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Abstract: This paper develops a new theory of tensor invariants of a completely
integrable non-degenerate Hamiltonian system on a smooth manifold M". The cen-
tral objects in this theory are supplementary invariant Poisson structures P, which
are incompatible with the original Poisson structure P; for this Hamiltonian system.
A complete classification of invariant Poisson structures is derived in a neighbour-
hood of an invariant toroidal domain. This classification resolves the well-known
Inverse Problem that was brought into prominence by Magri’s 1978 paper devoted to
the theory of compatible Poisson structures. Applications connected with the KAM
theory, with the Kepler problem, with the basic integrable problem of celestial
mechanics, and with the harmonic oscillator are pointed out. A cohomology is
defined for dynamical systems on smooth manifolds. The physically motivated con-
cepts of dynamical compatibility and strong dynamical compatibility of pairs of
Poisson structures are introduced to study the diversity of pairs of Poisson structures
incompatible in Magri’s sense. It is proved that if a dynamical system ¥ preserves
two strongly dynamically compatible Poisson structures P; and P, in a general
position then this system is completely integrable. Such a system V generates a
hierarchy of integrable dynamical systems which in general are not Hamiltonian
neither with respect to P, nor with respect to P,. Necessary conditions for dynami-
cal compatibility and for strong dynamical compatibility are derived which connect
these global properties with new local invariants of an arbitrary pair of incompatible
Poisson structures.
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1. Introduction

I In his 1978 paper [34] Magri proved, using the Lenard scheme presented in [23],
a general theorem that states that a dynamical system or system of partial differ-
ential equations that preserves two compatible non-degenerate Poisson structures
(the bi-Hamiltonian system) possesses a sequence of first integrals in involution.
If this sequence contains sufficiently many functionally independent first integrals
then Liouville’s Classical Theorem [32] implies the complete integrability of the
bi-Hamiltonian system. Since then, more than one hundred papers and several books
have been published devoted to the investigation of the diverse properties of compat-
ible pairs of Poisson structures and bi-Hamiltonian systems. Reviews of these papers
and their extended bibliographies are contained in Dorfman’s monograph [15] and
in Olver’s monograph [48].
One of the well-known unsolved problems in this area is

The Inverse Problem. To classify all invariant Poisson structures for a completely
integrable non-degenerate Hamiltonian system on a manifold M", n = 2k, with a
non-degenerate Poisson structure Py. Are these invariant Poisson structures nece-
ssarily compatible with P,?

In the present paper we solve this problem. We derive the general and previously
unknown formula

w, =d (6’;5‘])) Adoy +dfe(D) AdL,

OH(I)

= oL a=1,...,k (L.1)
in the action-angle coordinates Ii,...,0lx, ¢1,...,¢;. Here B(J) and f,(I) are
arbitrary smooth functions of k variables. The formula (1.1) presents a com-
plete classification of all invariant closed 2-forms w, and invariant non-degenerate
Poisson structures P, = w; ! for an arbitrary completely integrable non-degenerate
Hamiltonian system with the Hamiltonian function H(7), provided that its invariant
submanifolds are compact.

Ju
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In general the constructed Poisson structures P, are incompatible with the orig-
inal Poisson structure P; = wl'l, w; = dI, A d,. The original definition of com-
patibility by Magri [34] states: Two Poisson structures P; and P, are compatible
if their sum P; 4+ P, is also a Poisson structure. This definition is equivalent to
the condition that the Schouten bracket [P;, P,] vanishes. The theory of compati-
ble Poisson structures is closely connected with Fuchssteiner’s theory of hereditary
operators [20,21]. Later, Gelfand and Dorfman in [24,25] and Magri and Morosi
in [36] proved that the compatibility of the non-degenerate Poisson structures is
equivalent to the condition that the Nijenhuis tensor N, [44] vanishes where A4 is
the (1, 1) tensor 4 = P\ P; !, Therefore, we prove the incompatibility of the Poisson
structures P, and P; by a direct calculation of the non-zero components N, i of the
Nijenhuis tensor in the action-angle coordinates.

Olver in [47] and Turiel in [53] investigated canonical forms of compatible pairs
of Poisson structures and integrable systems which preserve them. Ten Eikelder [55],
Brouzet [8,9], Brozet, Molino and Turiel [10], and Fernandes [19] studied the nec-
essary and sufficient conditions for the existence of a compatible invariant Poisson
structure for a given completely integrable Hamiltonian system. These compatible
invariant Poisson structures correspond to solutions of an overdetermined third-
order system of partial differential equations for functions B(J) and H(I) (1.1).
This overdetermined system is equivalent to the compatibility condition Ny =0,
see Sect. 11.

The solution of the Inverse Problem depends upon whether the invariant subman-
ifolds of the integrable Hamiltonian system are compact or non-compact. In view
of the Liouville Theorem [3,32] almost all of these submanifolds are tori T* or
toroidal cylinders T™ x R¥~™, 0 < m < k, respectively. For the compact case we
prove in Theorem 1 that the formula (1.1) presents a complete classification of
the non-degenerate Poisson structures P, which are invariant with respect to the
completely integrable non-degenerate Hamiltonian system with Hamiltonian H.

In Theorem 14 a second proof of the complete classification of the non-
degenerate invariant Poisson structures is presented along with the classification
of degenerate invariant Poisson structures.

For the non-compact case (T” x R¥~™) we present in Theorem 2 larger families
of invariant closed 2-forms . which include all 2-forms (1.1) and depend upon
additional arbitrary functions.

In Sect. 3 we introduce a cohomology for dynamical systems on smooth man-
ifolds. This cohomology H*(V,M") is an invariant that characterizes the global
properties of the dynamical system V' on the manifold M". We prove that the
infinite-dimensionality of the cohomologies H?(V, M%) and H*(V,M*) is the nec-
essary condition for the non-degenerate integrability of the dynamical system ¥ on
the manifold M2,

II. The second well-known unsolved problem in the theory of compatible Poisson
structures is

The Stability Problem. Let a Hamiltonian system be completely integrable and
non-degenerate with respect to a Poisson structure Py. Let us assume that this
system also preserves a second Poisson structure P, that is compatible with P;.
Is the property of compatibility of P, with Py stable?

In Theorem 7, we prove that the compatibility property is unstable. Using the
key formula (1.1) and a method of “toroidal surgeries” we construct a continuum of
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invariant Poisson structures P¢ in any neighbourhood of P, which are incompatible
with Py.

In Sects. 5 and 6 we point out applications connected with the Kepler problem,
with the basic integrable problem of celestial mechanics, and with the harmonic
oscillator. We present explicit formulac for a continuum of invariant symplectic
and Poisson structures for these problems. In general, these Poisson structures are
incompatible with the original Poisson structure P;. However, the same formulae
contain a continuum of compatible Poisson structures as well. The latter are unstable
in a sense that they become incompatible with P; after arbitrarily small perturbations
inside the general family of invariant Poisson structures.

III. These results show that the notion of the compatibility of Poisson structures and
its counterpart, incompatibility, are not conceptionally adequate for a good insight
into the diversity of pairs of Poisson structure. Therefore we introduce the following

Definition 1. Two Poisson structures P, and P, on a manifold M" are called
dynamically compatible (D.C.) if there exists a dynamical system V on M" that
preserves both of them and such that the set S C M" of its critical points has
dimS <n-1.

In general, two dynamically compatible Poisson structures P; and P, are not
compatible in Magri’s sense. This is the case if the corresponding Schouten bracket
[P1,P,] is not equal to zero.

Definition 2. Two Poisson structures P, and P, on a manifold M", n = 2k, are
called strongly dynamically compatible (S.D.C.) if there exists a dynamical sys-
tem V that preserves both of them and is completely integrable in the Liouville
sense non-degenerate Hamiltonian system with respect to some non-degenerate
Poisson structure P on the manifold M", and such that its invariant submanifolds
are compact.

In this case, Theorem 1 proves that if the invariant Poisson structure P; (or P;)
is non-degenerate then the completely integrable dynamical system V is also com-
pletely integrable and non-degenerate with respect to the Poisson structure P,
(or P,). Theorem 1 also implies that all constructed invariant non-degenerate Poisson
structures P, = w; ! (1.1) are mutually dynamically compatible in the strong sense.

IV. Until now all applications of bi-Hamiltonian systems were limited to the theory
of integrable systems. In this paper we develop new applications connected with
the Kolmogorov—Armold-Moser (KAM) theory. This theory studies Hamiltonian
perturbations of integrable Hamiltonian systems of the form

X' = P*Hy, + eP*H, . (1.2)

For ¢ = 0, system (1.2) is assumed to be completely integrable and non-degenerate,
with compact invariant submanifolds. The classical KAM results [2,26,27,41]
on dynamics of the Hamiltonian systems (1.2) for |¢] < 1 lead to the following
problem.

Admissible Perturbations Problem. What non-Hamiltonian perturbations

X' = P{Hyy + eV'i(x) (1.3)
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possess the same dynamical properties for |¢| < 1 as small Hamiltonian pertur-
bations in KAM theory?

We call such perturbations admissible. In Theorem 5, we prove that all pertur-
bations
X' = Pi*Hy , + ePYH, (1.4)

are admissible. Here H(x) is an arbitrary smooth function and P, is an arbitrary
non-degenerate Poisson structure that is strongly dynamically compatible with P,
and is invariant with respect to the unperturbed integrable Hamiltonian system (1.2)
for ¢ = 0. In general, perturbations (1.4) are not Hamiltonian with respect to the
original Poisson structure P,;. If the Poisson structure P, is compatible with P; then
all perturbations

1

!

¥ =P"Hy, +¢ ( > a,,,AZ‘) PiPH, (1.5)
m=-—1

are admissible for a,, = const, where 4, = PP, ! is the recursion operator.

These results prove that KAM theory is applicable not only to the small
Hamiltonian perturbations (1.2) but also to the rich families of non-Hamiltonian
perturbations (1.4) and (1.5). The family of admissible non-Hamiltonian perturba-
tions (1.4) depends upon the k + 1 arbitrary functions B(J), fi(1),..., fr(I) of k
variables and one arbitrary function H(x) of 2k variables.

V. Any dynamical system that preserves two non-degenerate Poisson structures
Py and P; also preserves the Schouten bracket [Py, P;], the (1,1) tensor 4 = PP} !
the Nijenhuis tensor Ny, and all tensors which can be constructed from Pp,P,,
[P1,P;], A and Ny4. Therefore, if P; and P, are incompatible, the Schouten bracket
[P1,P,] and the Nijenhuis tensor N, are not equal to zero, and hence the family of
geometric objects which have to be preserved by the dynamical system is greater
than that for the compatible case. Thus, one could expect that the family of dy-
namical systems which preserve two incompatible Poisson structures is smaller than
that for the compatible ones.

In general this is true. Indeed, two incompatible Poisson structures will not
generally admit any dynamical system preserving both of them. Two arbitrary
compatible non-degenerate Poisson structures admit infinitely many bi-Hamiltonian
systems which preserve them. However, between these two extreme cases there ex-
ists a rich diversity of dynamically compatible and strongly dynamically compatible
Poisson structures with utterly different properties. Thus we arrive at the following
problem.

The Integrability Problem. Assume that two non-degenerate Poisson structures
Py and P, are strongly dynamically compatible on a manifold M* and that the
recursion operator A = P\P; U has k functionally independent eigenvalues. Let V
be an arbitrary dynamical system on M?* that preserves Py and P,. Is system V
integrable?

In Theorem 10 we prove that dynamical system V is completely integrable with
respect to both Poisson structures P; and P,. The proof of Theorem 8 does not
use the Lenard scheme [23,34] that is not applicable for two incompatible Poisson
structures. The well-known Lenard recursion relations [23] are not true for the two
incompatible Poisson structures considered and therefore the Lenard scheme cannot
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be applied. The proof is based on the complete classification of all invariant non-
degenerate Poisson structures obtained in Theorem 1.

VI. For two compatible non-degenerate Poisson structures P; and P, in the general
position any bi-Hamiltonian system

X' =PPHy = PYHy oy = V' (1.6)

generates a hierarchy of completely integrable bi-Hamiltonian systems which have
the form [35] ‘ '

X=U4"ry, (L.7)
where 4 = PiP; Uand m is an arbitrary integer. The reasonable question about the
role of the compatibility condition for this construction leads to the following.

Integrable Hierarchies Problem. Let V be an arbitrary dynamical system (1.6)
that preserves two strongly dynamically compatible Poisson structures Py and P,
and let 4 = P\P} 1. Are the dynamical systems (1.7) integrable?

We show that the compatibility condition is not necessary here and that the
problem has positive solution if the recursion operator 4 = PP, ! has k functionally
independent eigenvalues. In Theorem 11 we prove that even more general dynamical
systems ) i
X = ( » a,,,(x)A'”V) (1.8)

m=—1
are completely integrable. Here a,(x) are arbitrary smooth functions of the eigen-
values of the recursion operator 4.

For the incompatible case, systems (1.7) for |m| > 1 in general do not preserve
the Poisson structures P; and P, in contrast with the compatible case. The (2,0)
skew tensors A™P; and 4~™P, in general are not Poisson structures for the incom-
patible P; and P,. The proof of Theorem 11 is entirely different from that for the
compatible case [35] and is based on the proof of Theorem 10.

VII. The following problem naturally arises in the course of the investigation of the
geometric and algebraic properties of pairs of dynamically compatible and strongly
dynamically compatible Poisson structures.

Necessary Conditions Problem. What are the necessary conditions for dynamical
compatibility and for strong dynamical compatibility of two incompatible Poisson
structures?

In Sects. 11 and 12 we present several necessary conditions in terms of the
Nijenhuis tensor N, and other geometric objects assuming the Poisson structures
P, and P, are non-degenerate. The necessary conditions derived are effective in
studying concrete problems because they can be verified by direct calculations for
arbitrary pairs of Poisson structures.

In Sect. 15 we introduce a distribution # C T(M™") that is uniquely determined
by two arbitrary Poisson structures P; and P,. We derive the following necessary

condition for strong dynamical compatibility of the two Poisson structures:
dim B, = g (19)

for all points x € M", n = 2k.
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In Sect. 16 we define new invariants of two arbitrary Poisson structures P; and
P,. These Poisson structures are determined on a manifold M” of an arbitrary
dimension n = 2k or n = 2k 4+ 1 and can both be degenerate. These invariants are

the smooth maps
f:M" — RPV™ (1.10)

of the manifold M” into the real projective spaces RP". The maps f are first inte-
grals of any dynamical system that preserves the two Poisson structures P; and P,.
The necessary condition for dynamical compatibility has the simple form

rankdf (x) < n— 1 (1.11)

at all points x € M" where the maps f are defined.

2. Complete Classification of Invariant Non-Degenerate Poisson Structures

I Let P/ be a non-degenerate Poisson structure on a manifold M", n = 2k.
A Hamiltonian system

¥ =P*H, — H,=0H/0x" (2.1)
144 B

is called completely integrable in Liouville’s sense if it has & = n/2 independent
involutive first integrals Fi(x),..., Fx(x):

{F;,F)} =PPF, ,F13=0. (2.2)

The summation with respect to the repeated indices is understood everywhere in
this paper.

The Liouville Theorem [1,3,32] implies that almost all points of the mani-
fold M" (excluding a set S C M", dimS =< n — 1) are covered by a system of open
toroidal domains ¢,, C M" with the action-angle coordinates Iy,...,I, @1,..., Q.
In these coordinates the completely integrable system (2.1) has the form

OH(I)

I; =0, ;= (23)
J

The symplectic structure w; has the canonical form w; =d/, A d¢,. The Hamiltonian
system (2.3) preserves the symplectic structure w; and the Poisson structure
P = col_1 :Lywy =0, LyP; =0, where Ly is the Lie derivative with respect to
the flow (2.3).

The action coordinates Ii,...,I; are defined in a ball

k
B, : 3 (I —Lo)y <r. (24)
j=1

The angle coordinates @, ..., @z run over a torus T%, 0 < ¢ i < 2w, in the compact
case or over a toroidal cylinder T” x R¥~" 0 < m < k if the manifold / i(x) = I
is non-compact.

