, Sk are words of the length
not exceeding const{length{rj) + length{ta) + length{ga)), and const is an absolute
constant. (We refer the reader interested in the details of this computation to the
proof of statement B which is a part of the proof of Lemma 2.2 below. This
proof involves a quite similar computation.) We can regard C as an image of a
continuous map ψ defined on the lower hemisphere S?L of the two-dimensional
sphere S2. We are going to extend φ to the upper hemisphere S+ in such a man-
ner that the resulting map φ : S2 —> MfW will map the fundamental homology class
of S2 to the class represented by C. First, we map S+ onto the wedge of two-
dimensional disks B\,...,Bitj. Their number ltj must be equal to the number of
commutators in the product decomposition of [r/,//], existence of which follows
from Lemma 2.2, modified as described above to get rid of the double commu-
tators involving f~x. Every of these disks will correspond to exactly one of the
commutators [ry , ^ ], [[Q,ry ],£.], [[^*,r /]»,5 i t]

v*, [[rJ9fc]δa

9ta]
ωa {c^aorb). The

part of the boundary of S\ corresponding to one of these commutators will be
mapped to the boundary of the disk, corresponding to the commutator. (Recall,
that dS\ = dS2_ = φ~ι{dC).) These disks then will be mapped into MTw as fol-
lows. The boundary of a disk Bk, {k e {1,...,/*/}), will be mapped to a loop
MTw representing the commutator, corresponding to Bk. (Here and below one must
choose loops, representing various elements of the fundamental group of MJW, in
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the most obvious "economical" way in the 1-skeleton of MTw.) Assume that Bk

corresponds to the commutator [\TJ, fa\
δaJa\

ωa for some a. (The case when Bk

corresponds to [r7 ,gj, or [[C/,r7 ],gJ, or [[#£*, ̂ j]Xk,sk]
Vk] can be treated quite sim-

ilarly.) Assume that Bk lies in the XY-plane. Let us cut it by two vertical lines
parallel to the 7-axis into three parts. Without loss of generality we can assume
that Bk is attached to the wedge of the other disks at a point of intersection of
one of these vertical lines with its boundary The middle of these three parts will
be first projected on a horizontal segment and then mapped onto a loop, repre-
senting tai in Mγw. The remaining two parts are mapped to the 2-dimensional
cell in MTw, bounded by a loop, representing [r y ,/ f l ], with opposite orientations.
(By virtue of our construction of Mγw such a two dimensional cell exists, because
[r; ,/α] is one of the relators of Gτw — π\(Mτw).) It is clear that the so defined
map φ will map the fundamental homology class of S2 to the element of H2(Mτw)
represented by C.

An analysis of the new finite presentation of Gτw easily shows that mz , length
(cud), length{clk2) and length(r) = length(rj) do not exceed a constant indepen-
dent of \w\ As a corollary, we see that the number lη- of disks in the construc-
tion of φ can be regarded as an absolute constant and that the upper bound for
the length of words ίa provided by Lemma 2 2 is bounded by another absolute
constant.

The image of φ will not be, in general, an embedded sphere, but we can make
it simlicially embedded by a small perturbation and a subdivision of the original
triangulation of Mγw A simple analysis shows that the total increase of the number
of simplices due to these perturbations and subdivisions will not exceed constoX
the number of simplices in the image of φ9 where consto is a constant depending
only on the dimension of the manifold. Thus, the total increase of the number of
simplices will not exceed a constant not depending on \w\.

Now we are going to represent by embedded spheres the generators of HjiMγw)
corresponding to relators [r7?ί;7], where ry are old relators and V[ are new genera-
tors (Afterwards we will kill them one by one. The generators, corresponding to
relators of the form [r,vi+\] will be killed only after the generators, corresponding
to relators [r,vt] ) The idea is essentially the same as before Namely, we are going
to complement the map of a disk to Mτw representing a cell bounded by a loop
corresponding to [r;, vt] by a map of another disk with the same boundary to Mγw in
such a manner that the resulting map of S2 would map the fundamental homology
class of S2 to the homology class we are going to kill. We are going to use the
identities

instead of Lemma 2.2. (At the moment when we will be killing the homology
class corresponding to [r7-,t?/+i], the homology class corresponding to \rnvι\ is al-
ready killed and can be regarded as trivial The homology classes corresponding to
[ry , /*/], will be also already killed ) Otherwise the construction is quite similar to
the representation of elements of/^(M^,) corresponding to [r / ?/ z] by embedded
spheres described above. After all the generators of /^(Mnv) are represented by
embedded spheres, we will perform surgeries killing these generators one by one
This completes the proof of Theorem 2 1. D
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Proof of Lemma 2.2. To prove Lemma 2.2 we perform a computation using some
tricks described on p. 49 of [Mn]. We start from the identities

