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Abstract: This paper develops a new theory of tensor invariants of a completely
integrable non-degenerate Hamiltonian system on a smooth manifold Mn. The cen-
tral objects in this theory are supplementary invariant Poisson structures Pc which
are incompatible with the original Poisson structure PI for this Hamiltonian system.
A complete classification of invariant Poisson structures is derived in a neighbour-
hood of an invariant toroidal domain. This classification resolves the well-known
Inverse Problem that was brought into prominence by Magri's 1978 paper devoted to
the theory of compatible Poisson structures. Applications connected with the KAM
theory, with the Kepler problem, with the basic integrable problem of celestial
mechanics, and with the harmonic oscillator are pointed out. A cohomology is
defined for dynamical systems on smooth manifolds. The physically motivated con-
cepts of dynamical compatibility and strong dynamical compatibility of pairs of
Poisson structures are introduced to study the diversity of pairs of Poisson structures
incompatible in Magri's sense. It is proved that if a dynamical system V preserves
two strongly dynamically compatible Poisson structures PI and PI in a general
position then this system is completely integrable. Such a system V generates a
hierarchy of integrable dynamical systems which in general are not Hamiltonian
neither with respect to PI nor with respect to PI. Necessary conditions for dynami-
cal compatibility and for strong dynamical compatibility are derived which connect
these global properties with new local invariants of an arbitrary pair of incompatible
Poisson structures.
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1. Introduction

/. In his 1978 paper [34] Magri proved, using the Lenard scheme presented in [23],
a general theorem that states that a dynamical system or system of partial differ-
ential equations that preserves two compatible non-degenerate Poisson structures
(the bi-Hamiltonian system) possesses a sequence of first integrals in involution.
If this sequence contains sufficiently many functionally independent first integrals
then Liouville's Classical Theorem [32] implies the complete integrability of the
bi-Hamiltonian system. Since then, more than one hundred papers and several books
have been published devoted to the investigation of the diverse properties of compat-
ible pairs of Poisson structures and bi-Hamiltonian systems. Reviews of these papers
and their extended bibliographies are contained in Dorfman's monograph [15] and
in Olver's monograph [48].

One of the well-known unsolved problems in this area is

The Inverse Problem. To classify all invariant Poisson structures for a completely
integrable non-degenerate Hamiltonian system on a manifold Mn, n = 2k, with a
non-degenerate Poisson structure P\. Are these invariant Poisson structures nece-
ssarily compatible with P\Ί

In the present paper we solve this problem. We derive the general and previously
unknown formula

« = ι,...,* (i.i)
α

in the action-angle coordinates /ι,...,4, φ\,...,φk. Here B(J) and /α(/) are
arbitrary smooth functions of k variables. The formula (1.1) presents a com-
plete classification of all invariant closed 2-forms ωc and invariant non-degenerate
Poisson structures Pc = ω~l for an arbitrary completely integrable non-degenerate
Hamiltonian system with the Hamiltonian function //(/), provided that its invariant
submanifolds are compact.
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In general the constructed Poisson structures Pc are incompatible with the orig-
inal Poisson structure P\ = ωf l , ω\ = d/α Λ dφα. The original definition of com-
patibility by Magri [34] states: Two Poisson structures P\ and P2 are compatible
if their sum PI + P2 is also a Poisson structure. This definition is equivalent to
the condition that the Schouten bracket [Pι,P2] vanishes. The theory of compati-
ble Poisson structures is closely connected with Fuchssteiner's theory of hereditary
operators [20,21]. Later, Gelfand and Dorfman in [24,25] and Magri and Morosi
in [36] proved that the compatibility of the non-degenerate Poisson structures is
equivalent to the condition that the Nijenhuis tensor NA [44] vanishes where A is
the (1,1) tensor A—P\P^λ. Therefore, we prove the incompatibility of the Poisson
structures Pc and PI by a direct calculation of the non-zero components 7VJ 7 of the
Nijenhuis tensor in the action-angle coordinates.

Olver in [47] and Turiel in [53] investigated canonical forms of compatible pairs
of Poisson structures and integrable systems which preserve them. Ten Eikelder [55],
Brouzet [8,9], Brozet, Molino and Turiel [10], and Fernandes [19] studied the nec-
essary and sufficient conditions for the existence of a compatible invariant Poisson
structure for a given completely integrable Hamiltonian system. These compatible
invariant Poisson structures correspond to solutions of an overdetermined third-
order system of partial differential equations for functions B(J) and H(I) (1.1).
This overdetermined system is equivalent to the compatibility condition NA = 0,
see Sect. 11.

The solution of the Inverse Problem depends upon whether the invariant subman-
ifolds of the integrable Hamiltonian system are compact or non-compact. In view
of the Liouville Theorem [3,32] almost all of these submanifolds are tori 1* or
toroidal cylinders TΓm x IR*~W, 0 ^ m < k, respectively. For the compact case we
prove in Theorem 1 that the formula (1.1) presents a complete classification of
the non-degenerate Poisson structures Pc which are invariant with respect to the
completely integrable non-degenerate Hamiltonian system with Hamiltonian H.

In Theorem 14 a second proof of the complete classification of the non-
degenerate invariant Poisson structures is presented along with the classification
of degenerate invariant Poisson structures.

For the non-compact case (IP1 x IR*""1) we present in Theorem 2 larger families
of invariant closed 2-forms ωc which include all 2-forms (1.1) and depend upon
additional arbitrary functions.

In Sect. 3 we introduce a cohomology for dynamical systems on smooth man-
ifolds. This cohomology H*(V,Mn) is an invariant that characterizes the global
properties of the dynamical system V on the manifold Mn. We prove that the
infinite-dimensionality of the cohomologies H2(V,M2k) and H4(V,M2k) is the nec-
essary condition for the non-degenerate integrability of the dynamical system V on
the manifold M2k.

II. The second well-known unsolved problem in the theory of compatible Poisson
structures is

The Stability Problem. Let a Hamiltonian system be completely integrable and
non-degenerate with respect to a Poisson structure P\. Let us assume that this
system also preserves a second Poisson structure PI that is compatible with P\.
Is the property of compatibility of P2 with P\ stable!

In Theorem 7, we prove that the compatibility property is unstable. Using the
key formula (1.1) and a method of "toroidal surgeries" we construct a continuum of
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invariant Poisson structures PC in any neighbourhood of PI which are incompatible
with PI.

In Sects. 5 and 6 we point out applications connected with the Kepler problem,
with the basic integrable problem of celestial mechanics, and with the harmonic
oscillator. We present explicit formulae for a continuum of invariant symplectic
and Poisson structures for these problems. In general, these Poisson structures are
incompatible with the original Poisson structure PI. However, the same formulae
contain a continuum of compatible Poisson structures as well. The latter are unstable
in a sense that they become incompatible with P\ after arbitrarily small perturbations
inside the general family of invariant Poisson structures.

///. These results show that the notion of the compatibility of Poisson structures and
its counterpart, incompatibility, are not conceptionally adequate for a good insight
into the diversity of pairs of Poisson structure. Therefore we introduce the following

Definition 1. Two Poisson structures P\ and P^ on a manifold Mn are called
dynamically compatible (D. C.) if there exists a dynamical system V on Mn that
preserves both of them and such that the set S C Mn of its critical points has
dimS ^ n- 1.

In general, two dynamically compatible Poisson structures PI and PI are not
compatible in Magri's sense. This is the case if the corresponding Schouten bracket
[Pι,P2] is not equal to zero.

Definition 2. Two Poisson structures P\ and PI on a manifold Mn, n = 2k, are
called strongly dynamically compatible (S.D.C.) if there exists a dynamical sys-
tem V that preserves both of them and is completely integrable in the Liouville
sense non-degenerate Hamiltonian system with respect to some non-degenerate
Poisson structure P on the manifold Mn, and such that its invariant submanifolds
are compact.

In this case, Theorem 1 proves that if the invariant Poisson structure P\ (or P2)
is non-degenerate then the completely integrable dynamical system V is also com-
pletely integrable and non-degenerate with respect to the Poisson structure PI
(or P2). Theorem 1 also implies that all constructed invariant non-degenerate Poisson
structures Pc = ω~l (1.1) are mutually dynamically compatible in the strong sense.

IV. Until now all applications of bi-Hamiltonian systems were limited to the theory
of integrable systems. In this paper we develop new applications connected with
the Kolmogorov-Arnold-Moser (KAM) theory. This theory studies Hamiltonian
perturbations of integrable Hamiltonian systems of the form

jt'=Pf//o,α + εPiα#α. (1.2)

For ε = 0, system (1.2) is assumed to be completely integrable and non-degenerate,
with compact invariant submanifolds. The classical KAM results [2,26,27,41]
on dynamics of the Hamiltonian systems (1.2) for |β| <^ 1 lead to the following
problem.

Admissible Perturbations Problem. What non-Hamiltonian perturbations

' + ε^'Oc) (1.3)
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possess the same dynamical properties for |ε| <C 1 as small Hamiltonian pertur-
bations in KAM theory!

We call such perturbations admissible. In Theorem 5, we prove that all pertur-
bations

x*[= Pf7/o,α + εP?//α (1.4)

are admissible. Here H(x) is an arbitrary smooth function and Pc is an arbitrary
non-degenerate Poisson structure that is strongly dynamically compatible with P\
and is invariant with respect to the unperturbed integrable Hamiltonian system (1.2)
for ε = 0. In general, perturbations (1.4) are not Hamiltonian with respect to the
original Poisson structure P\. If the Poisson structure Pc is compatible with PI then
all perturbations

# = /f #„,« + ε [ E <*mA?} PΪβHβ (1.5)
\"=-' Λ

are admissible for am = const, where Ac = P\P~l is the recursion operator.
These results prove that KAM theory is applicable not only to the small

Hamiltonian perturbations (1.2) but also to the rich families of non-Hamiltonian
perturbations (1.4) and (1.5). The family of admissible non-Hamiltonian perturba-
tions (1.4) depends upon the k + 1 arbitrary functions B(J\f\(/),...,/#(/) of k
variables and one arbitrary function H(x) of 2k variables.

V. Any dynamical system that preserves two non-degenerate Poisson structures
PI and PI also preserves the Schouten bracket [Pi,P2], the (1,1) tensor A = PiP^"1,
the Nijenhuis tensor NA, and all tensors which can be constructed from P\9P2,
[Λ,P2], A and NA. Therefore, if PI and P2 are incompatible, the Schouten bracket
[Pι>P2J and the Nijenhuis tensor NA are not equal to zero, and hence the family of
geometric objects which have to be preserved by the dynamical system is greater
than that for the compatible case. Thus, one could expect that the family of dy-
namical systems which preserve two incompatible Poisson structures is smaller than
that for the compatible ones.

In general this is true. Indeed, two incompatible Poisson structures will not
generally admit any dynamical system preserving both of them. Two arbitrary
compatible non-degenerate Poisson structures admit infinitely many bi-Hamiltonian
systems which preserve them. However, between these two extreme cases there ex-
ists a rich diversity of dynamically compatible and strongly dynamically compatible
Poisson structures with utterly different properties. Thus we arrive at the following
problem.

The Integrability Problem. Assume that two non-degenerate Poisson structures
PI and P2 are strongly dynamically compatible on a manifold M2k and that the
recursion operator A = P\P^λ has k functionally independent eigenvalues. Let V
be an arbitrary dynamical system on M2k that preserves P\ and P2. Is system V
integrableΊ

In Theorem 10 we prove that dynamical system V is completely integrable with
respect to both Poisson structures PI and P2. The proof of Theorem 8 does not
use the Lenard scheme [23,34] that is not applicable for two incompatible Poisson
structures. The well-known Lenard recursion relations [23] are not true for the two
incompatible Poisson structures considered and therefore the Lenard scheme cannot
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be applied. The proof is based on the complete classification of all invariant non-
degenerate Poisson structures obtained in Theorem 1.

VI. For two compatible non-degenerate Poisson structures PI and PI in the general
position any bi-Hamiltonian system

xl = Pία/fι,« = P^ff^u = V1 (1.6)

generates a hierarchy of completely integrable bi-Hamiltonian systems which have
the form [35]

x* = (Amvy, (1.7)

where A = P\P^1 and m is an arbitrary integer. The reasonable question about the
role of the compatibility condition for this construction leads to the following.

Integrable Hierarchies Problem. Let V be an arbitrary dynamical system (1.6)
that preserves two strongly dynamically compatible Poisson structures P\ and PI
and let A = P\P^1. Are the dynamical systems (1.7) integrablel

We show that the compatibility condition is not necessary here and that the
problem has positive solution if the recursion operator A — P\P^1 has k functionally
independent eigenvalues. In Theorem 11 we prove that even more general dynamical
systems f

**' = [ Σ <*m(x)AmV\ (1.8)
V—> /

are completely integrable. Here am(x) are arbitrary smooth functions of the eigen-
values of the recursion operator A.

For the incompatible case, systems (1.7) for \m\ > 1 in general do not preserve
the Poisson structures PI and PI, in contrast with the compatible case. The (2,0)
skew tensors AmP\ and A~mP2 in general are not Poisson structures for the incom-
patible PI and PI- The proof of Theorem 11 is entirely different from that for the
compatible case [35] and is based on the proof of Theorem 10.

VII. The following problem naturally arises in the course of the investigation of the
geometric and algebraic properties of pairs of dynamically compatible and strongly
dynamically compatible Poisson structures.

Necessary Conditions Problem. What are the necessary conditions for dynamical
compatibility and for strong dynamical compatibility of two incompatible Poisson
structures!

In Sects. 11 and 12 we present several necessary conditions in terms of the
Nijenhuis tensor NA and other geometric objects assuming the Poisson structures
PI and PI are non-degenerate. The necessary conditions derived are effective in
studying concrete problems because they can be verified by direct calculations for
arbitrary pairs of Poisson structures.

In Sect. 15 we introduce a distribution $ C T(Mn) that is uniquely determined
by two arbitrary Poisson structures PI and PI. We derive the following necessary
condition for strong dynamical compatibility of the two Poisson structures:

dim J^ ^ ^ (1.9)

for all points x G M", n = 2k.
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In Sect. 16 we define new invariants of two arbitrary Poisson structures P\ and
PI. These Poisson structures are determined on a manifold Mn of an arbitrary
dimension n — 2k or n = 2k + 1 and can both be degenerate. These invariants are
the smooth maps

/ :Mn —>RPN^ (1.10)

of the manifold Mn into the real projective spaces RPN. The maps / are first inte-
grals of any dynamical system that preserves the two Poisson structures P\ and P2
The necessary condition for dynamical compatibility has the simple form

rankd/(jc) ^n-l (1.11)

at all points x G Mn where the maps / are defined.

2. Complete Classification of Invariant Non-Degenerate Poisson Structures

7. Let Pl{ be a non-degenerate Poisson structure on a manifold Mn, n = 2k.
A Hamiltonian system

jc1' = Pf #α, HtΛ = dH/dx« (2.1)

is called completely integrable in Liouville's sense if it has k — n/2 independent
involutive first integrals FI(JC), . . . ,F k (x):

{Fj,Fl}=P«βFJ «Fl,β = 0. (2.2)

The summation with respect to the repeated indices is understood everywhere in
this paper.

The Liouville Theorem [1,3,32] implies that almost all points of the mani-
fold Mn (excluding a set S C Mn, dim S ^ n — 1) are covered by a system of open
toroidal domains (9m C Mn with the action-angle coordinates /!,...,/£, φ\9...,φk
In these coordinates the completely integrable system (2.1) has the form

The symplectic structure ω\ has the canonical form ωi — d/α Λ dφα. The Hamiltonian
system (2.3) preserves the symplectic structure ωi and the Poisson structure
P\ = ωf1 : Lvω\ = 0, LVP\ — 0, where Lv is the Lie derivative with respect to
the flow (2.3).

The action coordinates I\,...Jk are defined in a ball

Br:Σ(Ij-IjQ)2 <r2. (2.4)
7=1

The angle coordinates φ\,..., φ^ run over a torus Έk, 0 ^ φ} ^ 2π, in the compact

case or over a toroidal cylinder rWm x ΊSίk~m, 0 ^ m < k if the manifold /7(;c) = T/o
is non-compact.