The set S C M" that is not covered by the system of open toroidal domains
0, is invariant with respect to the Hamiltonian system (2.1). This set contains all
critical points of (2.1) and all homoclinic and heteroclinic trajectories.
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II. First we consider a completely integrable Hamiltonian system (2.1) such that
the submanifolds of constant level of the k£ involutive first integrals are compact.
Almost all these invariant submanifolds are tori T*:

T™:h=c,..., L=c, 0=¢ <2n. (2.5)

The trajectories of dynamical system (2.3) are everywhere dense on the torus (2.5)
if and only if the k£ numbers J; = 0H/0I; are incommensurable over the integers.
This means that for arbitrary integers m,...,my, we have

OH(I) 0H(I)
m ol + e+ my o

+0. (2.6)

We call a completely integrable system (2.1) T*-dense if condition (2.6) is met
for almost all tori (2.5); or in other words, if the trajectories of system (2.1) are
everywhere dense on almost all tori (2.5). This property is invariant and therefore
it does not depend upon a choice of concrete action-angle coordinates.

The completely integrable Hamiltonian system (2.1),(2.3) is called non-
degenerate if the Kolmogorov condition [26, 27] for the Hessian matrix

P*H(I)
2.
01,01g (2.7)
is met almost everywhere in the action-angle coordinates
Lyooisly, Q15,0 @i = @imod(27) . (2.8)

Obviously, any non-degenerate system (2.1),(2.3) is T*-dense.

Trajectories of the completely integrable non-degenerate Hamiltonian system
(2.1) are everywhere dense on almost all tori (2.5). Therefore any smooth first
integral F(I;, ;) of the system (2.1) is constant on all tori T* and hence any first
integral F is a function of the action variables only:

‘ijf_o = F=F(,....Ik). (29)

To solve the Inverse Problem we investigate all closed 2-forms w which are
invariant with respect to the system (2.1).

Theorem 1. 1) In the toroidal domain O C M" defined by conditions (2.4) and
(2.5) a closed 2-form w is invariant with respect to the completely integrable non-
degenerate Hamiltonian system (2.1),(2.3) having compact invariant submanifolds
(2.5) if and only if it has the form

w.=d (agﬁj)) Adgy +df(1)AdL,, (2.10)

where B(Jy,...,Ji) and f.(L1,...,1I;) are arbitrary functions of k arguments and
Jy =Jy(hh,...,I) are functions

aH(I)

a

J() = a=1,...,k. (2.11)
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2) The 2-form w, is non-degenerate if and only if the two non-degeneracy

conditions
B(J)
0J,0Jp

are met. Then the system (2.1) has the supplementary Hamiltonian structure

PH(I)

det a0l

+0, det

H +0 (2.12)

¥ = P*H,,, P.=w]", (2.13)

where the Hamiltonian function H,(J) is the Legendre transform of the function
BJ):

H.(J)= Jaa%j) —-B(J), J,= agg) . (2.14)
3) The symplectic structure (2.10) has canonical form
o, = dJ, Ad@, , (2.15)
where functions J, and &, are defined by the formulae
Ju = agi/) , (2.16)
By = 00— fﬂa)g—j{, B, = G, mod(2m) 2.17)

The new variables J,, @, are the action-angle coordinates for the Hamiltonian
system (2.13) with_respect to the symplectic structure w. (2.10). In the action-
angle coordinates J,, 9, the Hamiltonian system (2.13) is non-degenerate:

| 2ED) ( aZJB(J)N)‘1
07, U e |) *O (2.18)

4) The action variables I,...,I; are in involution with respect to the Poisson
structure P.: _
{L,1g} = PPL 15, = 0. (2.19)

The Hamiltonian system (2.1),(2.13) is completely integrable with respect to all
invariant non-degenerate Poisson structures P..

Proof. 1) Let us first prove that any 2-form w, (2.10) is preserved by the
Hamiltonian system (2.1),(2.3). Using classical properties [49] of the Lie derivative
Lyw. = @, with respect to the dynamical system (2.3) and substituting (2.11) we

obtain 2
_ +(9B(J) o0H #B(J)
. d( o ) N (ala) wal, e 4 =0. (2220)

Therefore all 2-forms . (2.10) are invariant with respect to the completely inte-
grable Hamiltonian system (2.1),(2.3).

Now we prove that any closed 2-form o that is invariant with respect to the
dynamical system (2.1),(2.3) has the form (2.10). In the action-angle coordinates
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(2.8) any differential 2-form w is defined by the expression
w = aaﬁ(ls (P)dla A dIﬂ + baﬁ(l, q))dloc A d‘Pﬂ + caﬂ(la q’)d(Poc A d(Pﬁ 5

aaﬁ(L (0) = —aﬂa(ls (p)a cuﬁ(L (P) = —Cﬁa(l, q’) . (221)

Here a,p(1, ¢),bup(1, ) and c,p(l, @) are some smooth functions defined in the
toroidal domain ¢ C M" corresponding to the action-angle coordinates (2.8).

The invariant closed 2-form (2.21) has to satisfy the two equations ® =0,
dw = 0. The time derivative of the 2-form « with respect to the system (2.3) has
the form

@ = dupd I, A dlg + bupdl, A dep + Capdepy A dopg

OH OH OH
+baﬁd1a/\d<al ) +Caﬁd<01 ) /\dq)ﬁ-l-capd(pa/\d(al )

(2.22)
Therefore, the equation & = 0 is equivalent to the system of equations
0*H(I) G*H(I) . SH(I)
2 .a =b - ’ of = > ; =V. .
] By 6Iy61a bay 51y015 bag = 2cpy —alyafa Cap =0 (2.23)

In view of the key property of first integrals (2.9) solutions to the linear triangular
system (2.23) have the form

_ PHW)PH(U), (. PHU) . PH() .
20u(1) = 2oy o ol | T (b b arel, U aLa, ) £+ 200
2
1 o
baﬂ(t) = 2Cﬁy 5] 6(1 )t -+ baﬁ(]) Caﬂ(t) = caﬂ(ll,...,lk) . (2.24)

The components a,p(1, @), bug(l, @) and c.p(l, ) of the smooth invariant dif-
ferential 2-form (2.21) are bounded on any torus T* (2.5). In view of the non-
degeneracy condition (2.7) the exact solutions (2.24) are bounded for all ¢ only if
all functions €,4(f1,...,fx) = 0. Hence using (2.24) and the fact that general trajec-
tories of the system (2.3) are everywhere dense on the tori T we obtain that any
invariant 2-form @ (2.21) has the form

@ = Gyp(1)dI, A dlp + bog(I)dI, A depp . (2.25)

For the 2-form (2.25) the equation dw = 0 splits into the k£ + 1 independent
equations

d(d.p(1)di, Adlg) =0, d(l;aﬁ(l)dla) =0, o,f=1,... k. (2.26)
In view of Poincaré’s Lemma these equations are equivalent to the equations
up(I)dIy Adlp = d(f,(I)d1,), l;aﬂ(l )i, = dFg(l), (2.27)

where f,(I1,...,I) and Fg(ly,..., 1) are some smooth functions. Substituting for-
mulae (2.27) into (2.25) one gets

o = dF,(I) A doy + df, (1) Ad, . (2.28)
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Once more considering the equation @ = 0 we obtain

. OH OH
o=dF,(I)ANd (6_105) =d (F“(I)da_h> =0. (2.29)
Therefore, the Poincaré Lemma implies
OH
F,(I)yd <0_I—) =dB(), (2.30)
where B(Iy,...,I;) is some smooth function. The Kolmogorov condition (2.7) en-

sures that functions J,(/) (2.11) form a new system of coordinates in the space of
action variables 1i,...,[;. In these coordinates Eq. (2.30) yields
O0B(I(J))

oJy
Therefore the 2-form (2.28) takes the form (2.10).

Thus we have proved that any invariant closed 2-form @ has form (2.10).

2) In the action-angle coordinates Iy,...,I;, ¢1,...,¢; the closed 2-forms w,;
and . have the block structure

0 - 0 - B
C01:(_6 (e))a P1=w11:<e 0e>, wc:<_o-Bt 0)’ (232)

where e,0 and B are k X k matrices with entries

Fy(I(J)) = (2.31)

?H(I) *B(J)
af = 50:’ af = o — Jo,Bs % = . 2.
exp =0 Oap = oz~ Jup b= Tan,aI, o0 (2.33)
The formulae (2.32) and (2.33) imply

PHI)|\’ @B\

det || o, ||= (det 310l ) (det 000 ) . (2.34)
This formula proves that the non-degeneracy condition

det || .|| *+0 (2.35)

is equivalent to the two conditions (2.12).
The Poisson structure P, = w_ ! has the block form

0 —(B)!
P, = (3—1 B‘l(a(];‘)‘l) : (2.36)

Partial derivatives of the function H.(/) (2.14) have the form

OH(I) _ 0H.0J, &BUJ)PH(U) ., 0H

o, — aJ, o, “Pasgar, anor, — Pary (237)
Using the block structure (2.36) we obtain
(PdH ) =0, (PdHy** = 5~ yBy ot = (238)

Bol; ~ oI,
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where a,f,y = 1,...,k. Hence we get the equality
P.dH, = P\dH . (2.39)

This equality implies formula (2.13) and presents the supplementary Hamiltonian
structure for the Hamiltonian system (2.1).

3) Formulae (2.17) imply that functions @, — @, are single-valued. Therefore,
the variables @, are defined mod(27) along with variables ¢,. Hence @, play the
role of new angle coordinates. In new coordinates (2.16) and (2.17), the symplectic
structure (2.10) takes the canonical form

w, =dJ, Adp, +d ( fﬂ(l)%dj,)

5 or 5
=dJ, nd (% - fﬁ(l)ﬁ) =dJ, Adg, . (2.40)

This formula implies that functions Jos @, have canonical Poisson brackets with
respect to the Poisson structure P, = w.!. In view of the formula (2.14), the
Hamiltonian function H, (2.13) depends upon the variables J, only. Therefore,
the coordinates .J,, @, are the action-angle coordinates for the Hamiltonian system
(2.13) with respect to the symplectic structure .

For the Legendre transform (2.14) one has

o _ s aJ, _ *H,(J) 0*B(J)
b= o7, a0 aJ,00, 4,005

(241)

Hence Eq. (2.18) follows.

4) Obviously, the involution of the action variables Ij,...,I; with respect to
the Poisson structure P, (2.19) is an immediate consequence of the block form
(2.36). Applying the Liouville Theorem [32] we obtain that system (2.1),(2.13) is
completely integrable with respect to the Poisson structure P, as well. [J

III

Remark 1. Theorem 1 implies that any two of the constructed Poisson structures
P. = w; ! are strongly dynamically compatible. The first part of Theorem 1 was

proved cin our paper [5].

Remark 2. The original symplectic structure ; has the form (2.10), where
f«(I) = 0 and the function B(J) is the Legendre transform B(J) of the Hamiltonian
function H(/):
~ O0H(I) OH(I)
B(J)=1,—/—— —H(), = .
) al, () J. i,
Indeed, for this case formula (2.14) presents the inverse Legendre transform. The
classical equalities

(242)

PHI) U, 0B(J) ?B(J) oI,

Lol — ol Y ALaly (243)
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imply that the corresponding matrix B (2.33) is the unit matrix

, O*H()®BJ) oL oL, oJ,
By = oLAIL, 3J,8Jy oI, aJy  aJg % (244)

Therefore, if f,(/) = 0 and the function B(J) in (2.10) is the Legendre transform
(2.42) of the Hamiltonian function H(I) then the symplectic 2-form w. (2.10),
(2.32) coincides with the original symplectic form w;.

Remark 3. A second Hamiltonian structure is known for just a few completely
integrable Hamiltonian systems. Theorem 1 reduces the rather difficult search of
the second Hamiltonian structure to the classical problem of construction of the
action-angle coordinates [18,42,43]. When these coordinates are found the formula
(2.10) presents a continuous family of symplectic and Poisson structures which are
invariant with respect to the system (2.1). Theorem 1 ensures that in this way one
obtains all invariant symplectic structures and even all invariant degenerate closed
2-forms if the Kolmogorov condition (2.7) is met.

Remark 4. The recursion operator 4 = PP 1 = P,w, has the block form

B 0
A= ( g B) (245)

in the action-angle coordinates (2.8). In Sect. 11 we prove that the corresponding
Nijenhuis tensor N,(u,v) is not equal to zero in general. Therefore, the Poisson
structures P; and P, are incompatible in general.

IV. If a completely integrable non-degenerate Hamiltonian system (2.1) has non-
compact invariant submanifolds

"ll"”‘xIR"_”’:Iyzcy, 0 < ¢, <2nm, pi € R,

1sy=sk lsa=m, m+1=<i=sk, (246)
then the following is true.

Proposition 1. For any k + 1 functions f,(1,...,Ix) and B(Ji,...,J), where vari-
ables J; are determined by Egs. (2.11) the closed 2-form w, (2.10) is invariant with
respect to the system (2.1),(2.3). If the non-degeneracy condition (2.35) is met,
then the system (2.1) has a continuum of supplementary Hamiltonian structures
(2.13). The Hamiltonian system (2 1),(2.13) is completely integrable with respect
to all Poisson structures P, = w;

The proof of Proposition 1 is the same as that for Theorem 1.

V. Completely integrable Hamiltonian systems (2.1) with non-compact invariant
submanifolds (2.46) possess greater families of invariant incompatible Poisson struc-
tures and invariant closed 2-forms. These Hamiltonian systems have the form

_0H(I)

oH(I)
P = 7oL =T

5 =D 4

=L), P
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in the action-angle coordinates I,, ¢,, p;, where ¢, € S Uand p; € R, Let
Fa(1)> fa(1)7 aij(l)a bai(l)a 1 = Ol,ﬁ =m, m+ 1 = i,j,l = k (248)

be arbitrary functions of the action variables I),...,I;. Let 6°(1) and &/(I) = &i(I)
be arbitrary 1-forms in the domain of the action variables and c,3 = —cg, be arbi-
trary constants.

Theorem 2. In the non-compact toroidal domain O C M" defined by conditions
(2.4) and (2.46) a closed 2-form w, represented by the formula

W = dF(I) Ade, +df(I) A dl, + cupdpy A dog

+d(pi0') + d(bu(1)pi) A doo + d(au(Dpidpr + pipi€")  (2:49)

is invariant with respect to the completely integrable Hamiltonian system (2.1),
(2.47) if and only if the functions (2.48) and the 1-forms 0' and &V = &' satisfy
the equations )

FodJ, + i = dB(I), by — 2capdp = Cy »

andJ; + bydJ, + 21,8 = d(aid))
OH(I) OH(I)
Jy = . J=—,
Tl T

where B(I) is an arbitrary function of the action variables I,...,I; and c, are
arbitrary constants.

(2.50)

Proof. Differentiating the 2-form (2.49) with respect to the dynamical system (2.47)
we obtain
0. = d(FodJy + J;0") + d(bud; — 2c4pJp) A d,

+ d(pi(audJ; + byudJ, + 27,81 + ayJidp;) - (2.51)

Three summands in (2.51) depend upon the different variables. Therefore, applying
the Poincaré Lemma we get that equation @, = 0 is equivalent to the system of
equations (2.50). O

Equations (2.50) form a linear and triangular system with respect to the unknown
functions (2.48) and 1-forms ¢ and &/ = &, These equations can be solved as
follows.

For m = k system (2.50) reduces to one equation (2.30). Solutions of this equa-
tion have the form (2.31).

For m =k — 1 and J;(I)#0 system (2.50) implies

0F =J 1 (dB - F,dJ,), 2% = day — I *bydJ,
bak = J by by =2cupJp+Ca - (2.52)
Therefore, for m = k — 1 the 2-form (2.49) takes the form
we = d(Fy + pid7 b)) Ay + dfo AdI, + copde, A dep

1
+d (pk./,;‘(dB — F,dJ,) — Epijk—2badJa) . (2.53)
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This invariant closed 2-form depends upon arbitrary constants c,,c,s = —cg, and
2k + 1 arbitrary functions B(I), F,(I) and f,(I/). For general values of these pa-
rameters the 2-form w, (2.53) is non-degenerate and the corresponding Poisson
structure P, = w;! is incompatible with the original Poisson structure P;.