(a) [v,u] = [u,v]~ι ,

(b) [u, vw] = [u, v][u, w][[w, u\ υ],

which are valid for any elements u, v,w of any group. Also, we will need the
following generalization of (b) which can be deduced from (b) using induction:

k

( c ) [U9V\ ...Vk\ — [U,V\] Yl [u,Vi][[Vi9u],V\ ...Vi-\] .
i=2

Now note that identity (b) implies that

where Q denotes Π^ifovijQ/2]- So, we must show that [rj,Ci] can be represented
as the product of not more than const mz commutators of the form [[rj9fl

a]δa,ta]
ωa,

where the lengths of words ta do not exceed the upper bound given in the text of
Lemma 2.2. Using (c) we see that

Π [[rj,[CikuCik2\] \[[Cikucik2l rjl Πfe/i^/72]
k=2 \ L l=\ ]Jk=2

Note that the right-hand side of this formula is the product in some order of mz terms
of the form [^,[^1,^2]] for various k and of mi — 1 terms of the form [[w^ry],^],
where w are words of length not exceeding 2(length(cik\) + length{Cik2)) and w are
words of length not exceeding 2Σ™ι

=ι(length(cik\) + length(cik2)). Now we see that
Lemma 2.2 would follow from the validity of the following two statements:

A. There exist absolute constants Λ̂o and const such that for any y\,y2 € F the
commutator [η, [y\, y2]] can be represented as the product Π ώ H O ' ^ 1 ] 5 * ' ^ ] ^ ?
where δ^ and ω^ are (independently) equal to +1 or to —1 and Zk\,zk2 are words
in generators of F and their inverses such that length(zk\) ^ const(length(y\) +
Iength(y2)\ length(zk2) ^ comt{length(y\) + length(y2) + length(rj)).

B. There exists an absolute constant const such that for any zi,Z2 £ i 7 the
commutators [[rj,z\],z2] and [[zi,r/ ]5Z2] can be represented as products of k ^
constlength(z\) commutators of the form [[rj,faa]δa,ta]

ωa,a£{l,...9k}, where
ta are arbitrary words of length not exceeding const(length(rj) + length(z\) +
length(z2)), and ωa,εa and δa are equal to +1 or to — 1.

First, we are going to prove the statement B. We will prove the existence of
the product decomposition only for the commutator [[/y,zi],z2]. The proof for the

commutator [[zi,r/ ],z2] is similar. Let z\ = Πj[=f ^fi£> where fik are generators
of F and ε^ = 1 or — 1. Note that the identity (c) implies that

length(zx) / Γ jfc-l „

7, f ι l Π i ϊ n f kλ \\f k nλ Π f ι
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Denote the commutators [η, f]\x ], [η, fξ ], [[f'ξ, η\
of this equality by w\, w2i W3,... In these notations

2length(z\)—\

Π

Applying identities (a), (c) and once again (a) we see that

A Nabutovsky

f[n ] , . . . in the right-hand side

[[ri,zιlz2] =
2length(zx)-2

k=\

2length(zχ)-k—\

Π

Denote Π/^i wι The identity (c) implies that

5=1

W2/+1 =

/ - I

S=\

Hence the elements of F represented by the words w^ can be represented by words
of length bounded from above by Λ(length(rj) + length(z\))

Thus, we represented [[Γj,z\],z2] as the product of 4length(z\) — 3 commutators

of the following four types [[rh /J],z2], [[[/J^ΠίΓ/zJα^L [^[[^/J] ,

z2]] and [wyt,[[[/^,r7-], f j^Ij 1/^]'^]] I n o rder to replace triple and quadruple
commutators by double commutators one can use the following identities:

(d)

(e)

= [[r,x],y][[r,xlzyΓ][[r,xlz] ,

],z]] = [u,Ux,rly]][[[x,rly],uz][z,[[x,rly]]

valid for any elements r,x,y,z,u of any group (These identities follow from the
identity (b) above ) These identities can be applied in the obvious way to replace
the triple and quadruple commutators entering the obtained product representation of
[r7,zi],z2] by the double commutators This completes the proof of the statement B.