The set S C Mn that is not covered by the system of open toroidal domains
(9m is invariant with respect to the Hamiltonian system (2.1). This set contains all
critical points of (2.1) and all homoclinic and heteroclinic trajectories.
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II. First we consider a completely integrable Hamiltonian system (2.1) such that
the submanifolds of constant level of the k involutive first integrals are compact.
Almost all these invariant submanifolds are tori IT*:

l*:/ι=cι,..., /* = <*, 0 ^ φ z ^2π. (2.5)

The trajectories of dynamical system (2.3) are everywhere dense on the torus (2.5)
if and only if the k numbers Jz = dH/dlf are incommensurable over the integers.
This means that for arbitrary integers wι, . . . ,W£, we have

. ,2.6,

We call a completely integrable system (2.1) T^-dense if condition (2.6) is met
for almost all tori (2.5); or in other words, if the trajectories of system (2.1) are
everywhere dense on almost all tori (2.5). This property is invariant and therefore
it does not depend upon a choice of concrete action-angle coordinates.

The completely integrable Hamiltonian system (2.1), (2.3) is called non-
degenerate if the Kolmogorov condition [26, 27] for the Hessian matrix

de, ΦO (2.7)

is met almost everywhere in the action-angle coordinates

/i,..., Ik, φι,...,φk, φi = φfmod(2π). (2.8)

Obviously, any non-degenerate system (2.1), (2.3) is T^-dense.
Trajectories of the completely integrable non-degenerate Hamiltonian system

(2.1) are everywhere dense on almost all tori (2.5). Therefore any smooth first
integral F(/7,φ7) of the system (2.1) is constant on all tori T* and hence any first
integral F is a function of the action variables only:

^=0 =* F = F(/,,...,A). (2.9)

To solve the Inverse Problem we investigate all closed 2-forms ω which are
invariant with respect to the system (2.1).

Theorem 1. 1) In the toroidal domain (9 c Mn defined by conditions (2.4) and
(2.5) a closed 2-form ω is invariant with respect to the completely integrable non-
degenerate Hamiltonian system (2.1), (2.3) having compact invariant submanifolds
(2.5) if and only if it has the form

(2.10)

where B(Jι,...,Jk) and /α(/ι,...,/jt) cire arbitrary functions of k arguments and
JΛ=JΛ(Iι9...9Ik) are functions

(2.11)
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2) The 2-form ωc is non-degenerate if and only if the two non-degeneracy
conditions

d2B(J)
det ΦO, det

dladlβ
ΦO (2.12)

are met. Then the system (2.1) has the supplementary Hamiltonian structure

where the Hamiltonian function HC(J) is the Legendre transform of the function
B(J}:

riRί T\ .. AΠ( T\
(2.14)

3) The symplectίc structure (2.10) has canonical form

coc = d/α Λ dψ>α ,

where functions Jα and <pα are defined by the formulae

~ dβ(j)

* mod(2π) .

(2.15)

(2.16)

(2.17)

The new variables Jα, φα are the action-angle coordinates for the Hamiltonian
system (2.13) with respect to the symplectic structure ωc (2.10). In the action-
angle coordinates Λ,Φα> me Hamiltonian system (2.13) is non-degenerate:

det
S2HC(J)

= det
d2B(J)

-1

I)' ,0. (2.18)

4) The action variables /ι,...,4 are in involution with respect to the Poisson
structure Pc\

{IΛ9Iβ}=P>c

lIattjIβtl = 0. (2.19)

The Hamiltonian system (2.1), (2. 13) is completely ίntegrable with respect to all
invariant non-degenerate Poisson structures Pc.

Proof. 1) Let us first prove that any 2-form ωc (2.10) is preserved by the
Hamiltonian system (2.1), (2.3). Using classical properties [49] of the Lie derivative
Lvωc — ώc with respect to the dynamical system (2.3) and substituting (2.11) we
obtain

Therefore all 2-forms ωc (2.10) are invariant with respect to the completely inte-
grable Hamiltonian system (2.1), (2.3).

Now we prove that any closed 2-form ω that is invariant with respect to the
dynamical system (2.1), (2.3) has the form (2.10). In the action-angle coordinates
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(2.8) any differential 2-form ω is defined by the expression

ω = aΛβ(I9 φ)d/α Λ dlβ + bΛβ(I9 φ)d/α Λ άφβ + cΛβ(I9 φ)dφα Λ άφβ ,

aaβ(I, φ) = -aβΛ(I9 φ\ cΛβ(I9 φ) = -<>(/, φ) . (2.21 )

Here aΛβ(I9 φ)9 b^(I9 φ) and caβ(I9φ) are some smooth functions defined in the
toroidal domain (9 C Mn corresponding to the action-angle coordinates (2.8).

The invariant closed 2-form (2.21) has to satisfy the two equations ώ = 0,
dω = 0. The time derivative of the 2-form ω with respect to the system (2.3) has
the form

ώ = άα^d/α Λ άlβ + bvβdla. Λ dφβ + c^dφ^ Λ dφβ

r Λ ι(SH\ ιίSH\ * * Λ f d+ bΛβdIΛ Λ d I — 1 -f Cvβd I — 1 Λ dφβ + cα^dφα Λ d I —

(2.22)

Therefore, the equation ώ = 0 is equivalent to the system of equations

£ , g2^^) Λ ,99^β= βy^J^' "β= ( }

In view of the key property of first integrals (2.9) solutions to the linear triangular
system (2.23) have the form

jτ

^(/i, - . ,/*) . (2.24)

The components aΛβ(I9φ)9 bΛβ(I9φ) and cαjβ(/, φ) of the smooth invariant dif-

ferential 2-form (2.21) are bounded on any torus IT* (2.5). In view of the non-
degeneracy condition (2.7) the exact solutions (2.24) are bounded for all t only if
all functions cαβ(/ι,...,4) = 0. Hence using (2.24) and the fact that general trajec-

tories of the system (2.3) are everywhere dense on the tori Έk we obtain that any
invariant 2-form ω (2.21) has the form

ω = 5αj»(/)d/« Λ dlβ + BΛβ(I)dIΛ Λ dφβ . (2.25)

For the 2-form (2.25) the equation dω = 0 splits into the k+\ independent
equations

d(βα/K/)d/αΛ (17/0 = 0, d(αjβ(/)d/α) = 0, 0,0=1,...,*. (2.26)

In view of Poincare's Lemma these equations are equivalent to the equations

/α Λ dlβ = d(/y(/)d/y), M/)d/α = dFf(I) , (2.27)

where /7(/ι,...,4) and Fβ(I\,...,Ik) are some smooth functions. Substituting for-
mulae (2.27) into (2.25) one gets

ω = dF«(J) Λ dφa + d/β(7) Λ dl, . (2.28)
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Once more considering the equation ώ = 0 we obtain
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(2.29)

(2.30)

where B(I\,...Jk) is some smooth function. The Kolmogorov condition (2.7) en-
sures that functions ΛOO (2.11) form a new system of coordinates in the space of
action variables /ι,...,4 In these coordinates Eq. (2.30) yields

Therefore, the Poincare Lemma implies

Wfι =

dB(I(J))
(2.31)

Therefore the 2-form (2.28) takes the form (2.10).
Thus we have proved that any invariant closed 2-form ω has form (2.10).
2) In the action-angle coordinates /ι,...,4, φ\9...,φk the closed 2-forms

and ωc have the block structure

α>ι =
0

Pi - ωΓ1 =
0 -e

-e O J 9 ! ~ l ~ \e 0

where e, σ and B are k x k matrices with entries

ωr =
σ B

-B* 0

Dα

Da =
d2H(I) d2B(J)

The formulae (2.32) and (2.33) imply

det \\ωc\\= (det
d2H(I)

SLdL \j det
Θ2B(J) \j

This formula proves that the non-degeneracy condition

det ||ωc | | ΦO

is equivalent to the two conditions (2.12).
The Poisson structure Pc = ω"1 has the block form

0 -05'r1

Partial derivatives of the function HC(I) (2.14) have the form

dHc(I) _ dHc dJy _ &B(J) d2H(I} DθίdH

dla dJy dlχ dJβdJy dlyd

Using the block structure (2.36) we obtain

(PcάHc )α = 0, (PcdHc f
+k = (B-l

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

— = — , (2.38)
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where α,/?,y = !,...,&. Hence we get the equality

PcάHc=PλάH . (2.39)

This equality implies formula (2.13) and presents the supplementary Hamiltonian
structure for the Hamiltonian system (2.1).

3) Formulae (2.17) imply that functions <pα — φ^ are single-valued. Therefore,
the variables <pα are defined mod(2π) along with variables <pα. Hence <pα play the
role of new angle coordinates. In new coordinates (2.16) and (2.17), the symplectic
structure (2.10) takes the canonical form

ωc = dJα Λ d<pα + d I /^(7)^=-dJα

/ dlβ\
= d/α Λ d φα - //?(/)τ^ = dJα Λ dφα . (2.40)

This formula implies that functions Λ, <Pα

 nave canonical Poisson brackets with
respect to the Poisson structure Pc = ω"1. In view of the formula (2.14), the
Hamiltonian function Hc (2.13) depends upon the variables Jα only. Therefore,
the coordinates Jα, φα are the action-angle coordinates for the Hamiltonian system
(2.13) with respect to the symplectic structure ωc.

For the Legendre transform (2.14) one has

2

^ ' }dJy x y y

Hence Eq.(2.18) follows.
4) Obviously, the involution of the action variables /ι,...,4 with respect to

the Poisson structure Pc (2.19) is an immediate consequence of the block form
(2.36). Applying the Liouville Theorem [32] we obtain that system (2.1), (2. 13) is
completely integrable with respect to the Poisson structure Pc as well. D

Remark 1. Theorem 1 implies that any two of the constructed Poisson structures
PC = ω~l are strongly dynamically compatible. The first part of Theorem 1 was
proved in our paper [5],

Remark 2. The original symplectic structure α>ι has the form (2.10), where
/α(7) = 0 and the function B(J) is the Legendre transform B(J) of the Hamiltonian
function H(I):

Indeed, for this case formula (2.14) presents the inverse Legendre transform. The
classical equalities

a/α = = Λ
α' ( ' }dIΛdIβ dlβ

9 dJa

 α' dJΛdJβ dJβ
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imply that the corresponding matrix B (2.33) is the unit matrix

= = ^^ = a=y
β dl«dly dJydJβ dlγ dJβ dJβ

 β ' ^ ' }

Therefore, if /α(/) = 0 and the function B(J) in (2.10) is the Legendre transform
(2.42) of the Hamiltonian function H(I) then the symplectic 2-form ωc (2.10),
(2.32) coincides with the original symplectic form ωi.

Remark 3. A second Hamiltonian structure is known for just a few completely
integrable Hamiltonian systems. Theorem 1 reduces the rather difficult search of
the second Hamiltonian structure to the classical problem of construction of the
action-angle coordinates [18,42,43]. When these coordinates are found the formula
(2.10) presents a continuous family of symplectic and Poisson structures which are
invariant with respect to the system (2.1). Theorem 1 ensures that in this way one
obtains all invariant symplectic structures and even all invariant degenerate closed
2-forms if the Kolmogorov condition (2.7) is met.

Remark 4. The recursion operator A = P\P~λ = P\ωc has the block form

(2.45,

in the action-angle coordinates (2.8). In Sect. 11 we prove that the corresponding
Nijenhuis tensor NA(U,V) is not equal to zero in general. Therefore, the Poisson
structures PI and Pc are incompatible in general.

IV. If a completely integrable non-degenerate Hamiltonian system (2.1) has non-
compact invariant submanifolds

ΊΓ x R*-"1 : I y = cy, 0 g <pα g 2π, pf e R1 ,

l ^ y ^ k, l ^ α ^ m , m+l ^i ^k, (2.46)

then the following is true.

Proposition 1. For any k + 1 functions /α(/ι, ...,/*) and B(J\,. . . ,Λ), where vari-
ables Jj are determined by Eqs. (2.11) the closed 2-form ωc (2.10) is invariant with
respect to the system (2.1), (2.3). If the non-degeneracy condition (2.35) is met,
then the system (2.1) has a continuum of supplementary Hamiltonian structures
(2.13). The Hamiltonian system (2.1), (2.13) is completely integrable with respect
to all Poisson structures Pc = ω"1.

The proof of Proposition 1 is the same as that for Theorem 1 .

V. Completely integrable Hamiltonian systems (2.1) with non-compact invariant
submanifolds (2.46) possess greater families of invariant incompatible Poisson struc-
tures and invariant closed 2-forms. These Hamiltonian systems have the form

(2'47)
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in the action-angle coordinates /y, (pa,p/, where φα G Sl and pi G R1. Let

F«(7), /α(/), fll7(/), *„•(/), 1 ̂  α, jS g m, m + 1 g /,Λ / g * (2.48)

be arbitrary functions of the action variables /!,...,/£. Let θ'(/) and < '̂(/) = f^'CO
be arbitrary 1 -forms in the domain of the action variables and caβ = —Cβa be arbi-
trary constants.

Theorem 2. In the non-compact toroidal domain (9 c Mn defined by conditions
(2.4) and (2.46) a closed 2-form ωc represented by the formula

ωc = dFα(7) Λ dφα + d/α(7) Λ d/α +

A dφα + ά(aa(I)piάpι + p/p/ξ'7) (2.49)

is invariant with respect to the completely integrable Hamίltonίan system (2.1),
(2.47) if and only if the functions (2.48) and the \-forms θl and ξij = ξji satisfy
the equations

FaάJ, + J,θ' = dB(I), baiJi - 2CctβJβ = cα ,

andJι + baidJa + 2Jιξ" = d(ίz/, J;) ,

Jl = ~dϊΓ ' (2 50)

5(7) w Λ« arbitrary function of the action variables I\,...Jk and ca are
arbitrary constants.

Proof. Differentiating the 2-form (2.49) with respect to the dynamical system (2.47)
we obtain

ώc = dCMΛ + Jiff) + a(b^Ji - 2CΰLβJβ) Λ dφα

+ AβrfdΛ + 2J^il) + auJ&pi) . (2.51)

Three summands in (2.51) depend upon the different variables. Therefore, applying
the Poincare Lemma we get that equation ώc = 0 is equivalent to the system of
equations (2.50). D

Equations (2.50) form a linear and triangular system with respect to the unknown
functions (2.48) and 1 -forms θl and ζij — ζjl. These equations can be solved as
follows.

For m = k system (2.50) reduces to one equation (2.30). Solutions of this equa-
tion have the form (2.31).

For m = k — 1 and Jk(I) ΦO system (2.50) implies

* ~ - kk
0* = Jk~\άB - FαdΛ), 2ξkk =

boik = J^lba, b« = 2cΛβJβ + cα . (2.52)

Therefore, for m = k - 1 the 2-form (2.49) takes the form

ωc = d(Fα -h ρkJ^lbu) Λ dφα + d/α Λ d/α + cα/?dφα Λ
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This invariant closed 2-form depends upon arbitrary constants cα,cαjg = — c^α and
2k + 1 arbitrary functions B(I\ FΛ(I) and /αCO For general values of these pa-
rameters the 2-form ωc (2.53) is non-degenerate and the corresponding Poisson
structure Pc = ω~l is incompatible with the original Poisson structure PI.

For m ^ k — 2 and /^(/)ΦO the following parameters are arbitrary. 1) Func-
tions an(I) for m + 1 ^ /,/ ^ k. 2) Functions £>«/(/) and 1 -forms 01' and ξij = ξβ

for m + 1 g ij g A: - 1. 3) Functions 5(7), Fα(/) and /«(/). 4) Constants cα and
Cy_β = —Cβu. System of equations (2.50) implies that the unknown 1 -forms θk and
ξίk _ ξkί an(j functions b^I) have the form

- FαdΛ - 4-0'') ,

1 ^ α,jS ^ m, 7w + 1 ̂  ϊ,y ^ * - 1, m + 1 ̂  / ̂  A: . (2.54)

The formulae (2.49) and (2.54) define invariant closed 2-forms ωc which are non-
degenerate for general values of their independent parameters. The corresponding
Poisson structures Pc — ω~l are incompatible with the Poisson structure PI for the
general values of these parameters.