For m < k—2 and f;(I)+0 the following parameters are arbitrary. 1) Func-
tions a;;(1) for m +1 < i,I < k. 2) Functions b,;(/) and 1-forms @' and &/ = &/
form+1 =< i,j < k— 1. 3) Functions B(I), F,(I) and f4(/). 4) Constants ¢, and
Cqp = —Cpy. System of equations (2.50) implies that the unknown 1-forms 0% and

&k — ¥4 and functions b, (I) have the form
0% =J7(dB — F,dJ, — Ji0'),
1 = &% = 2J)7 N (daw) — audJy — budJy — 2J;E)
&M = 2407 (dandr) — audJ; — bydJ, — 2J;:E9)
bak = J ' Qcupdp + o — buidi)
1<of<m mil<ij<k-1, m+1<I<k. (2.54)

The formulae (2.49) and (2.54) define invariant closed 2-forms ., which are non-
degenerate for general values of their independent parameters. The corresponding
Poisson structures P, = w; ' are incompatible with the Poisson structure P; for the
general values of these parameters.

Remark 5. The derived formulae (2.53) and (2.54) show that if the completely
integrable Hamiltonian system (2.1) has non-compact invariant submanifolds (2.46)
then the family of invariant closed 2-forms w, is considerably greater than the
complete family (2.10) for the compact and non-degenerate case. The family of
invariant closed 2-forms (2.10) depends upon k + 1 arbitrary functions B(J) and
Sfo(I). Family (2.53) for m = k — 1 depends upon 2k + 1 arbitrary functions B(/),
F,(I) and f,(I). Family (2.54) for m < k —2 depends upon a greater number of
arbitrary functions and also upon d(d + 3)/2 arbitrary 1-forms 0'(/) and &/(I) =
EN(), where d =k —m — 1.

Remark 6. Theorem 2 does not depend upon the Kolmogorov condition (2.7).
The formulae (2.49)—(2.50),(2.53) and (2.54) present invariant closed 2-forms w,
independently of whether the completely integrable Hamiltonian system (2.1) is
non-degenerate or not.

3. A Cohomology for Dynamical Systems
I Let V(x) be a smooth vector field on a manifold M" and

=i X" (3.1)
be the corresponding dynamical system. We denote A} the space of differential

m-forms w, on M”" which are invariant with respect to system (3.1).
Let us consider the complex of V-invariant differential forms on M”,

0-A L AL S  La g 0. (32)
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Definition 3. The quotient space

H*(V,M") =Kerd/Imd (33)
is called the cohomology of the dynamical system V (3.1). The wedge product of
differential forms induces a ring structure in H*(V,M").

We have the ring homomorphism
o:H*(V,M") — H*(M") (34)

that transforms a cohomology class of the invariant closed g-forms into the corre-
sponding de Rham’s cohomology class [14] of the general closed g-forms.
For any constant ¢+0, we have the isomorphism

H*(cV,M")=H*(V,M") . (3.5)
For ¢ = 0 the cohomology H*(0,M") is isomorphic to the de Rham cohomology
[14] H*(M"™).

Remark 7. Using Duff’s results [16] it is possible to generalize the constructions
of this section for dynamical systems on manifolds M”" with boundary.

II. The homomorphism « has an inverse and therefore is an isomorphism for the
following dynamical systems:

1) Assume that all trajectories of the dynamical system (3.1) are closed curves
and have the same period T. Let
U M — M", Yr =id (3.6)

be the corresponding action of the circle S'. For any closed g-form wg we construct
the g-form

oo, = % U (wq)dr . 3.7)

Obviously, the g-form a~'w, is closed and invariant with respect to all diffeomor-
phisms (3.6). The g-form o' w, belongs to the same de Rham’s cohomology class
in HY(M") as the closed g-form w, because the g-forms y*(w,) are homotopic

to w, for all 7. Therefore aoa~! =id in HY(M") and hence the map « is an
isomorphism.

2) Let M" = X"~* x T*, where X"~* is a smooth (n — k)-dimensional manifold
with a system of local coordinates x!,...,x" and T* is the k-dimensional torus with

angle coordinates @1,..., Q.
Let us consider the dynamical system

=0, ¢, =bj (3.8)

on the manifold M". Here b; are arbitrary constants which are incommensurable over
the integers in the sense of (2.6). Dynamical system (3.8) generates the following
group of diffeomorphisms:

¢ (0 0) = (6, 05 + 1)) . (39)
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Let f(x,p) be an arbitrary smooth function on M”". Applying the Ergodic
Theorem [4] for the subsystem (3.8) on the torus T*, we obtain

T
G = Jim [ £+ ) = [ f0s0)gr A Adgr. (310)

Let w, be an arbitrary g-form
w;= Y ¥ aij(x,@)dxt A Adx Adej, A+ Adgy, (3.11)
I+m=q 1i,j

on the manifold M™". For all diffeomorphisms ¢, (3.9), the differential d¢, is the
identity map of the tangent spaces T(y, ) (X" ~* x T*). Using this fact, we derive

17 - . )
Wy = Tlim T J i (w)dt = 3 Y aii(x)dxt A--- Adx Adej, A--- Adg;, .

I4+m=q i,j

(3.12)
Obviously, the g-form @, is closed and invariant with respect to the dynamical
system (3.8). Therefore we define

oo, =y . (3.13)

This invariant g-form belongs to the same de Rham’s cohomology class in H7(M")
as the closed g-form @, because the g-forms ¢;(w,) are homotopic to w, for all ¢.
Therefore o« o a~! = id in H9(M") and hence the map « is an isomorphism. Hence
we obtain the isomorphism of the two cohomologies

o H*(V,M") = H*(M") (3.14)

for the dynamical system (3.8) on the manifold M" = X" % x T*.
The classical harmonic oscillator provides an example of system (3.8), see sys-
tem (6.7) in Sect. 6 below. Therefore for the harmonic oscillator the cohomology

H*(V,R*) = H*(R*) = H'(R%*) = R! (3.15)
is isomorphic to the ring of reals.
III. Let dynamical system (3.1) be a generic non-integrable Hamiltonian system.

Then V' = P’{H j» where Py is a non-degenerate Poisson structure on M. The
corresponding cohomology is isomorphic to the sum

H*(V,M*) = R[u]/u* "R [u] + H*(V,M*) (3.16)

of the quotient-ring of polynomials of a single variable « and the infinite-dimensional
group H?*(V,M?) that has a trivial law of multiplication. The generator
u € HX(V,M?) corresponds to the invariant symplectic structure w; = P]’'. The
linear independent elements of the infinite-dimensional group H2*(V, M%) are rep-
resented by the invariant closed 2k-forms

wp = F(H)or A+ Ao . (3.17)

There are k factors w; in the wedge product (3.17), F(H) is an arbitrary smooth
function of the single variable and H(x) is the Hamiltonian function.
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Remark 8. The isomorphism (3.14) for the integrable dynamical system (3.8) and
the isomorphism (3.16) for the general non-integrable Hamiltonian system V' prove
that the cohomology ring H*(V,M") is a new invariant that characterizes simulta-
neously the topological properties of the manifold M" and the global properties of
the dynamical system ¥ on M".

1V. Let Pij be a non-degenerate Poisson structure on a manifold M. Let us con-
sider a completely integrable in Liouville’s sense Hamiltonian system
¥ =Vix)=PrH,  H,=0H/x". (3.18)

Definition 4. Hamiltonian system (3.18) is called C-integrable in a domain O C M"
if it is completely integrable in the Liouville sense and in the domain O all invariant
submanifolds of constant level of the k involutive first integrals are compact.

These invariant submanifolds are tori T* (2.5). The Liouville Theorem [32]
implies that the C-integrable Hamiltonian system (3.18) has form (2.3) in the action-
angle coordinates Ij,...,I;, @1,..., 0 (2.8).

Definition 5. A (p,q) tensor T on the manifold M" is called C-invariant if it
is invariant with respect to a C-integrable non-degenerate Hamiltonian system
(3.18).

We consider the C-integrable non-degenerate Hamiltonian system (2.3) in the
toroidal coordinates J;(7) (2.11), ¢,. In these coordinates, the Hamiltonian system
(2.3) has the form

J =0, ¢, =J. (3.19)

Let 0 be an arbitrary smooth differential 1-form
0 = 6., 0)dJ; + 0:45(J; 9)doy; . (3.20)
Theorem 3. 1) Differential 1-form 0 (3.20) is C-invariant if and only if
0= 06,(J)dJ; . (3.21)

2) Any closed C-invariant 1-form 6 (3.20) is exact in the toroidal domain
0 = B, x T*.

Proof. 1) For the 1-form 0 (3.20), the invariance equation has the form
(Ly0)p =05+ V%0, =0, (322)

where Ly is the Lie derivative. After substituting formulae (3.19) and (3.20),
Eqgs. (3.22) imply )

9[ = —9i+k, 9i+k =0. (3-23)
In view of (2.9), solutions to (3.23) have the form
0i(t) = ~0ia )+ 0:0),  Ora(t) = Bra(V) (3.24)

where éi(J ) and (§,~+k(J ) are some smooth functions of coordinates Ji,...,J;. Com-
ponents 0,(J, @) of any smooth 1-form (3.20) are bourlded on any torus T (2.5).
Solutions (3.24) are bounded for all ¢ if and only if 0,,4(J) =0 for i =1,...,k.
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Therefore using (3.24) and the fact that general trajectories of the C-integrable non-
degenerate Hamiltonian system (2.3),(3.19) are dense everywhere on the tori T*
we obtain that the 1-form 0 is invariant if and only if it has the form (3.21).

2) If the C-invariant 1-form 0 (3.21) is closed then applying the Poincaré
Lemma we obtain 0 =dF(). O

Proposition 2. Any C-invariant differential 3-form ws; has the form
w3 = by(J)dJ; AdJy A doy + cum(J)dT; AdJy AdT, (3.25)
where coefficients c;m(J) are alternating and bj;,,(J) satisfy the equations

bim(J) + bimi(J) + bwir(J) =0, bim(J) = —biim(J) . (3:26)

Theorem 4. 1) A closed differential 3-form ws is invariant with respect to the
C-integrable non-degenerate Hamiltonian system (2.3),(3.19) if and only if it has
the form

B;
wy =d (% + b,-m(J)) A dJ; A dm + dag(T)dJ; A dJy) (3.27)

in the toroidal coordinates J;, ¢;. Here Bi(J) are arbitrary smooth functions of
J1,...,Jk, and coefficients a;(J) and b;,(J) satisfy the equations
aif(J) = —an(J),  bm(J) = bm(J). (3.28)

2) Any closed C-invariant differential 3-form w3 is exact. The equation
w3 = d@, holds where the C-invariant 2-form @&, has the form

_(B) | 3Bul))
w2—< an o

+ b,-,,,(J)) dJ; A dey + ag(J)dJ; A dJ; (3.29)

The proof of Proposition 2 and Theorem 4 is based on the same ideas as in the
proofs of Theorems 1 and 3 and will be published elsewhere.

Corollary 1. Assume that a C-integrable non-degenerate Hamiltonian system V
(2.3),(3.19) is defined in an open toroidal domain © = B, x T*. Then the first five
cohomologies have the form

HV,0)=R', H'(V,0)=0, HV,0)=R>,
H3(V,0)=0, H'V,0)=R>. (3.30)

Proof. Theorem 3 implies that each C-invariant closed 1-form is the exterior deriva-
tive of some first integral. That means H'!(V,0) = 0. Theorem 4 implies that each
C-invariant closed 3-form is the exterior derivative of some C-invariant 2-form. That
means H>3(V,0) = 0. Theorem 1 and Theorem 3 imply that H%(V,0) = R*. The
Proposition 2 implies that the wedge product w; A w, of two generic C-invariant
closed 2-forms w; and w; (2.10) is not the exterior derivative of any C-invariant
3-form @3 that necessarily has the form (3.25). Hence the cohomology H*(V,0) is
infinite-dimensional. [

V. The “toroidal surgeries” method presented in Sect. 7 below provides a smooth
extension of any C-invariant closed 2-form w, (2.10) on the whole manifold M?*.
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Therefore, the second and the fourth cohomologies H*(V, M%) and H*(V, M?*) are
infinite-dimensional. Hence we obtain the following consequence.

Corollary 2. The infinite-dimensionality of the cohomologies H*(V,M*) and
H*(V,M?) is the necessary condition for the non-degenerate integrability of the
dynamical system V on the manifold M*.

4. Applications Connected with the KAM Theory

I. Theorem 1 deals with integrable Hamiltonian systems (2.1) which have compact
invariant submanifolds (2.5) and are non-degenerate in the Kolmogorov sense (2.7).
This class of integrable systems is exactly the starting point for the Kolmogorov—
Arnold-Moser theory [2,26,27,41] that studies Hamiltonian perturbations of inte-
grable Hamiltonian systems

X' = P®Hy o + ePYH , . 4.1)
Kolmogorov’s Theorem [2,26] assumes that for ¢ = 0 system (4.1)
x = P{Ho,q (4.2)

is completely integrable, non-degenerate and has compact invariant submanifolds.
In (4.1), the Hamiltonian function H(x',...,x") is arbitrary smooth and |e| is suf-
ficiently small.

It is well-known [3,27] that generic non-Hamiltonian perturbations can destroy
all invariant tori (2.5) and that the dynamics of trajectories of the general perturbed
system is not quasi-periodic.

Definition 6. For an integrable system (4.2) a perturbation eVi(x',...,x") is called
admissible if dynamical system

¥ = PHy , + eVi(x) (4.3)

possesses the same dynamical properties for sufficiently small |¢| as the Hamilt-
onian perturbations (4.1) in KAM theory.

Theorem 1 implies the existence of a rich family of admissible perturbations
which depend upon k£ + 1 arbitrary functions of k£ variables and one arbitrary func-
tion of 2k variables and which are non-Hamiltonian with respect to the Poisson
structure P;.

Theorem 5. 1) For any completely integrable non-degenerate Hamiltonian system
(4.2) with compact invariant submanifolds the dynamical system

X' = P¥Hy , +eP®H , (4.4)

possesses the same dynamical properties as the Hamiltonian perturbations (4.1)
in KAM theory. Here H(x',...,x") is an arbitrary smooth function and P, is an
arbitrary non-degenerate Poisson structure that is invariant with respect to the
integrable Hamiltonian system (4.2). In a neighbourhood of an invariant torus
(2.5) the admissible perturbations (4.4) depend upon k + 1 arbitrary functions
(2.10),

B(J1,...,J¢), Solliy. .o Ip), a=1,....,k. 4.5)
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2) If a supplementary invariant non-degenerate Poisson structure P, is com-
patible with Py then all perturbations

i
. 3 !
% =PPHy . + ¢ ( » amA§”> PPH (4.6)
o

m=—1
are admissible. Here A, = P\P; !, a,, = const and the (1, 1) tensor

i amAS." 4.7)

m=—1

is assumed to be non-degenerate.

Proof. 1) Let us consider dynamical system (4.4) in the action-angle coordi-
nates I, ¢, (2.8) associated with the integrable Hamiltonian system (4.2). In view
of Theorem 1 any invariant non-degenerate Poisson structure P, has the form
P. = o', where the symplectic structure w, is defined by (2.10). The integrable

C

system (4.2) has also form (2.13)
x' = P*Hy, = PPH,, (4.8)

with new Hamiltonian function

. 0B(J) ~  0B(J)
)=k =B, Ja= o2 (49)
Using formulae (4.8) we present dynamical system (4.4) in the form
X' =P"H, , + ¢PPH, . (4.10)

Obviously, this system is Hamiltonian with respect to the Poisson structure P, or
symplectic structure w.. Theorem 1 implies that the unperturbed completely inte-
grable Hamiltonian system (¢ = 0)

X' = P*H,, (4.11)

is non-degenerate with respect to the Poisson structure P.. Indeed, the symplectlc
form w, = P;! has the canonical form (2.15) in the action-angle coordinates J,, P,
(2.16),(2. 17) In these coordinates the non-degeneracy condition

(4.12)

PH, (J)”
07,075

is met in view of (2.18).

Therefore all conditions of KAM theory are satisfied for the system (4.10).
Hence the dynamical system (4.4) is an admissible perturbation of (4.2).