To prove the statement A formulated above note that it is sufficient to prove the
existence of the product decomposition with the desired properties for [77, [^1,^2]]
[yu[y2,fj]][y2,[rh y^ instead of !>/, [jμi, jμ2]] Applying identities (a) and (b) one
can easily see that

J72][J;1,Λ] (*)

For brevity let us call the words of the form [[rj,z\]ό,z2γ\ (<5,ε = 1 or — 1) allowed.
We are going to show that the right-hand side of (*) can be represented as a product
of several allowed words To achieve this goal we can transform the right-hand side
of (*) permuting terms of the form [r7, v] or [y,Γj], where y can be an arbitrary
word (in particular, y\ or y2), with any word yo and taking into account that the
allowed words of the form [[//,>>], j;o] or [[y, r7], y0] or their inverses also appear
in the expression as the result of the transformation. These allowed commutators
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then also can be permuted with any term in the resulting product because of the
identities (d) and (e) above. (Of course, new commutators of the allowed type arise
as the result of such permutations.) These permutations of commutators in the right-
hand side of (*) are aimed to make the commutators [rj,y\] and [yi,rj], [^,72] and
[yi^j] m the right-hand side of (*) to cancel each other. It is not difficult to exhibit
explicitly a sequence of several such permutations (and reductions) transforming the
right-hand side of (*) into the product of [rjyu y2][y2, yΛyiη, yι][y\, y2][y\y2,rj]
and several allowed words appearing as the result of these transformations. These
allowed words in principle can be written explicitly and their length does not
exceed const(length(y\) + length^) + length(rj)) for a certain absolute constant
const.

Observe that

Thus, to complete the proof of statement B it is sufficient to exhibit a sequence of
several permutations of commutators of the form [η,y] or [y,rj] with arbitrary terms
of the product transforming the product b^jJ'ilb^O'.ViJLVi'.)^] into [yirj,y\\. (Of
course, several allowed commutators will appear as the result of such permutations.
But, as it was noted above, these new allowed commutators can be "moved aside"
of the triple product using appropriate permutations and the identities (d) and (e).)

Note that

[ y 2 , y ι ] [ y i η , y \ ] [ y \ , y i ] = [ y l

a n d

Permuting |>7 , >Ί] with y^x in the first equality and also permuting [η, y{\ first with
y2 and then with [j>2>.yi] in the second equality, we obtain the desired result. This
completes the proof of the statement A and, thus, the lemma. D

3. Algorithmic Information Theory and Proof of Theorem 1.1

Before proving Theorem 1.1 we would like to recall some facts about the
Kolmogorov complexity. The Kolmogorov complexity was introduced independently
by Solomonoff, Kolmogorov and Chaitin. We refer the reader to reviews [ZL,LV],
books [C and M], and paper [D] for discussions of the Kolmogorov complexity.
Here we will use only the notion of Kolmogorov complexity for decision problems.
Informally, this notion can be explained as follows:

Assume that we deal with a decision problem. This can be the problem to find
out whether or not a given Turing machine starting to work with the empty tape will
eventually halt, or the problem whether or not a given abstract simplicial complex
is a triangulation of some given fixed compact PL-manifold. This problem can be
unsolvable. Further, there exists a natural complexity parameter such that when its
value is g N there is only a finite set of the instances of the problem. In the
first example we could regard the number of states of Turing machines as such a
parameter. In the second case the number of simplices can be considered as the
complexity parameter. The unsolvability of these problems implies that there is no
algorithm which for a given N and a given problem instance of complexity ^ N
solves the problem. However, if one is permitted to ask for additional information
(the amount of which can depend on N), then the problem clearly can be solved.
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(The additional information will be regarded as the input data for the algorithm
solving the decision problem). The most obvious way is just to use the list of all
answers as the additional information. Usually, however, one is able to solve the
decision problem using much less information. If the decision problem is solvable
one does not need any additional information at all. Let us regard the minimal
amount of bits of information necessary to solve the decision problem D for all
instances of complexity ^ // as a function K(D,N) of N Furthermore, one can
modify this definition imposing the following restriction on the considered programs:
Let / be a fixed recursive function. One regards as permitted, only programs which
perform ^ λ(N) elementary operations to solve the decision problem for any given
problem instance of complexity rg TV This restriction on the considered programs
can lead (and sometimes leads) to a considerable increase of the minimal amount of
input data required to solve D. Denote the minimal amount of input data required to
solve D for any instance of length rg N performing not more than λ(N) elementary
operations by K{λ\D,N).