Remark 5. The derived formulae (2.53) and (2.54) show that if the completely
integrable Hamiltonian system (2.1) has non-compact invariant submanifolds (2.46)
then the family of invariant closed 2-forms ωc is considerably greater than the
complete family (2.10) for the compact and non-degenerate case. The family of
invariant closed 2-forms (2.10) depends upon k + 1 arbitrary functions B(J) and
/αCO Family (2.53)forw = & — 1 depends upon 2k + 1 arbitrary functions #(/),
Fα(7) and /«(/). Family (2.54) for m ^ k - 2 depends upon a greater number of
arbitrary functions and also upon d(d + 3)/2 arbitrary 1 -forms θ l ( I ) and ζ i j ( I ) =
£"'(/), where d = k-m-\.

Remark 6. Theorem 2 does not depend upon the Kolmogorov condition (2.7).
The formulae (2.49)-(2.50),(2.53) and (2.54) present invariant closed 2-forms ωc

independently of whether the completely integrable Hamiltonian system (2.1) is
non-degenerate or not.

3. A Cohomology for Dynamical Systems

/. Let V(x) be a smooth vector field on a manifold Mn and

yf = Vi(x\...^) (3.1)

be the corresponding dynamical system. We denote Λ™ the space of differential
m-forms ωm on Mn which are invariant with respect to system (3.1).

Let us consider the complex of F-invariant differential forms on Mn,

§^A*v^A\^ ^Λn-^Λn

v^O. (3.2)
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Definition 3. The quotient space

H*(V,Mn) = Kerd/Imd (3.3)

is called the cohomology of the dynamical system V (3.1). The wedge product of
differential forms induces a ring structure in /

We have the ring homomorphism

α : /Γ(F,M") -> #*(M") (3.4)

that transforms a cohomology class of the invariant closed #-forms into the corre-
sponding de Rham's cohomology class [14] of the general closed #-forms.

For any constant cφO, we have the isomorphism

For c = 0 the cohomology #*(0,Λfn) is isomorphic to the de Rham cohomology
[14] H*(Mn).

Remark 7. Using Duffs results [16] it is possible to generalize the constructions
of this section for dynamical systems on manifolds Mn with boundary.

II. The homomorphism α has an inverse and therefore is an isomorphism for the
following dynamical systems:

1) Assume that all trajectories of the dynamical system (3.1) are closed curves
and have the same period T. Let ψτ

ψτ : Mn -> Mn, \I/T = id (3.6)

be the corresponding action of the circle Sl. For any closed q-form ωq we construct
the (/-form

aΓlωq — — <f\l/*(ωq)dτ . (3.7)

Obviously, the q-form a~lωq is closed and invariant with respect to all diffeomor-
phisms (3.6). The q-form a~lωq belongs to the same de Rham's cohomology class
in Hq(Mn} as the closed q-form ωq because the q-forms \l/*(ωq) are homotopic
to ωq for all τ. Therefore αoα" 1 = id in Hq(Mn) and hence the map α is an
isomorphism.

2) Let Mn = Xn~k x T*, where Xn~k is a smooth (n - A;)-dimensional manifold
with a system of local coordinates c1,.. .,jc" and T^ is the A>dimensional torus with
angle coordinates φ\,..., φ^.

Let us consider the dynamical system

jt< = 0, φj = bj (3.8)

on the manifold Mn. Here bj are arbitrary constants which are incommensurable over
the integers in the sense of (2.6). Dynamical system (3.8) generates the following
group of diffeomoφhisms:
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Let f(x,φ) be an arbitrary smooth function on Mn. Applying the Ergodic
Theorem [4] for the subsystem (3.8) on the torus TΓ^, we obtain

1 T
f(x) = lim - / /(*', φj + tbj)άt = / /(*, φydqn /\ /\άφk. (3.10)

T-*°° 1 o i*

Let ωq be an arbitrary q-form

™q= Σ Σ«i j(x>9WlΛ'' ΛWΛdφjlΛ ΛdφJm (3.11)
l+m-q ij

on the manifold Mn. For all diffeomoφhisms </>, (3.9), the differential άφt is the
identity map of the tangent spaces T(Xi(p)(Xn~k x TΓ*). Using this fact, we derive

1 T _
oΓq = lim - / φ*t(ωq)dt = Σ Σ «ί -yί*)^1 Λ ' ' Λ d*'' Λ d<Pyι Λ ' '

Γ^°° ^ 0 /+m=g ίj

_ (3.12)
Obviously, the #-form ωq is closed and invariant with respect to the dynamical
system (3.8). Therefore we define

Oί~lωq = aiq . (3.13)

This invariant g-form belongs to the same de Rham's cohomology class in Hq(Mn)
as the closed g-form ωq because the ^-forms φ*(ωq) are homotopic to ωq for all /.
Therefore α o α"1 = id in Hq(Mn) and hence the map α is an isomorphism. Hence
we obtain the isomorphism of the two cohomologies

α : 7r(F,M") = H*(Mn) (3.14)

for the dynamical system (3.8) on the manifold Mn = Xn'k x T*.
The classical harmonic oscillator provides an example of system (3.8), see sys-

tem (6.7) in Sect. 6 below. Therefore for the harmonic oscillator the cohomology

H*(V, IR2*) - /Γ(IR2*) = 7/°(IR2A:) = 1R1 (3.15)

is isomorphic to the ring of reals.

///. Let dynamical system (3.1) be a generic non-integrable Hamiltonian system.
Then V[ = P^'ffj, where P\ is a non-degenerate Poisson structure on M2k. The
corresponding cohomology is isomorphic to the sum

H*(V,M2k) = R[tt]/M*+1R[κ] +H2k(V,M2k) (3.16)

of the quotient-ring of polynomials of a single variable u and the infinite-dimensional
group H2k(V,M2k) that has a trivial law of multiplication. The generator
ueH2(V,M2k) corresponds to the invariant symplectic structure ωi =^Pf1. The
linear independent elements of the infinite-dimensional group H2k(V,M2k) are rep-
resented by the invariant closed 2A:-forms

ωF = F(H)ω\ Λ Λ ωi . (3.17)

There are k factors ωi in the wedge product (3.17), F(H) is an arbitrary smooth
function of the single variable and H(x) is the Hamiltonian function.
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Remark 8. The isomorphism (3.14) for the integrable dynamical system (3.8) and
the isomorphism (3.16) for the general non-integrable Hamiltonian system V prove
that the cohomology ring H*(V,Mn) is a new invariant that characterizes simulta-
neously the topological properties of the manifold Mn and the global properties of
the dynamical system V on Mn.

IV. Let P\ be a non-degenerate Poisson structure on a manifold M2k . Let us con-
sider a completely integrable in Liouville's sense Hamiltonian system

jt< = V\x) = /T#α, #α = dH/dx" . (3.18)

Definition 4. Hamiltonian system (3.18) is called C -integrable in a domain Θ c Mn

if it is completely integrable in the Liouville sense and in the domain (9 all invariant
submanifolds of constant level of the k involutive first integrals are compact.

These invariant submanifolds are tori T^ (2.5). The Liouville Theorem [32]
implies that the C-integrable Hamiltonian system (3.18) has form (2.3) in the action-
angle coordinates /ι,...,4, φι,...,φk (2.8).

Definition 5. A (p,q) tensor T on the manifold Mn is called C -invariant if it
is invariant with respect to a C-integrable non-degenerate Hamiltonian system
(3.18).

We consider the C-integrable non-degenerate Hamiltonian system (2.3) in the
toroidal coordinates //(/) (2.11), φ\. In these coordinates, the Hamiltonian system
(2.3) has the form

Jι = 0, φ / = J f . (3.19)

Let θ be an arbitrary smooth differential 1-form

θ = θi(J, φ)άJi + θi+k(J, φ)άφi . (3.20)

Theorem 3. 1) Differential l-form θ (3.20) is C-ίnvariant if and only if

(3.21)

2) Any closed C -invariant l-form θ (3.20) is exact in the toroidal domain
(9=Brx T*.

Proof. 1) For the l-form θ (3.20), the invariance equation has the form

(Lyθ)β = θβ + V«βθ« = 0 , (3.22)

where Lv is the Lie derivative. After substituting formulae (3.19) and (3.20),
Eqs. (3.22) imply

0, = -θi+k, θi+k = 0 . (3.23)

In view of (2.9), solutions to (3.23) have the form

= -θi+k(J)t + θi(J), θM(t) = θi+k(J) , (3.24)

where θi(J) and θi+k(J) are some smooth functions of coordinates J\,...,Jk. Com-
ponents 0α(./,φ) of any smooth l-form (3.20) are bounded on any torus Έk (2.5).
Solutions (3.24) are bounded for all t if and only if θi+k(J} = 0 for / — !,...,&.
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Therefore using (3.24) and the fact that general trajectories of the C-integrable non-
degenerate Hamiltonian system (2. 3), (3. 19) are dense everywhere on the tori T*
we obtain that the 1-form θ is invariant if and only if it has the form (3.21).

2) If the C-invariant 1-form θ (3.21) is closed then applying the Poincare
Lemma we obtain θ = dF(7). D

Proposition 2. Any C-invariant differential 3-form 0)3 has the form

ω3 = bnm(J)dJi Λ άJi Λ άφm + cilm(JWi A 4// Λ άJm , (3.25)

where coefficients cum(J) are alternating and bum(J) satisfy the equations

bum(J) + blmi(J) + bmil(J) = 0, bUm(J) = -blim(J) . (3.26)

Theorem 4. 1) A closed differential 3-form ω^ is invariant with respect to the
C-integrable non-degenerate Hamiltonian system (2.3), (3.19) if and only if it has
the form

ft>3 = d j + bim(J) Λ dJt Λ άφm + d(α, ,(J)dJί Λ A/,) (3.27)
\ vJm /

in the toroidal coordinates <//, φ/. Here Bι(J) are arbitrary smooth functions of
J\9...,Jk, and coefficients au(J) and bim(J) satisfy the equations

an(J) = -au(J\ bίm(J) = bmi(J) . (3.28)

2) Any closed C-invariant differential ?>-form ω^ is exact. The equation
co3 = dΰ)2 holds where the C-invariant 2-form ώ2 has the form

Mi . (3.29)

The proof of Proposition 2 and Theorem 4 is based on the same ideas as in the
proofs of Theorems 1 and 3 and will be published elsewhere.

Corollary 1. Assume that a C-integrable non-degenerate Hamiltonian system V
(2.3), (3.19) is defined in an open toroidal domain Θ — Br x ΊΓ^. Then the first five
cohomologίes have the form

7/3(F, 0) = 0, //4(K, Θ) = R°° . (3.30)

Proof. Theorem 3 implies that each C-invariant closed 1-form is the exterior deriva-
tive of some first integral. That means Hl(V,(9) = 0. Theorem 4 implies that each
C-invariant closed 3 -form is the exterior derivative of some C-invariant 2-form. That
means //3(F,$) = 0. Theorem 1 and Theorem 3 imply that H2(V,Θ) = R°°. The
Proposition 2 implies that the wedge product ωi Λ ωi of two generic C-invariant
closed 2-forms ωi and ω2 (2.10) is not the exterior derivative of any C-invariant
3-form α>3 that necessarily has the form (3.25). Hence the cohomology H4(V,(9) is
infinite-dimensional. D

V. The "toroidal surgeries" method presented in Sect. 7 below provides a smooth
extension of any C-invariant closed 2-form ωc (2.10) on the whole manifold M2k.
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Therefore, the second and the fourth cohomologies H2(V,M2k) and H4(V,M2k) are
infinite-dimensional. Hence we obtain the following consequence.

Corollary 2. The infinite-dimensionality of the cohomologies H2(V,M2k) and
H4(V,M2k) is the necessary condition for the non-degenerate integr'ability of the
dynamical system V on the manifold M2k.

4. Applications Connected with the KAM Theory

/. Theorem 1 deals with integrable Hamiltonian systems (2.1) which have compact
invariant submanifolds (2.5) and are non-degenerate in the Kolmogorov sense (2.7).
This class of integrable systems is exactly the starting point for the Kolmogorov-
Arnold-Moser theory [2,26,27,41] that studies Hamiltonian perturbations of inte-
grable Hamiltonian systems

j?=p*Ht9Λ + εP?H9Λ. (4.1)

Kolmogorov's Theorem [2,26] assumes that for ε = 0 system (4.1)

f=P?Ho9Λ (4.2)

is completely integrable, non-degenerate and has compact invariant submanifolds.
In (4.1), the Hamiltonian function H(xl,...,xn) is arbitrary smooth and |e is suf-
ficiently small.

It is well-known [3,27] that generic non-Hamiltonian perturbations can destroy
all invariant tori (2.5) and that the dynamics of trajectories of the general perturbed
system is not quasi-periodic.

Definition 6. For an integrable system (4.2) a perturbation εF^ c1,...,^) is called
admissible if dynamical system

J=P*HttΛ + εVi(x) (4.3)

possesses the same dynamical properties for sufficiently small \ε\ as the Hamilt-
onian perturbations (4.1) in KAM theory.

Theorem 1 implies the existence of a rich family of admissible perturbations
which depend upon k + 1 arbitrary functions of k variables and one arbitrary func-
tion of 2k variables and which are non-Hamiltonian with respect to the Poisson
structure P\.

Theorem 5. 1) For any completely integrable non-degenerate Hamiltonian system
(4.2) with compact invariant submanifolds the dynamical system

x* =Pi?H^ + εPi?H^ (4.4)

possesses the same dynamical properties as the Hamiltonian perturbations (4.1)
in KAM theory. Here H(xl,...,xn) is an arbitrary smooth function and Pc is an
arbitrary non-degenerate Poisson structure that is invariant with respect to the
integrable Hamiltonian system (4.2). In a neighbourhood of an invariant torus
(2.5) the admissible perturbations (4.4) depend upon k + 1 arbitrary functions
(2.10),

B(Jι,...,Jk), /«(/!,...,/*), α =!,...,£. (4.5)
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2) If a supplementary invariant non-degenerate Poisson structure PI is com-
patible with P\ then all perturbations

( i \
X1 = P/°7/o,α + e Σ **^2 ^H.β (4-6)

\m=-/ 7
\ / α

are admissible. Here A^ = P\P^1 •> Qm — const and the (1,1) tensor

i
Σ amA2 (4.7)

m=-l

is assumed to be non-degenerate.

Proof. 1) Let us consider dynamical system (4.4) in the action-angle coordi-
nates /α,φα (2.8) associated with the integrable Hamiltonian system (4.2). In view
of Theorem 1 any invariant non-degenerate Poisson structure Pc has the form
pc = ω~l, where the symplectic structure ωc is defined by (2.10). The integrable
system (4.2) has also form (2.13)

x = P{ //o,α = Pl*Hc^ (4.8)

with new Hamiltonian function

Using formulae (4.8) we present dynamical system (4.4) in the form

x^PfHc^ + εPfH*. (4.10)

Obviously, this system is Hamiltonian with respect to the Poisson structure Pc or
symplectic structure ωc. Theorem 1 implies that the unperturbed completely inte-
grable Hamiltonian system (ε = 0)

f=P^H^ (4.11)

is non-degenerate with respect to the Poisson structure Pc. Indeed, the symplectic
form ωc = P~l has the canonical form (2.15) in the action-angle coordinates «/α><Pα

(2.16), (2.17). In these coordinates the non-degeneracy condition

det ΦO (4.12)

is met in view of (2.18).
Therefore all conditions of KAM theory are satisfied for the system (4.10).

Hence the dynamical system (4.4) is an admissible perturbation of (4.2).
Dynamical system (4.4) is not Hamiltonian with respect to the Poisson structure

PI if at least one eigenvalue of the recursion operator Ac = P\P~l is not constant.
Indeed, this system preserves the Poisson structure Pc. If it also preserved the
Poisson structure P\ then all eigenvalues of the recursion operator Ac would be first
integrals of this system. But system (4.4), (4.10) does not have any additional first
integrals in general because the function H(x) is arbitrary.
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2) If a supplementary invariant Poisson structure PΪ is compatible with P\ then
the (2,0) tensor

' •
(4.13)

is a Poisson structure in view of Magri's Theorem [35]. Obviously, the Poisson
structure Pll is invariant with respect to the integrable system (4.2) and non-
degenerate because the (1,1) tensor (4.7) is non-degenerate. Applying Theorem
1 we obtain that the unperturbed (ε = 0) system (4.6) can be presented in the form

x' = P'a
atfa,x (4.14)

with a Hamiltonian function Ha(J) of the type (4.9). Therefore dynamical system
(4.6) takes the form

*<=P'α//α,α + εP^//α (4.15)

that is Hamiltonian with respect to the Poisson structure P*J. Hamiltonian system
(4.15) satisfies all conditions of KAM theory because system (4.14) is completely
integrable and non-degenerate in view of Theorem 1. D

Theorem 5 implies the following consequence.