Dynamical system (4.4) is not Hamiltonian with respect to the Poisson structure
Py if at least one eigenvalue of the recursion operator 4. = P;P."! is not constant.
Indeed, this system preserves the Poisson structure P.. If it also preserved the
Poisson structure P; then all eigenvalues of the recursion operator 4. would be first
integrals of this system. But system (4.4), (4.10) does not have any additional first
integrals in general because the function H(x) is arbitrary.
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2) If a supplementary invariant Poisson structure P, is compatible with P; then
the (2,0) tensor
3 ! o
Pl = < > amAg”) Py (4.13)
m——
is a Poisson structure in view of Magri’s Theorem [35]. Obviously, the Poisson
structure Py is invariant with respect to the integrable system (4.2) and non-

degenerate because the (1,1) tensor (4.7) is non-degenerate. Applying Theorem
1 we obtain that the unperturbed (¢ = 0) system (4.6) can be presented in the form

¥ =P*H,, (4.14)

with a Hamiltonian function H,(J) of the type (4.9). Therefore dynamical system
(4.6) takes the form

X' = P*H,, + ¢eP™H, (4.15)

that is Hamiltonian with respect to the Poisson structure PY. Hamiltonian system
(4.15) satisfies all conditions of KAM theory because system (4.14) is completely
integrable and non-degenerate in view of Theorem 1. [

Theorem 5 implies the following consequence.

Corollary 3. The KAM theory is applicable not only for small Hamiltonian pertur-
bations (4.1) but also for the rich family of non-Hamiltonian perturbations (4.4).
The family of admissible non-Hamiltonian perturbations (4.4) depends upon the
k + 1 arbitrary functions of k variables B(J), f1(I),..., fxr(I) and upon one arbi-
trary function of 2k variables H(x).

Remark 9. Formulae (4.4) and (4.6) imply that any invariant non-degenerate Pois-
son structure P, that is compatible with P, leads to a larger family of admissible
perturbations than an incompatible Poisson structure P.. The family (4.6) depends
upon an arbitrary Laurent polynomial (4.7) or an arbitrary analytic function for
|l] = oo. Nevertheless, the whole family of admissible perturbations (4.4) is more
general because the incompatible invariant Poisson structures P. depend upon & + 1
arbitrary smooth functions of k variables (4.5) and compatible Poisson structures
P, are exceptional cases among them, see Sect. 11.

II. Let Py,...,Py be arbitrary non-degenerate invariant Poisson structures for inte-
grable Hamiltonian system (4.2), and 4;(x) = PP, ! be the corresponding recursion
operators. For an integer multi-index 7 = (7o,...,7y) and N + 1 (1,1)-tensors 4;(x)
we define a (1,1) tensor

A" (x) = A -4 . (4.16)
Let f;(x) and H (x) be arbitrary first integrals of system (4.2).

Theorem 6. For a completely integrable non-degenerate Hamiltonian system (4.2)
all perturbations (of an arbitrary scale)

X =P'Hy,+ Y fATPPH,, (4.17)

[t|<m
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are admissible. All invariant tori of system (4.2) are also invariant with respect
to the dynamical system (4.17). General trajectories of (4.17) are quasi-periodic.

Proof. The completely integrable Hamiltonian system (4.2) has form (2.3) in the
action-angle coordinates I;, ¢;. The Kolmogorov condition (2.7) implies that all first
integrals of this system are functions of the action variables I; only:

fo=k0),  Ho=Hd(l). (4.18)
Therefore vector fields V¥ = P‘l"ﬂ H s have coordinates

Vi =0, Vitk = H.(I); , (4.19)
where j=1,...,k. In the action-angle coordinates any recursion operator
A; = P\P; ! has the lower triangular block form (2.45) where all entries depend
upon the action variables /; only. Therefore, the (1,1) tensors A* (4.16) also have
the lower triangular block form (2.45). Hence using the key property of first
integrals (2.9) and the block structure (2.32) we obtain that the dynamical sys-
tem (4.17) has the form

=0, ¢,=p/) (4.20)

in the action-angle coordinates I;, ;. Here p/(Iy,...,I;) are functions of the ac-
tion variables and j = 1,...,k. Obviously, formulae (4.20) complete the proof of
Theorem 6. O

5. Applications Connected with the Kepler Problem

I. The classical Kepler problem is described by the Hamiltonian system in the phase
space R®

__0H(p.9) . _ OH(p.9)

= FER i T w1 = dp; A dg;, =123 (51)

i

with the Hamiltonian

GM()m
; .

1
H(p,q) = E(p? + 3+ p3) - (52)

Here m is the mass of the moving particle, M; is the mass of the attracting centre,
G is the gravitational constant and r = 4/q? + ¢3 + q%. As it is well known, the
Kepler problem has three first integrals of angular momentum

M; = &k pjqk (53)
and three Lenz and Runge first integrals

1 GMym
R = ;Sijkijk + ro qi - (54)

Here &;; is an alternating tensor, g123 = 1, i,/,k = 1,2,3.
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The existence of first integrals (5.3) and (5.4) implies that the Kepler problem
(5.1) possesses a continuum of invariant closed 2-forms

w, = w; + dF;(M,R) AdG;(M,R) . 5.5)

Here Fi(M,R) and G;(M,R) are arbitrary smooth functions of first integrals M; and
R; and i =1,2,3.

The invariant 2-forms (5.5) are non-degenerate for the generic functions F;(M, R)
and G;(M,R). The corresponding invariant Poisson structures P, = w; ! are incom-
patible with P; = o] in general. This is obvious because the rank of the system
of differential 1-forms dM;, dR; is equal to 5 and functions F;(M,R) and G;(M,R)
are arbitrary.

An additional compatible Poisson structure was constructed for the Kepler prob-
lem in [37] by another method.

II. The basic problem of celestial mechanics is the problem of dynamics of n planets
with masses my, & = 1,...,n, around the Sun that is assumed to be in the origin of
the Euclidean space IR* and has mass M > m,. The Hamiltonian of this problem
has the form

A _ GMO’”oc) & Gmymg (5.6)

2my, |74 axp 7a — 1]’

Hpr)=3 (

a=1

where vectors 7, and p, define position and momentum of the a-th planet.
In view of m,/My < 1 dynamics of the Solar system is studied as a small
perturbation of the basic integrable problem that is described by the Hamiltonian

no( pz GMym,
H = Lo 0
(P.r) ; <2ma lre| /)’

(5.7)
where the gravitational interaction between planets is neglected.

The basic integrable problem with Hamiltonian (5.7) is the direct product of
n Kepler problems. Let M,; and R,; be the angular momentum first integrals (5.3)
and the Lenz and Runge first integrals (5.4) for the a-th planet Kepler Problem. Let
F,i(Mpg;,Ry;) and Gni(Mpg;,R,;) be arbitrary smooth functions of the 6n arguments,
where a, 8,y =1,...,n and i,j,/ = 1,2,3. Obviously, the closed 2-forms

W) = Edpai A dry;, W, = W1 + EdFai(MR) A dGozi(MR) (5.8)
o, i a, i

are invariant with respect to the flow of the direct product of » Kepler problems
5.7).

The same arguments as for the Kepler problem (5.2) prove that the invariant
closed 2-forms w, (5.8) are non-degenerate for the generic functions F,;(M,R) and
G,i(M,R) and that the invariant Poisson structures P, = w;! (5.8) in general are

incompatible with the original Poisson structure P; = o'

Remark 10. Using the classical Poincare canonical elements [50] and methods of
Sect. 2, it is possible to present the invariant symplectic structures (5.5) and (5.8) by
the explicit formulae in the corresponding action-angle coordinates. The analogous
formulae for the harmonic oscillator are presented in the next section.
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6. Invariant Poisson Structures for the Harmonic Oscillator

I The classical harmonic oscillator is described by the Hamiltonian system with
the Hamiltonian

ko /1 1
H(p,q)= >, (mPf + 5“;“1,z~>> a; >0, mj>0, (6.1)
J

j=1
in the phase space R* with the standard symplectic structure w = dp; A dg;.

The corresponding action-angle variables /;, ¢; are connected with p;, q; by the
formulae

1 1
I = —p% + —c;q%, @) = arctan c1ﬂ R ¢ = Jamy , (6.2)
2¢ 2 Pi

[2 .
pi=+V2clcosg;,  q= C—llzsmq):. (63)

Indeed, using (6.2) we find

1 1
dn, = C—IPIdPI + c1q:dq;, do; = 2_1;(p'dql —qudpy) . (6.4)

These formulae imply that the symplectic form ® has the form
k k
Jj= j=

Formulae (6.3) yield the following expression for the Hamiltonian function (6.1):

a
H(p,q) =H(I)= oy + -+ oxl, = ;f; : (6.6)

Hence the dynamics of the harmonic oscillator is defined by the simplest integrable
Hamiltonian system

=0, ¢ =0 (6.7)

in the action-angle coordinates. The Hamiltonian system (6.7) is degenerate as much
as possible since the corresponding Hessian matrix (2.7) is identically equal to zero
for the linear Hamiltonian function (6.6).

Let f,(I1,-..,1x) and g,(11,...,Iy) be arbitrary smooth functions of the action
variables, and c,g be arbitrary constants, o,f =1,...,k. Any closed differential
2-form

o, = df(I) ANdoy + dge(I) A dI, + copdoy A dop (6.8)

is invariant with respect to the flow (6.7). Indeed, the Lie derivative Lyw, with
respect to dynamical system (6.7) vanishes: Lyw, = 0.

Using formulae (6.4) one can easily obtain the expression for the invariant
2-form (6.8) in the Cartesian coordinates pj, g;.

II. If frequencies w; (6.6) are incommensurable over the integers (see (2.6)) then
all trajectories of dynamical system (6.7) are everywhere dense on the invariant tori
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T*. Applying Theorem 9 from Sect. 8 below to the T*-dense Hamiltonian system
(6.7) we obtain that formula (6.8) represents all invariant closed 2-forms.

If frequencies w; (6.6) are commensurable over the integers then they satisfy
some m < k linear independent equations

ciioy+ - +egwr =0, i=1,....m (6.9)
with integer coefficients c;; € Z. For this case system (6.7) has m additional first

integrals
(o) _

=0, (6.10)

(@) = cinor + -+ + ca i,
which are defined mod(2x). Let
ﬁ([],...]k,lh,...,lﬁm), ga(ll,...,lk,l/h,...l/lm), o = l,k (611)

be arbitrary smooth functions of & + m variables which are 27-periodic with respect
to the variables ;. Formulae (6.7) and (6.10) imply that system (6.7) preserves the
following closed differential 2-forms:

we = df(L (@) N deo + dga(L (@) A ALy + capda A dog , (6.12)

where ¢, are arbitrary constants.

Invariant closed 2-forms w, (6.8) and (6.12) are non-degenerate for the generic
functions f,(/,/). The corresponding generic Poisson structures P, = w_ ' are
incompatible with the original Poisson structure P = w~! because the Nijenhuis ten-
sor Ny for the recursion operator A = Pw, does not vanish in general, see Sect. 11.

However, formula (6.8) contains a continuum of Poisson structures P, = a, !
which are compatible with the original Poisson structure P = w~! (6.5). Indeed, let
! have the form

B¢ = fo(ly)dly A dey , (6.13)
where f,(I,) are arbitrary smooth functions of the single variable. Then the formula
—1 ~—1\—1 f;(la)
W] +a, = ————dl, ANdo, 6.14
(o ) 1+ fulln) ¢ ( )

is true and therefore the compatibility condition d(w;' + w;!)~' =0 (6.15) is
satisfied. The corresponding recursion operator 4 = P;@, has doubly degenerate
spectrum fo(Iy), « = 1,...,n.

The invariant Poisson structures P, = [y ! (6.13) which are compatible with
P, = wl‘l are unstable in a sense that they become incompatible with P; after arbi-
trarily small perturbations inside the general families (6.8) and (6.12) of invariant
Poisson structures P, = ;!

7. Instability of the Property of Compatibility of Invariant Poisson Structures

I Assume that a completely integrable non-degenerate Hamiltonian system (2.1) is
given on a symplectic manifold M", n = 2k, with a symplectic form w; and Poisson
structure P; = wl‘l. Assume there exists a second non-degenerate Poisson structure
P, that is invariant with respect to the dynamical system (2.1) and is compatible
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with the original Poisson structure P; = a)l_l. The following theorem proves that
for the supplementary invariant Poisson structure P, the property of compatibility
with P; is unstable.

Theorem 7. In any neighbourhood of the Poisson structure P, there exists a non-
degenerate Poisson structure Pc that is incompatible with the Poisson structure
Py and invariant with respect to the Hamiltonian system (2.1).

Proof. In view of the Liouville Theorem for any point p € M"\S there exists some
toroidal domain ), C M", p € (,, with action-angle coordinates /i,..., I, @1,..., @k
in (), where the symplectic structure ; has canonical form w; = d/, A dg, and
the completely integrable Hamiltonian system (2.1) has form (2.3). Assume that the
Kolmogorov condition (2.7) is satisfied at some point Iy € (), with action coordinates
Iyy,...,Ior. Then the map

¢ lk) = s, Ji = 0HWI)/0I (7.1)

is a diffeomorphism in a neighbourhood of the point y. Therefore, for some » > 0
the ball B, (2.4) is transformed into an open set ¥, C R* that contains two balls
B, C By:

k
By: ;(Ji —Jo) 02, 81 <d  (Jo)=¢d). (72)

Let By,(J1,...,Jx) be an arbitrary smooth function on IR* that is constant outside of
the ball B, and is not constant inside the ball By C B;.

We construct a global invariant symplectic structure w, on the manifold M”"
from the second invariant symplectic structure w; = P; ! by the following “toroidal
surgery” in the action-angle coordinates /y,..., 1, ¢1,..., p;. Let O, C M™ be the set
diffeomorphic to the direct product B, x T* or B, x T™ x R¥~™  where the action
coordinates /1,...,I; satisfy the inequality (2.4) and the angle coordinates ¢1,..., @y
are arbitrary. The symplectic structure w, coincides with the original 2-form w; in
M"\0,. Inside the set O, the 2-form w, is defined by the formula

0B,(J)
aJ,

The constructed 2-form @), is defined globally on the manifold M” and is smooth
and closed. It coincides with @, outside of the set

¢7I(By) x T" x R¥™ 5 ¢~ (B)) x T" x RF™ (7.4)

wp:w2+8d< ) Adoy, . (7.3)

and is different from w, inside the set $~!(B;) x T™ x R¥~™. The 2-form w), is pre-
served by the Hamiltonian system (2.1) in view of Theorem 1 and is non-degenerate
for sufficiently small ¢ because the 2-form w, is non-degenerate. Therefore, the in-
variant Poisson structure Pc = w, ! is a small perturbation of the original Poisson
structure P;.

For the recursion operator 4, = Pjw), the Nijenhuis tensor Ny, is not equal to
zero in a neighbourhood of the point fy. Indeed, function B,(J) (7.3) is arbitrary
in the neighbourhood of the point Jy = ¢(lp) and therefore it does not satisfy the
overdetermined third-order nonlinear system of partial differential equations (11.9)
that follows from the compatibility condition N4, = 0. Hence we obtain that the
invariant Poisson structure Pc = w, ! is incompatible with P; in a neighbourhood
of the point /y. The instability is proved. O
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II. The method of “toroidal surgeries” that has been used in Theorem 7 can be
applied for any completely integrable non-degenerate Hamiltonian system (2.1).
This method provides the globalization of the invariant closed 2-forms (2.10) and
(2.49) and the corresponding incompatible Poisson structures from the action-angle
coordinates to the whole manifold M".

8. Invariant Poisson Structures for the Degenerate Integrable Hamiltonian
Systems

I The Kepler problem, the basic integrable problem of celestial mechanics and the
harmonic oscillator problem provide the classical examples of degenerate completely
integrable Hamiltonian systems. The following theorem is a generalization of the
concrete constructions of Sect. 6. We assume that m angle coordinates ¢,..., @,
0 < m =< k run over the torus T™ and k — m coordinates p,+1 = @mil,---> Pk = Pk
run over the Euclidean space R*"” and 1 < o, 8,y < k.