The model of computation used here, in principle, can be defined as fol-
lows. Take any programming language of high level (say, FORTRAN or PAS-
CAL) and strip it of all data types except for the integer type. This will
be the language in which it is permitted to write the discussed programs.
The notion of "minimality" of the input data requires the following clarifica-
tion, it is defined only up to a constant. That is, it is possible to show that
there exists a program πo requiring KπQ(D,N) bits of additional input informa-
tion able to solve D for any instance of D of complexity ^ N such that for
any other program π\ the corresponding amount of bits Kπ](D,N) satisfies the
inequality

Kπo(D,N) ^Kπi(D9N) + C(π0,πx)9

where C(πo, τt\) is a constant which does not depend on N (but depends on πo, τc\
and the used model of computations). Thus, it is natural to regard K(D,N) as the
equivalence class of functions with respect to the equivalence relation " ^ " de-
fined as follows: / « g iff 3C such that for any N \f(N) - g(N)\ ^ C. Then
K(D,N) will be a rigorously defined equivalence class Moreover, it will not de-
pend on the choice of a model of computation in a wide class of models (in-
cluding the one considered above and also more traditional models considered in
the references above) The reason is that one can write in one language a fi-
nite program interpreting the commands of another equivalent language So no
new input information will be necessary. Similarly, for any model of computa-
tion p and any recursive function / we can define the equivalence class Kpλ\ϋ,N)
as the equivalence class of the functions of N defined as the minimal number
of bits of additional input information necessary to be able to solve D for all
instances of complexity g TV using a program performing not more than λ(N)
operations.

Now let us be more formal. Following [ZL, M, B] define for any partial recursive
function φ : N 2 —» N and a set M of natural numbers the Kolmogorov complexity
Kφ(M,N) as the minimal number of binary digits of a number p such that for any
natural x ^ TV,

l , ifxeM

If no such p exists we set Kφ(M,N) = +00. It is well-known (cf [M, Theorem 9.2,
p 226], [ZL]) that there exists a partial recursive function R(p,x) such that for any
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other partial recursive function ψ(p,x) and any M,

KR(M,N) ί

where C(R,ψ) is a constant independent of M and N. Intuitively, R can be viewed
as a system of programming, and p as a number, the binary expansion of which
codes both the program and the additional oracle information required to solve for
x the decision problem D: "Is x in M?" Following [M, p. 226], let us describe a
construction of one such R. Let v : N x N -> N be a recursive imbedding function
which has a recursive inverse function and which satisfies the following linear
growth condition in one of its arguments: v(kj) ^ kβ(j\ for all kj and some
function β. For example, we can take v(kj) = (2k — l)2 /'~1. Let μ : N —> N x N
be the inverse function of v. Consider a Gόdel numbering by consecutive integers
of all Turing machines working with two input binary sequences. (To be precise
one can assume that at the beginning of computations one of these sequences is to
the left of the scanning head and another one is to the right of the scanning head.)
The function R(p,x) can be described as follows: Consider μ(p) = (μ\(p),μ2(p)).
R(p,x) is the result of the computation performed by the Turing machine coded by
μ2(p) starting from the inputs μ\(p), x. (Informally, μ\(p) can be interpreted as
the oracle information and x as the data for the considered algorithmic problem.)
If this computation does not stop, then R(p,x) is not defined. Define t(p,x) as the
time required to the Turing machine coded by μ2(p) and starting to work with
inputs μ\(p), x to complete the computation. If this computation does not stop
then we assume that t(p,x) — oo. Let λ9 compl be arbitrary recursive functions.
Assume that compl is increasing. Define KR (M,N) as the minimal length of the
numbers p (written in the binary system) such that for any natural number x such
that compl(x) ^ N

f 1, i f x E M

(a) *(/>,*) = { 0 ; ifχiM ,
(b) t(p,x) S λ(N).

We will call KR \M9N) the time-bounded Kolmogorov complexity or /l-bounded

Kolmogorov complexity. Of course KR (M9N) depends also on the choice of compl.
In the standard definitions of time-bounded Kolmogorov complexity compl(x) = x.
Here we will use mostly compl(x) = length(x) = [Iog2(x)] + 1. Also, when we will
consider the recognition of a PL-manifold problem and x will code a triangulation,
compl(x) will be the number of simplices in this triangulation. (The relationship be-
tween A-bounded Kolmogorov complexities for different choices of compl is entirely
obvious, so the choice of a way to measure complexity of the input is just a matter
of convenience when we discuss decision problems involving complicated objects
coded by numbers.) It is clear that the definition of time-bounded Kolmogorov
complexity is a formalization of the informal definition given at the beginning of
this section and in the introduction. Similarly, one can define very close notions of
Kolmogorov complexity and time-bounded Kolmogorov complexity of finite and
infinite binary sequences. Let m = (mi,...) be a sequence of O's and Γs of the
length at least N. Define the Kolmogorov complexity KR(ΊΠ,N) (resp. A-bounded
Kolmogorov complexity KR

λ\m,N)) as the number of digits in the binary rep-
resentation of the minimal number p such that for all x ^ TV R(p,x) — mx (resp.
R(p^x) = mx and in addition t(p,x) ^ λ(N)). Note that the A-bounded Kolmogorov
complexity of the decision problem "Is x in M?" for compl(x) = x is equal to the
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/-bounded Kolmogorov complexity of the sequence of values of the characteristic
function of M(C N).