Corollary 3. The KAM theory is applicable not only for small Hamiltonian pertur-
bations (4.1) but also for the rich family of non- Hamiltonian perturbations (4.4).
The family of admissible non-Hamiltonian perturbations (4.4) depends upon the
k + 1 arbitrary functions of k variables B(J),f\(I\...,fk(I) and upon one arbi-
trary function of 2k variables H(x).

Remark 9. Formulae (4.4) and (4.6) imply that any invariant non-degenerate Pois-
son structure PI that is compatible with PI leads to a larger family of admissible
perturbations than an incompatible Poisson structure Pc. The family (4.6) depends
upon an arbitrary Laurent polynomial (4.7) or an arbitrary analytic function for

I / | — > oo. Nevertheless, the whole family of admissible perturbations (4.4) is more
general because the incompatible invariant Poisson structures Pc depend upon k +\
arbitrary smooth functions of k variables (4.5) and compatible Poisson structures
PI are exceptional cases among them, see Sect. 11.

II. Let PQ,...,PN be arbitrary non-degenerate invariant Poisson structures for inte-
grable Hamiltonian system (4.2), and AI(X) = P\P^λ be the corresponding recursion
operators. For an integer multi-index τ = (TO, . . . , τ#) and N +1 (1,1 )-tensors At(x)
we define a (1,1) tensor

Aτ(x)=Aτ

0* Aτ» . (4.16)

Let fτ(x) and Hτ(x) be arbitrary first integrals of system (4.2).

Theorem 6. For a completely integrable non-degenerate Hamiltonian system (4.2)
all perturbations (of an arbitrary scale)

(4.17)
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are admissible. All invariant tori of system (4.2) are also invariant with respect
to the dynamical system (4.17). General trajectories of (4. 17) are quasi-periodic.

Proof. The completely integrable Hamiltonian system (4.2) has form (2.3) in the
action-angle coordinates //, </>/. The Kolmogorov condition (2.7) implies that all first
integrals of this system are functions of the action variables // only:

Hτ=Hτ(Ii). (4.18)

Therefore vector fields V* = PγHτ^ have coordinates

K/ = 0, Vpk=Hτ(I)j9 (4.19)

where y = !,...,&. In the action- angle coordinates any recursion operator
At =P\P^1 has the lower triangular block form (2.45) where all entries depend
upon the action variables // only. Therefore, the (1,1) tensors Aτ (4.16) also have
the lower triangular block form (2.45). Hence using the key property of first
integrals (2.9) and the block structure (2.32) we obtain that the dynamical sys-
tem (4.17) has the form

/} = 0, φj = p\I) (4.20)

in the action-angle coordinates //,(/>/. Here p J ( I \ 9 . . . 9 I k ) are functions of the ac-
tion variables and j — I9...9k. Obviously, formulae (4.20) complete the proof of
Theorem 6. D

5. Applications Connected with the Kepler Problem

/. The classical Kepler problem is described by the Hamiltonian system in the phase
space 1R6

), ω^d^Λdft, ,= 1,2,3 (5.1)

with the Hamiltonian

H(p,q)=±n(p} + Pl + Pl)-^. (5.2)

Here m is the mass of the moving particle, M0 is the mass of the attracting centre,

G is the gravitational constant and r = Jq\ + q\ + q\ As it is well known, the

Kepler problem has three first integrals of angular momentum

Mi = εijkpjqk (5.3)

and three Lenz and Runge first integrals

. (5.4)

Here β^ is an alternating tensor, £123 = 1, i9j9k = 1,2,3.
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The existence of first integrals (5.3) and (5.4) implies that the Kepler problem
(5.1) possesses a continuum of invariant closed 2-forms

ωc = ωι + άFi(M,R) Λ άGi(M,R) . (5.5)

Here Fi(M,R) and G/(M,7?) are arbitrary smooth functions of first integrals M7 and
RI and / = 1,2,3.

The invariant 2-forms (5.5) are non-degenerate for the generic functions Fi(M,R)
and Gi(M,R). The corresponding invariant Poisson structures Pc = ω"1 are incom-
patible with PI = ωj"1 in general. This is obvious because the rank of the system
of differential 1-forms dM7, άRi is equal to 5 and functions Fi(M9R) and Gi(M9R)
are arbitrary.

An additional compatible Poisson structure was constructed for the Kepler prob-
lem in [37] by another method.

II. The basic problem of celestial mechanics is the problem of dynamics of n planets
with masses wα, α — !,...,«, around the Sun that is assumed to be in the origin of
the Euclidean space R3 and has mass M0 >• wα. The Hamiltonian of this problem
has the form

where vectors rα and /?α define position and momentum of the α-th planet.
In view of m^/Mo <C 1 dynamics of the Solar system is studied as a small

perturbation of the basic integrable problem that is described by the Hamiltonian

where the gravitational interaction between planets is neglected.
The basic integrable problem with Hamiltonian (5.7) is the direct product of

n Kepler problems. Let MΛi and Λαι be the angular momentum first integrals (5.3)
and the Lenz and Runge first integrals (5.4) for the α-th planet Kepler Problem. Let
fm(Mβj9Ryι) and Ga/(M^,/?y/) be arbitrary smooth functions of the 6n arguments,
where α,/?,y = !,...,« and i9j9l = 1,2,3. Obviously, the closed 2-forms

A drα/, ωc = ωi + £) dFα/(M,Λ) Λ dGα/(Af,Λ) (5.8)
α, / α, i

are invariant with respect to the flow of the direct product of n Kepler problems
(5.7).

The same arguments as for the Kepler problem (5.2) prove that the invariant
closed 2-forms ωc (5.8) are non-degenerate for the generic functions F^(M,R) and
Gai(M,R) and that the invariant Poisson structures Pc = ω~l (5.8) in general are
incompatible with the original Poisson structure PI = ωj"1.

Remark 10. Using the classical Poincare canonical elements [50] and methods of
Sect. 2, it is possible to present the invariant symplectic structures (5.5) and (5.8) by
the explicit formulae in the corresponding action-angle coordinates. The analogous
formulae for the harmonic oscillator are presented in the next section.
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6. Invariant Poisson Structures for the Harmonic Oscillator

/. The classical harmonic oscillator is described by the Hamiltonian system with
the Hamiltonian

H(P,q) = Σ [^-P] + ^ajqj] , a, > 0, m} •> 0 , (6.1)
j=\ \^mj Δ J

in the phase space R2* with the standard symplectic structure ω = dpj Λ dqj.
The corresponding action-angle variables //, φ\ are connected with /?/, #/ by the

formulae

// = 7Γ- P] + ~cι<fi, φι = arctan ( c\— J , c\ = ,/aJm~ι , (6.2)
2cι 2 pi

ipi = \/2cιIι cos φι, qι = W — // sin φ/ . (6.3)

Indeed, using (6.2) we find

+ ciqidqi, dφi = —(pidqi - qidpi) . (6.4)

These formulae imply that the symplectic form ω has the form

k k
ω = Σ Φy Λ d#/ = Σ d// Λ d(Pj - (6.5)

7=1 7=1

Formulae (6.3) yield the following expression for the Hamiltonian function (6.1):

H(p9q) = H(I) = ωι/ι + - - - + ωklk, ωl = - . (6.6)
V mι

Hence the dynamics of the harmonic oscillator is defined by the simplest integrable
Hamiltonian system

Ij = 0, φj = ωj (6.7)

in the action-angle coordinates. The Hamiltonian system (6.7) is degenerate as much
as possible since the corresponding Hessian matrix (2.7) is identically equal to zero
for the linear Hamiltonian function (6.6).

Let fv(I\,...Jk) and #α(/ι,...,4) be arbitrary smooth functions of the action
variables, and c^β be arbitrary constants, u,β= !,...,&. Any closed differential
2-form

ωc = dfχ(I) Λ dφα + d0α(7) Λ d/α + cαjSdφα Λ dφβ (6.8)

is invariant with respect to the flow (6.7). Indeed, the Lie derivative Lγωc with
respect to dynamical system (6.7) vanishes: Lvωc = 0.

Using formulae (6.4) one can easily obtain the expression for the invariant
2-form (6.8) in the Cartesian coordinates /?/, q\.

II. If frequencies ω/ (6.6) are incommensurable over the integers (see (2.6)) then
all trajectories of dynamical system (6.7) are everywhere dense on the invariant tori
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T£k. Applying Theorem 9 from Sect. 8 below to the T* -dense Hamiltonian system
(6.7) we obtain that formula (6.8) represents all invariant closed 2-forms.

If frequencies ω/ (6.6) are commensurable over the integers then they satisfy
some m < k linear independent equations

Ci\ω\ H ----- \-cίkωk = 0, / = l , . . . , / w (6.9)

with integer coefficients c,y G Z. For this case system (6.7) has m additional first
integrals

ψi(φ) = cnφι + + Cik<pk, -~̂  = 0 , (6.10)

which are defined mod(2π). Let

f Λ ( I ι 9 . . . I k , Ψ ι , ,Ψm), g*(Iι,'"Jk,Ψι,. .ψm), «= 1,--.* (6.11)

be arbitrary smooth functions of k + m variables which are 2π-periodic with respect
to the variables ^ . Formulae (6.7) and (6.10) imply that system (6.7) preserves the
following closed differential 2-forms:

&>c = dfΛ(I, ιA(<?)) Λ d<pα + d#α(/, ιA(φ)) Λ d/α + cαjgdφα Λ d^ , (6.12)

where cαβ are arbitrary constants.
Invariant closed 2-forms ωc (6.8) and (6.12) are non-degenerate for the generic

functions fχ(I,ψ). The corresponding generic Poisson structures Pc = ω~l are
incompatible with the original Poisson structure P = ω~l because the Nijenhuis ten-
sor NA for the recursion operator A = Pωc does not vanish in general, see Sect. 11.

However, formula (6.8) contains a continuum of Poisson structures Pc = ώ~l

which are compatible with the original Poisson structure P = ω"1 (6.5). Indeed, let
ω"1 have the form

ώ c -/ α (/α)d/ α Λdφ α , (6.13)

where jSc(/α) are arbitrary smooth functions of the single variable. Then the formula

(ωf1 + ώ~lΓ1 - 1 . / / Γ χ d / « Λ dφα (6.14)

is true and therefore the compatibility condition ά(ωl

 l + ωc

 l) ] = 0 (6.15) is
satisfied. The corresponding recursion operator A=P\ώc has doubly degenerate
spectrum ^(/α), α — !,...,«.

The invariant Poisson structures Pc = ώ~l (6.13) which are compatible with

pl = ω^1 are unstable in a sense that they become incompatible with PI after arbi-
trarily small perturbations inside the general families (6.8) and (6.12) of invariant
Poisson structures Pc = co~l.

7. Instability of the Property of Compatibility of Invariant Poisson Structures

/. Assume that a completely integrable non-degenerate Hamiltonian system (2.1) is
given on a symplectic manifold Mw, n = 2k, with a symplectic form ωi and Poisson
structure P\ = ωf l . Assume there exists a second non-degenerate Poisson structure
?2 that is invariant with respect to the dynamical system (2.1) and is compatible
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with the original Poisson structure P\ = ωj"1. The following theorem proves that
for the supplementary invariant Poisson structure P2 the property of compatibility
with PI is unstable.

Theorem 7. In any neighbourhood of the Poisson structure PI there exists a non-
degenerate Poisson structure PC that is incompatible with the Poisson structure
PI and invariant with respect to the Hamiltonian system (2.1).

Proof. In view of the Liouville Theorem for any point p G Mn\S there exists some
toroidal domain (9p c Mn, p G Θp, with action-angle coordinates /!,...,/£, φi, . . . , φ^
in (Dp, where the symplectic structure ωi has canonical form ωi = d/α Λ dφα and
the completely integrable Hamiltonian system (2.1) has form (2.3). Assume that the
Kolmogorov condition (2.7) is satisfied at some point /o G (9P with action coordinates
/oi ,...,%• Then the map

φ :(/!,.. .,/*) ->(/ι,... ,Λ), Jt = dH(I)ldIi (7.1)

is a diffeomorphism in a neighbourhood of the point /Q. Therefore, for some r > 0
the ball Br (2.4) is transformed into an open set Vr C Rk that contains two balls
Bi C B2: k

B* : Σ (Jt - Λo)2 ^ %, <5ι < δz, (J0) = Φ(I0) . (7.2)

Let Bp(J\,...,Jk) be an arbitrary smooth function on 1R* that is constant outside of
the ball B2 and is not constant inside the ball B\ c B2.

We construct a global invariant symplectic structure ωp on the manifold Mn

from the second invariant symplectic structure ω2 = P2

l by the following "toroidal
surgery" in the action-angle coordinates /i, . . . ,/£, φ\, . . . , φ^. Let Θr c Mn be the set
diffeomorphic to the direct product Br x ΊΓ^ or Br x T™ x IR^~W, where the action
coordinates /i, . . . ,4 satisfy the inequality (2.4) and the angle coordinates φ\,...9φk
are arbitrary. The symplectic structure ωp coincides with the original 2-form ω2 in
Mn\(9r. Inside the set (9r the 2-form ωp is defined by the formula

ωp = ω2 + εd j - Λ dφα . (7.3)
\ ^α /

The constructed 2-form ωp is defined globally on the manifold Mn and is smooth
and closed. It coincides with ω2 outside of the set

Φ~\B2) x TΓ x R*-m D Φ"1^!) x Tm x R*-m , (7.4)

and is different from ω2 inside the set φ~l(B\) x Tm x IR^""™. The 2-form ωp is pre-
served by the Hamiltonian system (2.1) in view of Theorem 1 and is non-degenerate
for sufficiently small ε because the 2-form ω2 is non-degenerate. Therefore, the in-
variant Poisson structure PC = ω"1 is a small perturbation of the original Poisson
structure P2.

For the recursion operator Ap = P\ωp the Nijenhuis tensor NAP is not equal to
zero in a neighbourhood of the point /Q. Indeed, function Bp(J) (7.3) is arbitrary
in the neighbourhood of the point JQ = </>(/o) and therefore it does not satisfy the
overdetermined third-order nonlinear system of partial differential equations (11.9)
that follows from the compatibility condition NAp = 0. Hence we obtain that the

invariant Poisson structure PC — ω~l is incompatible with P\ in a neighbourhood
of the point /Q. The instability is proved. D
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//. The method of "toroidal surgeries" that has been used in Theorem 7 can be
applied for any completely integrable non-degenerate Hamiltonian system (2.1).
This method provides the globalization of the invariant closed 2-forms (2.10) and
(2.49) and the corresponding incompatible Poisson structures from the action-angle
coordinates to the whole manifold Mn.

8. Invariant Poisson Structures for the Degenerate Integrable Hamiltonian
Systems

/. The Kepler problem, the basic integrable problem of celestial mechanics and the
harmonic oscillator problem provide the classical examples of degenerate completely
integrable Hamiltonian systems. The following theorem is a generalization of the
concrete constructions of Sect. 6. We assume that m angle coordinates φ\9...,φm9

0 rg m ^ k run over the torus IP and k — m coordinates pm+\ = φm+\,. . . , Pk = φk
run over the Euclidean space IR*~W and 1 ^ α, β, γ ^ k.

Theorem 8. 1) The closed 2-form

ωc = dFα(7) Λ dφα + d/α(7) Λ d/α + cα/?dφα Λ dφβ (8.1 )

is invariant with respect to the degenerate Hamiltonian system (2.3) if the func-
tions fz(I) are arbitrary, the functions Fχ(I) satisfy the equation

Fα(/)d ~ = d*(/) (8 2)

with some smooth function B(I) and the skew-symmetric matrix c^ is constant
and satisfies the algebraic equation

2) If the 2-form ωc (8.1) is non-degenerate then system (2.1), (2.3) has the
supplementary Hamiltonian form

f=P?Ψc*, (8.4)

where Pc = ω~l and ψc is a closed \-form

ψc = dHc(I) + gΛdφaί9 (8.5)

and function HC(I) and constants ga have the form

Hc(I)=d-^Fβ(I)-B(I\ *=*^|p. (8-6)

3) If matrix B with the components

5«-^(/) Γ87ΪBβ - ~^- (8.7)

is non-degenerate and all constants c^β = 0 then system (2.3) has the supplemen-
tary Hamiltonian form

f=I*HC0. (8.8)
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System (8.8) is completely ίntegrable with respect to the Poisson structure Pc.