Theorem 8. 1) The closed 2-form
w. =dF,(I) ANdo, + dfe(1) A dly + cupdp, A dop 8.1)

is invariant with respect to the degenerate Hamiltonian system (2.3) if the func-
tions f,(I) are arbitrary, the functions F,(I) satisfy the equation

oH
Fou(D)d (5_1) =dB() (82)

with some smooth function B(I) and the skew-symmetric matrix c,g is constant

and satisfies the algebraic equation
PH(I)
o aLaly (83)

2) If the 2-form . (8.1) is non-degenerate then system (2.1), (2.3) has the
supplementary Hamiltonian form

¥ = Py (8.4)
where P, = ;! and . is a closed 1-form

Ve =dH.(I)+ g.doy , (8.5)

and function H.(I) and constants g, have the form

__OH(I) __0H()
Hl) = S 2D =B, ga = o5 (86)
3) If matrix B with the components
« _ OFp)

Bﬂ - al, (8.7)

is non-degenerate and all constants c,3 =0 then system (2.3) has the supplemen-

tary Hamiltonian form . .
X =PYH,, . (8.8)
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System (8.8) is completely integrable with respect to the Poisson structure P..

Proof. 1) Differentiating the closed 2-form w, (8.1) with respect to the dynamical

system (2.3) we obtain
O0H
(F I)d ( )) + 2¢qy ar, 6(1)d Ndlg . (8.9)

Substituting equalities (8.2) and (8.3) we find
&, =d(dB())=0. (8.10)

Therefore the 2-form . (8.1) is invariant with respect to the Hamiltonian system
(2.3).
2) In view of Egs. (8.2) and (8.7) we obtain for the function H, (8.6),
OH.(I) _ 0H 0Fy _ , 0H
o, dlgal, Porg

(8.11)

In the action-angle coordinates (2.8) the symplectic form . (8.1) has the block

structure
o B
W, = (——B’ c) , (8.12)

where matrix B has entries (8.7) and matrix ¢ has entries (2.33). The original
Hamiltonian system (2.3) is defined by the vector field x = V' that has the compo-
nents

OH
a:: Vk+a=— :1k 1
V=0, a = b (8.13)
Formulae (8.11)—(8.13) imply that the 1-form .V has components
0H  0H.(I)
(ch)oz = (wc)ajV] Bﬁ 01 Tla_ s
; 0H
(@ Yok = (wc)a+k-jVj = cozyaT =Y - (8.14)
Y

Equations (8.3) imply that g, = const. Formulae (8.5) and (8.14) yield the equality
oV =Y., (8.15)

where Y, is the closed 1-form (8.5). Hence we obtain
X=V =Py, (8.16)

where P. = w, !. Therefore the representation (8.4) is proved.
3) If in (8.12) matrix B is non-degenerate and matrix ¢ = 0 then

det ||, ||= (det || B||)**0 . (8.17)

In this case the Poisson structure P, has the block form (2.36) and hence the Poisson
brackets (2.19) vanish. The condition c,3 = 0 implies the equality y, = dH.(1).
Therefore, applying the Liouville Theorem [32] we obtain that system (2.1),(8.8)
is completely integrable with respect to the Poisson structure P, as well. [
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Obviously, Eq. (8.2) has solutions of the form

8BJ(I)) OH(I)
EVAR o,

where B(J},...,J;) is an arbitrary function. For this case equality (8.2) follows from
the definition of the differential dB(J).

The closed 1-form . (8.5) is not exact if one of the constants g,+0 and the
corresponding coordinate ¢, is periodic. For this case the Hamiltonian system (8.4)
has no single-valued Hamiltonian function that would be defined in a neighbourhood
of the invariant submanifold T™ x IR¥—™ (2.46).

B(I)=B(J(I)), F(l)= Ju(l) = (8.18)

II. Recall that a completely integrable system (2.1) is called T*-dense if the tra-
jectories of system (2.1) are everywhere dense on almost all tori (2.5).

Theorem 9. Assume that a completely integrable Hamiltonian system (2.1) is T*-
dense in the compact toroidal domain O C M" defined by conditions (2.4) and
(2.5). Then the following is true:

1) A closed 2-form w, is invariant with respect to system (2.3) if and only if
it has the form (8.1) and Egs. (8.2) and (8.3) are satisfied.
2) If the degenerate Hessian matrix satisfies the condition

*H(I)
3,01, H (8.19)
then all invariant closed 2-forms w. have the form
w, =dF,(I)Ndey, +dfu(1)ANdI, . (8.20)

Proof. 1) The sufficiency of Egs. (8.1)—(8.3) follows from Theorem 8. Their ne-
cessity is proved by the same arguments as in the proof of Theorem 1.
2) In view of (8.19) Eq. (8.3) yields

rank [lcep]] S 1. (8.21)

The rank of the skew matrix c,g is even. Hence the inequality (8.21) yields c,p = 0.
Therefore Eq. (8.20) follows from (8.1).

9. The Integrability Problem
I In this section we present a solution of the Integrability Problem that is formulated
in Sect. 1.

Theorem 10. Assume that two non-degenerate Poisson structures Py and P, on
a manifold M* are strongly dynamically compatible and their recursion operator
A = P\P;’" has k functionally independent eigenvalues. Then the following is true:

1) Any dynamical system
¥ =V, x*) = P0,., = P0,., (9.1)

that preserves the two Poisson structures Py and P, is completely integrable in
the Liouville sense with respect to Py and P,. Here 0, and 0, are closed 1-forms.
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2) There exist the action-angle coordinates I;, ¢; where the Poisson structure
Py has the canonical form

k
j=1
and where all closed 1-forms 0, (9.1) have the form 6, = dH,(I), where H(I)
are the corresponding Hamiltonian functions. All dynamical systems (9.1) have
simultaneously the form

5 _ D)

J ol
in the same system of the action-angle coordinates I;, ¢;.

3) Flows of all dynamical systems which preserve the two strongly dynamically
compatible Poisson structures Py and P, commute with each other.

9.3)

Proof. 1) Definition 2 implies that if two Poisson structures P; and P, are strongly
dynamically compatible then there exists a dynamical system

=, x (9.4)

that preserves P; and P, and that is an integrable and non-degenerate Hamiltonian
system with respect to some non-degenerate Poisson structure P, and such that
its invariant submanifolds are compact. The Liouville Theorem implies that these
submanifolds are tori T*. Applying Theorem 1 we obtain that system (9.4) is com-
pletely integrable and non-degenerate with respect to both Poisson structures P, and
P,. Let I;, ¢; be the action-angle coordinates with respect to the Poisson structure
Py (9.2) where system (9.4) has the form

. AH(I)

h=0 #=—
J

9.5)

with a non-degenerate Hamiltonian function H(J1,...,I;). Applying Statement 1 of
Theorem 1, we obtain that the second invariant non-degenerate Poisson structure P,
is equal to w, !, where w, is a closed differential 2-form (2.10). In the action-angle
coordinates /;, ¢; this 2-form has block structure (2.32). Therefore, the correspond-

ing (1,1) tensor Aj. = P{“Pz_aj. has the block structure

_ B 0
A=P1P21:(G B), (9.6)

where matrices B = B(I) and ¢ = ¢(/) depend upon the action coordinates /; only.
Let C(4,x) be the characteristic polynomial of the k& x k matrix B(x), x € M?*:

C(l,x) = det(B(x) — 1) = i em(X)A™ . 9.7)
m=0

The block structure (9.6) implies that the characteristic polynomial P(4,x) =
det(A(x) — A) of the operator A(x) is the square of the polynomial C(4,x)
P(4,x) = C*Ax). (9.8)

Hence we obtain that every eigenvalue 4;,(x) of the recursion operator A(x) = Py,
has an even multiplicity m; = 2k;.
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The formula (9.6) implies that functions
Hy(x) = TrA™(x) 9.9)

depend upon the action variables /; only. That follows from the key property (2.9)
as well because functions (9.9) are first integrals of the non-degenerate integrable
system (9.5). Therefore, the Hamiltonian flows

¥ = Vi(x) = PP (Tr 4™(x)) 4 (9.10)
have the form SH(D)
[=0 9= (0.11)

in the action-angle coordinates I;, ¢;.

The family of functions H,,(x) (9.9) and the k distinct eigenvalues A;(x) are
functionally equivalent. All these functions are in involution with respect to the
Poisson structure P; because they depend upon the action variables /; only.

We have assumed that the recursion operator 4 (9.6) has & functionally inde-
pendent eigenvalues. Therefore, the submanifold (d; = const)

M* (D) =d,..., k(1) = dy (9.12)

is a torus T*(I; = ¢;) or a union of several tori T¥.

Any dynamical system 7 (9.1) has first integrals (9.9). Therefore, vector field
V (9.1) is tangent to the tori T* and hence dynamical system (9.1) has the form

L=0, ¢ =V, (9.13)

Any Hamiltonian system V (9.1) is completely integrable with respect to the
Poisson structure P; because functions (9.9) are involutive first integrals of this
system and there are k functionally independent first integrals (9.9).

2) The closed 1-form 6; has the form

01 = 01.;(L, 9)dI; + 01.j14(Z, @)do; (9.14)

in the action-angle coordinates I;, ¢; (9.2). Therefore, the Hamiltonian system V'
(9.1) has the form

lj==b1. o),  ¢;=01.;(L¢). (9.15)

The two formulae (9.13) and (9.15) for the same dynamical system (9.1) imply the
equalities 6.4 = 0. These equalities and condition df; = 0 yield

0 = 01.;,(1)dl; . 9.16)
Applying the Poincaré Lemma for the closed 1-form (9.16) we obtain
H, (I
0, =dH,(I), 6., = OH{I) (9.17)
ol;

Therefore the representation (9.3) is proved for any system (9.1).
3) The commutativity of all flows (9.1) follows from their simultaneous form
(9.3) in the same system of action-angle coordinates /;, ¢;. [
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II. Magri’s Theorem [34] states that if a dynamical system ¥ (9.1) preserves two
compatible Poisson structures P; and P, then functions H,(x) = Tr A™(x) are in
involution with respect to both Poisson structures P; and P,. The proof of involu-
tiveness is based on the identities

P (—I—TrA’") =Py (LTrA'"“) (9.18)
m ) m+1 o

and follows from the Lenard scheme [23]. For the non-degenerate Poisson structures
P; and P,, the identities (9.18) are equivalent to the compatibility of P; and P;.
Therefore, identities (9.18) are not true for any pair of incompatible non-degenerate
Poisson structures. However we have proved in Theorem 10 by another method
that all first integrals H, = Tr4™(x) are in involution. Our proof is independent
upon the Lenard scheme that is not applicable for two general strongly dynamically
compatible Poisson structures.

The involutiveness of first integrals H,, = Tr A™(x) with respect to both Poisson
structures P; and P, implies that all flows V,, : X = PydH,, commute and all flows
V,, : ¥ = PydH,, commute. The identity (9.18) implies an excessive information that
all Hamiltonian flows V,, preserve not only the Poisson structure P; but also P,
and that all Hamiltonian flows ¥, preserve not only the Poisson structure P, but
also P;.

Remark 11. These properties are not necessary for the Liouville integrability. There-
fore, the dynamical systems which preserve two compatible Poisson structures un-
dergo the more rigid mechanism of integrability that those preserving two strongly
dynamically compatible Poisson structures. For the incompatible case Theorem 10
implies that the commuting flows V,, preserve the Poisson structure P; and do not
preserve the Poisson structure P, for two general strongly dynamically compati-
ble Poisson structures P; and P;. Analogously the commuting flows ¥, preserve
P, and do not preserve P;. These facts do not confirm Olver’s prediction that “if
would appear that incompatible bi-Hamiltonian systems are, in a sense, even more
integrable than compatible ones” [47, p. 187].

The incompatible bi-Hamiltonian systems V preserve the non-zero Nijenhuis
tensor N[‘; k and all invariants which can be constructed from tensors P;,P,,A4 and
N,4. However, we prove in Theorem 12 (see Sect. 12) that all arising scalar invariants
(12.7) are equal to zero. Therefore, these invariants do not provide additional first
integrals which could lead to an excessive integrability of the system » under
investigation.

Remark 12. Let C; be a class of C-integrable non-degenerate Hamiltonian systems
on a manifold M with a non-degenerate Poisson structure P;, see Definition 4
in Sect.3. Let C; be a class of dynamical systems which preserve two strongly
dynamically compatible non-degenerate Poisson structures P; and P, provided that
the recursion operator 4 = PP, ! has k functionally independent eigenvalues. Let
C; be the class of all C-integrable Hamiltonian systems on the Poisson manifold
M? . The inclusions

CiCcCGCG (9.19)

hold. Indeed, inclusion C; C C; is proved in Theorem 1. The inclusion C, C Cj is
proved in Theorem 10.

Remark 13. Brouset in_[8,9] and Fernandes in [19] proved that class C; is not
included into the class C, of dynamical systems which preserve two compatible in
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Magri’s sense Poisson structures provided that the recursion operator 4 = P\ P, !

has k functionally independent eigenvalues. Magri proved in [34] that G, c Cs,
where C3 is the class of all integrable Hamiltonian systems on M2,

10. Hierarchy of Integrable Dynamical Systems

I Let L(z) be a Laurent polynomial

L(z) = ZI: an(x)z™, (10.1)

m=—1

where coeflicients a,(x) are arbitrary smooth functions of the eigenvalues of the
recursion operator 4 = PP, !. We define a function H;(x) on the manifold M%*

Hi(x) = Tr (L(A(x))), A=PP;! (10.2)

and the Hamiltonian system
x' = PHy, . (10.3)
Theorem 11. Assume that two non-degenerate Poisson structures P, and P, on

a manifold M* are strongly dynamically compatible and their recursion operator
A = P\P;" has k functionally independent eigenvalues. Then the following is true:

1) Any dynamical system (9.1) that preserves the two Poisson structures P
and P, generates a hierarchy of integrable dynamical systems

¥ =U"vy, (10.4)

where m is an arbitrary integer.

2) Invariants H,(x) = Tr A™(X) of the recursion operator A are first integrals
for all dynamical systems (10.4).

3) All flows (10.3) and (10.4) commute

[A"V,4'V]1=0, [4"V,P\dH]=0, [PidH;,PidH,]=0. (10.5)

4) All dynamical systems (9.5) as well as the more general dynamical systems

¥ =LAV (10.6)

are completely integrable. All flows (10.6) for different L(A) commute with each

other. Here L(A) is an arbitrary Laurent polynomial (10.1).

Proof. 1) Theorem 10 implies that dynamical system (9.1) is completely integrable
with respect to both Poisson structures P; and P,. This system has the form (9.3)
in the action-angle coordinates I;, ¢; which are constructed in Theorem 10. The
recursion operator 4 has form (9.6) in the coordinates I;, ¢;.

Formula (9.6) implies that the (1, 1) tensors A’ and 4=/, I > 0, have the block

structure N L
A’———<(B) O), A—’=<(B) 0 ) (10.7)

[oF] B! o_| B!
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Matrices o; and o_; are defined by the formulae

o= Y. BYe(B), o_;=-Bla(B), (10.8)
ptq=I—1

which follow readily by induction.
In the action-angle coordinates I;, ¢; vector field V' (9.3) has components

OH (1)

Vi = JHk
0, 4 ol;

(10.9)
Therefore, formulae (10.7) imply that components of the vector fields 4™V have
the form oH

“@"vy =0, A"V =@B"U1))] I (10.10)

where j, 1 = 1,...,k. These vector fields are tangent to the tori T* (2.5). Therefore,
the tori T* are invariant submanifolds for all dynamical systems (10.4). All these
systems are integrable in view of (10.10).

The last is true as well for any dynamical system (10.6) corresponding to an
arbitrary Laurent polynomial (10.1) because components of the vector field L(4)V
have the form
O0H
on

2) Dynamical system (9.1) preserves the two Poisson structures P; and P..
Therefore it preserves the (1,1) tensor 4 = P1P;! and all its invariants as well.
Hence the functions H,,(x) = Tr4A™(x) (9.9) and Hp(x) (10.2) are first integrals
of system (9.1). We have proved in Theorem 10 that all eigenvalues 4;(/) of the
recursion operator A are constant on the tori T* (I; = c;j), see (9.12). Hence all
functions (9.9) and (10.2) are constant on the tori T* as well.

Therefore, in view of (10.10) we obtain that functions (9.9) and (10.2) are first
integrals of the dynamical systems (10.4) as well.