Barzdin ([B, Theorem 3]) discovered the existence of a recursively enumerable
set H C N such that for any recursive function / for all sufficiently large TV the
/-bounded Kolmogorov complexity of the recognition problem whether or not k
is an element of H for all k ^ TV (i.e for compl(x) = x) is bounded from below
by -~jτ for some constant c(λ) (depending on / and R but not on TV). If we will
consider the length of the binary expansion of k instead of the number k itself as the
complexity (that is, if we take compl(x) = [Iog2(x)] + 1), then for all sufficiently
large TV,

K£\H9N) ^ 2N/c(λ) . (2)

The left-hand side of (2) is the time-bounded Kolmogorov complexity with time
resources bounded by / of the problem of recognition whether or not k G H for in-
teger numbers k having the binary expansion of length ^ TV A construction of the
characteristic function of such a set H can be found in the proof of Theorem 2.5 in
[ZL]. (A very close result with a similar proof can be found in [D] (Theorem 9).)
More precisely, in [ZL] the authors construct an infinite binary sequence such that.
1) For any recursive / for all sufficiently large N the A-bounded Kolmogorov com-
plexity of this sequence is not less than N/c(λ); and 2) This binary sequence is the
sequence of values of the characteristic function of a recursively enumerable set.

For the sake of completeness we are going to outline a construction of such
an infinite binary sequence (Our exposition follows [ZL, p 97] and [D].) Only
the following two obvious properties of the time-bounded Kolmogorov complexity
are used First, the time-bounded Kolmogorov complexity majorizes the "standard"
Kolmogorov complexity (without restrictions on time) Secondly, there exists an
algorithm computing KR (m,N) for any given TV, any given finite binary sequence
m of length ^ TV and using a given value of /(TV). (Indeed, we can find the minimal
p trying one by one all /?'s For each p we find the Turing machine coded by μi(p)
For every x such that x ^ N we apply this machine to μ\(p), x and wait for the
time /(TV) If for some x the computation does not stop in this time, then we pass
to the next p. Otherwise, we compare the results of computations with numbers
mx. In the case of coincidence we can be sure that we found the minimal p )
As a corollary of these two properties, there exists an algorithm which for every
TV and a partially recursive function λ defined on TV finds a binary sequence of
length ^ N and of the /-bounded Kolmogorov complexity not less than N. (The
existence of such a sequence follows from the fact that there are not more than
2N~] binary sequences m of length N for which there exists p < 2N~ι such that
R(p,x) = mx for all x= l,...,τV.) The required infinite binary sequence can be
now constructed by a diagonalization construction using these finite sequences of
high time-bounded Kolmogorov complexity. Namely, the sequence will consist of
pieces written one after another The length of the zth piece is equal to 2ι. This
piece is filled by O's and Γs as follows Denote the maximal number k such that
2k divides i by k(i) (Observe that for every k the set of j such that k(j) = k forms
an arithmetic progression.) For every j define a partial recursive function λj by the
formula λ}(x) = R(k(j) + l,x) If λ^T) is not defined, then we fill the 7th piece of
the sequence by zeroes. Otherwise, we place in the zth piece the binary sequence
of length 2Z and of /rbounded Kolmogorov complexity ^ 2ι constructed by the
mentioned above algorithm Obviously, the resulting infinite sequence is a sequence
of values of the characteristic function of a recursively enumerable set H Observe,
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that every partial recursive function λ will be among functions λj. Moreover, the set
of j such that λ=λj contains an arithmetic progression. It is not difficult to prove
using this observation that the constructed recursively enumerable set H satisfies
the inequality (2) for every recursive function λ.

Consider a Turing machine τo such that the set of binary expansions of elements
from the set H is precisely the set of inputs for which τ0 halts. Consider the halting
problem for τo (i.e. the problem whether or not for an input binary sequence w τo
starting to work with w will eventually halt.) Obviously, the left-hand side of (2)
can be interpreted as the A-bounded Kolmogorov complexity of the halting problem
for τo for input (binary) words of length ^ N. Thus, the halting problem for τo
has /l-bounded Kolmogorov complexity bounded from below by 2N/c(λ) for all
sufficiently large N.