Proof. 1) Differentiating the closed 2-form ωc (8.1) with respect to the dynamical
system (2.3) we obtain

*, - d α(/)d + 2c* A AI, . (8.9)

Substituting equalities (8.2) and (8.3) we find

ώc = d(d£(/)) = 0. (8.10)

Therefore the 2-form ωc (8.1) is invariant with respect to the Hamiltonian system
(2.3).

2) In view of Eqs. (8.2) and (8.7) we obtain for the function Hc (8.6),

dHc(I) _dHdFβ _ dH- (8 n)

In the action-angle coordinates (2.8) the symplectic form ωc (8.1) has the block
structure

ωc=(-B<

where matrix B has entries (8.7) and matrix σ has entries (2.33). The original
Hamiltonian system (2.3) is defined by the vector field x — V that has the compo-
nents

r = 0, r*+β = i^ α =!,...,£. (8.13)
δ/α

Formulae (8.11)-(8.13) imply that the 1-form ωcV has components

(ωcV\+k = (ωc\+k.jV
j = c«y— = ga . (8.14)

Equations (8.3) imply that 0α = const. Formulae (8.5) and (8.14) yield the equality

ωcV = ψc, (8.15)

where \//c is the closed 1-form (8.5). Hence we obtain

x=V = PcψC9 (8.16)

where Pc = ω~l. Therefore the representation (8.4) is proved.
3) If in (8.12) matrix B is non-degenerate and matrix c = 0 then

det | |ω c | |=(det | |5 | | ) 2 Φθ. (8.17)

In this case the Poisson structure Pc has the block form (2.36) and hence the Poisson
brackets (2.19) vanish. The condition c^β = 0 implies the equality ψc = dHc(I).
Therefore, applying the Liouville Theorem [32] we obtain that system (2.1), (8. 8)
is completely integrable with respect to the Poisson structure Pc as well. D
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Obviously, Eq. (8.2) has solutions of the form

- dB(J(I}}

where #(Jι, . . . ,Λ) is an arbitrary function. For this case equality (8.2) follows from
the definition of the differential άB(I).

The closed 1-form ιj/c (8.5) is not exact if one of the constants # α Φθ and the
corresponding coordinate φα is periodic. For this case the Hamiltonian system (8.4)
has no single-valued Hamiltonian function that would be defined in a neighbourhood
of the invariant submanifold Tw x R*~w (2.46).

//. Recall that a completely integrable system (2.1) is called T^-dense if the tra-
jectories of system (2.1) are everywhere dense on almost all tori (2.5).

Theorem 9. Assume that a completely integrable Hamiltonian system (2.1) is TΓ^-
dense in the compact toroidal domain 0 C Mn defined by conditions (2.4) and
(2.5). Then the following is true:

1) A closed 2-form ωc is invariant with respect to system (2.3) if and only if
it has the form (8.1) and Eqs. (8.2) and (8.3) are satisfied.

2) If the degenerate Hessian matrix satisfies the condition

,rank = *-! (8.19)

then all invariant closed 2-forms ωc have the form

ωc = dFΛ(I) Λ dφα + d/α(7) Λ d/α . (8.20)

Proof 1) The sufficiency of Eqs. (8.1)-(8.3) follows from Theorem 8. Their ne-
cessity is proved by the same arguments as in the proof of Theorem 1.

2) In view of (8.19) Eq. (8.3) yields

rank||cα/?|| ^ 1 . (8.21)

The rank of the skew matrix c^β is even. Hence the inequality (8.21) yields c^β = 0.
Therefore Eq. (8.20) follows from (8.1).

9. The Integrability Problem

/. In this section we present a solution of the Integrability Problem that is formulated
in Sect. 1.

Theorem 10. Assume that two non-degenerate Poisson structures P\ and PI on
a manifold M2k are strongly dynamically compatible and their recursion operator
A = P\P^1 has k functionally independent eigenvalues. Then the following is true:

1) Any dynamical system

xί = yi(x\...,x

2k) = Pi«Θl.a=Pl

2«θ2.a (9.1)

that preserves the two Poisson structures P\ and PI is completely integrable in
the Lίouville sense with respect to P\ and PI- Here θ\ and 62 are closed l-forms.
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2) There exist the action-angle coordinates /y, ψj where the Poisson structure
P\ has the canonical form

Pι = Σrf/7 Λr fφ y (9.2)
7=1

and where all closed \-forms θ\ (9.1) have the form θ\ = άH\(I\ where H\(I)
are the corresponding Hamiltonian functions. All dynamical systems (9.1) have
simultaneously the form

*-* *-
in the same system of the action-angle coordinates 7y, φy .

3) Flows of all dynamical systems which preserve the two strongly dynamically
compatible Poisson structures P\ and P2 commute with each other.

Proof. 1 ) Definition 2 implies that if two Poisson structures P\ and PI are strongly
dynamically compatible then there exists a dynamical system

(9.4)

that preserves PI and PI and that is an integrable and non-degenerate Hamiltonian
system with respect to some non-degenerate Poisson structure P, and such that
its invariant submanifolds are compact. The Liouville Theorem implies that these
submanifolds are tori ΊΓ^. Applying Theorem 1 we obtain that system (9.4) is com-
pletely integrable and non-degenerate with respect to both Poisson structures PI and
P2. Let /y, cpj be the action-angle coordinates with respect to the Poisson structure
PI (9.2) where system (9.4) has the form

1, = * Φ,-^

with a non-degenerate Hamiltonian function //(/i,...,/^). Applying Statement 1 of
Theorem 1, we obtain that the second invariant non-degenerate Poisson structure PI
is equal to ω^1, where ω2 is a closed differential 2-form (2.10). In the action-angle
coordinates /y, ψj this 2-form has block structure (2.32). Therefore, the correspond-

ing (1, 1) tensor A^ = PfP2~j has the block structure

2
where matrices B = B(I) and σ = σ(7) depend upon the action coordinates 7y only.

Let C(λ,x) be the characteristic polynomial of the k x k matrix B(x), x G M2k:

C(λ,x) = άet(B(x) -λ)=Σ cm(x)λm . (9.7)
m=0

The block structure (9.6) implies that the characteristic polynomial P(λ9x) =
det(^4(^) — λ) of the operator A(x) is the square of the polynomial C(A,jc)

P(λ,x) = C2(λ,x) . (9.8)

Hence we obtain that every eigenvalue λi(x) of the recursion operator A(x) = P\ωc

has an even multiplicity πii = 2£/.
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The formula (9.6) implies that functions

Hm(x) = TrAm(x) (9.9)

depend upon the action variables 77 only. That follows from the key property (2.9)
as well because functions (9.9) are first integrals of the non-degenerate integrable
system (9.5). Therefore, the Hamiltonian flows

x« = V%x) = pf(ΊτAm(x)\β (9.10)

have the form

4 -ft *,-*%* 0.11)

in the action-angle coordinates //, φy.
The family of functions Hm(x) (9.9) and the k distinct eigenvalues /l/(jc) are

functionally equivalent. All these functions are in involution with respect to the
Poisson structure PI because they depend upon the action variables 7y only.

We have assumed that the recursion operator A (9.6) has k functionally inde-
pendent eigenvalues. Therefore, the submanifold (rf/ = const)

Mk:λi(I) = dl9...,k(I) = dk (9.12)

is a torus Έk(Ij = Cj) or a union of several tori TΓ*.
Any dynamical system V (9.1) has first integrals (9.9). Therefore, vector field

V (9.1) is tangent to the tori ΐ* and hence dynamical system (9.1) has the form

7} = 0, φj = V+k. (9.13)

Any Hamiltonian system V (9.1) is completely integrable with respect to the
Poisson structure P\ because functions (9.9) are involutive first integrals of this
system and there are k functionally independent first integrals (9.9).

2) The closed 1-form θ\ has the form

0! - 0ι./7,φ)d7; + Θl.j+Mφ)άφj (9.14)

in the action-angle coordinates 77 , φ/ (9.2). Therefore, the Hamiltonian system V
(9.1) has the form

/} = -0ιv +*(/,φ), Φj = θLj&φ) . (9.15)

The two formulae (9.13) and (9.15) for the same dynamical system (9.1) imply the
equalities θ\ .j+k — 0. These equalities and condition dθ\ = 0 yield

0ι=0ι.χ/)d/y. (9.16)

Applying the Poincare Lemma for the closed 1-form (9.16) we obtain

(9.17)

Therefore the representation (9.3) is proved for any system (9.1).
3) The commutativity of all flows (9.1) follows from their simultaneous form

(9.3) in the same system of action-angle coordinates 77, φy . D
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II. Magri's Theorem [34] states that if a dynamical system V (9.1) preserves two
compatible Poisson structures P\ and PI then functions Hm(x) = ΎrAm(x) are in
involution with respect to both Poisson structures P\ and PI. The proof of involu-
tiveness is based on the identities

- ™P -ΎrA™ = Ply ——ΊvAm+l (9.18)
1 \m Jj 2 U+l J,y

and follows from the Lenard scheme [23]. For the non-degenerate Poisson structures
PI and P29 the identities (9.18) are equivalent to the compatibility of PI and P2.
Therefore, identities (9.18) are not true for any pair of incompatible non-degenerate
Poisson structures. However we have proved in Theorem 10 by another method
that all first integrals Hm = ΊrAm(x) are in involution. Our proof is independent
upon the Lenard scheme that is not applicable for two general strongly dynamically
compatible Poisson structures.

The involutiveness of first integrals Hm = ΎrAm(x) with respect to both Poisson
structures P\ and PI implies that all flows Vm : x = P\dHm commute and all flows
Vm : x = PιdHm commute. The identity (9.18) implies an excessive information that
all Hamiltonian flows Vm preserve not only the Poisson structure PI but also PI
and that all Hamiltonian flows Vm preserve not only the Poisson structure PI but
also PI.

Remark 11. These properties are not necessary for the Liouville integrability. There-
fore, the dynamical systems which preserve two compatible Poisson structures un-
dergo the more rigid mechanism of integrability that those preserving two strongly
dynamically compatible Poisson structures. For the incompatible case Theorem 10
implies that the commuting flows Vm preserve the Poisson structure PI and do not
preserve the Poisson structure P2 for two general strongly dynamically compati-
ble Poisson structures P\ and P2. Analogously the commuting flows Vm preserve
PI and do not preserve P\. These facts do not confirm Giver's prediction that "ft
"would appear that incompatible bί- Hamiltonian systems are, in a sense, even more
integrable than compatible ones'9 [47, p. 187].

The incompatible bi-Hamiltonian systems V preserve the non-zero Nijenhuis
tensor Nl

Ajk and all invariants which can be constructed from tensors P\yP^A and
NA. However, we prove in Theorem 12 (see Sect. 12) that all arising scalar invariants
(12.7) are equal to zero. Therefore, these invariants do not provide additional first
integrals which could lead to an excessive integrability of the system V under
investigation.

Remark 12. Let C\ be a class of C-integrable non-degenerate Hamiltonian systems
on a manifold M2k with a non-degenerate Poisson structure PI, see Definition 4
in Sect. 3. Let €2 be a class of dynamical systems which preserve two strongly
dynamically compatible non-degenerate Poisson structures P\ and P2 provided that
the recursion operator A = P\P^1 has k functionally independent eigenvalues. Let
€3 be the class of all C-integrable Hamiltonian systems on the Poisson manifold
M2k. The inclusions

Ci C C2 C C3 (9.19)

hold. Indeed, inclusion C\ C €2 is proved in Theorem 1. The inclusion €2 C €3 is
proved in Theorem 10.

Remark 13. Brouset in^[8, 9] and Fernandes in [19] proved that class C\ is not
included into the class C2 of dynamical systems which preserve two compatible in
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Magri's sense Poisson structures provided that the recursion operator A = P\P2
l

has k functionally independent eigenvalues. Magri proved in [34] that C2 C £3,
where €3 is the class of all integrable Hamiltonian systems on M2k.

10. Hierarchy of Integrable Dynamical Systems

/. Let L(z) be a Laurent polynomial

L(z)= Σ am(x)zm, (10.1)
m=-l

where coefficients am(x) are arbitrary smooth functions of the eigenvalues of the
recursion operator A = P\P2

λ We define a function HL(x) on the manifold M2k

(10.2)

and the Hamiltonian system

x?=P?HL* (10.3)

Theorem 11. Assume that two non-degenerate Poisson structures P\ and P2 on
a manifold M2k are strongly dynamically compatible and their recursion operator
A = P\P^1 has k functionally independent eigenvalues. Then the following is true:

1) Any dynamical system (9.1) that preserves the two Poisson structures P\
and P2 generates a hierarchy of integrable dynamical systems

xί = (AmV)i, (10.4)

where m is an arbitrary integer.
2) Invariants Hm(x) = ΎrAm(X) of the recursion operator A are first integrals

for all dynamical systems (10.4).
3) All flows (10.3) and (10.4) commute

[AmV,AlV] = 0, [Amr,PιdHL] = 0, [P^H^P.άH^] = 0 . (10.5)

4) All dynamical systems (9.5) as well as the more general dynamical systems

(10.6)

are completely integrable. All flows (10.6) for different L(A) commute with each
other. Here L(A) is an arbitrary Laurent polynomial (10.1).

Proof. 1) Theorem 10 implies that dynamical system (9.1) is completely integrable
with respect to both Poisson structures P\ and P2. This system has the form (9.3)
in the action-angle coordinates 7y , ψj which are constructed in Theorem 10. The
recursion operator A has form (9.6) in the coordinates /7, ψj.

Formula (9.6) implies that the (1,1) tensors A1 and A~l, / > 0, have the block
structure

° -
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Matrices σ/ and σ_/ are defined by the formulae

σ / = Σ Λ'σtfO*, σ_, = -Λ-'σ/^Γ7 , (10.8)
/>+$=/-!

which follow readily by induction.
In the action-angle coordinates 77, ψj vector field F (9.3) has components

Therefore, formulae (10.7) imply that components of the vector fields AmV have
the form

(Amvy = 0, (AmV)k+J = (|T(/))/ , (10.10)

where 7, / = 1, . . . , k. These vector fields are tangent to the tori T^ (2.5). Therefore,
the tori ΊΓ* are invariant submanifolds for all dynamical systems (10.4). All these
systems are integrable in view of (10.10).

The last is true as well for any dynamical system (10.6) corresponding to an
arbitrary Laurent polynomial (10.1) because components of the vector field L(A)V
have the form

= 0, (L(A)V)k+j = Pj(I} = L(B(I))j^- . (10.11)

2) Dynamical system (9.1) preserves the two Poisson structures PI and Pc.
Therefore it preserves the (1,1) tensor A = P\P~l and all its invariants as well.
Hence the functions Hm(x) = ΎτAm(x) (9.9) and HL(x) (10.2) are first integrals
of system (9.1). We have proved in Theorem 10 that all eigenvalues λj(I) of the
recursion operator A are constant on the tori ΊΓ^ (Ij = c7 ), see (9.12). Hence all
functions (9.9) and (10.2) are constant on the tori 1* as well.

Therefore, in view of (10.10) we obtain that functions (9.9) and (10.2) are first
integrals of the dynamical systems (10.4) as well.

3) Vector fields AmV are tangent to the tori T* (Ij — c7 ) and their components
in the action-angle coordinates 77, ψj depend upon the action variables // only. Ob-
viously the same is true for the vector fields P\άHL(I) in view of the canonical
form (9.2). Therefore, all these vector fields and the corresponding flows (10.3) and
(10.4) commute.