3) Vector fields 4™V are tangent to the tori T (I; = ¢;) and their components
in the action-angle coordinates /;, ¢; depend upon the action variables /; only. Ob-
viously the same is true for the vector fields P;dHy (/) in view of the canonical
form (9.2). Therefore, all these vector fields and the corresponding flows (10.3) and
(10.4) commute.

4) In the action-angle coordinates ;, ¢; the dynamical system (10.6),(10.11)
has the form

LAWY =0, LAV = pil) = LBU))] (10.11)

[=0,  ¢;=p/(h,....[x). (10.12)

Obviously, this system is integrable.
System (10.12) preserves the closed 2-form

k )
wy =Y. dp/(I)Ndo; . (10.13)
j=1

If the & functions p'(I),..., p*(I) are functionally independent then dynamical sys-
tem (10.6),(10.12) has the Hamiltonian form

. 0H0(P)

1
9= gpi Ho(p)=5((p1)2+-~-+(p")2). (10.14)
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Hence we obtain that in the non-degenerate case dynamical system (10.6) is
completely integrable in the Liouville sense with respect to the symplectic structure
(10.13) in a toroidal neighbourhood @ = B, x T* of any invariant torus T¥.

Commutativity of all flows (10.6) follows from the formulae (10.11). O

II. The dynamical systems (10.4) have the form

X =Py H ,=PH,,, m>0, (10.15)
. ~jo. ~ o
X = lelHl,a = P]m]+1H2a°l’ m<O0. (1016)

Here the (2,0) tensors
P =4"'P, Pi=4"'Py 1>0 (10.17)

are skew.

For [ = 2 the (2,0) tensors P; and P; are not Poisson structures if the original
Poisson structures P; and P, are incompatible. In the proof of Theorem 11 we have
constructed the symplectic structures for systems (10.4) and (10.6) by the explicit
formulae (10.13) in the action-angle coordinates.

The methods of the present paper differ substantially from the methods used in
papers and monographs [8-13, 15,19-22,24,25,33-37,40,45-48,53,54] for pairs
of compatible Poisson structures where all (2,0) tensors P; and P; (10.17) are
themselves Poisson structures and therefore systems (10.15) and (10.16) are
bi-Hamiltonian.

For [ = 1 formulae (10.17) yield the tensors P, and P, = P,. Systems (10.15),
(10.16) take the form

¥ = (VY = (P\Py'PY°Hy 4 = P°Hy,, m=1, (10.18)

¥ =(AT'VY = PPHy o = (PP ' Py) Hyyy m=—1. (10.19)

These systems preserve the Poisson structure P, or P, respectively. They are com-
pletely integrable with respect to P; or P, by the same arguments as in Theorem 10.

11. The Nijenhuis Tensor for the Recursion Operator

I Assume that two incompatible non-degenerate Poisson structures P; and P, on a
manifold M", n = 2k are strongly dynamically compatible. In view of Definition 2,
Sect. 1, there exists a dynamical system 7 on the manifold M” that preserves both
of them and is completely integrable and non-degenerate with respect to some non-
degenerate Poisson structure P, and such that its invariant submanifolds are compact.
Using Statement 4 of Theorem 1, we obtain that the dynamical system ¥V is com-
pletely integrable and non-degenerate with respect to both Poisson structures P;
and P..

Let us use the action-angle coordinates /;, ¢; (2.8) where the Poisson structure
P; has the canonical form P; = wl_‘, w; = dI; Ade;. Applying Statement 1 of
Theorem 1 for the invariant Poisson structure P., we obtain that in the action-angle
coordinates /;, ¢; the recursion operator 4 = P1P_ ! has block structure (2.45) with
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the following entries:
Ai=BlU), A, =0, AT =o;(1), Ak =B, (11.1)
where 1 < i, j < k. Formulae (2.33) imply

0B,(I)

. 0
=200, gy = P,

6.], O',‘j(]) = f}‘,i - f;',j . (112)

For any (1, 1) tensor A; the Nijenhuis tensor Ng, is defined by the formula [44]
N§, = 45 Af — A A5+ (4, — 45 )47 . (113)

Substituting formulae (11.1) we obtain that the following components of the
Nijenhuis tensor (11.3) vanish:

Nt =Ny =Nl =0. (11.4)
Here and below we assume 1 < i,j,/,m < k. Components Nj, coincide with those
for the Nijenhuis tensor of the (1,1) tensor B’(/) in the domain of the action
variables: 4 .

it = BiuBi — BLuBy + (Bj,, — By, )BT (11.5)

The other components have the form

Niié =B} By~ B uBw  Njifix=BinBi — BB, , (11.6)
Nif* = 61 mB), — BiyOmi,j — 0ijmBhy + BiyOmj1 + 0im(B),  — By ;) . (11.7)

Proposition 3. The k-dimensional linear subspace ¥, = T(T*) is a commutative
ideal with respect to the algebraic structure defined by the Nijenhuis tensor N(u,v)
in the tangent space T,(M™).

Indeed, equalities (11.4) mean that
N(&x, Z%x)=0,  N(I:(M"),Z%:) C Zx. (11.8)
Therefore subspace £, is a commutative ideal.

II. The compatibility of the two non-degenerate Poisson structures P; and P, is
equivalent to the vanishing of the Nijenhuis tensor N4(u,v) = 0 [24,25,36]. This
condition implies

ik O°Bi(I)0Bu(I)  *B;(I) 0Bu(I) _

Jkel= "erer, o,  oLdl, ol 0,
OB(J(I OH(I
Bil) = —(6}12 Iy = %I) . (119)

The overdetermined third-order nonlinear system of partial differential equations
(11.9) has solutions only for exceptional pairs of functions B(J) and H(I).
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For example if function B(J) is the Legendre transform (2.42) of the function
H(I) then we have
BUI(I))
o

Hence Egs. (11.9) are satisfied and components of the Nijenhuis tensor (11.5) and
(11.6) vanish. For the case (11.10) components N]’f" (11.7) vanish for any matrix

o;j. Therefore, any symplectic form

& =1+ (fpa— fop)dly Ndlp (11.11)

Bi(I)
AL (11.10)

BuI) = =1, ) =

defines a Poisson structure P = &~ that is compatible with the Poisson structure P;.
The corresponding recursion operator 4 = P;@ (2.45) satisfies an algebraic equation
(4 — 1)> = 0 and has non-diagonal 2 x 2 Jordan blocks.

The function B(J) is the most important element of the invariant symplectic
form (2.10) because this function determines the incompatibility of the two Poisson
structures P, and P;.

If two functions H(I) and B(J) are in general position then Eqgs. (11.9) are not
satisfied and therefore the invariant Poisson structure P, (2.13) is incompatible with
the original Poisson structure P;.

III. For any tangent vector u € T,(M") we define an operator N,:
Now = N(u,w) . (11.12)
Tangent vector u has the following coordinates:
uzulel +--~+ukek+vle1+k+~--+v"e2k,

0 0

5;, ej+k:a—qw’ j= 1,...,k. (1113)
J J

€ =
The formulae (11.4) imply that in the action-angle coordinates operators N; have
the following block structure:

v, 0 0 0
= . N, = , 11.14
Ne <U,- W) (Q,- 0) (L9

where V;, U;, W; and Q; are k X k matrices which depend upon the action variables
I],...,Ik only.
Let us define the following polynomial-valued function on the tangent bundle
T(M"):
Py(u, A) = det(N, — 1) . (11.15)

For the Nijenhuis tensor (11.14), polynomial (11.15) has the form
Py(u,A) = det(Vju’/ — 2)det(Wu/ — 1) . (11.16)

Obviously, this polynomial is a product of two polynomials of degree k. Polyno-
mial (11.16) does not depend upon the coordinates v!,...,vF (11.13). Hence the
identity holds

Py(u+v,1) = Py(u, 1), (11.17)
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where u € Tx(M") and v € Z,. This identity implies Py(v,4) = (—A4)" for all tan-
gent vectors v € Z,.

12. Necessary Conditions Problem

I Let Py and P, be two incompatible non-degenerate Poisson structures on a man-
ifold M", n=2k. Let A = PP, ! be the recursion operator and N4(u,v) be the
corresponding Nijenhuis tensor. The (1,1) tensor Aj. defines a family of differen-
tial forms

dH,, H,= %TrA"‘ (12.1)
and a family of vector fields
X, =A'PidH,, o= (l,m). (12.2)
Using the operators N, (11.12) we obtain a family of differential 1-forms
Pm(u) = Tr(4"N,), (12.3)
a family of bilinear forms
gm(u, @) = Tr(N,A"N;) (12.4)

and a family of polynomial-valued functions on the tangent bundle T(M"),
Pin(u,2) = det(4'Ny = 1) = 3 pim(u)A™. (12.5)
m=0
These geometric objects lead to a family of vector fields
Yy =A'Pi@n, a=(m), (12.6)
and families of functions on the manifold M"
Jfy = 9m(Zs, Zp), hs = Py(APYn, ATm), rs = Py(APYn, A%y) ,  (12.7)
where

Zy =X, orY,, Ym = @ or dHy, y = (m,a,p), 5=(1,m,P,q)-
(12.8)

11

Theorem 12. The following properties of the geometric objects (12.1)—(12.7) con-
stitute the necessary conditions for two incompatible non-degenerate Poisson struc-
tures Py and P, to be strongly dynamically compatible:

1) The algebraic structure defined by the Nijenhuis tensor Ny(u,v) in the tan-
gent space T.(M") possesses a k-dimensional commutative ideal ¥, C T,(M").
The linear subspace ¥, is Lagrangian with respect to both symplectic struc-
tures oy = Py and w. = P;'. The algebraic structures which are defined by the
Nijenhuis tensor are isomorphic along any curve x(t) € M" that is tangent to the
distribution L x).
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2) The differential 2-forms d¢,, and bilinear forms g,, have
rank dp, =< k, rankg, < k. (12.9)
3) All vector fields Z, = X, or Y, are mutually commutative
[Z4,Z5] = 0. (12.10)

4) The functions f,, hs and rs are identically equal to zero. All functions Hy,(x)
are in involution with respect to the Poisson structures P, and P,

Pi(dH,,dH,) = P.(dH},dH,,) = 0. (12.11)

5) Polynomial Piy(u,A) (12.5) is reducible and is a product of two polynomials
of degree k = n/2.

Proof. 1) Assume that two Poisson structures P; and P, are strongly dynami-
cally compatible. Then we define the k-dimensional distribution %, in the form
&, = T(T*), where tori T* are defined by the integrable system V', see Definition
2 in Sect. 1. By this definition ¥, is Lagrangian with respect to the symplec-
tic structure ;. Theorem 1 implies that any invariant closed 2-form w, has form
(2.10) in the action-angle coordinates (2.8) corresponding to the completely inte-
grable Hamiltonian system V (2.3). Therefore the distribution %, is Lagrangian
with respect to any invariant symplectic structure @, = P;"!. Formulae (11.8) prove
that the subspace %, is a commutative ideal.

The phase flow corresponding to the system (2.3) preserves the two Poisson
structures P; and P.. Therefore, it preserves the recursion operator 4 = PP I and
the corresponding Nijenhuis tensor N4(u, v) and all geometric objects (12.1)—(12.7).
Hence these tensors are isomorphic along any trajectory of the system (2.3). In
view of the Kolmogorov condition (2.7) the general trajectories of this system
are everywhere dense on the tori (2.5). Therefore, the algebraic structures defined
by the Nijenhuis tensor N4(u,v) on the tangent spaces Ty (M") and T,,(M") are
isomorphic if the points x; and x, belong to the same torus T* (2.5). Hence this
is true along any curve x(¢) tangent to the distribution #,(t) because such a curve
lies on a torus (2.5).

2) Formulae (10.7),(10.8) and (11.14) imply that operators A™N, have the form

B'Y"V,u* 0
AN = (( L - B™"W. u“) y Unpu = onVot® +Bm(Ua“a + qua) (12.12)
mu o
in coordinates (11.13). Hence we obtain
@m(1) = Tr(4"N,) = Tr((B*Y"Vy + B" W )u* , (12.13)
gm(u, @) = Tr(N,A"Ny) = Tr(Vo(B' )"V + W,B" Wﬂ)u“ﬁﬂ , (12.14)

where matrices B(I), V,(I), W,(I) depend upon the action variables ,...,[; only.
Obviously, formulae (12.13)—(12.14) yield the relations (12.9).

3) Formulae (2.32),(10.7) and (12.13) imply that coordinates of the vector fields
Zy, =X, (12.2) or Y, (12.6) have the form

Zy =(0,...,0, zX(D),...,zk(D)). (12.15)

Hence the commutativity relations (12.10) follow.
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4) Substituting expression (12.15) into (12.14) we obtain that all functions
J, vanish.

The Kolmogorov condition (2.7) implies that any first integral F(x) of the sys-
tem is a function of the action variables I,...,J;. Therefore the differential form
dF has components

dF =(F1,...,F4, 0,...,0). (12.16)

Applying (12.16) for first integrals H,(x) (12.1) and using the block forms of the
Poisson structures P; (2.32) and P, (2.36) we obtain the equalities (12.11).

Using the block forms of the operators A’ (10.7) and formulae (12.13),(12.16)
we find that the 1-forms A'ys, have components

A = W+ Yk, 0,...,0), o= (I,m). (12.17)

These expressions and the block forms of the Poisson structures P; (2.32) and P.
(2.36) imply that all functions 4s and s (12.7) vanish.
5) In view of (12.12) polynomial (12.5) has the form

Piv(u, 2) = det((B")' Vyu® — 1) det(B'Wu® — 1) . (12.18)

Obviously, formula (12.18) presents polynomial Pj;y(u,1) as the product of two
polynomials of degree k. [

III. Theorem 12 can be applied for many incompatible Poisson structures P; and
P.. For example if the hypersurfaces of constant level H,(x) = const are compact
for one of the functions H,(x) (12.1) and one of the necessary conditions 1)-5)
is not met then no integrable non-degenerate Hamiltonian system exists that would
preserve the two Poisson structures P; and P..

13. Canonical Forms for Non-Degenerate Completely Integrable Hamiltonian
Systems

L In this section we study canonical forms for the non-degenerate completely inte-
grable Hamiltonian systems in the domains (see (2.4))

0 =B, xT" x RF-"™ . (13.1)

Theorem 13. Any non-degenerate completely integrable Hamiltonian system
(2.1)-(2.3) in a toroidal domain O C M" is diffeomorphically equivalent to one
of the k + 1 universal Hamiltonian systems in the Cartesian coordinates p;,q;:

. 0H, . OHy
RS = 132
b %2 %= 5 (13.2)
The Hamiltonian functions H,, have k + 1 canonical forms
L& o 0 1 &
Hnga(l?i'k‘]i) +t3 > Dis (133)

i=m+1

i

where m =0,1,... k.
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Proof. The Kolmogorov condition (2.7) ensures that the k£ functions

JI) = QI;%, I=1,...k, (13.4)

form a system of local coordinates in the space of action variables Ii,...,[;. In
these coordinates the dynamical system (2.3) takes the canonical form

. , OHo(J
=0 g=s="20, (13.5)
1
Ho(J) = E(Jl2 + ). (13.6)

Obviously system (13.5) is Hamiltonian and preserves the symplectic structure
w; =dJ; Ado; . (13.7)
In the original action-angle coordinates I;, ¢; this structure has the form

o, - CHU)
>~ ol

dZ; Ade; . (13.8)

Hamiltonian system (13.5) is the universal canonical form for any non-degenerate
completely integrable system (2.3) in the coordinates Ji,...,J; (13.4) and the orig-
inal angle coordinates ¢y,..., @k.