Now we can outline the idea of the proof of Theorem 1.1. Let an effective enu-
meration of finite simplicial complexes increasing with the number of simplices be
fixed. Let HM" denote the set of numerals of simplicial complexes such that their
spaces are PL-homeomorphic to Mn. Consider the number of simplices N in a sim-
plicial complex as the complexity parameter in the algorithmic problem of recogniz-
ing whether or not the space of a given simplicial complex is PL-homeomorphic to
Mn. If n ^ 5 then the quantitative version of the algorithmic unrecognizability of Sn

(Theorem 2.1) immediately implies the exponential lower bound for K^ (HM*,N)
(Lemma 3.1(a)). Also, in the case, when n ^ 4 and Mn is a connected sum of a
compact PL-manifold Nn and a sufficiently large number of copies of S2 x Sn~2

one can derive the same exponential lower bound for K^\HMn,N) reviewing the
Markov proof of unrecognizability of Mn (Lemma 3.1(b)). (Of course, only for
n = 4 this bound does not immediately follow from Theorem 2.1.) On the other
hand we will find for an appropriate recursive function λ an upper bound for
Kχλ\HMn,N) linearly growing with mAfM(N) (Lemma 3.2). The juxtaposition of
these lower and upper bounds implies Theorem 1.1.

Lemma 3.1. (a) For any n ^ 5 there exists a constant Co(n) > 1 such that for
any compact n-dίmensίonal PL manifold M and for any recursive function λ there
exists No (depending on M, λ and R) such that for any N ^ No,

K(

R

λ)(HM,N) > C(f(n).

(b) There exists k such that for any n ^ 4 there exists a real constant
Co(n) > 1 with the following property. For any manifold M of dimension n^A
representable as the connected sum Nn#kS2xSn~2, where Nn is a compact
n-dimensional PL-manifold, there exists No (depending on λ, R and Nn) such that
for all N ^ No,

Proof (a) Theorem 2.1 implies that the halting problem for any fixed Turing ma-
chine and, in particular, for the defined above Turing machine τo can be reduced to
a problem of recognizing whether or not a given triangulation is a triangulation of
M. Moreover, when the Turing machine is fixed, the number of simplices in this
triangulation is bounded from above by a linear function of the length of the input
w in the halting problem for the Turing machine. Denote by Haltτo the set of in-
puts of τ 0 for which it eventually halts, by λτo(N) the maximal time of work of the
algorithm defined in Theorem 2.1 on a set of input data, consisting of the manifold
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M, the Turing machine τ0 and any of its inputs w of the length not exceeding N.
Then for any recursive function / such that λ > λτQ inequality (2) implies that for
all sufficiently large TV,

2N/c(λ) S K(j\Haltτo,N) ^ K(^λτo\HM,cfΊ(τo)N + cn(τ0) + \M\) + const .

(Here const is a constant not depending on TV and λ, c/2(τo) is the value of the
constant cn(T) defined in the text of Theorem 2.1 for T = τo. Of course, C}1(TQ)
does not depend on λ.) This double inequality implies that

K%'\HM9N) ^ 2(A/-f»(τo)-lMl)/c»(τoVc(/ + / ϊ τ o )-const ,

which proves part (a) of the lemma.
(b) For any n ^ 5 this part of the lemma is an immediate corollary of part (a)

However, since we still need to prove part (b) for n = 4 we will give a proof not
referring to Theorem 2.1 or any other material in Sect. 2 and valid for any n ^ 4.
Our proof will be based on a quantitative analysis of the Markov proof explained
in [BHP] of the algorithmic unsolvability of the PL-homeomorphism problem for
compact PL-manifolds of dimension n §; 4. Since this proof uses the unsolvability
of the triviality problem for finitely presented groups (the Adyan-Rabin theorem)
we will briefly review a proof of this result too.