4) In the action-angle coordinates /7,<p7 the dynamical system (10.6), (10.11)
has the form

/} = 0, φj = pj(lι,...,lk). (10.12)

Obviously, this system is integrable.
System (10.12) preserves the closed 2-form

o>2 = Σ dpJ(I)Λdφj. (10.13)
7=1

If the k functions pl(I\ ...,//(/) are functionally independent then dynamical sys-
tem (10.6), (10.12) has the Hamiltonian form

. (10.14)
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Hence we obtain that in the non-degenerate case dynamical system (10.6) is
completely integrable in the Liouville sense with respect to the symplectic structure
(10.13) in a toroidal neighbourhood (S = Br x T* of any invariant torus ΊΓ*.

Commutativity of all flows (10.6) follows from the formulae (10.11). D

II. The dynamical systems (10.4) have the form

j?=/^+1/f1>β = /^fl2,α, m > 0 , (10.15)

J = P*m}HltΛ = PJα

m,+1//2,α, m<Q. (10.16)

Here the (2,0) tensors

pl = Al~lPι, PI = Al~lP2, I > 0 (10.17)

are skew.
For / ̂  2 the (2,0) tensors PI and PI are not Poisson structures if the original

Poisson structures PI and PI are incompatible. In the proof of Theorem 11 we have
constructed the symplectic structures for systems (10.4) and (10.6) by the explicit
formulae (10.13) in the action-angle coordinates.

The methods of the present paper differ substantially from the methods used in
papers and monographs [8-13,15,19-22,24,25,33-37,40,45-48,53,54] for pairs
of compatible Poisson structures where all (2,0) tensors P/ and P/ (10.17) are
themselves Poisson structures and therefore systems (10.15) and (10.16) are
bi-Hamiltonian.

For / = 1 formulae (10.17) yield the tensors P\ and P\ = P2. Systems (10.15),
(10.16) take the form

jf = (AVJ = (ΛP^P,)'0^ = Pf//2,α, m=l, (10.18)

j? = (A~l Vj = P*HltΛ = (P2PϊlP2TH2^ m = -l. (10.19)

These systems preserve the Poisson structure P\ or P2 respectively. They are com-
pletely integrable with respect to P\ or P2 by the same arguments as in Theorem 10.

11. The Nijenhuis Tensor for the Recursion Operator

/. Assume that two incompatible non-degenerate Poisson structures PI and Pc on a
manifold Mn, n = 2k are strongly dynamically compatible. In view of Definition 2,
Sect. 1, there exists a dynamical system V on the manifold Mn that preserves both
of them and is completely integrable and non-degenerate with respect to some non-
degenerate Poisson structure P, and such that its invariant submanifolds are compact.
Using Statement 4 of Theorem 1, we obtain that the dynamical system V is com-
pletely integrable and non-degenerate with respect to both Poisson structures PI
and Pc.

Let us use the action-angle coordinates /y,<jt>/ (2.8) where the Poisson structure
PI has the canonical form P\ = ωf1, ω\ = d/y Λ dφy. Applying Statement 1 of
Theorem 1 for the invariant Poisson structure Pc, we obtain that in the action-angle
coordinates //,<?/ the recursion operator A = P\P~l has block structure (2.45) with
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the following entries:

4 =*/(/), 4^ = 0, Afk = atJ(Il Λ£* =#//), (11.1)

where 1 ̂  /, j ^ k. Formulae (2.33) imply

β'm dBί(I) »m dB(J(I» „ (n f f m ? ϊ
' = ~jf~' BI"> = — fa - ' σ/AΌ = //,'' ~ Ay (H 2)

For any (1,1) tensor Aβ the Nijenhuis tensor Nj^ is defined by the formula [44]

Nf\=A^β-AlτAl + (AltJ-Altβ)A"τ . (11.3)

Substituting formulae (11.1) we obtain that the following components of the
Nijenhuis tensor (11.3) vanish:

N$.M = Nj+k.l+k = Nj^., = 0. (1 1.4)

Here and below we assume 1 ̂  i9j9l9m ^ k. Components N^ coincide with those
for the Nijenhuis tensor of the (1,1) tensor B*(I) in the domain of the action
variables:

Nji = B[mBJ

m - B(mBl

m + (Bj

mJ - B'mJ)B^ . (1 1.5)

The other components have the form

N&.I =BlιBί

m -Bi,mBl

m, Nfi+k=B'ltmBίl-BftjB
l

m , (11.6)

N»* = σtl,mBJm - B^j - σij<mBl

m + B^JJ + σim(BJ

ml - Bl

mJ) . (1 1.7)

Proposition 3. The k-dimensional linear subspace <£x = Tx(T[k) is a commutative
ideal with respect to the algebraic structure defined by the Nijenhuis tensor N(u, v)
in the tangent space Tx(Mn).

Indeed, equalities (11.4) mean that

N(xx, sex) = o, N(τx(M"), <ex) c &x . (i ι.β)

Therefore subspace JίPx is a commutative ideal.

//. The compatibility of the two non-degenerate Poisson structures PI and Pc is
equivalent to the vanishing of the Nijenhuis tensor NA(U,V) = 0 [24,25,36]. This
condition implies

ί+k d2Bj(I) dBm(I) d2Bj(I) dBm(I)

j+k > di,dim dii ditdim di,
δB(J(I)) dH(I)

- (1L9)

The overdetermined third-order nonlinear system of partial differential equations
(11.9) has solutions only for exceptional pairs of functions B(J) and H(I).
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For example if function B(J) is the Legendre transform (2.42) of the function
H(I) then we have

*<(/)=^P=/" Bi^=^=δi' (ιuo>
Hence Eqs. (11.9) are satisfied and components of the Nijenhuis tensor (11.5) and
(11.6) vanish. For the case (11.10) components Nfik (11.7) vanish for any matrix
Oij. Therefore, any symplectic form

ώ = ωi + (fβ,Λ - Λ,/Od/« Λ dlβ (11.11)

defines a Poisson structure P = ώ~l that is compatible with the Poisson structure P\.
The corresponding recursion operator A = P\ώ (2.45) satisfies an algebraic equation
(A — I)2 = 0 and has non-diagonal 2 x 2 Jordan blocks.

The function B(J) is the most important element of the invariant symplectic
form (2.10) because this function determines the incompatibility of the two Poisson
structures Pc and PI.

If two functions H(I) and B(J) are in general position then Eqs. (11.9) are not
satisfied and therefore the invariant Poisson structure Pc (2.13) is incompatible with
the original Poisson structure PI .

///. For any tangent vector u £ Tx(Mn) we define an operator Nu:

Nuw = N(u,w). (11-12)

Tangent vector u has the following coordinates:

u = uλe\ H h ukek + υle\+k H h vke2k ,

The formulae (11.4) imply that in the action-angle coordinates operators Ne. have
the following block structure:

o) (1U4)

where Vj, Uj, Wj and Qj are k x h matrices which depend upon the action variables
/!,..., Ik only.

Let us define the following polynomial-valued function on the tangent bundle
T(Mn)\

(11.15)

For the Nijenhuis tensor (11.14), polynomial (11.15) has the form

PN(u,λ) = det(Fχ - λ)det(0χ - λ) . (11.16)

Obviously, this polynomial is a product of two polynomials of degree k. Polyno-
mial (11.16) does not depend upon the coordinates f1,...,^ (11.13). Hence the
identity holds

PN(u + Ό,λ) = PN(u,λ), (11.17)
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where u G Tx(Mn) and v e &x. This identity implies PN(v,λ) = (-λ)n for all tan-
gent vectors v G ,&x.

12. Necessary Conditions Problem

/. Let PI and Pc be two incompatible non-degenerate Poisson structures on a man-
ifold Mn, n = 2k. Let A — P\P~l be the recursion operator and NA(U,V) be the
corresponding Nijenhuis tensor. The (1,1) tensor Aj defines a family of differen-
tial forms

dHm, Hm=-ΊτAm (12.1)
m

and a family of vector fields

Xa=AlPlάHm, α = (/,w). (12.2)

Using the operators Nu (11.12) we obtain a family of differential 1-forms

φm(u) = Ύr(AmNu) , (12.3)

a family of bilinear forms

gm(u,u) = Ύr(NuA
mNΰ)9 (12.4)

and a family of polynomial-valued functions on the tangent bundle T(Mn),

PιN(u,λ) = det(AlNu - λ) = Σ Pιm(u)λm . (12.5)
m=0

These geometric objects lead to a family of vector fields

YΛ=AlPιφm, α = (/,*!), (12.6)

and families of functions on the manifold Mn

fy = gm(Za,Zβ), hδ = Pλ(AP^A^m\ rδ = P2(AP^A^m), (12.7)

where

Zα = XΛ or 7α, \l/m = φm or dHm, y = (m,α,β\ δ = (l,m,p,q).

(12.8)

II.

Theorem 12. The following properties of the geometric objects (12.1)-(12.7) con-
stitute the necessary conditions for two incompatible non-degenerate Poisson struc-
tures PI and PC to be strongly dynamically compatible:

1) The algebraic structure defined by the Nijenhuis tensor NA(u,v) in the tan-
gent space Tx(Mn) possesses a k-dimensional commutative ideal &x c Tx(Mn).
The linear subspace ^x is Lagrangian with respect to both symplectic struc-
tures ω\ = Pf1 and ωc = P~l. The algebraic structures which are defined by the
Nijenhuis tensor are ίsomorphic along any curve x(t) G Mn that is tangent to the
distribution &Xt.
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2) The differential 2-forms dφm and bilinear forms gm have

rankdφm ^ k, rank#m ^ k . (12.9)

3) All vector fields Zα = X^ or 7α are mutually commutative

[Za9Zβ] = 0. (12.10)

4) The functions fy, h$ and r$ are identically equal to zero. All functions Hm(x)
are in involution with respect to the Poisson structures P\ and Pc,

Λ(d7//,d^) = Pc(dHl9dHm) = 0 . (12.11)

5) Polynomial PIN(U, λ) (12.5) is reducible and is a product of two polynomials
of degree k = n/2.

Proof. 1) Assume that two Poisson structures P\ and Pc are strongly dynami-
cally compatible. Then we define the A>dimensional distribution <£x in the form
&χ — Tx(T[k), where tori IT* are defined by the integrable system K, see Definition
2 in Sect. 1. By this definition &x is Lagrangian with respect to the symplec-
tic structure ωi. Theorem 1 implies that any invariant closed 2-form ωc has form
(2.10) in the action-angle coordinates (2.8) corresponding to the completely inte-
grable Hamiltonian system V (2.3). Therefore the distribution 3?x is Lagrangian
with respect to any invariant symplectic structure ωc = P~l . Formulae (11.8) prove
that the subspace £fx is a commutative ideal.

The phase flow corresponding to the system (2.3) preserves the two Poisson
structures P\ and Pc. Therefore, it preserves the recursion operator A = P\P^~l and
the corresponding Nijenhuis tensor NA(U,V) and all geometric objects (12.1)-(12.7).
Hence these tensors are isomorphic along any trajectory of the system (2.3). In
view of the Kolmogorov condition (2.7) the general trajectories of this system
are everywhere dense on the tori (2.5). Therefore, the algebraic structures defined
by the Nijenhuis tensor NA(U,V) on the tangent spaces TXλ(Mn) and TX2(Mn) are
isomorphic if the points *ι and X2 belong to the same torus ΊΓ* (2.5). Hence this
is true along any curve x(t) tangent to the distribution &x(f) because such a curve
lies on a torus (2.5).

2) Formulae (10.7), (10.8) and (11.14) imply that operators AmNu have the form

/ / βt yn Y uoί Q \

AmNu=Γ α _ , , „ „ , Umu = σmVau«+Bm(Uau« + Qav«) (12.12)
\ Umu

in coordinates (11.13). Hence we obtain

φm(u) = Ίι(AmNu) = Ίτ((B')mVai+BmWaί)uΛ , (12.13)

gm(u,ΰ) = TrίJV^"^) = Ίτ(VΛ(B')mVβ + WaB
mWβ)uxΰβ , (12.14)

where matrices #(/), V^(I), WΛ(I) depend upon the action variables /i,...,/^ only.
Obviously, formulae (12.13)-(12.14) yield the relations (12.9).

3) Formulae (2.32),(10.7) and (12.13) imply that coordinates of the vector fields
Zα =Xa (12.2) or 7α (12.6) have the form

(12.15)

Hence the commutativity relations (12.10) follow.
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4) Substituting expression (12.15) into (12.14) we obtain that all functions
fy vanish.

The Kolmogorov condition (2.7) implies that any first integral F(x) of the sys-
tem is a function of the action variables I\,...,Ik. Therefore the differential form
άF has components

dF = (F1,...,FJ t, 0,...,0). (12.16)

Applying (12.16) for first integrals Hm(x) (12.1) and using the block forms of the
Poisson structures P\ (2.32) and Pc (2.36) we obtain the equalities (12.11).

Using the block forms of the operators A1 (10.7) and formulae (12.13), (12.16)
we find that the 1 -forms Al\l/m have components

ΛVm = OAαi, . . . ,<Aα*, 0, . . . , 0), α = (/,w). (12.17)

These expressions and the block forms of the Poisson structures P\ (2.32) and Pc

(2.36) imply that all functions h$ and r& (12.7) vanish.
5) In view of (12.12) polynomial (12.5) has the form

PlN(u,λ) = άet((&yvaιf - λ)det(BlW«ua - λ) . (12.18)

Obviously, formula (12.18) presents polynomial Pw(u,λ) as the product of two
polynomials of degree k. D

///. Theorem 12 can be applied for many incompatible Poisson structures P\ and
Pc. For example if the hypersurfaces of constant level Hm(x) — const are compact
for one of the functions Hm(x) (12.1) and one of the necessary conditions l)-5)
is not met then no integrable non-degenerate Hamiltonian system exists that would
preserve the two Poisson structures P\ and Pc.

13. Canonical Forms for Non-Degenerate Completely Integrable Hamiltonian
Systems

7. In this section we study canonical forms for the non-degenerate completely inte-
grable Hamiltonian systems in the domains (see (2.4))

(9=Br xTΓ w x R*-w . (13.1)

Theorem 13. Any non-degenerate completely integrable Hamiltonian system
(2.1)- (2. 3) in a toroidal domain (9 c Mn is dίffeomorphically equivalent to one
of the k-\- 1 universal Hamiltonian systems in the Cartesian coordinates /?/,#/:

SHm . dHm

The Hamiltonian functions Hm have k + 1 canonical forms

\ Σ
Z ΐ=m+l

where m = Q,l,...,k.
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Proof. The Kolmogorov condition (2.7) ensures that the k functions

form a system of local coordinates in the space of action variables /!,...,/&. In
these coordinates the dynamical system (2.3) takes the canonical form

(13.5),

. (13.6)

Obviously system (13.5) is Hamiltonian and preserves the symplectic structure

ω2 = άJι /\dφι . (13.7)

In the original action-angle coordinates //, φ/ this structure has the form

jf^άψl. (13.8)
0 j 0 1

Hamiltonian system (13.5) is the universal canonical form for any non-degenerate
completely integrable system (2.3) in the coordinates Jι,...,Λ (13.4) and the orig-
inal angle coordinates <pi, . . . ,<p*.

The canonical forms in the Cartesian coordinates depend upon the topology of
the invariant submanifolds // = const. In view of the Liouville Theorem [32] we
assume that m coordinates φ\,...,φm are defined mod(2π) and run over the torus
Tw. The other k — m coordinates pw+ι,...,pjt run over the Euclidean space ΊRk~m.
We define the Cartesian coordinates

Pi = A/2^cosφ/, qi — y/2J/sinφ/, i = l,...,m ^ k ,

P j = J j > Vj = Pj> 7 = w + l ,
iy.

In these coordinates symplectic structure (13.7) takes the canonical form

ω2 = ΣΦ/Λdί,. (13.10)
1=1

The Hamiltonian function H^(J) (13.6) takes the form (13.3). D

Remark 14. The symplectic form (13.7) is a special case of the invariant closed
2-forms ωc (2.10). The corresponding functions /«(/) = 0 and function B(J) has
the form

W = ^C/ι2 + +Λ2) (i3.li)

The symplectic structure (13.7) implies the supplementary Hamiltonian represen-
tation (2.13) for the system (2.3). The corresponding Hamiltonian function HC(J)
(2.14) coincides with HQ(J) (13.6). In coordinates /ι,...,4 it is defined by the
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formula

In coordinates Λ, <Pβ the original symplectic structure ωi = d/α Λ άφa has the form

ω\ = (

where function #(./) is the Legendre transform (2.42) of the Hamiltonian func-
tion H(I).