The canonical forms in the Cartesian coordinates depend upon the topology of
the invariant submanifolds I; = const. In view of the Liouville Theorem [32] we
assume that m coordinates ¢,...,®, are defined mod(27) and run over the torus
T™. The other k — m coordinates p,1,...,px run over the Euclidean space IR¥—"™,
We define the Cartesian coordinates

pi = v/2J;cos ¢;, qi=+/2J;sing;, i=1,....m <k,

. OH(I
pi=Jj qgi=pj, j=m+1,.. .k Jy = 01( ) (13.9)
4
In these coordinates symplectic structure (13.7) takes the canonical form
k
Wy = de, A dqi . (1310)

i=1

The Hamiltonian function Hy(J) (13.6) takes the form (13.3). O

Remark 14. The symplectic form (13.7) is a special case of the invariant closed
2-forms @, (2.10). The corresponding functions f,(/) =0 and function B(J) has
the form

1
B(J):E(J12+~--+Jk2). (13.11)
The symplectic structure (13.7) implies the supplementary Hamiltonian represen-

tation (2.13) for the system (2.3). The corresponding Hamiltonian function H.(J)
(2.14) coincides with Hy(J) (13.6). In coordinates Ij,...,I; it is defined by the
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formula
2 2
Hﬂ):Jﬁ%% —B(J) = % <<ai;1(li)) - (ag—l(kl)) ) . (13.12)

In coordinates J,, ¢ the original symplectic structure w; = dI, A dg, has the form

_(0B(J) _ *B(J)
w,-d( o, )Adgoa—aJanﬁdJa/\d(pg, (13.13)

where function B(J) is the Legendre transform (2.42) of the Hamiltonian func-
tion H(I).

Remark 15. Theorem 1 proves that any completely integrable Hamiltonian system
(2.1) has a continuum of invariant Poisson structures in a toroidal domain ¢ C M",
which are incompatible with the original Poisson structure P; (2.4). But among these
structures there exist a continuum of compatible pairs. For example the Poisson
structure P, = w; ! (13.8) is compatible with all invariant Poisson structures Pg =

wal, where the symplectic structure wg has the form

OH(I)
o,

w6 = dGy(J) Aoy,  Ju(I) = . (13.14)

Here G,(x) are arbitrary smooth functions of the single variable x. This is obvious
because the corresponding (1,1) tensor 4 = P,P ! is diagonal in the coordinates
Ji»; and has the diagonal entries

~ ~k+o

A =4 =Gl(Jy), a=1,...k. (13.15)

For example if G,(x) = G(x) = 1x?, then the eigenvalues of the (1,1) tensor 4 are
equal to J,(/) and have multiplicity 2. Hence we obtain that for any non-degenerate
completely integrable Hamiltonian system (2.1) first integrals J,(/y,..., ;) (13.14)
can be presented as eigenvalues of the recursion operator 4 = PP ! for two in-
variant compatible Poisson structures P, and Pg.

II. Let us consider in the toroidal domain ¢ C M" the original Poisson structure
P = wl_l and the Poisson structure P, = w; ' (13.7)—(13.8). The corresponding
recursion operator 4 = P{P; ' has the block structure

FH(I) 0
_ aL;or;
A=PP;! = " eao (13.16)
0 aL;0I;

in the action-angle coordinates /y,...,I;, ¢1,...,@. For this (1,1) tensor the £ x k
matrices V;, U;, W; and Q; (11.14) have the following entries:

Wit = H iimH, jim — H jimH 1, Uj)u=0,

Wit = H jimH jm — H, jimH i, (9))it = H jimH i — H jimH my . (13.17)
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Obviously the equality W; = VJ’ holds. Therefore, the formulae (11.12)—(11.14)
imply that operator N, has the following block structure:

Vaul 0
N, = , (13.18)

ijj Vj’uf
where j = 1,...,k. Hence we obtain that polynomial (11.15) is a perfect square
Py(u,A) = (det(Vju/ — A))*. (13.19)

This remarkable algebraic fact is a manifestation of a general theorem that will
be published in our next paper. This theorem states that if a (1,1) tensor 4 is the
recursion operator for two incompatible Poisson structures, 4 = P\ P; ! then the
corresponding polynomial (11.15) is a perfect square.

14. General Invariant Poisson Structures

I Olver in [47] and Turiel in [53] studied canonical forms of compatible pairs of
Poisson structures and integrable systems which preserve them.

In this section, we present a classification of all Poisson structures P** which
are invariant with respect to the integrable non-degenerate Hamiltonian system (2.3)
provided that all its invariant submanifolds are compact. For the non-degenerate case
det || P* || #0 we give a second proof of the main results of Theorem 1.

The Kolmogorov condition (2.7) implies that the k& functions J,(/) (2.11) form
a system of local coordinates in a ball B, (2.4). Hamiltonian system (2.3) takes the
equivalent form

Ji=0, ¢; =Ji (14.1)
in coordinates
Jis- -5 dks Q1.+ » Ok @; = @; mod(2m) . (14.2)

Trajectories of system (14.1) are everywhere dense on almost all tori (2.5).
In the toroidal coordinates J;, ¢; a (2,0) tensor P*2(J;, ¢;) has the block structure

P, )= PY P3) 14.3
i @i) (m 2o (14.3)

where po, p1, P2, p3(Ji, @;) are k x k matrices.

Theorem 14. 1) A Poisson structure P*f is invariant with respect to the dynamical
system (14.1) if and only if it has the form

0 -pJ ))
pb = ( , 144
P0) pol) (144
where matrices p(J) and po(J) satisfy the equations
PN =p),  pJ)=—-pJ), (14.5)
o™ =™, (14.6)

) oo
PO nP™ + PouP™ + Plmp™ = 0. (14.7)
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2) Any first integrals F and G of an integrable non-degenerate Hamiltonian
system (2.3) are in involution with respect to any invariant Poisson structure

5 OF 3G

b = (14.8)
3) If the invariant Poisson structure (14.4) is non-degenerate then
p=B"",  po=pop,
&*B(J) i)  ofilJ)
By(J) = A, 20u(J) = o (14.9)

for some functions B(J) and fi(J).

Proof. 1) The invariance of a (2,0) tensor P*# with respect to dynamical system
(14.1) is equivalent to the vanishing of the Lie derivative Ly P, where vector field
V (14.1) has components

Vl=...=Vvk=0, yitk = J. . (14.10)
For any vector field V' the Lie derivative Ly P has the form [49]
(LyPY* =P — 2P _ P (14.11)

After substituting (14.3), (14.10) and (14.11) the invariance equation LyP =0
takes the form of the matrix system

p] = Oa pz = pla p3 = PI’ pO = p2 + P3 . (14'12)

In view of the key property of first integrals (2.9) solutions to (14.12) have the
form

() =p)  pA)= PN+ Pa(J),  ps() = P+ p3(J),
po(t) = By + (By(J) + Bs(I))t + pol) - (14.13)

All entries of matrices p, (14.3) are smooth functions of J;, ¢;. Hence p,(¢) are
bounded on any torus T* (2.5). Solutions (14.13) are bounded for —co < ¢t < 400
if and only if

nJ)=0,  pU)=pV)  BU)=-pJ). (14.14)

Therefore any invariant (2,0) tensor P has the block form (14.4).
By definition a Poisson structure P*/ satisfies equations

pb — _pha (14.15)
PPp 4 phip 4 prept =0 (14.16)

Formulae (14.5) follow from (14.15) and (14.4). In view of (14.4) formulae
(14.16) have different meaning for different (o, f8,7). Let 1 < i,j,l,m < k. For-
mulae (14.16) are identically true when

(o, B,9)= (G, 7, 1) or (o,B,79)=(j1l+k). (14.17)
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Formulae (14.16) are equivalent to (14.6) when

(B,7)=(,j+kl+k), (14.18)
and they are equivalent to (14.7) when
(B =(+kj+kl+k). (14.19)

2) In view of (2.9) any first integral F' of Hamiltonian system (2.3), (14.1) has
the form F = F(Jy,...,J;). Therefore the involution relation (14.8) follows from
(14.4).

3) Formula (14.4) implies

det [|P(J)[|= (det || p(/)II)* - (14.20)

Hence the invariant Poisson structure (14.4) is non-degenerate if and only if the
symmetric matrix p(J) is non-degenerate. Let B(J) = p~!(J) be the inverse (sym-
metric) matrix. Multiplying Eq. (14.6) with B,;B,;B, and contracting with respect
to the indices i, j,/ we obtain

Byp=Bgpr, 1= pqr=k. (14.21)
These equalities yield
0B,(J)
By = —— 14.22
qr oJ, ( )

for some functions B,(J). The symmetry of matrix B and (14.22) imply the equal-
ities

B,(J) = ag_‘(]‘:)’ By(J) = gzjfgjr) (14.23)
for some function B(J).
Let 6 = p~!pop~!. Then one has
po=pop, ¢ =-0. (14.24)
In view of (14.5) and (14.6), Eq. (14.7) takes an equivalent form
ij1 +0ji,i +01,; =0. (14.25)
That means that the 2-form
wy = oy(J)dJ; A dJ; (14.26)

is closed, dw; = 0. The Poincaré Lemma implies that locally the 2-form w, is exact
w, = d(fi(J)dJ) . (14.27)
Hence the last of equalities (14.9) follows. [

II. In Theorem 14, we have presented the second proof of the classification
of the non-degenerate invariant Poisson structures that has been discovered in
Theorem 1. Theorem 14 also implies the existence of families of invariant degenerate
Poisson structures (14.4)—(14.7). For example one gets an invariant Poisson struc-
ture (14.4) if _ ‘ _

P'U)=0,  piU)=-pi), (14.28)
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where functions p/(J) are arbitrary. In this case Egs.(14.5)—(14.7) are satisfied
identically. The family (14.4), (14.28) of degenerate Poisson structures depends
upon k(k — 1)/2 arbitrary functions p{/(J). Thus this family is larger than the family
of all non-degenerate Poisson structures (14.9) that depends upon k + 1 arbitrary
functions f;(J) and B(J).

One gets another family if for some m,

P = fodSh, P =—pJ) = fiJ), iEm,
Pon)=0, i%m, I+m, 1<m<=<k. (14.29)

Here fo(J), fi(J) are k arbitrary functions of k variables Ji,...,J; and pi(J)
= - p{{(J ) are (kK — 1)(k — 2)/2 arbitrary functions of £ — 1 variables J; for i+m.
A direct substitution proves that functions (14.29) satisfy all Egs. (14.5)—(14.7).
Therefore, the corresponding matrices p(J) and po(J) define a family of invariant
degenerate Poisson structures (14.4).

In general, the constructed Poisson structures (14.28) and (14.29) are incom-
patible with the original Poisson structure P; (2.32). That follows from the explicit
formulae (15.23) for components of the Schouten bracket, see Sect. 15 below.

15. Necessary Conditions for Strong Dynamical Compatibility

I Let P and Q be two arbitrary Poisson structures on a manifold M", n = 2k.
Their Schouten bracket [P, Q] is an alternating (3,0) tensor that has the following
components:

2[P, O1# = P Q™ + PPg™ 4 P2

+ 0¥ p7 + ghr P + QP (15.1)
Let A(T(M")) be the exterior algebra of the tangent bundle T(M")
ATM") =Ag@ A @D A, . (152)

Recall that A, = T(M"). Any alternating (k,0) tensor is a section of the fibre
bundle A;. The Poisson structures P and Q are sections of the fibre bundle A,. The
Schouten bracket [P, O] is a section of the fibre bundle A3. The fibres of the bundles
Ap (scalar functions) and A, (alternating (n,0) tensors) are one-dimensional.

Let S, for m =0,1,...,k —2 be an alternating (n — 1,0) tensor of the form

Sy =[P,O)JAPA---APAOA---NQ, (153)

where there are m factors P and k — 2 — m factors Q. Let us denote (W,,w,) the
complete contraction of the product of the (,0) tensor W, and the (0,7) tensor w,.

II. We define k — 1 differential 1-forms ™ by the formula
" =Sn | wn, (15.4)
where w, is an arbitrary non-degenerate n-form on M". Formula (15.4) means that
E™(u) = (Sm AN u, ) (15.5)

for any tangent vector u € T,(M").
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The Poisson structures P and Q transform the 1-forms &” into the vector fields
U,, and V,, by the formulae

Ug=P™en,  Vi=Qmen. (15.6)

III. Let Ry € A,—, be the wedge product of / factors P and k—1—1 factors Q,
1=0,1,...,k—1,
Ri=PA---APAQA---NQ. (15.7)

We define 2k(k — 1) differential 1-forms {* and ¥,
= R NUy) J @p, 9 = RiNVy) J Wy . (15.8)

Here o is the multi-index o = (I,m).

Let us denote the 1-forms &”, {* and ¥* by the general symbol 6*. These
1-forms are defined uniquely up to a functional factor (as well as the n-form w,).
They generate the distribution 4 C T*(M") and assign the orthogonal distribution

BCTM"), (BB)=0. (15.9)
The distribution £ is uniquely determined by the system of Pfaff equations
0*(u)=0. (15.10)

These equations for the tangent vectors u € %, are equivalent to the system of
equations in the exterior algebra A(T(M")),

SyAu=0, RAUAu=0, R AVuAu=0. (15.11)

Any dynamical system that preserves the two Poisson structures P and Q also
preserves the two distributions % and #*.

Remark 16. The distributions # and %' have very simple form if the Poisson
structures P and Q are compatible. Indeed, in this case their Schouten bracket
vanishes: [P, Q] = 0. Therefore the k¥ — 1 tensors S,,, m =0,1,...,k —2 (15.3) and
the 1-forms ™ (15.4) and {%, 9* (15.8) also vanish. Hence we obtain that -+ = 0
and therefore distribution # (15.9) coincides with the tangent bundle 7(M") and
has dimension n = 2k.

IV. Necessary conditions. I. Assume that two incompatible Poisson structures P
and Q are strongly dynamically compatible. Then the following necessary condi-
tions are satisfied:

1) The distribution B+ C T*(M") is annihilated by the Poisson structures P
and Q and by their Schouten bracket [P, Q). It means that the equations

(P> NOPY =0, (0, 0°NOF)=0, (15.12)
([P,OL,0*NOP NGy =0,  ([P,01,6°AdOF)Y=0 (15.13)

hold for all differential 1-forms 6%, 0% and 0" € B*.
2) The distribution # C T(M") satisfies the condition

dim B, = k. (15.14)
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If dim B, = k for a dense open set O C M", then the distribution & is integrable
and its fibres are tori T*.
Proof. 1) Definition 2, Sect. 1, implies that the two Poisson structures P and Q are
invariant with respect to some completely integrable Hamiltonian system

X' =PH, , (15.15)

where P; is some non-degenerate Poisson structure on M”". Theorem 14 implies that
the invariant Poisson structures P and Q have the following & x & block forms:

_ 0 -p(J) _ 0 —q(J)
"o (p(J) Po) ) e <q(J) qo(J)> (1316

in coordinates J;, ¢; (14.2). Here p(J), po(J), q(J) and go(J) are k x k matrices
satisfying the equations

rP=p  pPh=—-po d=4¢ q=—q. (15.17)
One has the basis of vector fields
0 0 .
e = a—Ji, itk = 6—%, 1= 1,...,k (1518)

presented in the local coordinates J;, ¢; (14.2). The k vector fields e, 4(x) form a
basis in the invariant k-dimensional distribution

Ly = T(T*) C T(M™) (15.19)

that is tangent to the invariant tori T (2.5). The block structures (15.16) mean that
the alternating (2,0) tensors P and Q have the form

P =—2pY(J)e; Aejik + Py )eisk Aejik » (15.20)

0 = —2¢"(J )ei Nejuk + 4y (J Jeisk A €jic - (15.21)

A direct calculation of the Schouten bracket (15.1) leads to the following ex-
pressions for its components:

2[P, Q]i~j+k-l+k — Pfjmqml _ p’l;onJ +qumpml _ q’linpmj , (1522)

—2[P, QYT = p g+ P g™ + Plimd™
+ 4P+ o™+ G (1523)
[P0 =0, [P,OI7'=0. (15.24)
These formulae mean that the alternating (3,0) tensor [P, Q] has the form
[P,Q] = CV'(J)ei A ejik A ervk + DV Jeisk Aejux A ek - (15.25)
The alternating (n — 1,0) tensor S,, (15.3) has the form

Sm=WnNergNesgg N+~ Ney_1 Ney (15.26)
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where W,, is some alternating (k — 1,0) tensor. Indeed, formulae (15.20), (15.21)
and (15.25) imply that in the wedge product (15.3) each monomial has at least
k factors e; ;. Therefore every non-zero monomial contains all factors e, for
j=1,.. k.