Step 1 Let a Turing machine T and its input word w be given. There are several
ways to effectively construct a finite presentation of a group G(T), which depends
only on T but not on w, and its element g(w), such that g(w) is trivial in G(T) if
and only if T starting to work with the input w will eventually halt For example,
one such construction is described in [R]. Note that the number of generators, the
number of relations, and the length of relators in the finite presentation of the group
G(T) constructed according to [R] are bounded by a constant depending on Γ, but
of course not on w, and the length of g(w) is bounded by const2TV, where TV is
the length of w and const2 is a factor independent of w. On this step we apply this
construction to the defined above Turing machine τo

Step 2 We intend to construct starting from a given finite presentation of a group
G and an element g G G a finite presentation of a group Gg in such a manner that
g = e in G if and only if Gg is trivial To achieve this goal we use the effective
procedure described in [Mi], pp 13-15 When we apply this construction to the
finite presentation G(τ0) and the word g(w) constructed on the previous stage, we
obtain a finite presentation of a group G(τo)g(wy The number Gen of generators
and the number Rel of relations in this finite presentation do not depend on g(w)
(see [Mi]) and, hence, on N The length of every relator in this finite presentation
is bounded by const3 TV, where TV is the length of w and const3 is a constant factor

Step 3 Now we add to the finite presentation of G(τo)ί/(M) several empty relations
According to the exposition of the Markov construction in [BHP], it is necessary
to add ARel + 5Gen empty relations, where Rel and Gen are, correspondingly, the
numbers of relations and generators of the finite presentation (Actually, one can
add just Gen empty relations, as in [F] But this improvement is of no importance
for us.) Afterwards we build a hypersurface in R"+ 1 (n is any number ^ 4 ) dif-
feomorphic to the connected sum of Gen copies of Sι x Sn~ι Then one realizes
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relators of G(τo)g(W) by pairwise non-intersecting embedded smooth closed curves
in this hypersurface and performs surgeries killing the elements of the fundamental
group of the hypersurface corresponding to the relations. The fundamental group
of the resulting manifold is G(τo)g(w). It is clear that this manifold can be triangu-
lated using not more than const4 TV simplices. Let k be equal to 4Gen + 5Rel. (Our
choice of k is not optimal. This value can be improved by adding only Gen empty
relations instead of ARel + 5Gen to the finite presentation of G(τo)g(W)9 as in [F].
This version of Markov's construction enables one to take k — Rel.) After τo and
the specific construction of G(τo)^w) were fixed, k is just a constant. It is shown in
[BHP] that the resulting manifold Λ/jJJ will be PZ-homeomorphic to the connected
sum of k copies of S2 x Sn~2 if and only if π\(M£) is trivial, or, equivalently, if τo
eventually halts when applied to the input w. Thus, the halting problem for τo for
input binary sequences of length ^ N can be effectively reduced to the problem of
recognition of the connected sum of any compact PL-manifold Nn and k copies of
S2 x Sn~2 (n Ξ> 4) among triangulated PL-manifolds with g const4 N + \Nn\ sim-
plices. Here const4 depends only on n and \Nn\ denotes the number of simplices
in an arbitrary fixed triangulation of the manifold Nn. Now the lemma follows im-
mediately from the Barzdin lower estimate (2) for the time-bounded Kolmogorov
complexity of the halting problem for τo. •

The next lemma provides an upper estimate of KR

A (HM,N) for an appropriate
recursive function λA(N):

Lemma 3.2. There exist a recursive function λA(N) and a constant C independent
of N such that

K{

R

λA)(HM,N) ^ CN InN - mΛM(N).

Proof We must give an upper estimate for the number of bits of oracle information
sufficient to solve the problem of recognition of M among simplicial complexes with
^ N simplices in a time bounded by a recursive function of N. This information
will be the following: I require a list LQ of triangulations representing all JΠA,M(N)
minimal elements of TA,M(N) and containing precisely one triangulation from every
minimal element. (Recall, that these minimal elements are sets of triangulations of
M with ^ N simplices.) Observe, that a triangulation T of M with ^ N simplices
can be coded as follows: First, we list the number of vertices in T. Assume that all
vertices of T are numbered by consecutive natural numbers starting from 1. We list
for any face of T of the maximal dimension numbers of all vertices forming this
face. Thus, we obtain not more than N lists of {n + 1) numbers from 1 to not more
than N (n is the dimension of M). Thus, in total we have 1 + (n + 1)N numbers
and the binary expansion of each number contains not more than log2 N -f 1 digits.
Of course, not every such set of data corresponds to a triangulation of M and there
are many possible ways to assign such set of data to any element of ΊΠA,M{N). But
if such a set of data defines an element of mA,M(N), it defines this element uniquely.