Remark 15. Theorem 1 proves that any completely integrable Hamiltonian system
(2.1) has a continuum of invariant Poisson structures in a toroidal domain G C Mn,
which are incompatible with the original Poisson structure P\ (2.4). But among these
structures there exist a continuum of compatible pairs. For example the Poisson
structure PI — ω^1 (13.8) is compatible with all invariant Poisson structures PQ =

ω^1, where the symplectic structure ωc has the form

ωG = dGα(Λ) Λ dφa, JΆ(I) = - . (13.14)
vl a,

Here Gα(.x) are arbitrary smooth functions of the single variable c. This is obvious
because the corresponding (1,1) tensor A = P^P^1 is diagonal in the coordinates
Ji, ψj and has the diagonal entries

GίGU α = l , . . . , * . (13.15)

For example if Gα(.x) = G(x) — ^x2, then the eigenvalues of the (1,1) tensor A are
equal to ΛCO and have multiplicity 2. Hence we obtain that for any non-degenerate
completely integrable Hamiltonian system (2.1) first integrals Jα(/ι,...,4) (13.14)
can be presented as eigenvalues of the recursion operator A= PiP~^1 for two in-
variant compatible Poisson structures PI and Po-

ll. Let us consider in the toroidal domain 0 C Mn the original Poisson structure
PI = ωj~ l and the Poisson structure PI — ω^1 (13.7)-(13.8). The corresponding

recursion operator A = P\P^1 has the block structure

i j 2 (13.16)

in the action- angle coordinates /i ,...,/£, φ\,...,φk. For this (1,1) tensor the k x k
matrices Vj,Uj,Wj and Qj (11.14) have the following entries:

= HjιmHjm — HjimHtmι9 (Uj)ii — 0 ,

jlmHjm ~ HjlmH,mi> (Qj)il = H,jlmH,mi ~ H,βmH,ml - (13.17)
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Obviously the equality Wj = Vj holds. Therefore, the formulae (11.12)-(11.14)
imply that operator Nu has the following block structure:

jUj 0 λ

> η >) <13 18)

where j = !,...,&. Hence we obtain that polynomial (11.15) is a perfect square

PN(u,λ) = (det(Fχ - λ))2 . (13.19)

This remarkable algebraic fact is a manifestation of a general theorem that will
be published in our next paper. This theorem states that if a (1,1) tensor A is the
recursion operator for two incompatible Poisson structures, A =PlP~l, then the
corresponding polynomial (11.15) is a perfect square.

14. General Invariant Poisson Structures

/. Olver in [47] and Turiel in [53] studied canonical forms of compatible pairs of
Poisson structures and integrable systems which preserve them.

In this section, we present a classification of all Poisson structures P^ which
are invariant with respect to the integrable non-degenerate Hamiltonian system (2.3)
provided that all its invariant submanifolds are compact. For the non-degenerate case
det || P*P || φO we give a second proof of the main results of Theorem 1.

The Kolmogorov condition (2.7) implies that the k functions ΛCO (2.11) form
a system of local coordinates in a ball Br (2.4). Hamiltonian system (2.3) takes the
equivalent form

4 = 0, φ^Ji (14.1)

in coordinates

Jι,...,Λ, φι9...,φk, φt = φt mod(2π) . (14.2)

Trajectories of system (14.1) are everywhere dense on almost all tori (2.5).
In the toroidal coordinates Ji9 ψi a (2,0) tensor P^(Jj, ψi) has the block structure

p*β,τ f / ) Λ _ ί Pi
f (J»φt)- \

where p^p\ >p
fΣ >p^(J^φi) are k x k matrices.

Theorem 14. 1 ) A Poisson structure P^ is invariant with respect to the dynamical
system (14.1) if and only if it has the form

where matrices p(J) and p$(J) satisfy the equations

p'(J) = p(J\ p'0(J) = -po(J) , (14.5)

P^P1"' = p"mPmi , (14.6)

PlmPml + Pi',mPm' + PlmPmj = 0 (14.7)
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2) Any first integrals F and G of an integrable non-degenerate Hamiltonian
system (2.3) are in involution with respect to any invariant Poisson structure

0. (14.8)
du" duf v '

3) If the invariant Poisson structure (14.4) is non-degenerate then

for some functions B(J) and fi(J\

Proof. 1) The invariance of a (2,0) tensor Paβ with respect to dynamical system
(14.1) is equivalent to the vanishing of the Lie derivative LVP, where vector field
V (14.1) has components

Vλ = - - Vk = 0, VM = Ji . (14.10)

For any vector field V the Lie derivative LVP has the form [49]

(LvPfβ = P"β - V«pvβ - VβP«y . (14.11)

After substituting (14.3), (14.10) and (14.11) the invariance equation LVP — 0
takes the form of the matrix system

A = ° > ί>2 = Pι> Pι = Pι> Po = P2 + p3 (14.12)

In view of the key property of first integrals (2.9) solutions to (14.12) have the
form

Pl(t) = pλ(J\ P2(t) = pλ(J}t + p2(J\ P3(t) = pλ(J)t + p3(J) ,

(p2(J) + p3(J))t + po(J) . (14.13)

All entries of matrices pa (14.3) are smooth functions of Ji9 ψi. Hence pa(t) are
bounded on any torus T* (2.5). Solutions (14.13) are bounded for — oo < t < +00
if and only if

Pi(J) = 0, p2(J) = p(J\ p3(J) = -p(J) . (14.14)

Therefore any invariant (2,0) tensor P has the block form (14.4).
By definition a Poisson structure Paβ satisfies equations

p*β = _pβ« 9 (14 15)

poφpτγ + pβypm + py*pτβ = Q (14Λ6)

Formulae (14.5) follow from (14.15) and (14.4). In view of (14.4) formulae
(14.16) have different meaning for different (α,β,y). Let 1 ̂  iJJ,m rg k. For-
mulae (14.16) are identically true when

or (α,/ί,y) = (ιj,/ + t) . (14.17)
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Formulae (14.16) are equivalent to (14.6) when

(α, ft y) = (ι J+ *,/ + *), (14.18)

and they are equivalent to (14.7) when

(α, ft y) = (i + kj + *, I + *). (14.19)

2) In view of (2.9) any first integral F of Hamiltonian system (2.3), (14.1) has
the form F = F(J\,...,Jk). Therefore the involution relation (14.8) follows from
(14.4).

3) Formula (14.4) implies

det||P(J)||=(det||χj)||)2. (14.20)

Hence the invariant Poisson structure (14.4) is non-degenerate if and only if the
symmetric matrix p(J) is non-degenerate. Let B(J) = p~l(J) be the inverse (sym-
metric) matrix. Multiplying Eq. (14.6) with BqiBrjBpi and contracting with respect
to the indices z,y, I we obtain

Bqr,p = Bqp^ 1 g p, q, Γ ^ k . (14.21)

These equalities yield

dJr

for some functions Bq(J). The symmetry of matrix B and (14.22) imply the equal-
ities

dB(J) d2B(J)
Bq(J) = , Bqr(J) = (14.23)

for some function B(J).
Let σ = p~lPQP~I. Then one has

PQ = pσp, σ* = -σ. (14.24)

In view of (14.5) and (14.6), Eq. (14.7) takes an equivalent form

0|/,/ ~ί~ 0)7, / + 0/1,7 — 0 . (14.25)

That means that the 2-form

ω2 = σu(J)dJi Λ dJi (14.26)

is closed, dω2 = 0. The Poincare Lemma implies that locally the 2-form 002 is exact

ω2 = dVt(J)dJi) (14.27)

Hence the last of equalities (14.9) follows. D

II. In Theorem 14, we have presented the second proof of the classification
of the non-degenerate invariant Poisson structures that has been discovered in
Theorem 1. Theorem 14 also implies the existence of families of invariant degenerate
Poisson structures (14.4)-(14.7). For example one gets an invariant Poisson struc-
ture (14.4) if

pll(J) = 0, Pβ(J) — -~Po(J) 9 (14.28)
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where functions p$(J) are arbitrary. In this case Eqs. (14.5 )-( 14.7) are satisfied
identically. The family (14.4), (14.28) of degenerate Poisson structures depends
upon k(k — 1 )/2 arbitrary functions pl$(J). Thus this family is larger than the family
of all non-degenerate Poisson structures (14.9) that depends upon k + 1 arbitrary
functions fι(J) and B(J).

One gets another family if for some m,

ln* PoV) = -K V) = ft(J\

= 0, zφw, /Φm, 1 g m £ k . (14.29)

Here /o(~0> //(«/) are k arbitrary functions of k variables J\,...9Jk and p$(J)
— ~PQ(J) are (^ ~~ !)(£ ~~ 2)/2 arbitrary functions of A: — 1 variables Jz for /φw.
A direct substitution proves that functions (14.29) satisfy all Eqs. (14.5)— (14.7).
Therefore, the corresponding matrices p(J) and po(J) define a family of invariant
degenerate Poisson structures (14.4).

In general, the constructed Poisson structures (14.28) and (14.29) are incom-
patible with the original Poisson structure P\ (2.32). That follows from the explicit
formulae (15.23) for components of the Schouten bracket, see Sect. 15 below.

15. Necessary Conditions for Strong Dynamical Compatibility

7. Let P and Q be two arbitrary Poisson structures on a manifold Mπ, n = 2k.
Their Schouten bracket [P,β] is an alternating (3,0) tensor that has the following
components:

2[p9 Qγy = pςpy + pQ™ +

+ Qffpv + Qtop™ + Q%Pτβ . (15.1)

Let Λ(T(Mn)} be the exterior algebra of the tangent bundle T(Mn)

Λ(T(Mn)) = Λ0 Θ Aλ Θ θ An . (15.2)

Recall that Λ\ — T(Mn). Any alternating (A:,0) tensor is a section of the fibre
bundle Λ^. The Poisson structures P and Q are sections of the fibre bundle ΛI. The
Schouten bracket [P, Q] is a section of the fibre bundle Λ^ . The fibres of the bundles
ΛQ (scalar functions) and An (alternating (w,0) tensors) are one-dimensional.

Let Sm for m — 0, 1, . . . , k — 2 be an alternating (n — 1,0) tensor of the form

Sw = [P,β]ΛPΛ Λ / > Λ ρ Λ Λ β , (15.3)

where there are m factors P and k — 2 — m factors Q. Let us denote (Wr9cor) the
complete contraction of the product of the (r,0) tensor Wr and the (0,r) tensor ωr.

II. We define k —I differential 1 -forms ξm by the formula

?"=Sm\ωn9 (15.4)

where ωn is an arbitrary non-degenerate «-form on Mn. Formula (15.4) means that

ξm(u)=(SmΛu,ωn) (15.5)

for any tangent vector u £ Tx(Mn).
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The Poisson structures P and Q transform the 1-forms ξm into the vector fields
Um and Vm by the formulae

^=P™C, ^ = βτ vC- (15.6)

///. Let RI G Λn-2 be the wedge product of / factors P and k—l — l factors β,
7 = 0,1,...,*-!,

J R / = P Λ Λ P Λ β Λ - - Λ j β . (15.7)

We define 2k(k - 1) differential 1-forms Cα and tfα,

Γ - (Λ, Λ Um) J ωΛ, tfα = (R, Λ Fm) J ωn . (15.8)

Here α is the multi-index α = (/,m).
Let us denote the 1-forms ξm, £α and $α by the general symbol 0α. These

1-forms are defined uniquely up to a functional factor (as well as the w-form ωn).
They generate the distribution ̂  C T*(Mn) and assign the orthogonal distribution

(£,&-*-) =0. (15.9)

The distribution J* is uniquely determined by the system of Pfaff equations

0α(w) = 0. (15.10)

These equations for the tangent vectors u G 0SX are equivalent to the system of
equations in the exterior algebra Λ(T(Mn)\

Sm/\u = Q, Rι/\Um/\u = Q, RI ί\Vm f\u =• Q . (15.11)

Any dynamical system that preserves the two Poisson structures P and Q also
preserves the two distributions $ and ̂ -L.

Remark 16. The distributions & and US^ have very simple form if the Poisson
structures P and Q are compatible. Indeed, in this case their Schouten bracket
vanishes: [P,Q] = 0. Therefore the k — 1 tensors Sm, m = 0,1,...,k — 2 (15.3) and
the 1-forms ξm (15.4) and £α, ϋ* (15.8) also vanish. Hence we obtain that 38^ = 0
and therefore distribution J* (15.9) coincides with the tangent bundle T(Mn) and
has dimension n — 2k.

IV. Necessary conditions. I. Assume that two incompatible Poisson structures P
and Q are strongly dynamically compatible. Then the following necessary condi-
tions are satisfied:

1) The distribution ^>~L C Γ*(MW) is annihilated by the Poisson structures P
and Q and by their Schouten bracket [P, Q]. It means that the equations

(P9β"Λθβ)=Q, (β,0αΛ00 = 0, (15.12)

{[Λ β], 0α Λ θβ Λ θy) -0, {[Λβ],0αΛdθO =0 (15.13)

hold for all differential l-forms 0α, θβ and θy e ̂ .
2) The distribution & C T(Mn) satisfies the condition

dim@x ^ k. (15.14)
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If dim 38x = k for a dense open set (9 c Mn, then the distribution $ is ίntegrable
and its fibres are tori Έk.

Proof. 1) Definition 2, Sect. 1, implies that the two Poisson structures P and Q are
invariant with respect to some completely integrable Hamiltonian system

x' = PΪHx, (15.15)

where PI is some non-degenerate Poisson structure on Mn. Theorem 14 implies that
the invariant Poisson structures P and Q have the following k x k block forms:

p=[ ° rv'1 1 , β =V x /) - / Γ N '
in coordinates J^φi (14.2). Here /?(/), po(J), q(J) and q^(J) are A: x A: matrices
satisfying the equations

pl = P, PQ = -po, ql = q, qo = -go - (i5.ι?)

One has the basis of vector fields

£>; = —, ei+k = —9 i=l,...,k (15.18)
OJi Oψi

presented in the local coordinates J^φi (14.2). The k vector fields ei+k(x) form a
basis in the invariant A>dimensional distribution

<ex = Tx(Έk) C Tx(Mn) (15.19)

that is tangent to the invariant tori TΓ^ (2.5). The block structures (15.16) mean that
the alternating (2,0) tensors P and Q have the form

P = -2y>'(J>; Λ ej+k + p%(J)ei+k Λ ej+k , (15.20)

Q = -2qij(J}ei Λ ej+k + q%(J)ei+k Λ ej+k . (15.21)

A direct calculation of the Schouten bracket (15.1) leads to the following ex-
pressions for its components:

2[P, QrJ+k M = p'^q"11 - P

H

mqmj + q^p"" - q1^ , (15.22)

-2[P,Q\l+*'J+k"+k = plmqml + 4mqmi + plmfJ

+ 4mPm' + d,mPmί + <n,Pmi , (15.23)

[P, QTj l+k = 0, [P, QTJ 1 = 0 . (15.24)

These formulae mean that the alternating (3, 0) tensor [P, Q] has the form

[P, Q] = CίJl(J)eί Λ ej+k Λ e,+k + DlJl(J)ei+k Λ ej+k Λ e,+k . (15.25)

The alternating (n — 1,0) tensor Sm (15.3) has the form

Sm = Wm/\ e\+k Λ e2+k Λ Λ e2k-\ Λ e2k , (15.26)
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where Wm is some alternating (k — 1,0) tensor. Indeed, formulae (15.20), (15.21)
and (15.25) imply that in the wedge product (15.3) each monomial has at least
k factors £/+&. Therefore every non-zero monomial contains all factors βj+k f°r

7 = 1,...,*.
Formula (15.26) yields that Sm f\ei+k = 0 for all i — !,...,&. Therefore the 1-

forms ξm (15.5) have the form

ξm = ξT(J,φ)dJi. (15.27)

Using the block structures (15.16) we obtain that the vector fields Um and Vm (15.6)
have the form

Um = ί/iG/, φ)ei+k, Vm = VM(J9 φ)ei+k . (15.28)

These formulae along with (15.20) and (15.21) imply that the (n — 1,0) tensors
RI Λ Um and RI Λ Vm (15.7) have the same structure as tensor Sm (15.26). Hence
we get

RI Λ Um Λ eM = 0, Rt Λ Vm Λ ei+k = 0 (15.29)

for all / = 1,...,*. Therefore the 1 -forms ζα and $α (15.8) have the same structure
as the 1 -forms ξm (15.27). Thus we have proved that all 1 -forms θ* (or ξm,ζ<x,ύ<x)
have the form

(15.30)

Now Eqs. (15.12) and (15.13) follow readily from the formulae (15.20), (15.21),
(15.25) and (15.30).