Formula (15.26) yields that S,, A e;+x = 0 for all i =1,...,k. Therefore the 1-
forms &™ (15.5) have the form

" =&, 0)dJ; . (15.27)

Using the block structures (15.16) we obtain that the vector fields U, and V,, (15.6)
have the form ‘ .
Up = U, @)eisks Vi = Vi, 0)eis - (15.28)

These formulae along with (15.20) and (15.21) imply that the (n — 1,0) tensors
R; AU, and R; AV, (15.7) have the same structure as tensor S, (15.26). Hence
we get

RiNU,Nejpy =0, RiANVaNe, =0 (15.29)

for all i = 1,...,k. Therefore the 1-forms {* and ¥* (15.8) have the same structure
as the 1-forms &” (15.27). Thus we have proved that all 1-forms 6% (or &%, (%, 9%)
have the form

0% = 07(J, p)dJ; . (15.30)

Now Eqgs. (15.12) and (15.13) follow readily from the formulae (15.20), (15.21),
(15.25) and (15.30).
2) The formulae (15.30) imply that the invariant k-dimensional distribution %
(15.19) satisfies the equations
0(L)=0. (1531)

Therefore ¥ is embedded into the distribution # (15.10). Hence the condi-
tion (15.14) follows. If dim %, =k then the embedding ¥ C # implies that
#=%. 0O

Corollary 4. Assume that a dynamical system
=i, 2" (15.32)

preserves the two Poisson structures P and Q and is completely integrable in
the Liouville sense non-degenerate Hamiltonian system with respect to some non-
degenerate Poisson structure Py and its invariant submanifolds are tori T*. Then
the distribution % (15.9) contains tangent spaces of these invariant tori T*:

B, O T(T"), (15.33)
or 0*(T(T%)) = 0 for all o.

Proof. The completely integrable non-degenerate Hamiltonian system (15.32) has
form (15.15). The tangent spaces Ty(T¥) satisfy the Pfaff equations dJ;(Ty(T*))=0,
I =1,...,k, in the corresponding coordinates J, ¢; (14.2). Therefore Egs. (15.30)
imply 0*(T,(T*)) = 0. Hence the inclusion (15.33) follows. [J

IV. The necessary conditions (15.12)—(15.14) are applicable as well for the dis-
tributions %, C T*(M") and &, C T(M") which are defined as follows. Let us
denote the constructed 1-forms 6% as 0'% We define a family of 1-forms §+!®
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from the family of 1-forms ¢* by induction. Let vector fields Uj;, and V;, have the
coordinates ‘ .
U;, = P"0,°, Vi =Q0%6 . (15.34)

The 1-forms {/* and 9™ are defined as in (15.8):
(= (R ANUp) | ony 0" = (RIAVia) | 0. (15.35)

The family 6""'"* consists of all 1-forms 0"°%, {/* and 9", where (i + 1-a) is a
new multi-index. These 1-forms generate a distribution %5, C T*(M"). The corre-
sponding distribution %,,; C T(M") is defined by the system of Pfaff equations

0wy =0, u€ Bipyox. (15.36)

Obviously one has the embeddings
BrC---CB-CRBLC--C B, (15.37)
BO DB DO RBi1 D DB (15.38)

These inclusions stabilize at some / < n because dim QJJ- < n. We denote the sta-
bilized distributions as gé’,l and %;. The necessary conditions (15.12)—(15.14) are
equally applicable for the stabilized distributions %;- and %, with the corresponding
1-forms 6'** and for all intermediate distributions (15.37) and (15.38) and have the
same proof as above.

16. Necessary Conditions for Dynamical Compatibility

I In this section we define a series of new invariants of two arbitrary Poisson struc-
tures P and Q which are determined on a manifold M” of an arbitrary dimension
n =2k or n=2k + 1 and can be both degenerate. These invariants are preserved
by any dynamical system that preserves the two Poisson structures P and Q. Con-
structions of this section are based on the one-dimensionality of the linear spaces
Ap(x) and A"(x) of alternating (n,0) and (0,7) tensors for each point x € M".

First we assume that n = 2k. Let T, € Ay be the wedge product of m factors
P and k — m factors O, m =0,1,...,k:

T,=PA---APAQA---NQ. (16.1)

Assume that at least one of the tensors 7,(x) is not equal to zero in a neigh-
bourhood of a point x € M. Using the fact that dim A,(x) = 1, we define a map
of the manifold M2 into the real projective space RP*:

fi : M* — RP*, (16.2)
fi(x) = To(x) : Ti(x) : --- @ Ti(x) € RP* . (16.3)

This map is not defined in the points x where all (n,0) tensors T,,(x) = 0.
Any dynamical system

¥ =riEh. X", LyP=0 Ly,0=0 (16.4)
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that preserves the two Poisson structures P and Q also preserves all (n,0) tensors
T (16.1), which are proportional one to another because dim A4, (x) = 1. Therefore
the map f; (16.2) is first integral of dynamical system (16.4).

This construction defines first integrals of dynamical system (16.4) when both
Poisson structures P and Q are degenerate and therefore the recursion operator
A =PQ~! does not exist. For degenerate Poisson structures P and Q only k — 2
coordinates of the map f1(x) (16.2) can be non-zero because tensors 7y and Ty
vanish.

II. Let us consider the alternating (n,0) tensors
Ini = Su AN U, Rui =S AV, (16-5)

where the (2k — 1,0) alternating tensors S,, have form (15.3) and vector fields U
and ¥} have form (15.6) and m,/ =0,1,...,k — 2. We assume that at least one
of the tensors (16.5) is not equal to zero. These tensors are determined by the
formulae (15.3)—(15.6) uniquely up to a common factor because the space A"(x)
of alternating n-forms w, is one-dimensional. Therefore, for any point x € M? the
2(k — 1)? tensors (16.5) that belong to the one-dimensional space 4,(x) uniquely
define a point of the projective space RPY, N = 2(k — 1)> — 1. Hence we obtain
the map

fo i M* - RPV, (16.6)

S2(x) = Too(x) : Roo(x) : -+ : Re—pep—a(x) € RPV . (16.7)

This map is first integral of any dynamical system (16.4).

The map (16.7) is not defined in the points x, where all (n,0) tensors (16.5)
vanish; for example, in the points x where the distribution %, (15.10) has dimen-
sion n. Indeed, all 1-forms &™ (15.4) and vectors U;, ¥; (15.6) vanish at these
points. Hence the tensors 7,,;(x) and R,;(x) (16.5) vanish and therefore the map f,
(16.7) is not defined. The formulae (15.26) and (15.28) imply that tensors (16.5)
vanish identically if the two Poisson structures P and Q are strongly dynamically
compatible.

By proceeding in the same way one can construct more complicated first inte-

grals
fu : M* — RPN@D (16.8)

by considering the alternating (n,0) tensors
Tmiot = Sm A Uioz, Rmioz = Sm A Via P (169)
where vector fields U;, and ¥V, have form (15.34).

III. Assume that dimension of the manifold M”" is odd n =2k + 1. Let w, be
any non-degenerate n-form on M”. We define k + 1 differential 1-forms (™ for
m=0,1,...,k by the formula

" =Tnlo,, (16.10)

where the alternating (24, 0) tensors T, have the form (16.1). The Poisson structures
P and Q transform the 1-forms {™ into the vector fields U, and V,:

U, =P™(", v.o=0omm. (16.11)
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We define the 2(k + 1)? alternating (n,0) tensors
T =T, AU,  Ru=T,AV. (16.12)

Assume that at least one of the tensors (16.12) is not equal to zero. These tensors
are defined uniquely up to a common factor because the n-form w, in (16.10) is
defined up to a factor. In view of dim A4,(x) = 1 tensors (16.12) uniquely define for
each point x € M" a point of the projective space RPY, N = 2(k + 1)?> — 1. Hence
we obtain the smooth map N
f3 : M1 S RPV (16.13)

F1(x) = Too(x) : Roo(x) : -+ : Rew(x) € RPY . (16.14)

This map is first integral of any dynamical system (16.4).

IV. Assume that P and Q are arbitrary Poisson structures on a manifold M" of odd
dimension n = 2k + 1. We define a distribution # C T(M?*+*!) by the k + 1 Pfaff

equations
{Mu)=0, (16.15)

where (™ are the 1-forms (16.10) and m =0,1,...,k. This distribution % has
dimension k in general. The map f3 (16.13) is not defined in points x, where
dim %, = 2k + 1. Indeed, all 1-forms {” (16.10) and vectors U, V,, (16.11) van-
ish at these points. Hence the tensors Ty;(x) and R,;(x) (16.12) also vanish and
therefore the map f3(x) (16.14) is not defined.

V. Let us define the k alternating (n,0) tensors (n =2k + 1)
Sw=[P,OIAPA---APAQA---ANQ, (16.16)

where there are m factors P and k — 1 — m factors O, m = 0, 1,...,k — 1. Assuming
that at least one tensor S,(x)#0 we obtain the map

fa o M¥*TY 5 RPFY (16.17)
Fax) = So(x) : S1(x) s -+ : Se_1(x) € RPFL (16.18)

This map is first integral of any dynamical system (16.4) because it preserves all
tensors Sy, (16.15) and dim A,(x) = 1.
The direct product of the maps (16.13) and (16.17),

£ X fo 2 M*HU L RPN x RPET (16.19)

also is first integral of any dynamical system (16.4).
Remark 17. First integrals f1, f>, fu, f3 and f4 possess the following properties:

1) They are defined in some open domains O C M™".

2) These open domains are invariant with respect to any dynamical system V
(16.4) that preserves the two Poisson structures P and Q. Indeed, the non-zero
components of maps f; remain to be non-zero after any diffeomorphism defined by
the dynamical system V.

3) First integrals f; (16.2) and f3 (16.13) depend upon the components of the
Poisson structures P and Q and do not depend upon their partial derivatives.
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4) First integrals f> (16.6), f, (16.8) and f4 (16.17) depend upon the Schouten
bracket [P, Q], and therefore upon the first order partial derivatives of the Poisson
structures P and Q.

VI Necessary conditions. II. If two Poisson structures P and Q on a manifold
M" are dynamically compatible then the necessary condition

rank df(x) < n—1 (16.20)
is satisfied at all points x € O C M", where one of the maps

fif  HNXfo foo fis [iXfa (16.21)

is determined.

Proof. The constructions of the maps f (16.21) imply that they are determined
in some open domains ® C M" which are invariant with respect to any dynamical
system that preserves the Poisson structures P and Q. If the two Poisson structures
P and Q are dynamically compatible then such dynamical system (16.4) does exist.
Every map f (16.21) is first integral of this system. Therefore, every map f (16.21)
is constant on each trajectory of system (16.4) in the invariant open domain 0,
where f is defined. Hence the condition (16.20) follows. [J

17. Concluding Remarks on the Role of the Compatibility Condition

(i) In the present paper, we have studied the geometric and algebraic properties
of pairs of Poisson structures which are invariant with respect to some integrable
dynamical system on a manifold M", n = 2k. We have proved that the compati-
bility in Magri’s sense [34] of these structures is an exceptional and unstable phe-
nomenon.

(ii) In Theorem 1, we have derived the complete classification of the non-
degenerate Poisson structures P, which are invariant with respect to a given com-
pletely integrable non-degenerate Hamiltonian system provided that the invariant
submanifolds of this system are compact. The classification is given in a toroidal
domain O in the action-angle coordinates I, ¢,, where the original Poisson struc-
ture P; has the standard form. This classification is presented by the general and
previously unknown formula

w.=d (a—g.(];]‘)) Ndey +dfu(I) Ndl,,
J(I) = 0];1(1), a=1,....,k, (17.1)

that describes all invariant closed 2-forms .. Invariant non-degenerate Poisson
structures are P. = . !. Here B(J) and the f,(I) are arbitrary smooth functions
of k variables and H(I) is the Hamiltonian of the given integrable system. For a
general function B(J) the two Poisson structures P, and P; are incompatible. Only
exceptional Poisson structures P, are compatible with P;. The corresponding func-
tions B(J) are connected with the Hamiltonian function H(I') by the overdetermined
third-order nonlinear system of partial differential equations (11.9).
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(iii) In Theorem 7, we have proved that for any invariant non-degenerate Poisson
structure P, the property of compatibility with P; is unstable. By means of the
method of “toroidal surgeries,” we have constructed the supplementary invariant
Poisson structures Pc = w;‘ (7.3) which are defined globally on the manifold M",
are arbitrarily close to P, and are incompatible with the original Poisson structure
Py.

(iv) In Sect. 3, we have introduced a cohomology for dynamical systems on
smooth manifolds. This cohomology H*(V,M") is a new invariant that character-
izes the global properties of the dynamical system ¥V on the manifold M". We
have proved that the infinite-dimensionality of the cohomologies H?*(V,M?*) and
H*(V,M?) is the necessary condition for the non-degenerate integrability of the
dynamical system ¥ on the manifold M?.

(v) In Sects.5 and 6, we have pointed out applications connected with the
Kepler problem, with the basic integrable problem of celestial mechanics, and with
the harmonic oscillator. We have presented explicit formulae for a continuum of
invariant symplectic and Poisson structures for these problems. In general, these
Poisson structures are incompatible with the original Poisson structure P;. How-
ever, these same formulae contain a continuum of compatible Poisson structures
as well. The latter are unstable in a sense that they become incompatible with P;
after arbitrarily small perturbations inside the general family of invariant Poisson
structures.

(vi) The results obtained show that Magri’s notion of compatibility of two
Poisson structures and its counterpart, incompatibility, are not conceptionally ade-
quate for a good insight into the diversity of pairs of Poisson structures. Therefore,
we have introduced the new concepts of dynamical compatibility and strong dy-
namical compatibility of two arbitrary Poisson structures.

(vii) In Theorems 5 and 6, we have demonstrated that strongly dynamically
compatible non-degenerate Poisson structures P; and P, have applications connected
with the Kolmogorov—Arnold-Moser theory [2,26,27,41]. Theorem 5 implies that
KAM theory is applicable not only to small Hamiltonian perturbations of integrable
non-degenerate Hamiltonian systems

X' = PHy, + ePYH, , (17.2)
but also to the rich family of non-Hamiltonian perturbations
X' = PHy, + ePyH, . (17.3)

The family (17.3) depends upon the k+1 arbitrary smooth functions B(J), f1(1),...,
fx(I) (17.1) of k variables and one arbitrary smooth function H(x) of 2k variables.

(viii) In Theorem 10, we have proved that if on a manifold M? a dynamical
system V preserves two strongly dynamically compatible non-degenerate Poisson
structures P and P, and the recursion operator 4 = PP, ! has k functionally inde-
pendent eigenvalues then system V' is completely integrable with respect to P; and
P,. Flows of all such dynamical systems commute with each other. The proof of
Theorem 10 is independent upon the Lenard scheme [23,34] that is not applicable
for the two incompatible Poisson structures P; and P;.

(ix) In Theorem 11, we have proved that any dynamical system ¥’ = V(x) that
preserves two strongly dynamically compatible non-degenerate Poisson structures
P; and P, in the general position generates an infinite hierarchy of completely
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integrable dynamical systems .
=4V, (17.4)

where 4 = PP, ' and m is an arbitrary integer. In contrast with the compatible
case, neither P; nor P, are preserved in general by dynamical systems (17.4) for
|m| > 1. Flows of all dynamical systems (17.4) commute with each other.

(x) In Theorem 12, we have presented several necessary conditions for strong
dynamical compatibility of two non-degenerate incompatible Poisson structures P;
and P,. These necessary conditions are formulated in terms of the Nijenhuis tensor
Ny and other geometric objects constructed from Pj, Py, A = P1P; ' and Ny.

(xi) In Sect. 15, we have introduced a distribution £ C T(M") that is uniquely
determined by two arbitrary Poisson structures P; and P,. Necessary conditions for
strong dynamical compatibility of the two Poisson structures are derived which con-
nect the global property of strong dynamical compatibility with the local geometric
invariants of the distribution 4.

(xii) In Sect. 16, we have introduced new invariants of an arbitrary pair of
Poisson structures P; and P,. These Poisson structures are defined on a manifold
M" of an arbitrary dimension » = 2k or n =2k + 1 and can both be degenerate.
The invariants are the smooth maps f of the manifold M” into the real projective
spaces RPV™_ For the two Poisson structures P; and P,, we have derived the
necessary condition for dynamical compatibility that has the form

rank df(x) < n—1 (17.5)

at all points x € M" where the maps f are defined.
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