These data describing the list LQ and containing not more than CN InN ΪΠA,M(N)
bits of information (where C does not depend on N) are sufficient to solve the prob-
lem whether or not a given simplicial complex with ^ N simplices is a triangulation
of M in a time, bounded from above by a recursive function of N. Indeed, first
construct the complete list of all triangulations of M with less than or equal to N
simplices using the following algorithm: Apply the algorithm A to the number N
and to each of these given mA,M(N) triangulations. If no new triangulation from
TM(N) have appeared, then stop. Otherwise consider the list L\ containing all new
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triangulations from TM(N) produced by A and all mAM(N) initial triangulations.
Now we will proceed recursively. On every step we will apply the algorithm A
to every triangulation from the list of triangulations Lk-\ obtained on the previous
step. If no new triangulations with g TV simplices appeared as the result (i.e. if
UτeL A(N,T) C Lk-ι), then the algorithm stops. Otherwise we form a new list
Lk adding to the old list Lk-\ all new triangulations of M with ^ TV simplices
produced by A. (In other words we define Lk as Lk^\ \JTeL { A(N9 T).) Then the
algorithm passes to the (k + 1 )-th step This algorithm must stop after a number of
steps not exceeding the (finite) number of triangulations of M with ^ TV simplices.
The definition of the poset TA^M(N) and the fact that we started from the list of
representatives from all minimal elements of the poset guarantee that the described
algorithm constructs the list LM(N) of all possible triangulations of M with g TV
simplices

When the list LM{N) is known, one can check for any given abstract simplicial
complex with ^ TV simplices whether or not this complex is in HM just compar-
ing this complex with all simplicial complexes from the list LM(N) and checking
whether or not this complex is simplicially isomorphic to one of them. (Obviously, it
is possible to check whether or not two given abstract simplicial complexes are sim-
plicially isomorphic, cf [ABB], Proposition 2 16.) Our definition of A implies that
the time of work of A when it is applied to TV and to a triangulation from TM(N)
is bounded from above by a recursive function of TV Hence, the time of work
of the recognition algorithm described above is also bounded by a recursive func-
tion of TV Thus, for a certain recursive function λA the problem of recognition
whether or not a simplicial complex with ^ TV simplices (of all dimensions) is
a triangulation of M has λA -bounded Kolmogorov complexity not exceeding
CN InN mAM{N). D

Now we can prove Theorem 1 1 by a simple juxtaposition of results of
Lemma 3 1 and Lemma 3 2 Indeed, such a juxtaposition shows that for all suf-
ficiently large TV,

Here C(n) is an arbitrary constant greater than one and less than Co(n) (for example,
we can take C(n) = ^(1 + Co(n)) This proves Theorem 1.1. D

Now we are going to prove Theorem 1 5. The conditions of Theorem 1.5 im-
ply that for any triangulation T e TM(y(N)) and for any triangulation S of M
with §; TV simplices F(S) ^ F(T). Consider the algorithm A&^Q, finding for given
N,T e TM(N) all triangulations V from ΓM(TV) such that dist(Γ, V) ^ Θ(N). Con-
sider the partition of TM(N) into A^o-simple sets Let D\,...,Dj denote those
of these ^dist,tf-simple sets which have a non-empty intersection with TM{J{N)).
Theorem 1 5 is an immediate corollary of the following two statements'

1) For every ί the minimum of the restriction of F on Dι is a ^-distinctive local
minimum of F . TM —> R.

2) For all sufficiently large TV the number / of the sets Dt is not less than

[CtN\n)\ where C*(«) > 1 is a constant depending only on n.

To prove 1) note that the definition of A implies that if T is a minimum
of the restriction of F on Dι and a triangulation S φ Dz satisfies the inequality
dist(S, T) g 0(N), then S φ TM(N) Therefore the number of simplices of S is
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greater than N. Since Dj contains a triangulation 7} from 7if(y(7V)), F(T) ^

^<T/) ^ ^(5) . Hence, F(S) ^ F(Γ).

To prove 2) note that there exists an algorithm working in a time bounded by

a recursive function of N which for a given N and T G TM(y(N)) finds the set

A containing Γ. (It uses the algorithm finding the θ(N)-ba\l in the metric dist

around T in TM(N) in the same fashion as the algorithm, described in the proof of

Lemma 3.2 uses an algorithm A.) Thus, similarly to the proof of Lemma 3.2, we

can conclude that a collection of representatives from sets Dt Π TM(y(N)) for all

/ G {1,...,/} is sufficient to construct TM(y(N)) and solve the recognition prob-

lem for all triangulations with ^ y(N) simplices in a time bounded by a recur-

sive function λ\ of y(N). This argument yields an upper bound const y(N) In y(N)l

for KR

ι(HM,y(N)). The comparison with the lower bound provided by Lemma 3.1

implies the required lower bound for / quite similarly to the proof of

Theorem 1.1. D
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