2) The formulae (15.30) imply that the invariant A:-dimensional distribution <£
(15.19) satisfies the equations

0. (15.31)

Therefore 5£ is embedded into the distribution J* (15.10). Hence the condi-
tion (15.14) follows. If dim^jc^A: then the embedding & C 3ft implies that
® = &. D

Corollary 4. Assume that a dynamical system

jf^K'V,. ••,*") (15.32)

preserves the two Poίsson structures P and Q and is completely integrable in
the Lίouville sense non-degenerate Hamίltonίan system with respect to some non-
degenerate Poίsson structure P\ and its invariant submanifolds are tori 1*. Then
the distribution $ (15.9) contains tangent spaces of these invariant tori T*:

Λ*D7i(I*), (15.33)

or θ\T(τk)) = Qfor all α.

Proof. The completely integrable non-degenerate Harmltonian system (15.32) has
form (15.15). The tangent spaces Tx(Έk) satisfy the Pfaff equations dJt(Tx(T[k)) = Q,
1= I,...,*, in the corresponding coordinates J^φ\ (14.2). Therefore Eqs. (15.30)
imply θ«(Tx(T[k)) = 0. Hence the inclusion (15.33) follows. D

IV. The necessary conditions (15.12)-(15.14) are applicable as well for the dis-
tributions Λ^ C Γ*(MW) and @m C T(Mn) which are defined as follows. Let us
denote the constructed 1 -forms θa as # l α. We define a family of 1 -forms θl+lcί
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from the family of 1 -forms Θi0ί by induction. Let vector fields ί/zα and F/α have the
coordinates

^α = pτve<;α, F-=ρ τ vCα (15.34)

The 1-forms ζliΛ and ϋlί« are defined as in (15.8):

ζli* = (Rι Λ Ufa) J ωn, tfto = (Rι Λ ?}«) J ωn . (15.35)

The family ΘM°* consists of all 1 -forms 0/ β α, £/ία and tf//α, where (z + l α) is a
new multi-index. These 1-forms generate a distribution &^λ c Γ*(MW). The corre-
sponding distribution ^z+ι c T(Mn) is defined by the system of Pfaff equations

ff+l'*(u) = 0, ue<gi+l.x. (15.36)

Obviously one has the embeddings

a-Lc ca+caίj.iC- cAϊ, (15.3?)

J* D - - D «, D #, +ι D - - D »ι . (15.38)

These inclusions stabilize at some I < n because dim^f < «. We denote the sta-j
bilized distributions as ^Sj- and J*/. The necessary conditions (15.12)-(15.14) are
equally applicable for the stabilized distributions SSj- and 08 1 with the corresponding
1-forms θ1'* and for all intermediate distributions (15.37) and (15.38) and have the
same proof as above.

16. Necessary Conditions for Dynamical Compatibility

I. In this section we define a series of new invariants of two arbitrary Poisson struc-
tures P and Q which are determined on a manifold Mn of an arbitrary dimension
n — 2k or n = 2k + 1 and can be both degenerate. These invariants are preserved
by any dynamical system that preserves the two Poisson structures P and Q. Con-
structions of this section are based on the one-dimensionality of the linear spaces
Λn(x) and Λn(x) of alternating («,0) and (0,w) tensors for each point x G Mn.

First we assume that n — 2k. Let Tm G A^ be the wedge product of m factors
P and k — m factors Q, m = 0, 1, . . . , k:

Tm=Pf\- / \ P / \ Q / \ -/\Q. (16.1)

Assume that at least one of the tensors Tm(x) is not equal to zero in a neigh-
bourhood of a point x G M2k. Using the fact that dimΛn(x) = 1, we define a map
of the manifold M2k into the real project! ve space RPk:

fι : M2k ->RPk , (16.2)

MX) = T0(x) : Tλ(x) : - : Tk(x) G RPk . (16.3)

This map is not defined in the points x where all («,0) tensors Tm(x) = 0.
Any dynamical system

(16.4)
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that preserves the two Poisson structures P and Q also preserves all (w,0) tensors
Tm (16.1), which are proportional one to another because dimΛn(x) = 1. Therefore
the map f\ (16.2) is first integral of dynamical system (16.4).

This construction defines first integrals of dynamical system (16.4) when both
Poisson structures P and Q are degenerate and therefore the recursion operator
A = PQ~l does not exist. For degenerate Poisson structures P and Q only k — 2
coordinates of the map f \ ( x ) (16.2) can be non-zero because tensors Γ0 and Tk

vanish.

//. Let us consider the alternating («,0) tensors

Tmι = Sm/\Uh Rml=Smf\Vι, (16.5)

where the (2k — 1,0) alternating tensors Sm have form (15.3) and vector fields Uj
and Vι have form (15.6) and m,/ = 0, !,...,& — 2. We assume that at least one
of the tensors (16.5) is not equal to zero. These tensors are determined by the
formulae (15.3)-(15.6) uniquely up to a common factor because the space Λn(x)
of alternating «-forms ωn is one-dimensional. Therefore, for any point c G M2k the
2(k — I)2 tensors (16.5) that belong to the one-dimensional space Λn(x) uniquely
define a point of the projective space RPN', N = 2(k — I)2 — 1. Hence we obtain
the map

/2 : M2k -^RPN , (16.6)

/2(*) = 7oo(*) : *oo(*) : : Λ*_2.*-2(*) € RP* . (16.7)

This map is first integral of any dynamical system (16.4).
The map (16.7) is not defined in the points x, where all («,0) tensors (16.5)

vanish; for example, in the points x where the distribution 08x (15.10) has dimen-
sion n. Indeed, all 1-forms ξm (15.4) and vectors Uι, V\ (15.6) vanish at these
points. Hence the tensors Tmι(x) and Rmι(x) (16.5) vanish and therefore the map /2
(16.7) is not defined. The formulae (15.26) and (15.28) imply that tensors (16.5)
vanish identically if the two Poisson structures P and Q are strongly dynamically
compatible.

By proceeding in the same way one can construct more complicated first inte-
grals

/« : M2k ->/{/>"<«•*> (16.8)

by considering the alternating («,0) tensors

Tmto = Sm/\ Ufa Rmi* = Sm Λ Vfa , (16.9)

where vector fields Ufa and Vfa have form (15.34).

///. Assume that dimension of the manifold Mn is odd n = 2k + 1. Let ωn be
any non-degenerate «-form on Mn. We define k + 1 differential 1-forms ζm for
m = 0,1,..., k by the formula

ζm = Tm\ωn, (16.10)

where the alternating (2&,0) tensors Tm have the form (16.1). The Poisson structures
P and Q transform the 1-forms ζm into the vector fields Um and Vm\

(16.11)
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We define the 2(k + I)2 alternating («,0) tensors

fmί = Tmf\ Uh Rmι = T m / \ V ι . (16.12)

Assume that at least one of the tensors (16.12) is not equal to zero. These tensors
are defined uniquely up to a common factor because the «-form ωn in (16.10) is
defined up to a factor. In view of άimΛn(x) = 1 tensors (16.12) uniquely define for
each point c G Mn a point of the project! ve space RPN, N = 2(k + I)2 — 1. Hence
we obtain the smooth map

fa : M2k+l ->RPN , (16.13)

(16.14)

This map is first integral of any dynamical system (16.4).

IV. Assume that P and Q are arbitrary Poisson structures on a manifold M n of odd
dimension n = 2k + 1. We define a distribution # c T(M2k+l) by the k + 1 Pfaff
equations

Cm(κ) = 0, (16.15)

where ζm are the 1-forms (16.10) and m = 0, !,...,&. This distribution J* has
dimension k in general. The map fa (16.13) is not defined in points x, where
dim J^t = 2*+ 1. Indeed, all 1 -forms C™ (16.10) and vectors Om, Vm (16.11) van-
ish at these points. Hence the tensors Γw/(jc) and Rmι(x) (16.12) also vanish and
therefore the map Mx) (16.14) is not defined.

V. Let us define the k alternating («,0) tensors (n = 2k + 1)

Sm = [Λβ]ΛPΛ Λ P Λ β Λ Λg, (16.16)

where there are m factors P and k — 1 — m factors Q, m = 0, 1, . . . , k — 1. Assuming
that at least one tensor Sm(jc)Φθ we obtain the map

fa : M2k+l -*RPk~l , (16.17)

MX) = S0(x) : §ι(x) :-•". S^x) G Λ/^"1 . (16.18)

This map is first integral of any dynamical system (16.4) because it preserves all
tensors Sm (16.15) and άimΛn(x) = 1.

The direct product of the maps (16.13) and (16.17),

/3 x /4 : M2k+l -» RP" x RPk~l . (16.19)

also is first integral of any dynamical system (16.4).

Remark 17. First integrals /ι,/2,/α>/3 and fa possess the following properties:

1) They are defined in some open domains G c Mn.
2) These open domains are invariant with respect to any dynamical system V

(16.4) that preserves the two Poisson structures P and Q. Indeed, the non-zero
components of maps fi remain to be non-zero after any diίfeomoφhism defined by
the dynamical system V.

3) First integrals f\ (16.2) and fa (16.13) depend upon the components of the
Poisson structures P and Q and do not depend upon their partial derivatives.
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4) First integrals /2 (16.6), /α (16.8) and /4 (16.17) depend upon the Schouten
bracket [P, Q], and therefore upon the first order partial derivatives of the Poisson
structures P and Q.

VI. Necessary conditions. II. If two Poisson structures P and Q on a manifold
Mn are dynamically compatible then the necessary condition

rank df(x) ^n-l (16.20)

is satisfied at all points x G 0 C Mn, where one of the maps

f /2, / 1 X / 2 , /«, /3, / 3 X / 4 (16.21)

is determined.

Proof. The constructions of the maps / (16.21) imply that they are determined
in some open domains (9 C Mn which are invariant with respect to any dynamical
system that preserves the Poisson structures P and Q. If the two Poisson structures
P and Q are dynamically compatible then such dynamical system (16.4) does exist.
Every map / (16.21) is first integral of this system. Therefore, every map / (16.21)
is constant on each trajectory of system (16.4) in the invariant open domain G,
where / is defined. Hence the condition (16.20) follows. D

17. Concluding Remarks on the Role of the Compatibility Condition

(i) In the present paper, we have studied the geometric and algebraic properties
of pairs of Poisson structures which are invariant with respect to some integrable
dynamical system on a manifold Mn

9 n — 2k. We have proved that the compati-
bility in Magri's sense [34] of these structures is an exceptional and unstable phe-
nomenon.

(ii) In Theorem 1, we have derived the complete classification of the non-
degenerate Poisson structures Pc which are invariant with respect to a given com-
pletely integrable non-degenerate Hamiltonian system provided that the invariant
submanifolds of this system are compact. The classification is given in a toroidal
domain & in the action-angle coordinates /α,<pα> where the original Poisson struc-
ture P\ has the standard form. This classification is presented by the general and
previously unknown formula

ωc = d Λ dφα + d/α(/) Λ d/α ,

α = !,...,£, (17.1)
α

that describes all invariant closed 2-forms ωc. Invariant non-degenerate Poisson
structures are Pc — ω"1. Here B(J) and the /α(/) are arbitrary smooth functions
of k variables and H(I) is the Hamiltonian of the given integrable system. For a
general function B(J) the two Poisson structures Pc and P\ are incompatible. Only
exceptional Poisson structures Pc are compatible with P\ . The corresponding func-
tions B(J) are connected with the Hamiltonian function //(/) by the overdetermined
third-order nonlinear system of partial differential equations (11.9).
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(iii) In Theorem 7, we have proved that for any invariant non-degenerate Poisson
structure PI the property of compatibility with P\ is unstable. By means of the
method of "toroidal surgeries," we have constructed the supplementary invariant
Poisson structures PC — ω"1 (7.3) which are defined globally on the manifold Mn,
are arbitrarily close to PI and are incompatible with the original Poisson structure
PL

(iv) In Sect. 3, we have introduced a cohomology for dynamical systems on
smooth manifolds. This cohomology H*(V,Mn) is a new invariant that character-
izes the global properties of the dynamical system V on the manifold Mn. We
have proved that the infinite-dimensionality of the cohomologies H2(V,M2k} and
H4(V,M2k) is the necessary condition for the non-degenerate integrability of the
dynamical system V on the manifold M2k.

(v) In Sects. 5 and 6, we have pointed out applications connected with the
Kepler problem, with the basic integrable problem of celestial mechanics, and with
the harmonic oscillator. We have presented explicit formulae for a continuum of
invariant symplectic and Poisson structures for these problems. In general, these
Poisson structures are incompatible with the original Poisson structure PI. How-
ever, these same formulae contain a continuum of compatible Poisson structures
as well. The latter are unstable in a sense that they become incompatible with P\
after arbitrarily small perturbations inside the general family of invariant Poisson
structures.

(vi) The results obtained show that Magri's notion of compatibility of two
Poisson structures and its counterpart, incompatibility, are not conceptionally ade-
quate for a good insight into the diversity of pairs of Poisson structures. Therefore,
we have introduced the new concepts of dynamical compatibility and strong dy-
namical compatibility of two arbitrary Poisson structures.

(vii) In Theorems 5 and 6, we have demonstrated that strongly dynamically
compatible non-degenerate Poisson structures PI and PI have applications connected
with the Kolmogorov-Arnold-Moser theory [2,26,27,41]. Theorem 5 implies that
KAM theory is applicable not only to small Hamiltonian perturbations of integrable
non-degenerate Hamiltonian systems

^, (17.2)

but also to the rich family of non-Hamiltonian perturbations

x^PfH^ + εP^H.. (17.3)

The family (17.3) depends upon the k-\-\ arbitrary smooth functions B(J\ /ι(/), . . . ,
/*(/) (17.1) of k variables and one arbitrary smooth function H(x) of 2k variables.

(viii) In Theorem 10, we have proved that if on a manifold M2k a dynamical
system V preserves two strongly dynamically compatible non-degenerate Poisson
structures P\ and P2 and the recursion operator A = P\P^λ has k functionally inde-
pendent eigenvalues then system V is completely integrable with respect to P\ and
P2. Flows of all such dynamical systems commute with each other. The proof of
Theorem 10 is independent upon the Lenard scheme [23,34] that is not applicable
for the two incompatible Poisson structures P\ and P2.

(ix) In Theorem 11, we have proved that any dynamical system x1 = Vl(x) that
preserves two strongly dynamically compatible non-degenerate Poisson structures
PI and PI in the general position generates an infinite hierarchy of completely



584 O.I. Bogoyavlenskij

integrable dynamical systems
j* = (Amvy, (17.4)

where A = P\P~l and m is an arbitrary integer. In contrast with the compatible
case, neither P\ nor PI are preserved in general by dynamical systems (17.4) for
\m\ > 1. Flows of all dynamical systems (17.4) commute with each other.

(x) In Theorem 12, we have presented several necessary conditions for strong
dynamical compatibility of two non-degenerate incompatible Poisson structures PI
and PI. These necessary conditions are formulated in terms of the Nijenhuis tensor
NA and other geometric objects constructed from P\,Pι, A = P\P^1 and NA

(xi) In Sect. 15, we have introduced a distribution £8 C T(Mn} that is uniquely
determined by two arbitrary Poisson structures P\ and PI. Necessary conditions for
strong dynamical compatibility of the two Poisson structures are derived which con-
nect the global property of strong dynamical compatibility with the local geometric
invariants of the distribution .̂

(xii) In Sect. 16, we have introduced new invariants of an arbitrary pair of
Poisson structures P\ and P^. These Poisson structures are defined on a manifold
Mn of an arbitrary dimension n = 2k or n = 2k -f 1 and can both be degenerate.
The invariants are the smooth maps / of the manifold Mn into the real projective
spaces RPN^n\ For the two Poisson structures P\ and /2> we have derived the
necessary condition for dynamical compatibility that has the form

rank #"(*) g i - 1 (17.5)

at all points Λ: e Mn where the maps / are defined.
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